1
|
Xiang L, Shen Y, Liu S, Fan B, Zhan J, Zhou Y, Jiang B, Wang M, Liu Q, Liu X, Zou Y, Sun S. Guggulsterone ameliorates psoriasis by inhibiting keratinocyte proliferation and inflammation through induction of miR-17 directly targeting JAK1 and STAT3. Biochem Pharmacol 2025; 233:116745. [PMID: 39793717 DOI: 10.1016/j.bcp.2025.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The pathogenesis of psoriasis involves hyperproliferation of epidermal keratinocytes and abnormal interactions between activated keratinocytes and infiltrating immune cells. Emerging evidence has shown that keratinocytes play essential roles in both the initiation and maintenance of psoriasis, suggesting that exposing keratinocytes to agents with antiproliferative and anti-inflammatory effects may be effective for psoriasis treatment. Guggulsterone (GS), a plant sterol derived from the gum resin of Commiphora wightii, possesses a variety of pharmacological activities. However, the effects of GS on psoriasis and the underlying mechanism have not been elucidated. In this study, we evaluated the therapeutic effect of GS on psoriasis using an imiquimod-induced psoriasis mouse model and investigated the effect of GS on human keratinocytes and the underlying mechanism. We found that GS effectively alleviated psoriasis-like skin lesions in imiquimod-induced psoriasis model mice and that GS suppressed the proliferation, migration, and production of proinflammatory cytokines, chemokines and antimicrobial peptides in keratinocytes. Transcriptome analysis by RNA-seq revealed that the differentially expressed genes (DEGs) induced by GS in keratinocytes were intricately linked to the pathogenesis of psoriasis. Furthermore, STAT3, a key player in the development and pathogenesis of psoriasis, was identified as a critical downstream mediator of GS in keratinocytes. Mechanistically, GS upregulated the expression of miR-17-5p, which directly binds to the 3'-untranslated regions (3'UTRs) of JAK1 and STAT3, leading to the downregulation of JAK1 and STAT3 expression. Collectively, these findings suggest that GS may serve as an effective natural compound for the treatment of psoriasis.
Collapse
Affiliation(s)
- Lu Xiang
- Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan 250011, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yangli Shen
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Shuangteng Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaofei Liu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Shuna Sun
- Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
2
|
Haidurov A, Zheltukhin AO, Snezhkina AV, Krasnov GS, Kudryavtseva AV, Budanov AV. p53-regulated SESN1 and SESN2 regulate cell proliferation and cell death through control of STAT3. Cell Commun Signal 2025; 23:105. [PMID: 39985075 PMCID: PMC11846189 DOI: 10.1186/s12964-025-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
Sestrin1 and Sestrin2 (SESN1&2) are evolutionarily conserved, stress-responsive proteins that regulate cell growth and viability. The primary target of Sestrins is the mTORC1 protein kinase, an activator of anabolic processes and an autophagy inhibitor. Our previous studies showed that inactivating SESN1&2 in lung adenocarcinoma A549 cells accelerates cell proliferation and confers resistance to cell death without affecting mTORC1 activity, suggesting that SESN1&2 modulate cellular processes via mTORC1-independent mechanisms. This work describes a new mechanism through which SESN1&2 regulate cell proliferation and death by suppressing the STAT3 transcription factor. Normally activated in response to stress and inflammation, STAT3 is frequently overactivated in human cancers. This overactivation promotes the expression of pro-proliferative and anti-apoptotic genes that drive carcinogenesis. We demonstrate that SESN1&2 inactivation stimulates STAT3 by downregulating the PTPRD phosphatase, a protein responsible for STAT3 dephosphorylation. Our study demonstrates that SESN1&2 deficiency may cause STAT3 activation and facilitate carcinogenesis and drug resistance, making SESN1&2 reactivation a potential cancer treatment strategy.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Andrei O Zheltukhin
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Andrei V Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Ge X, Shen Z, Yin Y. Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer. Cancer Cell Int 2024; 24:369. [PMID: 39522033 PMCID: PMC11549762 DOI: 10.1186/s12935-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression through diverse mechanisms, including regulation of protein localization, sequestration of miRNAs, recruitment of chromatin modifiers, and modulation of signaling pathways. Accumulating evidence highlights their pivotal roles in tumor initiation, progression, and the development of therapeutic resistance. In this review, we comprehensively summarized the existing literature to identify lncRNAs associated with treatment responses in non-small cell lung cancer (NSCLC). Specifically, we categorized these lncRNAs based on their mechanisms of action in mediating resistance to chemotherapy, targeted therapy, and radiotherapy. Our analysis revealed that aberrant expression of various lncRNAs contributes to the development, metastasis, and therapeutic resistance in NSCLC, ultimately leading to poor clinical outcomes. By elucidating the intricate mechanisms through which lncRNAs modulate therapeutic responses, this review aims to provide mechanistic insights into the heterogeneous treatment outcomes observed in NSCLC patients and unveil potential therapeutic targets for overcoming drug resistance.
Collapse
Affiliation(s)
- Xin Ge
- Peking University First Hospital, Beijing, 100034, China
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichu Shen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
4
|
Abdelhamid AM, Zeinelabdeen Y, Manie T, Khallaf E, Assal RA, Youness RA. miR-17-5p/STAT3/H19: A novel regulatory axis tuning ULBP2 expression in young breast cancer patients. Pathol Res Pract 2024; 263:155638. [PMID: 39388743 DOI: 10.1016/j.prp.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM UL-16 binding protein 2 (ULBP2) is a highly altered ligand for the activating receptor, NKG2D in breast cancer (BC). However, the mechanism behind its de-regulation in BC patients remains to be explored. The sophisticated crosstalk between miR-17-5p, the lncRNA H19, and STAT3 as a possible upstream regulatory loop for ULBP2 in young BC patients and cell lines remains as an unexplored area. Therefore, this study aimed at unravelling the ncRNA circuit regulating ULBP2 in young BC patients and cell lines. PATIENTS AND METHODS A total of 30 BC patients were recruited for this study. The expression levels of miR-17-5p, lncRNA H19, and STAT3 were examined in 30 BC tissues compared to their normal counterparts. In addition, the expression signatures of those transcripts were compared in young (<40 years) and old BC (≥40 years) patients. miR-17-5p oligonucleotides, STAT3 and H19 siRNAs were transfected in MDA-MB-231 cells using HiPerfect® Transfection Reagent. miR-17-5p and the transcripts of the target genes quantified using RT-qPCR. Their relative expression was calculated using the 2-ΔΔCT method. RESULTS Through acting as a ceRNA circuit that antagonizes the function of miR-17-5p, H19 prevented the miR-17-5p-induced downregulation of STAT3; this mechanism further contributes to the pathogenesis of BC. Ectopic expression of miR-17-5p in MDA-MB-231 cells displayed its prominent role as an indirect potential activator of NK cells by significantly repressing the expression levels of the oncogenic mediator STAT3 and the oncogenic lncRNA H19 and inducing ULBP2 expression level by 3 folds in TNBC cell lines compared to mock cells. Furthermore, knocking down of STAT3 repressed the lncRNA H19 and increased ULBP2 expression levels, whereas siRNAs against H19 increased the expression levels of ULBP2. CONCLUSION This study highlighted the crosstalk between the novel regulatory network composed of miR-17-5p, H19 and STAT3, and their impact on ULBP2 in BC. Moreover, this study underscored the potential role of miR-17-5p in counteracting the immune evasion tactics, particularly the shedding of ULBP2 in young BC patients, through the modulation of the STAT3/H19/ULBP2 regulatory axis. Thus, targeting this novel regulatory network could potentially enhance our understanding and advance the future application of the innate system-mediated immunotherapy in BC.
Collapse
Affiliation(s)
- A M Abdelhamid
- Biotechnology School, Nile University, Giza 12588, Egypt
| | - Y Zeinelabdeen
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - T Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - E Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University, New Administrative Capital 11835, Egypt.
| |
Collapse
|
5
|
Heydari R, Tavassolifar MJ, Fayazzadeh S, Sadatpour O, Meyfour A. Long non-coding RNAs in biomarking COVID-19: a machine learning-based approach. Virol J 2024; 21:134. [PMID: 38849961 PMCID: PMC11161961 DOI: 10.1186/s12985-024-02408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The coronavirus pandemic that started in 2019 has caused the highest mortality and morbidity rates worldwide. Data on the role of long non-coding RNAs (lncRNAs) in coronavirus disease 2019 (COVID-19) is scarce. We aimed to elucidate the relationship of three important lncRNAs in the inflammatory states, H19, taurine upregulated gene 1 (TUG1), and colorectal neoplasia differentially expressed (CRNDE) with key factors in inflammation and fibrosis induction including signal transducer and activator of transcription3 (STAT3), alpha smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in COVID-19 patients with moderate to severe symptoms. METHODS Peripheral blood mononuclear cells from 28 COVID-19 patients and 17 healthy controls were collected. The real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of RNAs and lncRNAs. Western blotting analysis was also performed to determine the expression levels of STAT3 and α-SMA proteins. Machine learning and receiver operating characteristic (ROC) curve analysis were carried out to evaluate the distinguishing ability of lncRNAs. RESULTS The expression levels of H19, TUG1, and CRNDE were significantly overexpressed in COVID-19 patients compared to healthy controls. Moreover, STAT3 and α-SMA expression levels were remarkedly increased at both transcript and protein levels in patients with COVID-19 compared to healthy subjects and were correlated with Three lncRNAs. Likewise, IL-6 and TNF-α were considerably upregulated in COVID-19 patients. Machine learning and ROC curve analysis showed that CRNDE-H19 panel has the proper ability to distinguish COVID-19 patients from healthy individuals (area under the curve (AUC) = 0.86). CONCLUSION The overexpression of three lncRNAs in COVID-19 patients observed in this study may align with significant manifestations of COVID-19. Furthermore, their co-expression with STAT3 and α-SMA, two critical factors implicated in inflammation and fibrosis induction, underscores their potential involvement in exacerbating cardiovascular, pulmonary and common symptoms and complications associated with COVID-19. The combination of CRNDE and H19 lncRNAs seems to be an impressive host-based biomarker panel for screening and diagnosis of COVID-19 patients from healthy controls. Research into lncRNAs can provide a robust platform to find new viral infection-related mediators and propose novel therapeutic strategies for viral infections and immune disorders.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
7
|
Ahmad I, Jasim SA, Sergeevna KN, Jyothi S R, Kumar A, Dusanov A, Shuhata Alubiady MH, Sinha A, Zain Al-Abdeen SH, Hjazi A. Emerging roles of long noncoding RNA H19 in human lung cancer. Cell Biochem Funct 2024; 42:e4072. [PMID: 39031589 DOI: 10.1002/cbf.4072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Lung cancer holds the position of being the primary cause of cancer-related fatalities on a global scale. Furthermore, it exhibits the highest mortality rate among all types of cancer. The survival rate within a span of 5 years is less than 20%, primarily due to the fact that the disease is often diagnosed at an advanced stage, resulting in less effective treatment options compared to earlier stages. There are two main types of primary lung cancer: nonsmall-cell lung cancer, which accounts for approximately 80%-85% of all cases, and small-cell lung cancer, which is categorized based on the specific type of cells in which the cancer originates. The understanding of the biology of this disease and the identification of oncogenic driver alterations have significantly transformed the landscape of therapeutic approaches. Long noncoding RNAs (lncRNAs) play a crucial role in regulating various physiological and pathological processes through diverse molecular mechanisms. Among these lncRNAs, lncRNA H19, initially identified as an oncofetal transcript, has garnered significant attention due to its elevated expression in numerous tumors. Extensive research has confirmed its involvement in tumorigenesis and malignant progression by promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and therapy resistance. This comprehensive review aims to provide an overview of the aberrant overexpression of lncRNA H19 and the molecular pathways through which it contributes to the advancement of lung cancer. The findings of this review highlight the potential for further investigation into the diagnosis and treatment of this disease, offering promising avenues for future research.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Klunko Nataliya Sergeevna
- Department of Training of Scientific and Scientific-Pedagogical Personnel, Russian New University, Moscow, Russia
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abdigafur Dusanov
- Department of Internal Medicine Number 4, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
8
|
Darmadi D, Chugaeva UY, Saleh RO, Hjazi A, Saleem HM, Ghildiyal P, Alwaily ER, Alawadi A, Alnajar MJ, Ihsan A. Critical roles of long noncoding RNA H19 in cancer. Cell Biochem Funct 2024; 42:e4018. [PMID: 38644608 DOI: 10.1002/cbf.4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Long noncoding RNAs (lncRNAs) are a category of noncoding RNAs characterized by their length, often exceeding 200 nucleotides. There is a growing body of data that indicate the significant involvement of lncRNAs in a wide range of disorders, including cancer. lncRNA H19 was among the initial lncRNAs to be identified and is transcribed from the H19 gene. The H19 lncRNA exhibits significant upregulation in a diverse range of human malignancies, such as breast, colorectal, pancreatic, glioma, and gastric cancer. Moreover, the overexpression of H19 is frequently associated with a worse prognosis among individuals diagnosed with cancer. H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Hillah, Iraq
| | | | - Ali Ihsan
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
9
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
10
|
Liu W, Zuo B, Liu W, Huo Y, Zhang N, Yang M. Long non-coding RNAs in non-small cell lung cancer: implications for preventing therapeutic resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188982. [PMID: 37734560 DOI: 10.1016/j.bbcan.2023.188982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Lung cancer has the highest mortality and morbidity rates among all cancers worldwide. Despite many complex treatment options, including radiotherapy, chemotherapy, targeted drugs, immunotherapy, and combinations of these treatments, efficacy is low in cases of resistance to therapy, metastasis, and advanced disease, contributing to low overall survival. There is a pressing need for the discovery of novel biomarkers and therapeutic targets for the early diagnosis of lung cancer and to determine the efficacy and outcomes of drug treatments. There is now substantial evidence for the diagnostic and prognostic value of long noncoding RNAs (lncRNAs). This review briefly discusses recent findings on the roles and mechanisms of action of lncRNAs in the responses to therapy in non-small cell lung cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Bingli Zuo
- Human Resources Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Wenting Liu
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong Province 261041, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| |
Collapse
|
11
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNAs in lung cancer: molecular mechanisms and clinical applications. Front Oncol 2023; 13:1256537. [PMID: 37746261 PMCID: PMC10514911 DOI: 10.3389/fonc.2023.1256537] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease with high malignant degree, rapid growth, and early metastasis. The clinical outcomes of LC patients are generally poor due to the insufficient elucidation of pathological mechanisms, low efficiency of detection and assessment methods, and lack of individualized therapeutic strategies. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), are endogenous regulators that are widely involved in the modulation of almost all aspects of life activities, from organogenesis and aging to immunity and cancer. They commonly play vital roles in various biological processes by regulating gene expression via their interactions with DNA, RNA, or protein. An increasing amount of studies have demonstrated that ncRNAs are closely correlated with the initiation and development of LC. Their dysregulation promotes the progression of LC via distinct mechanisms, such as influencing protein activity, activating oncogenic signaling pathways, or altering specific gene expression. Furthermore, some ncRNAs present certain clinical values as biomarker candidates and therapeutic targets for LC patients. A complete understanding of their mechanisms in LC progression may be highly beneficial to developing ncRNA-based therapeutics for LC patients. This review mainly focuses on the intricate mechanisms of miRNA, lncRNA, and circRNA involved in LC progression and discuss their underlying applications in LC treatment.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
13
|
Zhang R, Zeng Y, Deng JL. Long non-coding RNA H19: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2023; 23:1425-1440. [PMID: 36484927 DOI: 10.1007/s10238-022-00947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs play important roles in cellular functions and disease development. H19, as a long non-coding RNA, is pervasively over-expressed in almost all kinds of human malignant tumors. Although many studies have reported that H19 is closely associated with tumor cell proliferation, apoptosis, invasion, metastasis, and chemoresistance, the role and mechanism of H19 in gene regulation and tumor development are largely unclear. In this review, we summarized the recent progress in the study of the major functions and mechanisms of H19 lncRNA in cancer development and progression. H19 possesses both oncogenic and tumor-suppressing activities, presumably through regulating target gene transcription, mRNA stability and splicing, and competitive inhibition of endogenous RNA degradation. Studies indicate that H19 may involve in cell proliferation and apoptosis, tumor initiation, migration, invasion, metastasis and chemoresistance and may serve as a potential biomarker for early diagnosis, prognosis, and novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410008, People's Republic of China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
14
|
Cheng D, Wang B, Wu L, Chen R, Zhao W, Fang C, Ji M. Exosomal non-coding RNAs-mediated EGFR-TKIs resistance in NSCLC with EGFR mutation. Med Oncol 2023; 40:254. [PMID: 37505345 DOI: 10.1007/s12032-023-02125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has significantly improved survival rates of patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, as with other antitumor drugs, resistance to EGFR-TKIs is inevitably develops over time. Exosomes, extracellular vesicles with a 30-150 nm diameter, have emerged as vital mediators of intercellular communication. Recent studies revealed that exosomes carry non-coding RNAs (ncRNAs), including circular RNA (circRNA), microRNA (miRNA), and long noncoding RNA (lncRNA), which contribute to the development of EGFR-TKIs resistance. This review provides a comprehensive overview of the current research on exosomal ncRNAs mediating EGFR-TKIs resistance in EGFR-mutated NSCLC. In the future, detecting exosome ncRNAs can be used to monitor targeted therapy for NSCLC. Meanwhile, developing therapeutic regimens targeting these resistance mechanisms may provide additional clinical benefits to patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Daoan Cheng
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Banglu Wang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Lige Wu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Rui Chen
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Weiqing Zhao
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| |
Collapse
|
15
|
Jaiswal A, Kaushik N, Choi EH, Kaushik NK. Functional impact of non-coding RNAs in high-grade breast carcinoma: Moving from resistance to clinical applications: A comprehensive review. Biochim Biophys Acta Rev Cancer 2023; 1878:188915. [PMID: 37196783 DOI: 10.1016/j.bbcan.2023.188915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Suwon 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
16
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Rajakumar S, Jamespaulraj S, Shah Y, Kejamurthy P, Jaganathan MK, Mahalingam G, Ramya Devi KT. Long non-coding RNAs: an overview on miRNA sponging and its co-regulation in lung cancer. Mol Biol Rep 2023; 50:1727-1741. [PMID: 36441373 DOI: 10.1007/s11033-022-07995-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is the most devastating cause of death among all cancers worldwide, and non-small cell lung cancer (NSCLC) accounts for 80% of all the lung cancer cases. Beyond common genetic research and epigenomic studies, the extraordinary investigations of non-coding RNAs have provided insights into the molecular basis of cancer. Existing evidence from various cancer models highlights that the regulation of non-coding RNAs is crucial and that their deregulation may be a common reason for the development and progression of cancer, and competition of cancer therapeutics. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are increasingly recognized as potential cancer biomarkers for early detection and application of therapeutic strategies. The miRNAs have gained importance as master regulators of target mRNAs by negatively regulating their expression. The lncRNAs function as both tumor suppressors and oncogenes, and also compete with miRNAs that influence the translational inhibition processes. This review addresses the role of lncRNAs in lung cancer development, highlights their mechanisms of action, and provides an overview of the impact of lncRNAs on lung cancer survival and progression via miRNA sponging. The improved understanding of lung cancer mechanisms has opened opportunities to analyze molecular markers and their potential therapeutics.
Collapse
Affiliation(s)
- Santhosh Rajakumar
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Shalini Jamespaulraj
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Yashesh Shah
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Priyatharcini Kejamurthy
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India
| | - K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
18
|
The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun 2022; 33:100647. [PMID: 36327576 DOI: 10.1016/j.ctarc.2022.100647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which modulate gene expression via multiple post-transcriptional mechanisms. They are involved in a variety of biological processes, including cell proliferation, metastasis, metabolism, tumorigenesis, and apoptosis. Dysregulation of miRNA expression has been implicated in human cancers, and they may also serve as biomarkers of disease progression and prognosis. The miR-17-92 cluster is one of the most widely studied miRNA clusters, which was initially reported as an oncogene, but was later reported to exhibit tumour suppressive effects in some human cancers. This review summarizes the recent progress and context-dependant role of this cluster in various cancers. We summarize the known mechanisms which regulate miR-17-92 expression and molecular pathways that are in turn controlled by it. We discuss examples where it acts as an oncogene or a tumour suppressor along with key targets affecting hallmarks of cancer. We discuss how cellular contexts regulate the biological effects of miR-17-92. The plausible mechanisms of its paradoxical roles are explained, and mechanisms are described that may contribute to cell fate regulation by miR-17-92. Further, we discuss recently developed strategies to target miR-17-92 cluster in human cancers. MiR-17-92 may serve as a potential biomarker for prognosis and response to therapy as well as a target for cancer prevention and therapeutics.
Collapse
|
19
|
Hashemi M, Moosavi MS, Abed HM, Dehghani M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M, Salimimoghadam S, Gunduz ES, Taheriazam A, Mirzaei S, Samarghandian S. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy. Pharmacol Res 2022; 184:106418. [PMID: 36038043 DOI: 10.1016/j.phrs.2022.106418] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Abstract
Initiation and development of cancer depend on multiple factors that mutations in genes and epigenetic level can be considered as important drivers. Epigenetic factors include a large family of members and understanding their function in cancer has been a hot topic. LncRNAs are RNA molecules with no capacity in synthesis of proteins, and they have regulatory functions in cells. LncRNAs are localized in nucleus and cytoplasm, and their abnormal expression is related to development of tumor. This manuscript emphasizes on the role of lncRNA H19 in various cancers and its association with tumor hallmarks. The function of lncRNA H19 in most tumors is oncogenic and therefore, tumor cells increase its expression for promoting their progression. LncRNA H19 contributes to enhancing growth and cell cycle of cancers and by EMT induction, it is able to elevate metastasis rate. Silencing H19 induces apoptotic cell death and disrupts progression of tumors. LncRNA H19 triggers chemo- and radio-resistance in cancer cells. miRNAs are dually upregulated/down-regulated by lncRNA H19 in increasing tumor progression. Anti-cancer agents reduce lncRNA H19 in impairing tumor progression and increasing therapy sensitivity. A number of downstream targets and molecular pathways for lncRNA H19 have been detected in cancers including miRNAs, RUNX1, STAT3, β-catenin, Akt2 and FOXM1. Clinical studies have revealed potential of lncRNA H19 as biomarker and its association with poor prognosis. LncRNA H19 can be transferred to cancer cells via exosomes in enhancing their progression.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Sadat Moosavi
- Department of Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Hedyeh Maghareh Abed
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Aalipour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Ali Heydari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Emine Selda Gunduz
- Vocational School of Health Services, Department of First and Emergency Aid, Akdeniz University, Antalya, Turkey.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
20
|
Zhang L, Wang P, Shen Y, Huang T, Hu X, Yu W. Mechanism of lncRNA H19 in Regulating Pulmonary Injury in Hyperoxia-Induced Bronchopulmonary Dysplasia Newborn Mice. Am J Perinatol 2022; 39:1089-1096. [PMID: 33285606 DOI: 10.1055/s-0040-1721498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Bronchopulmonary dysplasia (BPD) is a pulmonary injury related to inflammation and is a major cause of premature infant death. Long noncoding RNAs (lncRNAs) are important regulators in pulmonary injury and inflammation. We investigated the molecular mechanism of lncRNA H19 in pulmonary injury and inflammation in hyperoxia (Hyp)-induced BPD mice. STUDY DESIGN The BPD newborn mouse model was established and intervened with H19 to evaluate the pathologic conditions and radial alveolar count (RAC) in lung tissues of mice in the room air (RA) and Hyp group on the 4th, 7th, and 14th days after birth. The levels of BPD-related biomarkers vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), and surfactant protein C (SPC) in lung tissues were detected on the 14th day after birth. The expression of and relationships among H19 and miR-17, miR-17, and STAT3 were detected and verified. Levels of interleukin (IL)-6, IL-1β, p-STAT3, and STAT3 levels in mouse lung tissues were detected on the 14th day after birth. RESULTS Hyp-induced mice showed increased alveolar diameter, septum, and hyperemia and inflammatory cell infiltration, upregulated H19, decreased overall number and significantly reduced RAC on the 7th and 14th days after birth, which were reversed in the si-H19-treated mice. VEGF was upregulated and TGF-β1 and SPC was decreased in si-H19-treated mice. Moreover, H19 competitively bound to miR-17 to upregulate STAT3. IL-6 and IL-1β expressions and p-STAT3 and STAT3 levels were downregulated after inhibition of H19. CONCLUSION Downregulated lncRNA H19 relieved pulmonary injury via targeting miR-17 to downregulate STAT3 and reduced inflammatory response caused by p-STAT3 in BPD newborn mice. KEY POINTS · lncRNA H19 was highly expressed in Hyp-induced BPD newborn mice.. · si-H19 relieved pulmonary injury in Hyp-induced BPD newborn mice.. · si-H19 upregulated miR-17 and downregulated STAT3 expression..
Collapse
Affiliation(s)
- Lina Zhang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ping Wang
- Department of Hand and Foot Surgery, Nanchang Fifth Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Yanhong Shen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Tao Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoyun Hu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wei Yu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
21
|
Paul S, Ruiz-Manriquez LM, Ambriz-Gonzalez H, Medina-Gomez D, Valenzuela-Coronado E, Moreno-Gomez P, Pathak S, Chakraborty S, Srivastava A. Impact of smoking-induced dysregulated human miRNAs in chronic disease development and their potential use in prognostic and therapeutic purposes. J Biochem Mol Toxicol 2022; 36:e23134. [PMID: 35695328 DOI: 10.1002/jbt.23134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/20/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNA molecules with a significant ability to regulate gene expression at the posttranscriptional level either through translation repression or messenger RNA degradation. miRNAs are differentially expressed in various pathophysiological conditions, affecting the course of the disease by modulating several critical target genes. As the persistence of irreversible molecular changes caused by cigarette smoking is central to the pathogenesis of various chronic diseases, several studies have shown its direct correlation with the dysregulation of different miRNAs, affecting numerous essential biological processes. This review provides an insight into the current status of smoking-induced miRNAs dysregulation in chronic diseases such as COPD, atherosclerosis, pulmonary hypertension, and different cancers and explores the diagnostic/prognostic potential of miRNA-based biomarkers and their efficacy as therapeutic targets.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Hector Ambriz-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Estefania Valenzuela-Coronado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Paloma Moreno-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Ma J, Cao K, Ling X, Zhang P, Zhu J. LncRNA HAR1A Suppresses the Development of Non-Small Cell Lung Cancer by Inactivating the STAT3 Pathway. Cancers (Basel) 2022; 14:cancers14122845. [PMID: 35740511 PMCID: PMC9221461 DOI: 10.3390/cancers14122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary We found that lncRNA Highly Accelerated Region 1A (HAR1A) was down regulated in NSCLC. Moreover, a 23-gene signature derived from HAR1A-related cancer cell survival genes could predict prognosis and chemotherapy response in LUAD. In vitro experiments indicated that HAR1A suppressed NSCLC growth by inhibiting the STAT3 signaling pathway, which was verified in the animal model. Overall, HAR1A acts as a tumor suppressor in NSCLC. The prognostic signature showed promise in predicting prognosis and chemotherapy sensitivity. Abstract It is imperative to advance the understanding of lung cancer biology. The Cancer Genome Atlas (TCGA) dataset was used for bioinformatics analysis. CCK-8 assay, flow cytometry, and western blot were performed in vitro, followed by in vivo study. We found that lncRNA Highly Accelerated Region 1A (HAR1A) is significantly downregulated in lung adenocarcinoma (LUAD) and negatively associated with prognosis. We improved the prognostic accuracy of HAR1A in LUAD by combining genes regulating cell apoptosis and cell cycle to generate a 23-gene signature. Nomogram and decision curve analysis (DCA) confirmed that the gene signature performed robustly in predicting overall survival. Gene set variation analysis (GSVA) demonstrated several significantly upregulated malignancy-related events in the high-risk group, including DNA replication, DNA repair, glycolysis, hypoxia, MYC targets v2, and mTORC1. The risk signature distinguished LUAD patients suitable for chemotherapies or targeted therapies. Additionally, the knockdown of HAR1A accelerated NSCLC cell proliferation but inhibited apoptosis and vice versa. HAR1A regulated cellular activities through the STAT3 signaling pathway. The tumor-suppressing role of HAR1A was verified in the mouse model. Overall, the gene signature was robustly predictive of prognosis and sensitivity to anti-tumor drugs. HAR1A functions as a tumor suppressor in NSCLC by regulating the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China; (J.M.); (X.L.)
| | - Kui Cao
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China; (K.C.); (P.Z.)
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China
| | - Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China; (J.M.); (X.L.)
| | - Ping Zhang
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China; (K.C.); (P.Z.)
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China; (K.C.); (P.Z.)
- Correspondence: ; Tel.: +86-451-86298398
| |
Collapse
|
23
|
Trevisani F, Floris M, Vago R, Minnei R, Cinque A. Long Non-Coding RNAs as Novel Biomarkers in the Clinical Management of Papillary Renal Cell Carcinoma Patients: A Promise or a Pledge? Cells 2022; 11:1658. [PMID: 35626699 PMCID: PMC9139553 DOI: 10.3390/cells11101658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Papillary renal cell carcinoma (pRCC) represents the second most common subtype of renal cell carcinoma, following clear cell carcinoma and accounting for 10-15% of cases. For around 20 years, pRCCs have been classified according to their mere histopathologic appearance, unsupported by genetic and molecular evidence, with an unmet need for clinically relevant classification. Moreover, patients with non-clear cell renal cell carcinomas have been seldom included in large clinical trials; therefore, the therapeutic landscape is less defined than in the clear cell subtype. However, in the last decades, the evolving comprehension of pRCC molecular features has led to a growing use of target therapy and to better oncological outcomes. Nonetheless, a reliable molecular biomarker able to detect the aggressiveness of pRCC is not yet available in clinical practice. As a result, the pRCC correct prognosis remains cumbersome, and new biomarkers able to stratify patients upon risk of recurrence are strongly needed. Non-coding RNAs (ncRNAs) are functional elements which play critical roles in gene expression, at the epigenetic, transcriptional, and post-transcriptional levels. In the last decade, ncRNAs have gained importance as possible biomarkers for several types of diseases, especially in the cancer universe. In this review, we analyzed the role of long non-coding RNAs (lncRNAs) in the prognosis of pRCC, with a particular focus on their networking. In fact, in the competing endogenous RNA hypothesis, lncRNAs can bind miRNAs, resulting in the modulation of the mRNA levels targeted by the sponged miRNA, leading to additional regulation of the target gene expression and increasing complexity in the biological processes.
Collapse
Affiliation(s)
- Francesco Trevisani
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy;
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milano, Italy
- Biorek s.r.l., San Raffaele Scientific Institute, 20132 Milano, Italy;
| | - Matteo Floris
- Nephrology, Dialysis, and Transplantation Division, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy; (M.F.); (R.M.)
| | - Riccardo Vago
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy;
| | - Roberto Minnei
- Nephrology, Dialysis, and Transplantation Division, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy; (M.F.); (R.M.)
| | - Alessandra Cinque
- Biorek s.r.l., San Raffaele Scientific Institute, 20132 Milano, Italy;
| |
Collapse
|
24
|
Xu Y, Zhang L, Ocansey DKW, Wang B, Hou Y, Mei R, Yan Y, Zhang X, Zhang Z, Mao F. HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway. J Zhejiang Univ Sci B 2022; 23:423-431. [PMID: 35557042 DOI: 10.1631/jzus.b2100793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a group of nonspecific inflammatory diseases affecting the intestine, inflammatory bowel disease (IBD) exhibits the characteristics of chronic recurring inflammation, and was proven to be increasing in incidence (Kaplan, 2015). IBD induced by genetic background, environmental changes, immune functions, microbial composition, and toxin exposures (Sasson et al., 2021) primarily includes ulcerative colitis (UC) and Crohn's disease (CD) with complicated clinical symptoms featured by abdominal pain, diarrhea, and even blood in stools (Fan et al., 2021; Huang et al., 2021). UC is mainly limited to the rectum and the colon, while CD usually impacts the terminal ileum and colon in a discontinuous manner (Ordás et al., 2012; Panés and Rimola, 2017). In recent years, many studies have suggested the lack of effective measures in the diagnosis and treatment of IBD, prompting an urgent need for new strategies to understand the mechanisms of and offer promising therapies for IBD.
Collapse
Affiliation(s)
- Yuting Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Li Zhang
- Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Hou
- Department of Gastroenterology, the Second People's Hospital of Zhenjiang, Zhenjiang 212000, China
| | - Rong Mei
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoyang Zhang
- Clinical Lab, Taicang Hospital of Traditional Chinese Medicine, Suzhou 215400, China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China. ,
| |
Collapse
|
25
|
Fidler G, Szilágyi-Rácz AA, Dávid P, Tolnai E, Rejtő L, Szász R, Póliska S, Biró S, Paholcsek M. Circulating microRNA sequencing revealed miRNome patterns in hematology and oncology patients aiding the prognosis of invasive aspergillosis. Sci Rep 2022; 12:7144. [PMID: 35504997 PMCID: PMC9065123 DOI: 10.1038/s41598-022-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) may occur as a serious complication of hematological malignancy. Delays in antifungal therapy can lead to an invasive disease resulting in high mortality. Currently, there are no well-established blood circulating microRNA biomarkers or laboratory tests which can be used to diagnose IA. Therefore, we aimed to define dysregulated miRNAs in hematology and oncology (HO) patients to identify biomarkers predisposing disease. We performed an in-depth analysis of high-throughput small transcriptome sequencing data obtained from the whole blood samples of our study cohort of 50 participants including 26 high-risk HO patients and 24 controls. By integrating in silico bioinformatic analyses of small noncoding RNA data, 57 miRNAs exhibiting significant expression differences (P < 0.05) were identified between IA-infected patients and non-IA HO patients. Among these, we found 36 differentially expressed miRNAs (DEMs) irrespective of HO malignancy. Of the top ranked DEMs, we found 14 significantly deregulated miRNAs, whose expression levels were successfully quantified by qRT-PCR. MiRNA target prediction revealed the involvement of IA related miRNAs in the biological pathways of tumorigenesis, the cell cycle, the immune response, cell differentiation and apoptosis.
Collapse
Affiliation(s)
- Gábor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Péter Dávid
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - Róbert Szász
- Division of Hematology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
26
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
27
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
28
|
Sui J, Zhao Q, Zhang Y, Liang G. Dysregulated LINC00961 Contributes to the Vitality and Migration of NSCLC Via miR-19a-3p/miR-19b-3p/miR-125b-5p. DNA Cell Biol 2022; 41:319-329. [PMID: 35244469 DOI: 10.1089/dna.2021.0900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence implies that long noncoding RNAs participate in non-small cell lung cancer (NSCLC) tumorigenesis. Our current study synthetically analyzed RNA sequencing data downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We identified LINC00961 significantly downregulated in NSCLC tissues. We explored the LINC00961 expression in NSCLC tumor tissues and cell lines with reverse transcription-quantitative polymerase chain reaction analysis. Lentivirus-mediated infection upregulated the expression of LINC00961 in A549 cells. The proliferation and migration capability were also measured in A549 cells. In addition, we performed luciferase reporter gene assay to investigate whether LINC00961 directly interacts with miR-19a-3p/miR-19b-3p/miR-125b-5p. A nude mice model was used to detect the potential biological process of LINC00961 on tumor growth in vivo. The results showed that LINC00961 was significantly down-egulated in NSCLC tissues and cell lines. LV-LINC00961 effectively increased the expression of LINC00961 and decreased the expression of miR-19a-3p/miR-19b-3p/miR-125b-5p. LINC00961 upregulation remarkably inhibited cell proliferation, migration, and invasion while promoting cell apoptosis in A549 cells. Luciferase reporter gene assay revealed that LINC00961 could directly sponge miR-19a-3p/miR-19b-3p/miR-125b-5p. Moreover, overexpressed miR-19a-3p/miR-19b-3p/miR-125b-5p reversed the effect of LINC00961 on cell function of A549 cells. Western blot assays revealed that LINC00961 could partially act as a tumor suppressor via affecting PI3K-AKT/MAPK/mTOR signaling pathway. In addition, overexpressed LINC00961-inhibited tumor growth was demonstrated in vivo. Overexpression of LINC00961 inhibited cell viability, invasion, and induced apoptosis in NSCLC, potentially via suppressing the expression of miR-19a-3p/miR-19b-3p/miR-125b-5p by targeting PI3K-AKT/MAPK/mTOR signaling pathways, which might provide the potential biomarker for NSCLC diagnosis and therapies.
Collapse
Affiliation(s)
- Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qun Zhao
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yanqiu Zhang
- Department of Environmental Occupational Hygiene, Taizhou Center for Disease Control and Prevention, Taizhou, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Diagnostic value of PPARδ and miRNA-17 expression levels in patients with non-small cell lung cancer. Sci Rep 2021; 11:24136. [PMID: 34921177 PMCID: PMC8683395 DOI: 10.1038/s41598-021-03312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
The PPARδ gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including carcinogenesis. Specific biological and clinical roles of PPARδ in non-small cell lung cancer (NSCLC) is not fully explained. The association of PPARα with miRNA regulators (e.g. miRNA-17) has been documented, suggesting the existence of a functional relationship of all PPARs with epigenetic regulation. The aim of the study was to determine the PPARδ and miR-17 expression profiles in NSCLC and to assess their diagnostic value in lung carcinogenesis. PPARδ and miR-17 expressions was assessed by qPCR in NSCLC tissue samples (n = 26) and corresponding macroscopically unchanged lung tissue samples adjacent to the primary lesions served as control (n = 26). PPARδ and miR-17 expression were significantly lower in NSCLC than in the control (p = 0.0001 and p = 0.0178; respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential in discriminating NSCLC from the control with an area under the curve (AUC) of 0.914 for PPARδ and 0.692 for miR-17. Significant increase in PPARδ expression in the control for current smokers vs. former smokers (p = 0.0200) and increase in miR-17 expression in control tissue adjacent to adenocarcinoma subtype (p = 0.0422) were observed. Overexpression of miR-17 was observed at an early stage of lung carcinogenesis, which may suggest that it acts as a putative oncomiR. PPARδ and miR-17 may be markers differentiating tumour tissue from surgical margin and miR-17 may have diagnostic role in NSCLC histotypes differentiation.
Collapse
|
30
|
Wu B, Zhang Y, Yu Y, Zhong C, Lang Q, Liang Z, Lv C, Xu F, Tian Y. Long Noncoding RNA H19: A Novel Therapeutic Target Emerging in Oncology Via Regulating Oncogenic Signaling Pathways. Front Cell Dev Biol 2021; 9:796740. [PMID: 34977037 PMCID: PMC8716783 DOI: 10.3389/fcell.2021.796740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNA H19 (H19) is an imprinting gene with only maternal expression that is involved in regulating different processes in various types of cells. Previous studies have shown that abnormal H19 expression is involved in many pathological processes, such as cancer, mainly through sponging miRNAs, interacting with proteins, or regulating epigenetic modifications. Accumulating evidence has shown that several oncogenic signaling pathways lead to carcinogenesis. Recently, the regulatory relationship between H19 and oncogenic signaling pathways in various types of cancer has been of great interest to many researchers. In this review, we discussed the key roles of H19 in cancer development and progression via its regulatory function in several oncogenic signaling pathways, such as PI3K/Akt, canonical Wnt/β-catenin, canonical NF-κB, MAPK, JAK/STAT and apoptosis. These oncogenic signaling pathways regulated by H19 are involved in cell proliferation, proliferation, migration and invasion, angiogenesis, and apoptosis of various cancer cells. This review suggests that H19 may be a novel therapeutic target for cancers treatment by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation. Sci Rep 2021; 11:18380. [PMID: 34526543 PMCID: PMC8443613 DOI: 10.1038/s41598-021-97058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
The imprinted H19 long non-coding RNA, a knowing oncofetal gene, presents a controversial role during the carcinogenesis process since its tumor suppressor or oncogenic activity is not completely elucidated. Since H19 lncRNA is involved in many biological pathways related to tumorigenesis, we sought to develop a non-cancer lineage with CRISPR-Cas9-mediated H19 knockdown (H19-) and observe the changes in a cellular context. To edit the promoter region of H19, two RNA guides were designed, and the murine C2C12 myoblast cells were transfected. H19 deletion was determined by DNA sequencing and gene expression by qPCR. We observed a small deletion (~ 60 bp) in the promoter region that presented four predicted transcription binding sites. The deletion reduced H19 expression (30%) and resulted in increased proliferative activity, altered morphological patterns including cell size and intracellular granularity, without changes in viability. The increased proliferation rate in the H19- cell seems to facilitate chromosomal abnormalities. The H19- myoblast presented characteristics similar to cancer cells, therefore the H19 lncRNA may be an important gene during the initiation of the tumorigenic process. Due to CRISPR/Cas9 permanent edition, the C2C12 H19- knockdown cells allows functional studies of H19 roles in tumorigenesis, prognosis, metastases, as well as drug resistance and targeted therapy.
Collapse
|
32
|
Chen B, Wang H, Lv C, Mao C, Cui Y. Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis. Bioengineered 2021; 12:4004-4015. [PMID: 34288826 PMCID: PMC8806815 DOI: 10.1080/21655979.2021.1951070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most common refractory diseases. Long non-coding RNAs (lncRNAs) play crucial roles in ICH. This study was designed to investigate the role of lncRNA H19 in ICH and the underlying molecular mechanisms involved. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to determine mRNA expression. Cell viability was analyzed using Cell Counting Kit 8 (CCK8). PI staining Flow cytometry and TdT-mediated biotinylated nick end-labeling (TUNEL) assays were performed to determine ferroptosis in brain microvascular endothelial cells (BMVECs). Targeting relationships were predicted using Starbase and TargetScan and verified by RNA pull-down and luciferase reporter gene assays. Western blotting was performed to assess protein expression. LncRNA H19 is highly expressed in ICH model cells. Over-expression of H19 suppressed cell viability and promoted ferroptosis of BMVECs. miR-106b-5p is predicted to be a target of H19. The expression of miR-106b-5p was lower in oxygen and glucose deprivation hemin-treated (OGD/H-treated) cells. Over-expression of miR-106b-5p reversed the effects of H19 on cell viability and ferroptosis in BMVECs. Furthermore, acyl-CoA synthetase long-chain family member 4 (ACSL4) was verified to be a target gene of miR-106b-5p and was highly expressed in OGD/H-treated cells. Upregulation of ACSL4 inhibited the effects of miR-106b-5p and induced BMVEC dysfunction. In conclusion, lncRNA H19 was overexpressed in ICH. Knockdown of H19 promoted cell proliferation and suppressed BMVECs ferroptosis by regulating the miR-106b-5p/ACSL4 axis. Therefore, H19 knockdown may be a promising therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Bing Chen
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Haoran Wang
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Chenglin Lv
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Chongdan Mao
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Yuguang Cui
- Department of Neurosurgery, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| |
Collapse
|
33
|
Wang Q, Li K, Li X. Knockdown of LncRNA LINC00958 Inhibits the Proliferation and Migration of NSCLC Cells by MiR-204-3p/KIF2A Axis. Cell Transplant 2021; 30:9636897211025500. [PMID: 34269081 PMCID: PMC8287403 DOI: 10.1177/09636897211025500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer.
Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the
tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported
to be closely linked to tumorigenesis in several cancers. However, its specific
role in NSCLC remains unclear. In this study, we determined the expression of
LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and
migration by CCK-8 and transwell assays, respectively. We established a
xenograft tumor model to examine the effect of LINC00958 on tumor growth in
vivo. Luciferase reporter assays were performed to determine the interaction
between LINC00958 and miR-204-3p and the interaction between miR-204-3p and
KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines.
Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro
and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a
target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect
of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also
validated that KIF2A, a direct target of miR-204-3p, was responsible for the
biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on
NSCLC cell proliferation and migration and was regulated by
LINC00958/miR-204-3p. Taken together, these data indicate that the
LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might
provide a potential therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Laboratory, Second People’s Hospital of Jiaozuo City,
the First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan
Province, China
- Qing Wang, Department of Laboratory, Second
People’s Hospital of Jiaozuo City, the First Affiliated Hospital of Henan
Polytechnic University, No. 17 Minzhu South Road, Jiefang District, Jiaozuo
454150, Henan Province, China.
| | - Kai Li
- Department of Laboratory, Second People’s Hospital of Jiaozuo City,
the First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan
Province, China
| | - Xiaoliang Li
- Department of Laboratory, Second People’s Hospital of Jiaozuo City,
the First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan
Province, China
| |
Collapse
|
34
|
Zhao N, Ruan M, Koestler DC, Lu J, Marsit CJ, Kelsey KT, Platz EA, Michaud DS. Epigenome-wide scan identifies differentially methylated regions for lung cancer using pre-diagnostic peripheral blood. Epigenetics 2021; 17:460-472. [PMID: 34008478 DOI: 10.1080/15592294.2021.1923615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND DNA methylation markers have been associated with lung cancer risk and may identify aetiologically relevant genomic regions, or alternatively, be markers of disease risk factors or biological processes associated with disease development. METHODS In a nested case-control study, we measured blood leukocyte DNA methylation levels in pre-diagnostic samples collected from 430 participants (208 cases; 222 controls) in the 1989 CLUE II cohort. We compared DNA methylation levels with case/control status to identify novel genomic regions, both single CpG sites and differentially methylated regions (DMRs), while controlling for known DNA methylation changes associated with smoking using a previously described pack-years-based smoking methylation score. Stratification analyses were conducted over time from blood draw to diagnosis, histology, and smoking status. RESULTS We identified 16 single CpG sites and 40 DMRs significantly associated with lung cancer risk (q < 0.05). The identified genomic regions were associated with genes including H19, HOXA3/HOXA4, RUNX3, BRICD5, PLXNB2, and RP13. For the single CpG sites, the strongest association was noted for cg09736286 in the DIABLO gene (OR [for 1 SD] = 2.99, 95% CI: 1.95-4.59, P-value = 4.81 × 10-7). We found that CpG sites in the HOXA3/HOXA4 region were hypermethylated in cases compared to controls. CONCLUSION The single CpG sites and DMRs that we identified represented significant measurable differences in lung cancer risk, providing potential biomarkers for lung cancer risk stratification. Future studies will need to examine whether these regions are causally related to lung cancer.
Collapse
Affiliation(s)
- Naisi Zhao
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Mengyuan Ruan
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Carmen J Marsit
- Department of Environmental Health and Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA.,Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
35
|
Wang L, Xu B, Sun S, Wang B. Overexpression of long non-coding RNA H19 relieves hypoxia-induced injury by down-regulating microRNA-107 in neural stem cells. Neurosci Lett 2021; 753:135855. [PMID: 33785379 DOI: 10.1016/j.neulet.2021.135855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neonatal hypoxia-ischemia (HI) is one of the commonest conditions which seriously influences the development of infants' nervous system and causes series of neurological sequelaes. The aim of the present study was to analyze the potential regulatory mechanism of long non-coding (lnc) RNA H19 under hypoxia conditions. METHODS Neural stem cells (NSCs) were incubated in hypoxic conditions for 8 h to induce hypoxia injury. qRT-PCR was performed to detect H19 or micro (miR)-107 expression. Cell Counting Kit-8 (CCK-8) assay and Annexin V-FITC/PI staining assay were employed to detect the effects of hypoxia on cell viability and apoptosis, respectively. Moreover, NSCs were transfected with H19 overexpressing plasmid or shRNA-H19 and then subjected to hypoxia treatment. The effects of H19/miR-107 on NSC cell biological behaviors were confirmed. Furthermore, the signaling pathways involved in HI were analyzed using western blot. RESULTS Hypoxia treatment restrained cell viability and induced cell apoptosis in NSCs. Overexpression of lncRNA H19 attenuated hypoxia-induced NSCs injury, while knockdown of lncRNA H19 aggravated NSCs injury. Further experiments suggested that miR-107 up-regulation reversed the effects of lncRNA H19 overexpression on NSCs. Moreover, the activation of Wnt/β-catenin and PI3K/AKT pathways triggered by H19 were reversed by miR-107 up-regulation in hypoxia-treated NSCs. CONCLUSION LncRNA H19 overexpression attenuated hypoxia-induced NSCs injury and promoted activation of Wnt/β-catenin and PI3K/AKT pathways through downregulating miR-107.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pediatrics, Liaocheng Second People's Hospital, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, 252600, Shandong, China
| | - Bin Xu
- Department of Pediatrics, Liaocheng Second People's Hospital, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, 252600, Shandong, China
| | - Shuying Sun
- Department of Cardiology, Liaocheng Second People's Hospital, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, 252600, Shandong, China
| | - Bin Wang
- Department of Children Rehabilitation, Liaocheng Second People's Hospital, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, 252600, Shandong, China.
| |
Collapse
|
36
|
Wang J, Zhang C. Identification and validation of potential mRNA- microRNA- long-noncoding RNA (mRNA-miRNA-lncRNA) prognostic signature for cervical cancer. Bioengineered 2021; 12:898-913. [PMID: 33682613 PMCID: PMC8806317 DOI: 10.1080/21655979.2021.1890377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer deaths in women due to poor prognosis and high mortality rates. A novel mRNA-miRNA-lncRNA signature linked to prognosis of cervical cancer is needed to help clinicians judge the prognosis of individual patients more accurately. On the basis of GEO datasets, a total of 161 upregulated and 242 downregulated DE-mRNAs were identified firstly. Among them, eight potential biomarkers were found to have prognostic values with cervical cancer and miRNAs-lncRNAs related to these biomarkers were then analyzed to create mRNA-miRNA-lncRNA networks in cervical cancer. Moreover, in vitro experiments such as qRT-PCR, western blot and Edu assays were also performed to validate these promising targets. On the basis of these findings, a total of eight mRNA-miRNA-lncRNA subnetworks were finally established as a novel mRNA-miRNA-lncRNA signature and independent prognostic indicator of clinically relevant parameters by ROC analysis, univariate and multivariate Cox regression. Since some work of validation was done, it is believed that this mRNA-miRNA-lncRNA prognostic signature may be applied as a potential clinical judgment to estimate the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
37
|
Sulforaphane Inhibits the Expression of Long Noncoding RNA H19 and Its Target APOBEC3G and Thereby Pancreatic Cancer Progression. Cancers (Basel) 2021; 13:cancers13040827. [PMID: 33669381 PMCID: PMC7920255 DOI: 10.3390/cancers13040827] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and the therapeutic options available usually have little impact on survival. Great hope is placed on new therapeutic targets, including long noncoding RNAs (lncRNAs), and on the development of new drugs, based on e.g., broccoli-derived sulforaphane, which meanwhile has shown promise in pilot studies in patients. We examined whether sulforaphane interferes with lncRNA signaling and analyzed five PDAC and two nonmalignant cell lines, patient tissues (n = 30), and online patient data (n = 350). RT-qPCR, Western blotting, MTT, colony formation, transwell and wound healing assays; gene array analysis; bioinformatics; in situ hybridization; immunohistochemistry and xenotransplantation were used. Sulforaphane regulated the expression of all of five examined lncRNAs, but basal expression, biological function and inhibition of H19 were of highest significance. H19 siRNA prevented colony formation, migration, invasion and Smad2 phosphorylation. We identified 103 common sulforaphane- and H19-related target genes and focused to the virus-induced tumor promoter APOBEC3G. APOBEC3G siRNA mimicked the previously observed H19 and sulforaphane effects. In vivo, sulforaphane- or H19 or APOBEC3G siRNAs led to significantly smaller tumor xenografts with reduced expression of Ki67, APOBEC3G and phospho-Smad2. Together, we identified APOBEC3G as H19 target, and both are inhibited by sulforaphane in prevention of PDAC progression.
Collapse
|
38
|
Liu B, Zhou X, Wu D, Zhang X, Shen X, Mi K, Qu Z, Jiang Y, Shang D. Comprehensive characterization of a drug-resistance-related ceRNA network across 15 anti-cancer drug categories. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:11-24. [PMID: 33738135 PMCID: PMC7933708 DOI: 10.1016/j.omtn.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Cancer is still a major health problem around the world. The treatment failure of cancer has largely been attributed to drug resistance. Competitive endogenous RNAs (ceRNAs) are involved in various biological processes and thus influence the drug sensitivity of cancers. However, a comprehensive characterization of drug-sensitivity-related ceRNAs has not yet been performed. In the present study, we constructed 15 ceRNA networks across 15 anti-cancer drug categories, involving 217 long noncoding RNAs (lncRNAs), 158 microRNAs (miRNAs), and 1,389 protein coding genes (PCGs). We found that these ceRNAs were involved in hallmark processes such as “self-sufficiency in growth signals,” “insensitivity to antigrowth signals,” and so on. We then identified an intersection ceRNA network (ICN) across the 15 anti-cancer drug categories. We further identified interactions between genes in the ICN and clinically actionable genes (CAGs) by analyzing the co-expressions, protein-protein interactions, and transcription factor-target gene interactions. We found that certain genes in the ICN are correlated with CAGs. Finally, we found that genes in the ICN were aberrantly expressed in tumors, and some were associated with patient survival time and cancer stage.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150086, P.R. China
| | - Xiaorui Zhou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, P.R. China
| | - Dongyuan Wu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin 150030, P.R. China
| | - Xuesong Zhang
- Department of Stomatology, 962 Hospital of PLA, Harbin 150080, P.R. China
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Kai Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P.R. China
| | - Zhangyi Qu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Yanan Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P.R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150086, P.R. China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
39
|
Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, Kashani SH, Hushmandi K, Najafi M, Zarrabi A, Ahn KS, Khan H. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci 2021; 270:119006. [PMID: 33421521 DOI: 10.1016/j.lfs.2020.119006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Uncontrolled growth and metastasis of cancer cells is an increasing challenge for overcoming cancer, and improving survival of patients. Complicated signaling networks account for proliferation and invasion of cancer cells that need to be elucidated for providing effective cancer therapy, and minimizing their malignancy. Long non-coding RNAs (lncRNAs) are RNA molecules with a length of more than 200 nucleotides. They participate in cellular events, and their dysregulation in a common phenomenon in different cancers. Noteworthy, lncRNAs can regulate different molecular pathways, and signal transducer and activator of transcription 3 (STAT3) is one of them. STAT3 is a tumor-promoting factors in cancers due to its role in cancer proliferation (cell cycle progression and apoptosis inhibition) and metastasis (EMT induction). LncRNAs can function as upstream mediators of STAT3 pathway, reducing/enhancing its expression. This dual relationship is of importance in affecting proliferation and metastasis of cancer cells. The response of cancer cells to therapy such as chemotherapy and radiotherapy is regulated by lncRNA/STAT3 axis. Tumor-promoting lncRNAs including NEAT1, SNHG3 and H19 induces STAT3 expression, while tumor-suppressing lncRNAs such as MEG3, PTCSC3 and NKILA down-regulate STAT3 expression. Noteworthy, upstream mediators of STAT3 such as microRNAs can be regulated by lncRNAs. These complicated signaling networks are mechanistically described in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
40
|
Abstract
Competing endogenous RNAs (ceRNAs) containing microRNA response elements can competitively interact with microRNA via miRNA response elements, which can combine non-coding RNAs with protein-coding RNAs through complex ceRNA networks. CeRNAs include non-coding RNAs (long non-coding RNAs, circular RNAs, and transcribed pseudogenes) and protein-coding RNAs (mRNAs). Molecular interactions in ceRNA networks can coordinate many biological processes; however, they may also lead to ceRNA network imbalance and thus contribute to cancer occurrence when disturbed. Recent studies indicate that many dysregulated RNAs derived from lung cancer may function as ceRNAs to regulate multitudinous biological functions for lung cancer, including tumor cell proliferation, apoptosis, growth, invasion, migration, and metastasis. This study therefore reviewed the research progress in the field of non-coding and protein-coding RNAs as ceRNAs in lung cancer, and highlighted validated ceRNAs involved in biological lung cancer functions. Furthermore, the roles of ceRNAs as novel prognostic and diagnostic biomarkers were also discussed. Interpreting the involvement of ceRNAs networks in lung cancer will provide new insight into cancer pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Meilian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
41
|
Garg M, Shanmugam MK, Bhardwaj V, Goel A, Gupta R, Sharma A, Baligar P, Kumar AP, Goh BC, Wang L, Sethi G. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med Res Rev 2020; 41:1291-1336. [PMID: 33289118 DOI: 10.1002/med.21761] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors, responsible for regulating cellular proliferation, cellular differentiation, migration, programmed cell death, inflammatory response, angiogenesis, and immune activation. In this review, we have discussed the classical regulation of STAT3 via diverse growth factors, cytokines, G-protein-coupled receptors, as well as toll-like receptors. We have also highlighted the potential role of noncoding RNAs in regulating STAT3 signaling. However, the deregulation of STAT3 signaling has been found to be associated with the initiation and progression of both solid and hematological malignancies. Additionally, hyperactivation of STAT3 signaling can maintain the cancer stem cell phenotype by modulating the tumor microenvironment, cellular metabolism, and immune responses to favor drug resistance and metastasis. Finally, we have also discussed several plausible ways to target oncogenic STAT3 signaling using various small molecules derived from natural products.
Collapse
Affiliation(s)
- Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vipul Bhardwaj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Akul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Arundhiti Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Health System, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Long non-coding RNAs in lung cancer: implications for lineage plasticity-mediated TKI resistance. Cell Mol Life Sci 2020; 78:1983-2000. [PMID: 33170304 PMCID: PMC7965852 DOI: 10.1007/s00018-020-03691-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The efficacy of targeted therapy in non-small-cell lung cancer (NSCLC) has been impeded by various mechanisms of resistance. Besides the mutations in targeted oncogenes, reversible lineage plasticity has recently considered to play a role in the development of tyrosine kinase inhibitors (TKI) resistance in NSCLC. Lineage plasticity enables cells to transfer from one committed developmental pathway to another, and has been a trigger of tumor adaptation to adverse microenvironment conditions including exposure to various therapies. More importantly, besides somatic mutation, lineage plasticity has also been proposed as another source of intratumoural heterogeneity. Lineage plasticity can drive NSCLC cells to a new cell identity which no longer depends on the drug-targeted pathway. Histological transformation and epithelial–mesenchymal transition are two well-known pathways of lineage plasticity-mediated TKI resistance in NSCLC. In the last decade, increased re-biopsy practice upon disease recurrence has increased the recognition of lineage plasticity induced resistance in NSCLC and has improved our understanding of the underlying biology. Long non-coding RNAs (lncRNAs), the dark matter of the genome, are capable of regulating variant malignant processes of NSCLC like the invisible hands. Recent evidence suggests that lncRNAs are involved in TKI resistance in NSCLC, particularly in lineage plasticity-mediated resistance. In this review, we summarize the mechanisms of lncRNAs in regulating lineage plasticity and TKI resistance in NSCLC. We also discuss how understanding these themes can alter therapeutic strategies, including combination therapy approaches to overcome TKI resistance.
Collapse
|
43
|
Wan X, Tian X, Du J, Lu Y, Xiao Y. Long non-coding RNA H19 deficiency ameliorates bleomycin-induced pulmonary inflammation and fibrosis. Respir Res 2020; 21:290. [PMID: 33138822 PMCID: PMC7607673 DOI: 10.1186/s12931-020-01534-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The poor understanding of pathogenesis in idiopathic pulmonary fibrosis (IPF) impaired development of effective therapeutic strategies. The aim of the current study is to investigate the roles of long non-coding RNA H19 (lncRNA H19) in the pulmonary inflammation and fibrosis of IPF. Methods Bleomycin was used to induce pulmonary inflammation and fibrosis in mice. The mRNAs and proteins expression in lung tissues was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. H19 knockout (H19−/−) mice were generated by CRISPR/Cas9. Results The expression of H19 mRNA was up-regulated in fibrotic lungs patients with IPF as well as in lungs tissues that obtained from bleomycin-treated mice. H19−/− mice suppressed bleomycin-mediated pulmonary inflammation and inhibited the Il6/Stat3 signaling. H19 deficiency ameliorated bleomycin-induced pulmonary fibrosis and repressed the activation of TGF-β/Smad and S1pr2/Sphk2 in the lungs of bleomycin-treated mice. Conclusions Our data suggests that H19 is a profibrotic lncRNA and a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Xiaoyu Wan
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinbei Tian
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jun Du
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Lu
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Shanghai Institute for Pediatric Research, Shanghai, China. .,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China.
| |
Collapse
|
44
|
Differential expression, function and prognostic value of miR-17-92 cluster in ER-positive and triple-negative breast cancer. Cancer Treat Res Commun 2020; 25:100224. [PMID: 33096318 DOI: 10.1016/j.ctarc.2020.100224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022]
Abstract
Recent evidence has shown that the miR-17-92 cluster can function either as oncogene or tumor suppressor in human cancers. The function of miR-17-92 in subtypes of breast cancer remains largely unknown. The expression of miR-17-92 is elevated in triple negative breast cancer (TNBC) but reduced in estrogen receptor (ER)-positive breast cancer (ERPBC). We show that increased expression of miRNAs belonging to the miR-17-92 cluster is associated with poor outcome in TNBC, whereas the expression of miR-17-92 miRNAs is with good outcome in ERPBC. We show that ectopic expression of miR-17-92 inhibited cell growth and invasion of ER-positive and HER2-enriched cells. On the contrary, miR-17-92 expression enhanced cell growth and invasion of TNBC cells. Further, we found that miR-17-92 expression sensitized MCF7 cells to chemotherapeutic compounds, whereas it rendered SKBR3 cells resistant to them. We found that expression of ADORA1 was reduced by miR-17-92-expressing breast cancer cells, specifically in ERPBC. We observed an inverse correlation between the expression of ADORA1 and miR-17-92 in human breast cancer. Treatment with DPCPX, a selective ADORA1 antagonist, abolished the difference in the growth of control and miR-17-92 overexpressing MCF7 cells and identified ADORA1 as a key functional target of miR-17-92 in ERPBC. Furthermore, increased expression of ADORA1 in ERPBC is associated with a poor outcome. Our observations underscore the context-dependent role of miR-17-92 in breast cancer subtypes and suggest that miR-17-92 could serve as novel prognostic markers in breast cancer.
Collapse
|
45
|
Sun X, Yan X, Liu K, Wu M, Li Z, Wang Y, Zhong X, Qin L, Huang C, Wei X. lncRNA H19 acts as a ceRNA to regulate the expression of CTGF by targeting miR-19b in polycystic ovary syndrome. ACTA ACUST UNITED AC 2020; 53:e9266. [PMID: 33053114 PMCID: PMC7552896 DOI: 10.1590/1414-431x20209266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/25/2020] [Indexed: 02/03/2023]
Abstract
The etiology of polycystic ovary syndrome (PCOS) is complex and the pathogenesis is not fully understood. Some studies have shown that dysregulation of ovarian granulosa cells may be related to abnormal follicles and excessive androgen in women with PCOS. Our team has also confirmed the high expression status of H19 in PCOS patients in the early stage. However, the relationship between H19 and miR-19b in the development of PCOS is still unknown. Therefore, we used bioinformatics to predict the binding sites of human H19 and miR-19b, and of miR-19b and CTGF genes. After the silencing and overexpression of H19, real-time polymerase chain reaction (PCR) was used to detect the expressions of H19, miR-19b, and CTGF. Western blotting was used to detect CTGF protein. Proliferation of KGN cells after H19 silencing was detected by CCK8. Flow cytometry was used to detect the apoptosis of KGN cells after H19 silencing. After the overexpression of H19, it was found that the expression of miR-19b gene decreased and the expression of CTGF increased, whereas silencing of H19 did the opposite. In addition, H19 could promote cell proliferation and decrease cell apoptosis. Finally, luciferase reporter assays showed that the 3′-end sequences of lncRNA H19 and CTGF contained the binding site of miR-19b. In conclusion, our study indicated that lncRNA H19 acted as a ceRNA to bind to miR-19b via a “sponge” to regulate the effect of CTGF on KGN cells, which may play a vital role in PCOS.
Collapse
Affiliation(s)
- Xiuhong Sun
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Xiumin Yan
- Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Kailiang Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Min Wu
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Zhongyi Li
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Yao Wang
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Xingming Zhong
- Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Li Qin
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Chuican Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Xiangcai Wei
- Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
46
|
Chen Z, Chen Q, Cheng Z, Gu J, Feng W, Lei T, Huang J, Pu J, Chen X, Wang Z. Long non-coding RNA CASC9 promotes gefitinib resistance in NSCLC by epigenetic repression of DUSP1. Cell Death Dis 2020; 11:858. [PMID: 33056982 PMCID: PMC7560854 DOI: 10.1038/s41419-020-03047-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, has greatly affected clinical outcomes in non-small cell lung cancer (NSCLC) patients. The long noncoding RNAs (lncRNAs) are known to regulate tumorigenesis and cancer progression, but their contributions to NSCLC gefitinib resistance remain poorly understood. In this study, by analyzing the differentially expressed lncRNAs in gefitinib-resistant cells and gefitinib-sensitive cells in the National Institute of Health GEO dataset, we found that lncRNA CASC9 expression was upregulated, and this was also verified in resistant tissues. Gain and loss of function studies showed that CASC9 inhibition restored gefitinib sensitivity both in vitro and in vivo, whereas CASC9 overexpression promoted gefitinib resistance. Mechanistically, CASC9 repressed the tumor suppressor DUSP1 by recruiting histone methyltransferase EZH2, thereby increasing the resistance to gefitinib. Furthermore, ectopic expression of DUSP1 increased gefitinib sensitivity by inactivating the ERK pathway. Our results highlight the essential role of CASC9 in gefitinib resistance, suggesting that the CASC9/EZH2/DUSP1 axis might be a novel target for overcoming EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Zhenyao Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Qinnan Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhixiang Cheng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Feng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jiali Huang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jiaze Pu
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Li A, Mallik S, Luo H, Jia P, Lee DF, Zhao Z. H19, a Long Non-coding RNA, Mediates Transcription Factors and Target Genes through Interference of MicroRNAs in Pan-Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:180-191. [PMID: 32585626 PMCID: PMC7321791 DOI: 10.1016/j.omtn.2020.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/17/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs (lncRNAs) have recently been found to be important in gene regulation. lncRNA H19 has been reported to play an oncogenic role in many human cancers. Its specific regulatory role is still elusive. In this study, we developed a novel analytic approach by integrating the synergistic regulation among lncRNAs (e.g., H19), transcription factors (TFs), target genes, and microRNAs (miRNAs) and then applied it to the pan-cancer expression datasets from The Cancer Genome Atlas (TCGA). Using linear regression models, we identified 88 H19-TF-gene co-regulatory triplets, in which 93% of the TF-gene pairs were related to cancer, indicating that our approach was effective to identify disease-related lncRNA-TF-gene co-regulation mechanisms. lncRNAs can function as miRNA sponges. Our further experiments found that H19 might regulate SP1-TGFBR2 through let-7b and miR-200b, ETS1-TGFBR2 through miR-29a and miR-200b, and STAT3-KLF11 through miR-17 in breast cancer cell lines. Our work suggests that miRNA-mediated lncRNA-TF-gene co-regulation is complicated yet important in cancer.
Collapse
Affiliation(s)
- Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haidan Luo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
48
|
Chen X, Li TH, Zhao Y, Wang CC, Zhu CC. Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 2020; 22:5898648. [PMID: 34020550 DOI: 10.1093/bib/bbaa186] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the occurrence, development, diagnosis and treatment of diseases. More and more researchers begin to pay attention to the relationship between miRNA and disease. Compared with traditional biological experiments, computational method of integrating heterogeneous biological data to predict potential associations can effectively save time and cost. Considering the limitations of the previous computational models, we developed the model of deep-belief network for miRNA-disease association prediction (DBNMDA). We constructed feature vectors to pre-train restricted Boltzmann machines for all miRNA-disease pairs and applied positive samples and the same number of selected negative samples to fine-tune DBN to obtain the final predicted scores. Compared with the previous supervised models that only use pairs with known label for training, DBNMDA innovatively utilizes the information of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few known associations on prediction accuracy to some extent. DBNMDA achieves the AUC of 0.9104 based on global leave-one-out cross validation (LOOCV), the AUC of 0.8232 based on local LOOCV and the average AUC of 0.9048 ± 0.0026 based on 5-fold cross validation. These AUCs are better than other previous models. In addition, three different types of case studies for three diseases were implemented to demonstrate the accuracy of DBNMDA. As a result, 84% (breast neoplasms), 100% (lung neoplasms) and 88% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Therefore, we could conclude that DBNMDA is an effective method to predict potential miRNA-disease associations.
Collapse
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology
| | - Tian-Hao Li
- School of Information and Control Engineering, China University of Mining and Technology
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chi-Chi Zhu
- School of Information and Control Engineering, China University of Mining and Technology
| |
Collapse
|
49
|
Zhu Y, Li J, Bo H, He D, Xiao M, Xiang L, Gong L, Hu Y, Zhang Y, Cheng Y, Deng L, Zhu R, Ma Y, Cao K. LINC00467 is up-regulated by TDG-mediated acetylation in non-small cell lung cancer and promotes tumor progression. Oncogene 2020; 39:6071-6084. [PMID: 32796958 DOI: 10.1038/s41388-020-01421-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
The long non-coding RNA (LncRNA) abnormally expresses in several cancers including non-small cell lung cancer (NSCLC). To better understand the role of key lncRNA involving cancer progress, we conduct a comprehensive data mining on LINC00467 and determine its molecular mechanisms. We identified LINC00467 was the up-regulated lncRNA that common significantly differentially expressed in NSCLC and CRC tissues from GEO database. LINC00467 highly expressed in NSCLC tissues and associated with advanced clinical stages and poor outcome. Knockdown of LINC00467 inhibited cell growth and metastasis via regulating the Akt signaling pathway. Finally, we demonstrated that TDG mediated acetylation is the key factor controlling LINC00467 expression. In conclusion, LINC00467 promotes NSCLC progression via Akt signal pathway. The identified LINC00467 may serve as a valuable diagnostic and prognostic biomarker as well as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jingjing Li
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Plastic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Hao Bo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, 410078, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Chansha, 410007, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yi Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yeyu Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Rongrong Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yanni Ma
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
50
|
Zhang B, Tian L, Xie J, Chen G, Wang F. Targeting miRNAs by natural products: A new way for cancer therapy. Biomed Pharmacother 2020; 130:110546. [PMID: 32721631 DOI: 10.1016/j.biopha.2020.110546] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through mRNA degradation or translation inhibition. MiRNAs play important roles in a variety of biological processes, and dysregulation of miRNA expression is highly associated with cancer development. Individual miRNA regulates multiple gene expressions, enabling them to regulate multiple cellular signaling pathways simultaneously. Hence, miRNAs could be served as cancer biomarkers for diagnosis and prognosis, and also therapeutic targets. Recently, more and more evidences showed that natural products such as paclitaxel, curcumin, resveratrol, genistein or epigallocatechin-3-gallate exert their anti-proliferative and/or pro-apoptotic effects through regulating one or more miRNAs, leading to the inhibition of cancer cell growth, induction of apoptosis or enhancement of conventional cancer therapeutic efficacy. Herein, we outlined the recent advances in the regulation of miRNAs expression by the natural products and highlight the importance of these natural drugs as a potential strategy in cancer treatment. This review will help us better understand how natural products modulate miRNAs and contribute to the development of effective and safe natural drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Beilei Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ling Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China.
| |
Collapse
|