1
|
Lee SY, Park JM, Rhim WK, Lee EH, Lee SH, Kim JY, Cha SG, Lee SH, Kim B, Hwang DY, Rho S, Ahn TK, Kim BS, Han DK. Multifunctional extracellular vesicles and edaravone-loaded scaffolds for kidney tissue regeneration by activating GDNF/RET pathway. NANO CONVERGENCE 2024; 11:43. [PMID: 39460807 PMCID: PMC11512987 DOI: 10.1186/s40580-024-00450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
With the severity of chronic kidney disease worldwide, strategies to recover renal function via tissue regeneration provide alternatives to kidney replacement therapy. To exclude side effects from direct cell transplantation, extracellular vesicles (EVs) are great substitutes representing paracrine cell signaling. To build three-dimensional structures for implantation into the 5/6 nephrectomy model by incorporating bioactive materials, including multifunctional EVs (mEVs), porous PMEZE/mEV scaffolds were developed in combination with edaravone (EDV; E) and mEV based on PMEZ scaffolds with PLGA (P), MH-RA (M), ECM (E), ZnO-ALA (Z). The oxygen free radical scavenger EDV was incorporated to induce tubular regeneration. mEVs were engineered to serve regenerative activities with a combination of two EVs from SDF-1α overexpressed tonsil-derived mesenchymal stem cells (sEVs) and intermediate mesoderm (IM) cells during differentiation into kidney progenitor cells (dEVs). mEVs displayed beneficial effects on regeneration by facilitating migration and inducing differentiation of surrounding stem cells, and EDV improved kidney function by regulating the GDNF/RET pathway and their downstream genes. The promotion of MSC recruitment was confirmed with sEV particles number dependently, and the regulation of the GDNF/RET pathway by the effect of EDV and its enhanced effect by mEVs were elucidated using in vitro analysis. The regeneration of tubules was additionally demonstrated through the increased expression of aquaporin-1 (AQP-1) and cadherin-16 (CDH16) for proximal tubules, and calbindin and PAX2 for distal tubules in the renal defect model. With these, structural regeneration and functional recovery were achieved with kidney regeneration in the 5/6 nephrectomy mice model.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Microbiology, School of Medicine, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Sun Hong Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Boram Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Microbiology, School of Medicine, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Tae-Keun Ahn
- Department of Orthopedic Surgery CHA Bundang Medical Center, CHA University, Seonnam, Gyeonggi-Do, 13496, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-Gu, Daegu, 41944, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
2
|
Liu C, Zhang D, Long K, Qi W, Pang L, Li J, Cheng KKY, Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol Res 2024; 209:107468. [PMID: 39426469 DOI: 10.1016/j.phrs.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Myocardial infarction (MI) remains a leading cause of mortality worldwide. Despite patients with MI benefit from timely reperfusion therapies, the rates of mortality and morbidity remain substantial, suggesting an enduring need for the development of new approaches. Molecular mechanisms underlying myocardial ischemic injury are associated with both cardiomyocytes and non-cardiomyocytes. Exosomes are nano-sized extracellular vesicles released by almost all eukaryotic cells. They facilitate the communication between various cells by transferring information via their cargo and altering different biological activities in recipient cells. Studies have created great prospects for therapeutic applications of exosomes in MI, as demonstrated through their beneficial effect on heart function and reducing ventricular remodeling in association with fibrosis, angiogenesis, apoptosis, and inflammation. Of note, myocardial ischemic injury is primarily due to restricted blood flow, reducing oxygen availability, and causing inefficient utilization of energy substrates. However, the impact of exosomes on cardiac energy metabolism has not been adequately investigated. Although exosomes have been engineered for targeted delivery to enhance clinical efficacy, challenges must be overcome to utilize them reliably in the clinic. In this review, we summarize the research progress of exosomes for MI with a focus on the known and unknown regarding the role of exosomes in energy metabolism in cardiomyocytes and non-cardiomyocytes; as well as potential research avenues of exosome-mitochondrial energy regulation as well as therapeutic challenges. We aim to help identify more efficient molecular targets that may promote the clinical application of exosomes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Heyuan People's Hospital, Guangdong, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wensheng Qi
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Hubei, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Zhou B, Qin Q, Fang Y, Liu X, Zhang M, Wang S, Zhong L, Guo R. Exosomes from human bone marrow MSCs alleviate PD-1/PD-L1 inhibitor-induced myocardial injury in melanoma mice by regulating macrophage polarization and pyroptosis. Life Sci 2024; 358:123108. [PMID: 39374773 DOI: 10.1016/j.lfs.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Myocarditis, which can be triggered by immune checkpoint inhibitor (ICI) treatment, represents a critical and severe adverse effect observed in cancer therapy. Thus, elucidating the underlying mechanism and developing effective strategies to mitigate its harmful impact is of utmost importance. The objective of this study is to investigate the potential role and regulatory mechanism of exosomes derived from human bone marrow mesenchymal stem cells (hBMSC-Exos) in providing protection against myocardial injury induced by ICIs. We observed that the administration of programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitor BMS-1 in tumor-bearing mice led to evident cardiac dysfunction and myocardial injury, which were closely associated with M1 macrophage polarization and cardiac pyroptosis. Remarkably, these adverse effects were significantly alleviated through tail-vein injection of hBMSC-Exos. Moreover, either BMS-1 or hBMSC-Exos alone demonstrated the ability to reduce tumor size, while the combination of hBMSC-Exos with BMS-1 treatment not only effectively improved the probability of tumor inhibition but also alleviated cardiac anomalies induced by BMS-1.
Collapse
Affiliation(s)
- Bingqian Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Qin Qin
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yue Fang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoyu Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Mengyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shuo Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Yan H, Ding H, Xie RX, Liu ZQ, Yang XQ, Xie LL, Liu CX, Liu XD, Chen LY, Huang XP. Research progress of exosomes from different sources in myocardial ischemia. Front Cardiovasc Med 2024; 11:1436764. [PMID: 39350967 PMCID: PMC11440518 DOI: 10.3389/fcvm.2024.1436764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations. The former maybe develop risks of drug resistance and has more significant side effects, while the latter may damage blood vessels and risk infection. At this stage, a new cell-free treatment method needs to be explored. Many research results have shown that exosomes from different cell sources can protect the ischemic myocardium via intercellular action methods, such as promoting angiogenesis, inhibiting myocardial fibrosis, apoptosis and pyroptosis, and providing a new basis for the treatment of MI. In this review, we briefly introduce the formation and consequences of myocardial ischemia and the biology of exosomes, and then focus on the role and mechanism of exosomes from different sources in MI. We also discuss the role and mechanism of exosomes pretreated with Chinese and Western medicines on myocardial ischemia. We also discuss the potential of exosomes as diagnostic markers and therapeutic drug for MI.
Collapse
Affiliation(s)
- Huan Yan
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ruo-Xi Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Qing Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Qian Yang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Li Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Cai-Xia Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Yuan Chen
- Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Xiao-Ping Huang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Abdal Dayem A, Yan E, Do M, Kim Y, Lee Y, Cho SG, Kim DH. Engineering extracellular vesicles for ROS scavenging and tissue regeneration. NANO CONVERGENCE 2024; 11:24. [PMID: 38922501 PMCID: PMC11208369 DOI: 10.1186/s40580-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress-an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ellie Yan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeongseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin- gu, Seoul, 05029, Republic of Korea.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Uziel O, Lipshtein L, Sarsor Z, Beery E, Bogen S, Lahav M, Regev A, Kliminski V, Sharan R, Gervits A, Signorini LF, Shimony S, Raanani P, Rozovski U. Chronic Lymphocytic Leukemia (CLL)-Derived Extracellular Vesicles Educate Endothelial Cells to Become IL-6-Producing, CLL-Supportive Cells. Biomedicines 2024; 12:1381. [PMID: 39061955 PMCID: PMC11273944 DOI: 10.3390/biomedicines12071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
We hypothesized that via extracellular vesicles (EVs), chronic lymphocytic leukemia (CLL) cells turn endothelial cells into CLL-supportive cells. To test this, we treated vein-derived (HUVECs) and artery-derived (HAOECs) endothelial cells with EVs isolated from the peripheral blood of 45 treatment-naïve patients. Endothelial cells took up CLL-EVs in a dose- and time-dependent manner. To test whether CLL-EVs turn endothelial cells into IL-6-producing cells, we exposed them to CLL-EVs and found a 50% increase in IL-6 levels. Subsequently, we filtered out the endothelial cells and added CLL cells to this IL-6-enriched medium. After 15 min, STAT3 became phosphorylated, and there was a 40% decrease in apoptosis rate, indicating that IL-6 activated the STAT3-dependent anti-apoptotic pathway. Phospho-proteomics analysis of CLL-EV-exposed endothelial cells revealed 23 phospho-proteins that were upregulated, and network analysis unraveled the central role of phospho-β-catenin. We transfected HUVECs with a β-catenin-containing plasmid and found by ELISA a 30% increase in the levels of IL-6 in the culture medium. By chromatin immunoprecipitation assay, we observed an increased binding of three transcription factors to the IL-6 promoter. Importantly, patients with CLL possess significantly higher levels of peripheral blood IL-6 compared to normal individuals, suggesting that the inducers of endothelial IL-6 are the neoplastic EVs derived from the CLL cells versus those of healthy people. Taken together, we found that CLL cells communicate with endothelial cells through EVs that they release. Once they are taken up by endothelial cells, they turn them into IL-6-producing cells.
Collapse
Affiliation(s)
- Orit Uziel
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Lian Lipshtein
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Zinab Sarsor
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
| | - Einat Beery
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
| | - Shaked Bogen
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
| | - Meir Lahav
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Alon Regev
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
| | - Vitali Kliminski
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (R.S.); (A.G.); (L.F.S.)
| | - Asia Gervits
- Blavatnik School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (R.S.); (A.G.); (L.F.S.)
| | - Lorenzo Federico Signorini
- Blavatnik School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (R.S.); (A.G.); (L.F.S.)
| | - Shai Shimony
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Pia Raanani
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Uri Rozovski
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Rai A, Claridge B, Lozano J, Greening DW. The Discovery of Extracellular Vesicles and Their Emergence as a Next-Generation Therapy. Circ Res 2024; 135:198-221. [PMID: 38900854 DOI: 10.1161/circresaha.123.323054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.
Collapse
Affiliation(s)
- Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| | - Bethany Claridge
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
| | - Jonathan Lozano
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| |
Collapse
|
8
|
Xiao Y, Xia L, Jiang W, Qin J, Zhao L, Li Z, Huang L, Li K, Yu P, Wei L, Jiang X, Chen Z, Yu X. Cardiopulmonary progenitors facilitate cardiac repair via exosomal transfer of miR-27b-3p targeting the SIK1-CREB1 axis. Cell Prolif 2024; 57:e13593. [PMID: 38185757 PMCID: PMC11056695 DOI: 10.1111/cpr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.
Collapse
Affiliation(s)
- Ying‐Ying Xiao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Luo‐Xing Xia
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen‐Jing Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Juan Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Ke‐Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Peng‐Jiu Yu
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li Wei
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xue‐Yan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Xi‐Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
9
|
Gong T, Liu YT, Fan J. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction. Mil Med Res 2024; 11:24. [PMID: 38644472 PMCID: PMC11034107 DOI: 10.1186/s40779-024-00527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Sepsis, a severe systemic inflammatory response to infection, remains a leading cause of morbidity and mortality worldwide. Exosomes, as mediators of intercellular communication, play a pivotal role in the pathogenesis of sepsis through modulating immune responses, metabolic reprogramming, coagulopathy, and organ dysfunction. This review highlights the emerging significance of exosomes in these processes. Initially, it provides an in-depth insight into exosome biogenesis and characterization, laying the groundwork for understanding their diverse and intricate functions. Subsequently, it explores the regulatory roles of exosomes in various immune cells such as neutrophils, macrophages, dendritic cells, T cells, and B cells. This analysis elucidates how exosomes are pivotal in modulating immune responses, thus contributing to the complexity of sepsis pathophysiology. Additionally, this review delves into the role of exosomes in the regulation of metabolism and subsequent organ dysfunction in sepsis. It also establishes a connection between exosomes and the coagulation cascade, which affects endothelial integrity and promotes thrombogenesis in sepsis. Moreover, the review discusses the dual role of exosomes in the progression and resolution of sepsis, exploring their complex involvement in inflammation and healing processes. Furthermore, it underscores their potential as biomarkers and therapeutic targets. Understanding these mechanisms presents new opportunities for novel interventions to mitigate the severe outcomes of sepsis, emphasizing the therapeutic promise of exosome research in critical care settings.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China.
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
10
|
Cao M, Liu Y, Sun Y, Han R, Jiang H. Current advances in human-induced pluripotent stem cell-based models and therapeutic approaches for congenital heart disease. Mol Cell Biochem 2024:10.1007/s11010-024-04997-z. [PMID: 38635080 DOI: 10.1007/s11010-024-04997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Congenital heart disease (CHD) represents a significant risk factor with profound implications for neonatal survival rates and the overall well-being of adult patients. The emergence of induced pluripotent stem cells (iPSCs) and their derived cells, combined with CRISPR technology, high-throughput experimental techniques, and organoid technology, which are better suited to contemporary research demands, offer new possibilities for treating CHD. Prior investigations have indicated that the paracrine effect of exosomes may hold potential solutions for therapeutic intervention. This review provides a summary of the advancements in iPSC-based models and clinical trials associated with CHD while elucidating potential therapeutic mechanisms and delineating clinical constraints pertinent to iPSC-based therapy, thereby offering valuable insights for further deliberation.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ying Sun
- Department of Pediatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ruiyi Han
- Department of Pediatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
11
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
12
|
Yu T, Xu Q, Chen X, Deng X, Chen N, Kou MT, Huang Y, Guo J, Xiao Z, Wang J. Biomimetic nanomaterials in myocardial infarction treatment: Harnessing bionic strategies for advanced therapeutics. Mater Today Bio 2024; 25:100957. [PMID: 38322664 PMCID: PMC10844134 DOI: 10.1016/j.mtbio.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Myocardial infarction (MI) and its associated poor prognosis pose significant risks to human health. Nanomaterials hold great potential for the treatment of MI due to their targeted and controlled release properties, particularly biomimetic nanomaterials. The utilization of biomimetic strategies based on extracellular vesicles (EVs) and cell membranes will serve as the guiding principle for the development of nanomaterial therapy in the future. In this review, we present an overview of research progress on various exosomes derived from mesenchymal stem cells, cardiomyocytes, or induced pluripotent stem cells in the context of myocardial infarction (MI) therapy. These exosomes, utilized as cell-free therapies, have demonstrated the ability to enhance the efficacy of reducing the size of the infarcted area and preventing ischaemic reperfusion through mechanisms such as oxidative stress reduction, polarization modulation, fibrosis inhibition, and angiogenesis promotion. Moreover, EVs can exert cardioprotective effects by encapsulating therapeutic agents and can be engineered to specifically target the infarcted myocardium. Furthermore, we discuss the use of cell membranes derived from erythrocytes, stem cells, immune cells and platelets to encapsulate nanomaterials. This approach allows the nanomaterials to camouflage themselves as endogenous substances targeting the region affected by MI, thereby minimizing toxicity and improving biocompatibility. In conclusion, biomimetic nano-delivery systems hold promise as a potentially beneficial technology for MI treatment. This review serves as a valuable reference for the application of biomimetic nanomaterials in MI therapy and aims to expedite the translation of NPs-based MI therapeutic strategies into practical clinical applications.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xu Chen
- Department of Clinical Pharmacy, Daqing Oilfield General Hospital, Daqing, 163000, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Man Teng Kou
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
13
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
14
|
He YC, Yuan GD, Li N, Ren MF, Qian-Zhang, Deng KN, Wang LC, Xiao WL, Ma N, Stamm C, Felthaus O, Prantl L, Nie J, Wang G. Recent advances in mesenchymal stem cell therapy for myocardial infarction. Clin Hemorheol Microcirc 2024; 87:383-398. [PMID: 38578884 DOI: 10.3233/ch-249101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Myocardial infarction refers to the ischemic necrosis of myocardium, characterized by a sharp reduction or interruption of blood flow in the coronary arteries due to the coronary artery occlusion, resulting in severe and prolonged ischemia in the corresponding myocardium and ultimately leading to ischemic necrosis of the myocardium. Given its high risk, it is considered as one of the most serious health threats today. In current clinical practice, multiple approaches have been explored to diminish myocardial oxygen consumption and alleviate symptoms, but notable success remains elusive. Accumulated clinical evidence has showed that the implantation of mesenchymal stem cell for treating myocardial infarction is both effective and safe. Nevertheless, there persists controversy and variability regarding the standardizing MSC transplantation protocols, optimizing dosage, and determining the most effective routes of administration. Addressing these remaining issues will pave the way of integration of MSCs as a feasible mainstream cardiac treatment.
Collapse
Affiliation(s)
- Yu-Chuan He
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guo-Dong Yuan
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Nan Li
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei, China
| | - Mei-Fang Ren
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qian-Zhang
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Kai-Ning Deng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Le-Chuan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wei-Ling Xiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Nan Ma
- Helmholtz-Zentrum Hereon, Institute of Active Polymers, Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jia Nie
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Gang Wang
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2023:S2090-1232(23)00402-2. [PMID: 38123019 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
16
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Yin X, Lin L, Fang F, Zhang B, Shen C. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int 2023; 2023:6500831. [PMID: 38034060 PMCID: PMC10686715 DOI: 10.1155/2023/6500831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.
Collapse
Affiliation(s)
- Xiaorong Yin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lizhi Lin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fang Fang
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
18
|
Cheng W, Xu C, Su Y, Shen Y, Yang Q, Zhao Y, Zhao Y, Liu Y. Engineered Extracellular Vesicles: A potential treatment for regeneration. iScience 2023; 26:108282. [PMID: 38026170 PMCID: PMC10651684 DOI: 10.1016/j.isci.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in various physiological and pathological processes. EVs have gained recognition in regenerative medicine due to their biocompatibility and low immunogenicity. However, the practical application of EVs faces challenges such as limited targeting ability, low yield, and inadequate therapeutic effects. To overcome these limitations, engineered EVs have emerged. This review aims to comprehensively analyze the engineering methods utilized for modifying donor cells and EVs, with a focus on comparing the therapeutic potential between engineered and natural EVs. Additionally, it aims to investigate the specific cell effects that play a crucial role in promoting repair and regeneration, while also exploring the underlying mechanisms involved in the field of regenerative medicine.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuran Su
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Liu
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| |
Collapse
|
19
|
Ping P, Guan S, Ning C, Yang T, Zhao Y, Zhang P, Gao Z, Fu S. Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102708. [PMID: 37788793 DOI: 10.1016/j.nano.2023.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Acute myocardial infarction (AMI) is a common cardiovascular condition that progressively results in heart failure. In the present study, we have designed to load transforming growth factor beta 3 (TGF-β3) and cardio potential exosomes into the blended polycaprolactone/type I collagen (PCL/COL-1) nanofibrous patch (Exo@TGF-β3@NFs) and examined its feasibility for cardiac repair. The bioactivity of the developed NFs towards the migration and proliferation of human umbilical vein endothelial cells was determined using in vitro cell compatibility assays. Additionally, Exo@TGF-β3/NFs showed up-regulation of genes involved in angiogenesis and mesenchymal differentiations in vitro. The in vivo experiments performed 4 weeks after transplantation showed that the Exo@TGF-β3@NFs had a higher LV ejection fraction and fraction shortening functions. Subsequently, it has been determined that Exo@TGF-β3@NFs significantly reduced AMI size and fibrosis and increased scar thickness. The developed NFs approach will become a useful therapeutic approach for the treatment of AMI.
Collapse
Affiliation(s)
- Ping Ping
- General Station for Drug and Instrument Supervision and Control, Joint Logistic Support Force of Chinese People's Liberation Army, Beijing, PR China
| | - Shasha Guan
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Chaoxue Ning
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Ting Yang
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, PR China.
| | - Zhitao Gao
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China; Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, PR China.
| |
Collapse
|
20
|
Zhang H, Wan X, Tian J, An Z, Liu L, Zhao X, Zhou Y, Zhang L, Ge C, Song X. The therapeutic efficacy and clinical translation of mesenchymal stem cell-derived exosomes in cardiovascular diseases. Biomed Pharmacother 2023; 167:115551. [PMID: 37783149 DOI: 10.1016/j.biopha.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Exosomes, mainly derived from mesenchymal stem cells, provide a good reference for cardiac function repair and clinical application in cardiac and vascular diseases by regulating cardiomyocyte viability, inflammatory levels, angiogenesis, and ventricular remodeling after a heart injury. This review presents the cardioprotective efficacy of mesenchymal stem cell-originated exosomes and explores the underlying molecular mechanisms. Furthermore, we expound on several efficient approaches to transporting exosomes into the heart in clinical application and comment on the advantages and disadvantages of each method.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China; The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, PR China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Yuquan Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
21
|
Liu C, Chen X, Liu Y, Sun L, Yu Z, Ren Y, Zeng C, Li Y. Engineering Extracellular Matrix-Bound Nanovesicles Secreted by Three-Dimensional Human Mesenchymal Stem Cells. Adv Healthc Mater 2023; 12:e2301112. [PMID: 37225144 PMCID: PMC10723826 DOI: 10.1002/adhm.202301112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Extracellular matrix (ECM) in the human tissue contains vesicles, which are defined as matrix-bound nanovesicles (MBVs). MBVs serve as one of the functional components in ECM, recapitulating part of the regulatory roles and in vivo microenvironment. In this study, extracellular vesicles from culture supernatants (SuEVs) and MBVs are isolated from the conditioned medium or ECM, respectively, of 3D human mesenchymal stem cells. Nanoparticle tracking analysis shows that MBVs are smaller than SuEVs (100-150 nm). Transmission electron microscopy captures the typical cup shape morphology for both SuEVs and MBVs. Western blot reveals that MBVs have low detection of some SuEV markers such as syntenin-1. miRNA analysis of MBVs shows that 3D microenvironment enhances the expression of miRNAs such as miR-19a and miR-21. In vitro functional analysis shows that MBVs can facilitate human pluripotent stem cell-derived forebrain organoid recovery after starvation and promote high passage fibroblast proliferation. In macrophage polarization, 2D MBVs tend to suppress the pro-inflammatory cytokine IL-12β, while 3D MBVs tend to enhance the anti-inflammatory cytokine IL-10. This study has the significance in advancing the understanding of the bio-interface of nanovesicles with human tissue and the design of cell-free therapy for treating neurological disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Yuan Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Zhibin Yu
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Changchun Zeng
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| |
Collapse
|
22
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Peng YQ, Deng XH, Xu ZB, Wu ZC, Fu QL. Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: From immunomodulation to therapy. Eur J Immunol 2023; 53:e2149510. [PMID: 37572379 DOI: 10.1002/eji.202149510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.
Collapse
Affiliation(s)
- Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
25
|
Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, Chu XR, Li XK, Wang ZG, Ji JS. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res 2023; 10:36. [PMID: 37587531 PMCID: PMC10433599 DOI: 10.1186/s40779-023-00472-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.
Collapse
Affiliation(s)
- Jia-Yi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ling-Feng Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Shi-Ji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zhao-Yu Li
- Department of Overseas Education College, Jimei University, Xiamen, 361021, Fujian, China
| | - Xu-Ran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Medicine II, Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
- Pulmonary and Critical Care, Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Zhou-Guang Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
26
|
Liu Y, Wang M, Yu Y, Li C, Zhang C. Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal 2023; 21:202. [PMID: 37580705 PMCID: PMC10424417 DOI: 10.1186/s12964-023-01227-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Acute myocardial infarction has long been the leading cause of death in coronary heart disease, which is characterized by irreversible cardiomyocyte death and restricted blood supply. Conventional reperfusion therapy can further aggravate myocardial injury. Stem cell therapy, especially with mesenchymal stem cells (MSCs), has emerged as a promising approach to promote cardiac repair and improve cardiac function. MSCs may induce these effects by secreting exosomes containing therapeutically active RNA, proteins and lipids. Notably, normal cardiac function depends on intracardiac paracrine signaling via exosomes, and exosomes secreted by cardiac cells can partially reflect changes in the heart during disease, so analyzing these vesicles may provide valuable insights into the pathology of myocardial infarction as well as guide the development of new treatments. The present review examines how exosomes produced by MSCs and cardiac cells may influence injury after myocardial infarction and serve as therapies against such injury. Video Abstract.
Collapse
Affiliation(s)
- Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minrui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Nucleic Acids in Medicine for National High-Level Talents, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
27
|
Rehman A, Nigam A, Laino L, Russo D, Todisco C, Esposito G, Svolacchia F, Giuzio F, Desiderio V, Ferraro G. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1449. [PMID: 37629738 PMCID: PMC10456353 DOI: 10.3390/medicina59081449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Luigi Laino
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | - Diana Russo
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | | | | | - Fabiano Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy;
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy;
- U.O.S.D. of Plastic Surgery A.O.R “San Carlo”, 85100 Potenza, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| |
Collapse
|
28
|
Ala M. The beneficial effects of mesenchymal stem cells and their exosomes on myocardial infarction and critical considerations for enhancing their efficacy. Ageing Res Rev 2023; 89:101980. [PMID: 37302757 DOI: 10.1016/j.arr.2023.101980] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with regenerative, anti-inflammatory, and immunomodulatory properties. MSCs and their exosomes significantly improved structural and functional alterations after myocardial infarction (MI) in preclinical studies and clinical trials. By reprograming intracellular signaling pathways, MSCs attenuate inflammatory response, oxidative stress, apoptosis, pyroptosis, and endoplasmic reticulum (ER) stress and improve angiogenesis, mitochondrial biogenesis, and myocardial remodeling after MI. MSC-derived exosomes contain a mixture of non-coding RNAs, growth factors, anti-inflammatory mediators, and anti-fibrotic factors. Although primary results from clinical trials were promising, greater efficacies can be achieved by controlling several modifiable factors. The optimum timing of transplantation, route of administration, origin of MSCs, number of doses, and number of cells per dose need to be further investigated by future studies. Newly, highly effective MSC delivery systems have been developed to improve the efficacy of MSCs and their exosomes. Moreover, MSCs can be more efficacious after being pretreated with non-coding RNAs, growth factors, anti-inflammatory or inflammatory mediators, and hypoxia. Similarly, viral vector-mediated overexpression of particular genes can augment the protective effects of MSCs on MI. Therefore, future clinical trials must consider these advances in preclinical studies to properly reflect the efficacy of MSCs or their exosomes for MI.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Zhu Y, Liao ZF, Mo MH, Xiong XD. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Vasculopathies and Angiogenesis: Therapeutic Applications and Optimization. Biomolecules 2023; 13:1109. [PMID: 37509145 PMCID: PMC10377109 DOI: 10.3390/biom13071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs), as part of the cellular secretome, have emerged as essential cell-cell communication regulators in multiple physiological and pathological processes. Previous studies have widely reported that mesenchymal stromal cell-derived EVs (MSC-EVs) have potential therapeutic applications in ischemic diseases or regenerative medicine by accelerating angiogenesis. MSC-EVs also exert beneficial effects on other vasculopathies, including atherosclerosis, aneurysm, vascular restenosis, vascular calcification, vascular leakage, pulmonary hypertension, and diabetic retinopathy. Consequently, the potential of MSC-EVs in regulating vascular homeostasis is attracting increasing interest. In addition to native or naked MSC-EVs, modified MSC-EVs and appropriate biomaterials for delivering MSC-EVs can be introduced to this area to further promote their therapeutic applications. Herein, we outline the functional roles of MSC-EVs in different vasculopathies and angiogenesis to elucidate how MSC-EVs contribute to maintaining vascular system homeostasis. We also discuss the current strategies to optimize their therapeutic effects, which depend on the superior bioactivity, high yield, efficient delivery, and controlled release of MSC-EVs to the desired regions, as well as the challenges that need to be overcome to allow their broad clinical translation.
Collapse
Affiliation(s)
- Ying Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhao-Fu Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Miao-Hua Mo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
30
|
Maldonado VV, Patel NH, Smith EE, Barnes CL, Gustafson MP, Rao RR, Samsonraj RM. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023; 17:44. [PMID: 37434264 DOI: 10.1186/s13036-023-00361-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been carefully examined to have tremendous potential in regenerative medicine. With their immunomodulatory and regenerative properties, MSCs have numerous applications within the clinical sector. MSCs have the properties of multilineage differentiation, paracrine signaling, and can be isolated from various tissues, which makes them a key candidate for applications in numerous organ systems. To accentuate the importance of MSC therapy for a range of clinical indications, this review highlights MSC-specific studies on the musculoskeletal, nervous, cardiovascular, and immune systems where most trials are reported. Furthermore, an updated list of the different types of MSCs used in clinical trials, as well as the key characteristics of each type of MSCs are included. Many of the studies mentioned revolve around the properties of MSC, such as exosome usage and MSC co-cultures with other cell types. It is worth noting that MSC clinical usage is not limited to these four systems, and MSCs continue to be tested to repair, regenerate, or modulate other diseased or injured organ systems. This review provides an updated compilation of MSCs in clinical trials that paves the way for improvement in the field of MSC therapy.
Collapse
Affiliation(s)
- Vitali V Maldonado
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Neel H Patel
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Emma E Smith
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - C Lowry Barnes
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah M Samsonraj
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
31
|
Nowak M, Górczyńska J, Kołodzińska K, Rubin J, Choromańska A. Extracellular Vesicles as Drug Transporters. Int J Mol Sci 2023; 24:10267. [PMID: 37373411 DOI: 10.3390/ijms241210267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles. According to their size and synthesis pathway, EVs can be classified into exosomes, ectosomes (microvesicles), and apoptotic bodies. Extracellular vesicles are of great interest to the scientific community due to their role in cell-to-cell communication and their drug-carrying abilities. The study aims to show opportunities for the application of EVs as drug transporters by considering techniques applicable for loading EVs, current limitations, and the uniqueness of this idea compared to other drug transporters. In addition, EVs have therapeutic potential in anticancer therapy (especially in glioblastoma, pancreatic cancer, and breast cancer).
Collapse
Affiliation(s)
- Monika Nowak
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Katarzyna Kołodzińska
- Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
32
|
The effectiveness of cell-derived exosome therapy for diabetic wound: A systematic review and meta-analysis. Ageing Res Rev 2023; 85:101858. [PMID: 36669689 DOI: 10.1016/j.arr.2023.101858] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND The prevalence of diabetes among the elderly population is significant and rising annually. One of the most severe and frequent complications of diabetes mellitus is the diabetic wound, which has long-term negative effects on patients' finances, mental health, and functional abilities. Exosomes, a cell-free therapy, have emerged as a promising novel treatment for diabetic wounds, but their mechanism is still not entirely understood. Therefore, we conducted this meta-analysis to assess the effectiveness of exosomes in the management of diabetic wounds. METHODS We searched PubMed, the Cochrane Library, EMBASE, and Web of Science for pertinent studies that described the therapeutic benefits of exosomes on diabetic wound models that were released before October 17, 2022. The outcome indicators consisted of wound healing rate, neovascular density, re-epithelialization rate, collagen deposition, scar width, and inflammatory factors. RevMan 5.4 software was used to conduct all statistical analyses. RESULTS A total of 21 studies with 323 animals were identified in this meta-analysis. Pooled analyses demonstrated that exosome therapy was shown to be superior to control therapy in terms of wound healing rate (SMD = 5.42; 95 %CI = 4.40-6.44; P < 0.00001), neovascular density (SMD = 5.48; 95 %CI = 4.31-6.64; P < 0.00001), re-epithelialization rate (SMD = 5.06; 95 %CI = 3.75-6.37; P < 0.00001), collagen deposition (SMD = 4.78; 95 %CI = 3.58-5.98; P < 0.00001), scar width (SMD = -8.10; 95 %CI = -10.31 to -5.89; P < 0.00001). Additionally, the expression of inflammatory factors was significantly downregulated in the exosome treatment group. CONCLUSIONS According to this meta-analysis of the current trials, exosome therapy can enhance the quality of diabetic wounds, especially when used in conjunction with novel dressings. To demonstrate the most efficient exosomes and therapeutic parameters for the treatment of diabetic wounds, future studies should conduct sizable, randomized, double-blind trials with high-quality, long-term follow-ups.
Collapse
|
33
|
Empagliflozin-Pretreated Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Attenuated Heart Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7747727. [PMID: 36852325 PMCID: PMC9966826 DOI: 10.1155/2023/7747727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023]
Abstract
Objective Small extracellular vesicles derived from mesenchymal stem cells (MSCs) play important roles in cardiac protection. Studies have shown that the cardiovascular protection of sodium-glucose cotransporter 2 inhibitor (SGLT2i) is independent of its hypoglycemic effect. This study is aimed at investigating whether small extracellular vesicles derived from MSCs pretreated with empagliflozin (EMPA) has a stronger cardioprotective function after myocardial infarction (MI) and to explore the underlying mechanisms. Methods and Results We evaluated the effects of EMPA on MSCs and the effects of EMPA-pretreated MSCs-derived small extracellular vesicles (EMPA-sEV) on myocardial apoptosis, angiogenesis, and cardiac function after MI in vitro and in vivo. The small extracellular vesicles of control MSCs (MSC-sEV) and EMPA-pretreated MSCs were extracted, respectively. Small extracellular vesicles were cocultured with apoptotic H9c2 cells induced by H2O2 or injected into the infarcted area of the Sprague-Dawley (SD) rat myocardial infarction model. EMPA increased the cell viability, migration ability, and inhibited apoptosis and senescence of MSCs. In vitro, EMPA-sEV inhibited apoptosis of H9c2 cells compared with the control group (MSC-sEV). In the SD rat model of MI, EMPA-sEV inhibited myocardial apoptosis and promoted angiogenesis in the infarct marginal areas compared with the MSC-sEV. Meanwhile, EMPA-sEV reduced infarct size and improved cardiac function. Through small extracellular vesicles (miRNA) sequencing, we found several differentially expressed miRNAs, among which miR-214-3p was significantly elevated in EMPA-sEV. Coculture of miR-214-3p high expression MSC-derived small extracellular vesicles with H9c2 cells produced similar protective effects. In addition, miR-214-3p was found to promote AKT phosphorylation in H9c2 cells. Conclusions Our data suggest that EMPA-sEV significantly improve cardiac repair after MI by inhibiting myocardial apoptosis. miR-214-3p at least partially mediated the myocardial protection of EMPA-sEV through the AKT signaling pathway.
Collapse
|
34
|
Draguet F, Bouland C, Dubois N, Bron D, Meuleman N, Stamatopoulos B, Lagneaux L. Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Natural Nanocarriers: Concise Review. Pharmaceutics 2023; 15:pharmaceutics15020558. [PMID: 36839879 PMCID: PMC9964668 DOI: 10.3390/pharmaceutics15020558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Intercellular communication, through direct and indirect cell contact, is mandatory in multicellular organisms. These last years, the microenvironment, and in particular, transfer by extracellular vesicles (EVs), has emerged as a new communication mechanism. Different biological fluids and cell types are common sources of EVs. EVs play different roles, acting as signalosomes, biomarkers, and therapeutic agents. As therapeutic agents, MSC-derived EVs display numerous advantages: they are biocompatible, non-immunogenic, and stable in circulation, and they are able to cross biological barriers. Furthermore, EVs have a great potential for drug delivery. Different EV isolation protocols and loading methods have been tested and compared. Published and ongoing clinical trials, and numerous preclinical studies indicate that EVs are safe and well tolerated. Moreover, the latest studies suggest their applications as nanocarriers. The current review will describe the potential for MSC-derived EVs as drug delivery systems (DDS) in disease treatment, and their advantages. Thereafter, we will outline the different EV isolation methods and loading techniques, and analyze relevant preclinical studies. Finally, we will describe ongoing and published clinical studies. These elements will outline the benefits of MSC-derived EV DDS over several aspects.
Collapse
Affiliation(s)
- Florian Draguet
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Correspondence:
| | - Cyril Bouland
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, 322 Rue Haute, 1000 Brussels, Belgium
- Department of Maxillofacial and Reconstructive Surgery, Grand Hôpital de Charleroi, 3 Grand’Rue, 6000 Charleroi, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Dominique Bron
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| |
Collapse
|
35
|
Nian W, Fu C. Exosomes in Myocardial Infarction: Therapeutic Potential and Clinical Application. J Cardiovasc Transl Res 2023; 16:87-96. [PMID: 35672604 DOI: 10.1007/s12265-022-10284-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Myocardial infarction (MI) remains the leading fatal disease in the world, and with subsequent adverse ventricular remodeling often leading to the development of heart failure, finding new ways to improve the prognosis of MI is important. Exosomes are extracellular vesicles of 30-150 nm secreted by various cells in the body. It is now well recognized that exosomes play an important role in MI, and exosomes may become a new approach to post-MI treatment. It is valuable to study how exosomes are involved in post-MI progression and how exosomes can be modified to improve their effectiveness. In this review, we focus on summarizing the therapeutic potential of exosomes for MI and the current status of clinical applications to provide evidence for the formal use of exosomes in the clinic.
Collapse
Affiliation(s)
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital Affiliated to Wan Nan Medical College, 92# West Zhe Shan Road, Wuhu, Anhui, China. .,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wan Nan Medical College, Wuhu, China.
| |
Collapse
|
36
|
Wu Q, Fu S, Xiao H, Du J, Cheng F, Wan S, Zhu H, Li D, Peng F, Ding X, Wang L. Advances in Extracellular Vesicle Nanotechnology for Precision Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204814. [PMID: 36373730 PMCID: PMC9875626 DOI: 10.1002/advs.202204814] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) have increasingly been recognized as important cell surrogates influencing many pathophysiological processes, including cellular homeostasis, cancer progression, neurologic disease, and infectious disease. These behaviors enable EVs broad application prospects for clinical application in disease diagnosis and treatment. Many studies suggest that EVs are superior to conventional synthetic carriers in terms of drug delivery and circulating biomarkers for early disease diagnosis, opening up new frontiers for modern theranostics. Despite these clinical potential, EVs containing diverse cellular components, such as nucleic acids, proteins, and metabolites are highly heterogeneous and small size. The limitation of preparatory, engineering and analytical technologies for EVs poses technical barriers to clinical translation. This article aims at present a critical overview of emerging technologies in EVs field for biomedical applications and challenges involved in their clinic translations. The current methods for isolation and identification of EVs are discussed. Additionally, engineering strategies developed to enhance scalable production and improved cargo loading as well as tumor targeting are presented. The superior clinical potential of EVs, particularly in terms of different cell origins and their application in the next generation of diagnostic and treatment platforms, are clarified.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Siyuan Fu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Hanyang Xiao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Jiaxin Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Fang Cheng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Houjuan Zhu
- A*STAR (Agency for ScienceTechnology and Research)Singapore138634Singapore
| | - Dan Li
- Department of DermatologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Fei Peng
- Wellman Center for PhotomedicineMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02114USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| |
Collapse
|
37
|
Luo F, Guo W, Liu W. Exosomes derived from bone marrow mesenchymal stem cells inhibit human aortic vascular smooth muscle cells calcification via the miR-15a/15b/16/NFATc3/OCN axis. Biochem Biophys Res Commun 2022; 635:65-76. [DOI: 10.1016/j.bbrc.2022.09.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
|
38
|
Yang Y, Chen T, Liu J, Chen S, Cai R, Wu L, Hu J, Lin Q, Qi X, Liu Z, Cheng Y. Integrated chemical profiling, network pharmacology and pharmacological evaluation to explore the potential mechanism of Xinbao pill against myocardial ischaemia-reperfusion injury. PHARMACEUTICAL BIOLOGY 2022; 60:255-273. [PMID: 35148221 PMCID: PMC8845110 DOI: 10.1080/13880209.2022.2025859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Xinbao pill (XBW), a traditional Chinese herbal formula, is widely used in clinical treatment for cardiovascular diseases; however, the therapeutic effect of XBW on myocardial ischaemia-reperfusion injury (MI/RI) is unclear. OBJECTIVE This study evaluates the cardioprotective effect and molecular mechanism of XBW against MI/RI. MATERIALS AND METHODS A phytochemistry-based network pharmacology analysis was used to uncover the mechanism of XBW against MI/RI. Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was used to identify chemicals. MI/RI-related targets of XBW were predicted using TargetNet database, OMIC database, etc. Sprague-Dawley (SD) rats under anterior descending artery ligation model were divided into Sham, MI/RI and XBW (180 mg/kg, intragastric administration). After 30 min ischaemia and 24 h reperfusion, heart tissues were collected for measurement of myocardial infarct size. After oxygen glucose deprivation for 6 h, H9c2 cells were treated with XBW (60, 240 and 720 μg/mL) and diazoxide (100 μM) for 18 h of reperfusion. RESULTS Thirty-seven chemicals were identified in XBW; 50 MI/RI-related targets of XBW were predicted using indicated databases. XBW significantly reduced infarct size and creatine kinase MB (CK-MB) level after MI/RI; XBW protected H9c2 cells against OGD/R injury. Gene ontology (GO) and KEGG pathway enrichment analyses by String database showed that the cardioprotective effect of XBW was associated with autophagy and apoptosis signalling pathways. Experimental investigation also verified that XBW suppressed apoptosis, autophagy and endoplasmic reticulum (ER) stress. CONCLUSIONS XBW showed therapeutic effects against MI/RI mainly via attenuating apoptosis though suppressing excessive autophagy and ER stress.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ting Chen
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiaming Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sixuan Chen
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongqing Cai
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Liqiong Wu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiexiong Hu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Qiongying Lin
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Xiaoxiao Qi
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- CONTACT Zhongqiu Liu
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Yuanyuan Cheng School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Zhao H, Liu H, Liu Y, Jin J, He Q, Lin B. The role of extracellular vesicles in vascular calcification in chronic kidney disease. Front Med (Lausanne) 2022; 9:997554. [PMID: 36388921 PMCID: PMC9651939 DOI: 10.3389/fmed.2022.997554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Widespread vascular calcification (VC) in patients with chronic kidney disease (CKD) is the pathological basis for the development of cardiovascular disease, and VC has been identified as an independent risk factor for increased cardiovascular mortality in cases of CKD. While VC was earlier thought to be a passive deposition process following calcium and phosphorus supersaturation, recent studies have suggested that it is an active, modifiable, biological process similar to bone development. The involvement of extracellular vesicles (EVs) in the process of VC has been reported as an important transporter of material transport and intercellular communication. This paper reviews the mechanism of the role of EVs, especially exosomes, in VC and the regulation of VC by stem cell-derived EVs, and discusses the possible and promising application of related therapeutic targets in the clinical setting.
Collapse
Affiliation(s)
- Huan Zhao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Haojie Liu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Yueming Liu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Juan Jin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bo Lin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| |
Collapse
|
40
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
41
|
Ramasubramanian L, Du S, Gidda S, Bahatyrevich N, Hao D, Kumar P, Wang A. Bioengineering Extracellular Vesicles for the Treatment of Cardiovascular Diseases. Adv Biol (Weinh) 2022; 6:e2200087. [PMID: 35778828 PMCID: PMC9588622 DOI: 10.1002/adbi.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Indexed: 01/28/2023]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.
Collapse
Affiliation(s)
- Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Shixian Du
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Siraj Gidda
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Priyadarsini Kumar
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| |
Collapse
|
42
|
Tailored Extracellular Vesicles: Novel Tool for Tissue Regeneration. Stem Cells Int 2022; 2022:7695078. [PMID: 35915850 PMCID: PMC9338735 DOI: 10.1155/2022/7695078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an essential part in multiple pathophysiological processes including tissue injury and regeneration because of their inherent characteristics of small size, low immunogenicity and toxicity, and capability of carrying a variety of bioactive molecules and mediating intercellular communication. Nevertheless, accumulating studies have shown that the application of EVs faces many challenges such as insufficient therapeutic efficacy, a lack of targeting capability, low yield, and rapid clearance from the body. It is known that EVs can be engineered, modified, and designed to encapsulate therapeutic cargos like proteins, peptides, nucleic acids, and drugs to improve their therapeutic efficacy. Targeted peptides, antibodies, aptamers, magnetic nanoparticles, and proteins are introduced to modify various cell-derived EVs for increasing targeting ability. In addition, extracellular vesicle mimetics (EMs) and self-assembly EV-mimicking nanocomplex are applied to improve production and simplify EV purification process. The combination of EVs with biomaterials like hydrogel, and scaffolds dressing endows EVs with long-term therapeutic efficacy and synergistically enhanced regenerative outcome. Thus, we will summarize recent developments of EV modification strategies for more extraordinary regenerative effect in various tissue injury repair. Subsequently, opportunities and challenges of promoting the clinical application of engineered EVs will be discussed.
Collapse
|
43
|
Li D, Tian K, Guo J, Wang Q, Qin Z, Lu Y, Xu Y, Scott N, Charles CJ, Liu G, Zhang J, Cui X, Tang J. Growth factors: avenues for the treatment of myocardial infarction and potential delivery strategies. Regen Med 2022; 17:561-579. [PMID: 35638395 DOI: 10.2217/rme-2022-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Despite recent advances in clinical management, reoccurence of heart failure after AMI remains high, in part because of the limited capacity of cardiac tissue to repair after AMI-induced cell death. Growth factor-based therapy has emerged as an alternative AMI treatment strategy. Understanding the underlying mechanisms of growth factor cardioprotective and regenerative actions is important. This review focuses on the function of different growth factors at each stage of the cardiac repair process. Recent evidence for growth factor therapy in preclinical and clinical trials is included. Finally, different delivery strategies are reviewed with a view to providing workable strategies for clinical translation.
Collapse
Affiliation(s)
- Demin Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Kang Tian
- Department of Bone and Joint, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhen Qin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yongzheng Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yanyan Xu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Nicola Scott
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, 8011, New Zealand
| | - Chris J Charles
- Department of Orthopedic Surgery and Musculoskeletal Medicine, Christchurch Regenerative Medicine and Tissue Engineering Group, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Department of Bone and Joint, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China.,Department of Orthopedic Surgery and Musculoskeletal Medicine, Christchurch Regenerative Medicine and Tissue Engineering Group, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| |
Collapse
|
44
|
Ahmed L, Al-Massri K. New Approaches for Enhancement of the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular Diseases. Tissue Eng Regen Med 2022; 19:1129-1146. [PMID: 35867309 DOI: 10.1007/s13770-022-00469-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain a major health concern worldwide, where mesenchymal stem cells (MSCs) therapy gives great promise in their management through their regenerative and paracrine actions. In recent years, many studies have shifted from the use of transplanted stem cells to their secreted exosomes for the management of various CVDs and cardiovascular-related diseases including atherosclerosis, stroke, myocardial infarction, heart failure, peripheral arterial diseases, and pulmonary hypertension. In different models, MSC-derived exosomes have shown beneficial outcomes similar to cell therapy concerning regenerative and neovascular actions in addition to their anti-apoptotic, anti-remodeling, and anti-inflammatory actions. Compared with their parent cells, exosomes have also demonstrated several advantages, including lower immunogenicity and no risk of tumor formation. However, the maintenance of stability and efficacy of exosomes after in vivo transplantation is still a major concern in their clinical application. Recently, new approaches have been developed to enhance their efficacy and stability including their preconditioning before transplantation, use of genetically modified MSC-derived exosomes, or their utilization as a targeted drug delivery system. Herein, we summarized the use of MSC-derived exosomes as therapies in different CVDs in addition to recent advances for the enhancement of their efficacy in these conditions.
Collapse
Affiliation(s)
- Lamiaa Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Khaled Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
45
|
Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tissue Res 2022; 390:71-92. [PMID: 35788900 DOI: 10.1007/s00441-022-03663-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
Despite advances in the treatment of acute myocardial infarction, due to the non-proliferative nature of adult cardiomyocytes, the injured myocardium is mainly replaced by fibrotic tissue, which ultimately causes heart failure. To prevent heart failure, particularly after myocardial infarction, exosome-based therapy has emerged as one of the most promising strategies to regenerate cardiac function. Exosomes can carry microRNAs in support of neovascularization, anti-inflammatory, and endogenous cardiac regeneration. This study demonstrated that animal rat models' combination treatment with microRNA-126 and microRNA-146a mimics in exosomes is desirable for cardiac regeneration after myocardial infarction. The exosomes isolated from stem cells and loaded with microRNAs were characterized their impacts in cell migration, tube formation, and vascular endothelial growth factor degree. In the following, the usefulness of loaded microRNAs in exosomes and their encapsulation within alginate derivative hydrogel was analyzed in myocardial infarction for an animal model. Exosomes isolated and loaded with microRNAs showed the synergetic impact on cell migration, tube formation, and promoted vascular endothelial growth factor folding. Moreover, microRNAs loaded exosomes and encapsulated them in alginate hydrogel could help in reducing infarct size and improving angiogenesis in myocardial infarction. The angiogenesis markers including CD31 and connexion 43 upregulated for myocardial infarction models treated with alginate-based hydrogels loaded with exosomes and microRNAs-exosomes. Histological analysis indicated that myocardial infarction model rats treated with alginate hydrogel loaded with microRNAs-exosomes possessed lower and higher degrees of fibrosis and collagen fiber, respectively. These findings have important therapeutic implications for a myocardial infarction model through angiogenesis and vascular integrity regulation.
Collapse
|
46
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
47
|
Ko GR, Lee JS. Engineering of Immune Microenvironment for Enhanced Tissue Remodeling. Tissue Eng Regen Med 2022; 19:221-236. [PMID: 35041181 PMCID: PMC8971302 DOI: 10.1007/s13770-021-00419-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023] Open
Abstract
The capability to restore the structure and function of tissues damaged by fatal diseases and trauma is essential for living organisms. Various tissue engineering approaches have been applied in lesions to enhance tissue regeneration after injuries and diseases in living organisms. However, unforeseen immune reactions by the treatments interfere with successful healing and reduce the therapeutic efficacy of the strategies. The immune system is known to play essential roles in the regulation of the microenvironment and recruitment of cells that directly or indirectly participate in tissue remodeling in defects. Accordingly, regenerative immune engineering has emerged as a novel approach toward efficiently inducing regeneration using engineering techniques that modulate the immune system. It is aimed at providing a favorable immune microenvironment based on the controlled balance between pro-inflammation and anti-inflammation. In this review, we introduce recent developments in immune engineering therapeutics based on various cell types and biomaterials. These developments could potentially overcome the therapeutic limitations of tissue remodeling.
Collapse
Affiliation(s)
- Ga Ryang Ko
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
48
|
Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5. Cell Death Dis 2022; 13:278. [PMID: 35351860 PMCID: PMC8964813 DOI: 10.1038/s41419-022-04703-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023]
Abstract
Vascular calcification (VC) is a significant complication of chronic kidney disease (CKD) and cellular apoptosis is one of the intricate mechanisms of VC. Bone marrow mesenchymal stem cell-derived exosome (BMSC-Exo) alleviates VC, but the mechanism remains unclear. We investigated the mechanism of BMSC-Exo using high phosphate stimulated Human aortic smooth muscle cells (HA-VSMCs) and 5/6 subtotal nephrectomy (SNx) rat models. We demonstrated that the effect of BMSC-Exo on the inhibition of cellular apoptosis and calcification partially depended on exosomal microRNA-381-3p (miR-381-3p) both in vivo and in vitro, and confirmed that miR-381-3p could inhibit Nuclear Factor of Activated T cells 5 (NFAT5) expression by directly binding to its 3′ untranslated region. Additionally, we found that severe calcification of arteries in dialysis patients was associated with decreased miR-381-3p and increased NFAT5 expression levels. Collectively, our findings proved that BMSC-Exo plays anti-calcification and anti-apoptosis roles in CKD by delivering enclosed miR-381-3p, which directly targets NFAT5 mRNA, and leads to a better understanding of the mechanism of CKD-VC. ![]()
Collapse
|
49
|
Wang R, Wei W, Rong S, Wang T, Li B. Intravenous injection of SDF-1α-overexpressing bone marrow mesenchymal stem cells has a potential protective effect on myocardial ischemia in mice. Curr Stem Cell Res Ther 2022; 17:348-360. [PMID: 35306996 DOI: 10.2174/1574888x17666220318144608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
Background Neutrophils are involved in the injury of myocytes during myocardial ischemia (MI). Stem cells migrate to the site of myocardial injury under homing signals and play a protective role, such as inhibiting inflammation. Chemokine SDF-1α and its related receptor CXCR4 are upregulated after myocardial infarction, which may play an important role in stem cell homing. Objectives This study aimed to explore the potential therapeutic effect of SDF-1α-modified bone marrow mesenchymal stem cells on myocardial ischemia/reperfusion (I/R) injury. Methods We explored the role of SDF-1α modified bone marrow mesenchymal stem cells in vivo and in vitro. SDF-1α and CXCR4 expression was detected under hypoxia/reoxygenation (H/R) condition. Cell migration was detected by the transwell method. The levels of SDF-1α and IL-1β, IL-6, IL-10, and TNF-α were detected in different groups. Results In vivo, SDF-1α was mainly upregulated and secreted by cardiomyocytes, and cardiomyocytes recruited stem cells through the SDF-1/CXCR4 pathway to reduce the damage of polymorphic mononuclear neutrophils to cardiomyocytes under H/R. Upregulation of SDF-1α increased the migration ability of BMSC Stem Cells to H/R-induced cardiomyocytes. In vitro, intravenous injection of SDF-1α gene-modified BMSC Stem Cells reduced inflammatory infiltration in the injured area as well as the level of systemic inflammatory factors. Conclusions SDF-1α-overexpressing BMSC Stem Cells protected the heart function of mice and significantly reduced I/R-induced myocardial injury, which has a potential protective effect on MI.
Collapse
Affiliation(s)
- Ruihua Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wen Wei
- The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi 030024, P.R. China
| | - Shuling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Bao Li
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
50
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 253] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|