1
|
Seady M, Schirmbeck G, Taday J, Fróes FT, Baú JV, Jantsch J, Guedes RP, Gonçalves CA, Leite MC. Curcumin attenuates neuroinflammatory damage induced by LPS: Implications for the role of S100B. J Nutr Biochem 2025; 135:109768. [PMID: 39278425 DOI: 10.1016/j.jnutbio.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Inflammation is a common feature of neurological disorders that alters cell function in microglia and astrocytes as well as other neuronal cell types. Astrocytes modulate blood flow, regulate glutamate metabolism, and exert antioxidant protection. When responding to inflammatory damage, astrocytes enhance immune cell infiltration and amplify inflammatory responses via the upregulation of cytokine production. Several molecules have been proposed to attenuate neuroinflammation and control neurological diseases. Curcumin gained attention due to its capacity to cross the blood-brain barrier and its well-described anti-inflammatory and antioxidant activities. Our study aimed to understand if oral curcumin administration could protect against central nervous system inflammatory damage induced by intracerebroventricular injection of LPS while focusing on astrocyte function. Despite its poor bioavailability, we found that curcumin reaches the central nervous system, prevents the locomotory damage caused by LPS, and reduces inflammatory signaling via IL-1β and COX-2. Furthermore, we observed that curcumin was protective against LPS-induced S100B secretion in the cerebrospinal fluid and GSH reduction in the hippocampal tissue. However, curcumin could not protect the animals from anhedonia, assessed by the sucrose preference test, and weight loss induced by LPS. Our results indicate that oral curcumin administration exerts a protective anti-inflammatory action in the central nervous system, attenuating the sickness behavior induced by ICV LPS. This work demonstrates that curcumin has an important modulative effect on astrocytes, thus suggesting that astrocytes are critical to the anti-inflammatory effects of curcumin.
Collapse
Affiliation(s)
- Marina Seady
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel Schirmbeck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Telles Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéfeli Vasques Baú
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Zeng F, Pang G, Hu L, Sun Y, Peng W, Chen Y, Xu D, Xia Q, Zhao L, Li Y, He M. Subway Fine Particles (PM 2.5 )-Induced Pro-Inflammatory Response Triggers Airway Epithelial Barrier Damage Through the TLRs/NF-κB-Dependent Pathway In Vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:5296-5308. [PMID: 39189708 DOI: 10.1002/tox.24403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
Subways are widely used in major cities around the world, and subway fine particulate matter (PM2.5) is the main source of daily PM2.5 exposure for urban residents. Exposure to subway PM2.5 leads to acute inflammatory damage in humans, which has been confirmed in mouse in vivo studies. However, the concrete mechanism by which subway PM2.5 causes airway damage remains obscure. In this study, we found that subway PM2.5 triggered release of pro-inflammatory cytokines such as interleukin 17E, tumor necrosis factor α, transforming growth factor β, and thymic stromal lymphopoietin from human bronchial epithelial cells (BEAS-2B) in a dose-effect relationship. Subsequently, supernatant recovered from the subway PM2.5 group significantly increased expression of the aforementioned cytokines in BEAS-2B cells compared with the subway PM2.5 group. Additionally, tight junctions (TJs) of BEAS-2B cells including zonula occludens-1, E-cadherin, and occludin were decreased by subway PM2.5 in a dose-dependent manner. Moreover, supernatant recovered from the subway PM2.5 group markedly decreased the expression of these TJs compared with the control group. Furthermore, inhibitors of toll-like receptors (TLRs) and nuclear factor-kappa B (NF-κB), as well as chelate resins (e.g., chelex) and deferoxamine, remarkably ameliorated the observed changes of cytokines and TJs caused by subway PM2.5 in BEAS-2B cells. Therefore, these results suggest that subway PM2.5 induced a decline of TJs after an initial ascent of cytokine expression, and subway PM2.5 altered expression of both cytokines and TJs by activating TLRs/NF-κB-dependent pathway in BEAS-2B cells. The metal components of subway PM2.5 may contribute to the airway epithelial injury.
Collapse
Affiliation(s)
- Fanmei Zeng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Guanhua Pang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuwei Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Dan Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qing Xia
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Luwei Zhao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yifei Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Shenyang, China
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
| |
Collapse
|
3
|
Mad Azli AA, Salamt N, Aminuddin A, Roos NAC, Mokhtar MH, Kumar J, Hamid AA, Ugusman A. The Role of Curcumin in Modulating Vascular Function and Structure during Menopause: A Systematic Review. Biomedicines 2024; 12:2281. [PMID: 39457594 PMCID: PMC11504472 DOI: 10.3390/biomedicines12102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The risk of developing cardiovascular disease (CVD) escalates in women during menopause, which is associated with increased vascular endothelial dysfunction, arterial stiffness, and vascular remodeling. Meanwhile, curcumin has been demonstrated to enhance vascular function and structure in various studies. Therefore, this study systematically reviewed the recent literature regarding the potential role of curcumin in modulating vascular function and structure during menopause. The Ovid MEDLINE, PubMed, Scopus, and Web of Science electronic databases were searched to identify relevant articles. Clinical and preclinical studies involving menopausal women and postmenopausal animal models with outcomes related to vascular function or structure were included. After thorough screening, seven articles were selected for data extraction, comprising three animal studies and four clinical trials. The findings from this review suggested that curcumin has beneficial effects on vascular function and structure during menopause by addressing endothelial function, arterial compliance, hemodynamic parameters, and the formation of atherosclerotic lesions. Therefore, curcumin has the potential to be utilized as a supplement to enhance vascular health in menopausal women. However, larger-scale clinical trials employing gold-standard techniques to evaluate vascular health in menopausal women are necessary to validate the preliminary results obtained from small-scale randomized clinical trials involving curcumin supplementation (INPLASY, INPLASY202430043).
Collapse
Affiliation(s)
- Amanina Athirah Mad Azli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
4
|
Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol 2024; 76:1269-1283. [PMID: 39180454 DOI: 10.1093/jpp/rgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
6
|
Li S, Zhang Y, Ishfaq M, Liu R, Wei G, Zhang X. Curcumin alleviates Aflatoxin B1-triggered chicken liver necroptosis by targeting the LOC769044/miR-1679/STAT1 axis. Poult Sci 2024; 103:103883. [PMID: 38865767 PMCID: PMC11223116 DOI: 10.1016/j.psj.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Aflatoxin B1 (AFB1) is an unavoidable environmental toxin. The accumulation of AFB1 and its metabolites in the liver poses a threat to both human and animal health. Curcumin exhibits anti-oxidative, anti-tumor, and anti-inflammatory properties. There is no report on the mechanism regarding how curcumin relived liver necroptosis in chickens induced by AFB1 based on the regulatory network of ceRNA. To explore this, we performed transmission electron microscopy and sequenced lncRNA and mRNA in chicken livers treated with AFB1 and/or curcumin for 28 d in vivo. We observed substantial alterations in the lncRNA and mRNA expression profiles within the chicken liver, indicating that curcumin can mitigate AFB1-induced necroptosis both in vivo and in vitro. Further analysis, including the establishment of an lncRNA-miRNA-mRNA network and the utilization of a dual luciferase reporter assay, revealed that LOC769044 acts as a competing endogenous RNA (ceRNA) for miR-1679. In addition, STAT1 was identified as a direct target of miR-1679. Modulating miR-1679 levels through overexpression, and silencing LOC769044 and STAT1, effectively reversed the necroptotic effects induced by AFB1, a reversal that was also observed with curcumin supplementation. In conclusion, our data demonstrate that curcumin alleviates AFB1-induced liver necroptosis through the LOC769044/miR-1679/STAT1 signaling axis. This study suggests that LOC769044 may serve as a novel therapeutic target for managing AFB1-mediated liver toxicity.
Collapse
Affiliation(s)
- Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China
| | - Yixin Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Muhammad Ishfaq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Gaoqiang Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China.
| |
Collapse
|
7
|
Promsong A, Chuerduangphui J, Levy CN, Hladik F, Satthakarn S, Nittayananta W. Effects of Ellagic Acid on Vaginal Innate Immune Mediators and HPV16 Infection In Vitro. Molecules 2024; 29:3630. [PMID: 39125034 PMCID: PMC11314121 DOI: 10.3390/molecules29153630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Ellagic acid (EA) is a phenolic phytochemical found in many plants and their fruits. Vaginal epithelial cells are the first line of defense against pathogen invasion in the female reproductive tract and express antimicrobial peptides, including hBD2 and SLPI. This study investigated the in vitro effects of EA (1) on vaginal innate immunity using human vaginal epithelial cells, and (2) on HPV16 pseudovirus infection. Vaginal cells were cultured in the presence or absence of EA, and the expression of hBD2 and SLPI was determined at both transcriptional and translational levels. In addition, secretion of various cytokines and chemokines was measured. Cytotoxicity of EA was determined by CellTiter-blue and MTT assays. To investigate the ability of EA to inhibit HPV16 infection, EA was used to treat HEK-293FT cells in pre-attachment and adsorption steps. We found significant increases in both hBD2 mRNA (mean 2.9-fold at 12.5 µM EA, p < 0.001) and protein (mean 7.1-fold at 12.5 µM EA, p = 0.002) in response to EA. SLPI mRNA also increased significantly (mean 1.4-fold at 25 µM EA, p = 0.01), but SLPI protein did not. Secretion of IL-2 but not of other cytokines/chemokines was induced by EA in a dose-dependent manner. EA was not cytotoxic. At the pre-attachment step, EA at CC20 and CC50 showed a slight trend towards inhibiting HPV16 pseudovirus, but this was not significant. In summary, vaginal epithelial cells can respond to EA by producing innate immune factors, and at tested concentrations, EA is not cytotoxic. Thus, plant-derived EA could be useful as an immunomodulatory agent to improve vaginal health.
Collapse
Affiliation(s)
- Aornrutai Promsong
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat 96000, Thailand;
| | | | - Claire N. Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (C.N.L.); (F.H.)
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (C.N.L.); (F.H.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Surada Satthakarn
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | | |
Collapse
|
8
|
Uemura I, Takahashi-Suzuki N, Sano A, Yamada S, Nakata A, Satoh T. Curcumin effects on age-related changes in oral immunity: an in vivo study. Br J Nutr 2024; 132:31-39. [PMID: 38634264 DOI: 10.1017/s0007114524000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The current study aimed to investigate the effects of ageing on oral immunity using β-defensin (DEFB) 1/2 as a marker and evaluate the effects of curcumin (CUR) on these processes. The study sample included thirty male C57BL/6J mice divided into three groups based on the treatment method used. The young control (YC) and old control (OC) groups received 0·5 % methylcellulose-400 (CUR vehicle) orally for 5 days, whereas the CUR group of older mice received a CUR solution suspended in 0·5 % methylcellulose-400 (dose: 3·0 mg/kg body). DEFB1/2 and immune indicator levels were measured in the saliva and salivary glands post-treatment. The saliva volume and protein content were significantly reduced in the OC group compared with the YC group. CUR administration restored these parameters, decreased DEFB1 expression in the salivary gland and increased DEFB1/2 secretion and DEFB2 expression. These findings were supported by epigenetic gene regulation and partial cytokine activation from changes in WD40 repeat protein 5, TNF alpha and IL-1beta. CUR can partially restore age-related changes in oral immune responses and promote oral health, thereby preventing frailty in the older population through a nutritional therapeutic pathway.
Collapse
Affiliation(s)
- Ippei Uemura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido006-8585, Japan
| | - Natsuko Takahashi-Suzuki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido006-8585, Japan
| | - Akari Sano
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido006-8585, Japan
| | - Shogo Yamada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido006-8585, Japan
| | - Akifumi Nakata
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido006-8585, Japan
| | - Takashi Satoh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido006-8585, Japan
| |
Collapse
|
9
|
Mohammadzadeh R, Fathi M, Pourseif MM, Omidi Y, Farhang S, Barzegar Jalali M, Valizadeh H, Nakhlband A, Adibkia K. Curcumin and nano-curcumin applications in psychiatric disorders. Phytother Res 2024. [PMID: 38965868 DOI: 10.1002/ptr.8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Psychiatric disorders cause long-lasting disabilities across different age groups. While various medications are available for mental disorders, some patients do not fully benefit from them or experience treatment resistance. The pathogenesis of psychiatric disorders involves multiple mechanisms, including an increase in the inflammatory response. Targeting inflammatory mechanisms has shown promise as a therapeutic approach for these disorders. Curcumin, known for its anti-inflammatory properties and potential neuroprotective effects, has been the subject of studies investigating its potential as a treatment option for psychiatric disorders. This review comprehensively examines the potential therapeutic role of curcumin and its nanoformulations in psychiatric conditions, including major depressive disorder (MDD), bipolar disorder, schizophrenia, and anxiety disorders. There is lack of robust clinical trials across all the studied psychiatric disorders, particularly bipolar disorder and schizophrenia. More studies have focused on MDD. Studies on depression indicate that curcumin may be effective as an antidepressant agent, either alone or as an adjunct therapy. However, inconsistencies exist among study findings, highlighting the need for further research with improved blinding, optimized dosages, and treatment durations. Limited evidence supports the use of curcumin for bipolar disorder, making its therapeutic application challenging. Well-designed clinical trials are warranted to explore its potential therapeutic benefits. Exploring various formulations and delivery strategies, such as utilizing liposomes and nanoparticles, presents intriguing avenues for future research. More extensive clinical trials are needed to assess the efficacy of curcumin as a standalone or adjunctive treatment for psychiatric disorders, focusing on optimal dosages, formulations, and treatment durations.
Collapse
Affiliation(s)
- R Mohammadzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Y Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - S Farhang
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Barzegar Jalali
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Valizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Nakhlband
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - K Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Dogan T, Yildirim BA, Kapakin KAT. Investigation of the effects of crocin on inflammation, oxidative stress, apoptosis, NF-κB, TLR-4 and Nrf-2/HO-1 pathways in gentamicin-induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104374. [PMID: 38246228 DOI: 10.1016/j.etap.2024.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The primary limitation of gentamicin (Gm) treatment is its potential to induce nephrotoxicity, which can restrict both its duration and efficacy. This study aims to investigate the protective effects of Crocin (Cr) against Gm-induced nephrotoxicity and its underlying mechanisms, including inflammation, apoptosis, TLR-4, Nrf-2/HO-1 pathways. 36 Sprague Dawley rats were divided into 6 groups for the study. Group I received only saline. Groups II and III were administered 25 and 50 mg/kg of crocin, respectively. Group IV was treated with 80 mg/kg of Gm. Groups V and VI received 25 and 50 mg/kg of crocin, respectively, in addition to Gm administration. Crocin demonstrated protective effects on kidney tissue. It down-regulated the genes NF-κB, COX-2, TLR-4, Bax, and Caspase-3, while up-regulating Bcl-2, Nrf-2, and HO-1. In conclusion, these findings hold promise for the prevention of Gm-induced nephrotoxicity through the modulation of the Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Tuba Dogan
- Ataturk University, Veterinary Faculty, Biochemistry Department, Erzurum 25100, Turkey.
| | | | | |
Collapse
|
11
|
El-Sayed HS, Saad AS, Tawfik WA, Adel A, Abdelmagid MA, Momenah MA, Azab DM, Omar SE, El-Habbaa AS, Bahshwan SMA, Alghamdi AM, El-Saadony MT, El-Tarabily KA, El-Mayet FS. The role of turmeric and black pepper oil nanoemulsion in attenuating cytokine storm triggered by duck hepatitis A virus type I (DHAV-I)-induced infection in ducklings. Poult Sci 2024; 103:103404. [PMID: 38242053 PMCID: PMC10831264 DOI: 10.1016/j.psj.2023.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
The cytokine storm induced by duck hepatitis A virus type 1 (DHAV-1) infection significantly contributes to severe, rapid deaths and economic losses in the duck industry in Egypt. This study aimed to investigate the potential inhibitory effect of a nanoemulsion containing turmeric and black pepper oil on the immune response and pathogenesis of DHAV-1 in ducklings. A total of 105 ducklings from nonvaccinated breeders were divided into 5 experimental groups, each comprising 21 birds. The negative control group (G1) remained noninfected with DHAV-1 and nontreated with nanoemulsion, while the positive control group (G2) was infected with DHAV-1 but not treated with nanoemulsion. The other 2 groups (G3, the supplemented group which was noninfected with DHAV-1), and group 4 (the prophylactic group G4) which was infected with DHAV-1, both received nanoemulsion throughout the experiment. Group 5 (G5, the therapeutic group), on the other hand, which was infected with DHAV-1 received nanoemulsion only from the onset of clinical signs. At 5 days old, the ducklings in the positive control (G2), the prophylactic (G4), and the therapeutic group (G5) were infected with DHAV-1. All the ducklings in the infected groups exhibited depression, anorexia, and opisthotonos, and their livers displayed various degrees of ecchymotic hemorrhage, liver enlargement, and microscopic pathological lesions. Notably, the positive control group (G2) experienced the most severe and pronounced effects compared to the other infected groups treated with the nanoemulsion. Meanwhile, the viral RNA loads were lower in the liver tissues of the infected ducklings treated with the nanoemulsion (G4, and G5) compared to the positive control group G2. Additionally, the nanoemulsion effectively modulated proinflammatory cytokine expression, antioxidant enzymes, liver enzymes, and lipid profile of treated ducklings. In conclusion, the turmeric and black pepper oil nanoemulsion has the potential to be a therapeutic agent for regulating and modulating the immune response, decreasing DHAV-1-induced cytokine storms, and minimizing mortality and economic losses in the duck business. More research is needed to understand how turmeric and black pepper oil nanoemulsion alleviates DHVA-1-induced cytokine storms and lowers duckling mortality.
Collapse
Affiliation(s)
- Hemat S El-Sayed
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Aalaa S Saad
- Biotechnology Department, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Wesam A Tawfik
- Holding Company for Biological Products and Vaccines, Dokki, Giza 12311, Egypt; NaQaa Nanotechnology Network (NNN), Giza, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Dalia M Azab
- Biochemistry Department (Pharmacology), Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Sabry E Omar
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Ayman S El-Habbaa
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Fouad S El-Mayet
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
12
|
Farihi A, Bouhrim M, Chigr F, Elbouzidi A, Bencheikh N, Zrouri H, Nasr FA, Parvez MK, Alahdab A, Ahami AOT. Exploring Medicinal Herbs' Therapeutic Potential and Molecular Docking Analysis for Compounds as Potential Inhibitors of Human Acetylcholinesterase in Alzheimer's Disease Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1812. [PMID: 37893530 PMCID: PMC10608285 DOI: 10.3390/medicina59101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Alzheimer's disease (AD) stands as a pervasive neurodegenerative ailment of global concern, necessitating a relentless pursuit of remedies. This study aims to furnish a comprehensive exposition, delving into the intricate mechanistic actions of medicinal herbs and phytochemicals. Furthermore, we assess the potential of these compounds in inhibiting human acetylcholinesterase through molecular docking, presenting encouraging avenues for AD therapeutics. Materials and Methods: Our approach entailed a systematic exploration of phytochemicals like curcumin, gedunin, quercetin, resveratrol, nobiletin, fisetin, and berberine, targeting their capability as human acetylcholinesterase (AChE) inhibitors, leveraging the PubChem database. Diverse bioinformatics techniques were harnessed to scrutinize molecular docking, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and adherence to Lipinski's rule of five. Results: Results notably underscored the substantial binding affinities of all ligands with specific amino acid residues within AChE. Remarkably, gedunin exhibited a superior binding affinity (-8.7 kcal/mol) compared to the reference standard. Conclusions: These outcomes accentuate the potential of these seven compounds as viable candidates for oral medication in AD treatment. Notably, both resveratrol and berberine demonstrated the capacity to traverse the blood-brain barrier (BBB), signaling their aptitude for central nervous system targeting. Consequently, these seven molecules are considered orally druggable, potentially surpassing the efficacy of the conventional drug, donepezil, in managing neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayoub Farihi
- Unit of Clinic and Cognitive Neuroscience, Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco; (A.F.); (A.O.T.A.)
| | - Mohamed Bouhrim
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.); (N.B.)
| | - Fatiha Chigr
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.); (N.B.)
| | - Amine Elbouzidi
- Laboratory for Agricultural Production Improvement, Biotechnology, and Environment (LAPABE), Faculty of Science, Mohammed First University, Oujda 60000, Morocco
| | - Noureddine Bencheikh
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.); (N.B.)
| | - Hassan Zrouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco;
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.N.); (M.K.P.)
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.N.); (M.K.P.)
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Street 17, 17489 Greifswald, Germany
| | - Ahmed Omar Touhami Ahami
- Unit of Clinic and Cognitive Neuroscience, Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco; (A.F.); (A.O.T.A.)
| |
Collapse
|
13
|
Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacol Res 2023:106812. [PMID: 37271425 DOI: 10.1016/j.phrs.2023.106812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polyphenols, also known as phenolic compounds, are chemical substances containing aromatic rings as well as at least two hydroxyl groups. Natural phenolic compounds exist widely in plants, which protect plants from ultraviolet radiation and other insults. Phenolic compounds have superior pharmacological and nutritional properties (antimicrobial, antibacterial, antiviral, anti-sclerosis, antioxidant, and anti-inflammatory activities), which have been paid more and more attention by the scientific community. Phenols can protect key cellular components from reactive free radical damage, which is mainly due to their property to activate antioxidant enzymes and alleviate oxidative stress and inflammation. It can also inhibit or isolate reactive oxygen species and transfer electrons to free radicals, thereby avoiding cell damage. It has a regulatory role in glucose metabolism, which has a promising prospect in the prevention and intervention of diabetes. It also prevents cardiovascular disease by regulating blood pressure and blood lipids. Polyphenols can inhibit cell proliferation by affecting Erk1/2, CDK, and PI3K/Akt signaling pathways. Polyphenols can function as enhancers of intrinsic defense systems, including superoxide dismutase (SOD) and glutathione peroxidase (GPX). Simultaneously, they can modulate multiple proteins and transcription factors, making them promising candidates in the investigation of anti-cancer medications. This review focuses on multiple aspects of phenolic substances, including their natural origins, production process, disinfection activity, oxidative and anti-inflammatory functions, and the effects of different phenolic substances on tumors.
Collapse
Affiliation(s)
- Wenshi Liu
- Department of Translantation/Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Yonghui Xia
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Chamani S, Moossavi M, Naghizadeh A, Abbasifard M, Kesharwani P, Sathyapalan T, Sahebkar A. Modulatory properties of curcumin in cancer: A narrative review on the role of interferons. Phytother Res 2023; 37:1003-1014. [PMID: 36744753 DOI: 10.1002/ptr.7734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/07/2023]
Abstract
The immune network is an effective network of cell types and chemical compounds established to maintain the body's homeostasis from foreign threats and to prevent the risk of a wide range of diseases; hence, its proper functioning and balance are essential. A dysfunctional immune system can contribute to various disorders, including cancer. Therefore, there has been considerable interest in molecules that can modulate the immune network. Curcumin, the active ingredient of turmeric, is one of these herbal remedies with many beneficial effects, including modulation of immunity. Curcumin is beneficial in managing various chronic inflammatory conditions, improving brain function, lowering cardiovascular disease risk, prevention and management of dementia, and prevention of aging. Several clinical studies have supported this evidence, suggesting curcumin to have an immunomodulatory and anti-inflammatory function; nevertheless, its mechanism of action is still not clear. In the current review, we aim to explore the modulatory function of curcumin through interferons in cancers.
Collapse
Affiliation(s)
- Sajjad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research Jamia Hamdard, New Delhi, India
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
16
|
Antitoxic Effects of Curcumin against Obesity-Induced Multi-Organs' Biochemical and Histopathological Abnormalities in an Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9707278. [PMID: 36248416 PMCID: PMC9560822 DOI: 10.1155/2022/9707278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
Background Obesity is a significant public health problem that is characterized by an increase in oxidative stress and enhanced inflammatory responses associated with immune cell invasion of adipose tissues. This study assessed several biochemical abnormalities, apoptosis, oxidative stress status, and associated histological changes in the liver, duodenum, and heart brought on by high-fat diet-induced obesity in rats. It also assessed the mechanistic benefits of curcumin in reversing these inflammatory, metabolic, and histological impairments. Methods Rats were assigned into three groups each including ten rats: the control group (CD), the high-fat diet group (HFD), and the high-fat diet + curcumin (HFDC) group. Serum glucose, insulin, and triglycerides (TAGs) were observed. In addition, apoptosis (indicated by hepatic DNA fragmentation) and oxidative stress status (indicated by hepatic MPO, GSH, and SOD) were assessed. Histopathological examinations included the GIT (liver and duodenum) and heart in addition to quantitative real-time polymerase chain reaction (qRT-PCR) assays of the adipose tissue genetic expressions for inflammatory signaling pathways (TLR4, IL-6, and TNF-α). Results The overall findings showed that the HFD group exhibited significantly higher levels of glucose, TAGs, and insulin than the control group (P < 0.01). The histological abnormalities of the studied organs in the HFD group were paralleled by these biochemical abnormalities, which were strongly associated with increased apoptosis, increased oxidative stress, and increased expression of the inflammatory signaling markers. There were significant improvements in the HFDC group in terms of biochemical, inflammatory, and histological investigations. Conclusions This study's findings concluded that obesity is significantly associated with biochemical and microscopic alterations in many organs. Curcumin exerted potent antitoxic, antioxidant, tissue-protective, and antiobesity effects. Curcumin is recommended to be added to various dietary regimens to prevent or delay the organs' dysfunction among obese people.
Collapse
|
17
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Sultan RH, Elesawy BH, Ali TM, Abdallah M, Assal HH, Ahmed AE, Ahmed OM. Correlations between Kidney and Heart Function Bioindicators and the Expressions of Toll-Like, ACE2, and NRP-1 Receptors in COVID-19. Vaccines (Basel) 2022; 10:1106. [PMID: 35891270 PMCID: PMC9319872 DOI: 10.3390/vaccines10071106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND COVID-19 impacts the cardiovascular system resulting in myocardial damage, and also affects the kidneys leading to renal dysfunction. This effect is mostly through the binding with angiotensin-converting enzyme 2 (ACE2) and Neuropilin-1 (NRP-l) receptors. Toll-Like Receptors (TLRs) typically combine with microbial pathogens and provoke an inflammatory response. AIM This work aims to compare the changes in kidney and heart function bioindicators and expressions of TLRs (TLR2 and TLR2) as well as ACE2 and NRP-l receptors in moderate and severe COVID-19 patients. The correlations between kidney and heart function bioindicators and expressions of these receptors are also studied. PATIENTS AND METHODS In this study, 50 healthy control and 100 COVID-19 patients (55 males and 45 females) were enrolled. According to WHO guidelines, these participants were divided into severe (50 cases) and moderate (50 cases). Serum creatinine, blood urea, CK-MB, LDH, and Troponin I were estimated. We measured the gene expression for Toll-Like Receptors (TLR2 and TLR4), ACE2, and NRP-1 in the blood samples using quantitative real-time PCR (qRT-PCR). RESULTS In comparison with the healthy group, all patients exhibited a significant elevation in serum creatinine, urea, cardiac enzymes (CK-MB and LDH), and CRP. Serum Troponin I level was significantly increased in severe COVID-19 patients. Furthermore, all studied patients revealed a significant elevation in the expression levels of TLR2, TLR4, ACE2, and NRP-1 mRNA. In all patients, CK-MB, ACE2, and NRP-1 mRNA expression levels were positively correlated with both TLR2 and TLR4 expression levels. Moreover, serum creatinine and urea levels were positively correlated with both TLR2 and TLR 4 expression levels in the severe group only. In the moderate group, serum CK-MB activity and Troponin I level had a significant positive correlation with both NRP-1 and ACE2 expression levels, while serum urea level and LDH activity had a significant positive correlation with NRP-1 only. In severe patients, the increases in serum creatinine, urea, CK-MB, and LDH were significantly associated with the elevations in both ACE2 and NRP-1 expression levels, whereas serum Troponin I level had a positive direct relationship with NRP-1 only. CONCLUSIONS Our study concluded that expression levels for TLR2, TLR4, ACE2, and NRP-1 mRNA in both severe and moderate patients were positively correlated with renal biomarkers and cardiac enzymes. Innate immune markers can be important because they correlate with the severity of illness in COVID-19.
Collapse
Affiliation(s)
- Rabab Hussain Sultan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Maged Abdallah
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Hebatallah Hany Assal
- Department of Chest Medicine, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Amr E. Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
19
|
Yerneni SS, Yalcintas EP, Smith JD, Averick S, Campbell PG, Ozdoganlar OB. Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays. Acta Biomater 2022; 149:198-212. [PMID: 35809788 DOI: 10.1016/j.actbio.2022.06.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
Therapeutic benefits of curcumin for inflammatory diseases have been demonstrated. However, curcumin's potential as a clinical therapeutic has been hindered due to its low solubility and stability in vivo. We hypothesized that a hybrid curcumin carrier that incorporates albumin-binding and extracellular vesicle (EV) encapsulation could effectively address the current challenges of curcumin delivery. We further postulated that using dissolvable microneedle arrays (dMNAs) for local delivery of curcumin-albumin-EVs (CA-EVs) could effectively control skin inflammation in vivo. Mild sonication was used to encapsulate curcumin and albumin into EVs, and the resulting CA-EVs were integrated into tip-loaded dMNAs. In vitro and in vivo studies were performed to assess the stability, cellular uptake, and anti-inflammatory bioactivity of dMNA-delivered CA-EVs. Curcumin in CA-EVs exhibited at least five-fold higher stability in vitro than naïve curcumin or curcumin-EVs without albumin. Incorporating CA-EVs into dMNAs did not alter their cellular uptake or anti-inflammatory bioactivity. The dMNA embedded CA-EVs retained their bioactivity when stored at room temperature for at least 12 months. In rat and mice models, dMNA delivered CA-EVs suppressed and significantly reduced lipopolysaccharide and Imiquimod-triggered inflammation. We conclude that dMNA delivery of CA-EVs has the potential to become an effective local-delivery strategy for inflammatory skin diseases. STATEMENT OF SIGNIFICANCE: We introduce and evaluate a skin-targeted delivery system for curcumin that synergistically combines albumin association, extracellular-vesicle encapsulation, and dissolvable microneedle arrays (dMNAs) . In vitro, curcumin-albumin encapsulated extracellular vesicles (CA-EVs) inhibit and reverse the LPS-triggered expression of inflammatory transcription factor NF-κB. The integration of CA-EVs into dMNAs does not affect them physically or functionally. Importantly, dMNAs extend EV storage stability for at least 12 months at room temperature with minimal loss in their bioactivity. We demonstrate that dMNA delivered CA-EVs effectively block and reverse skin inflammation in vivo in mouse and rat models.
Collapse
Affiliation(s)
| | - Ezgi P Yalcintas
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason D Smith
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA, USA.; Neuroscience Disruptive Research Lab, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Phil G Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - O Burak Ozdoganlar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Microplastics Affect the Inflammation Pathway in Human Gingival Fibroblasts: A Study in the Adriatic Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137782. [PMID: 35805437 PMCID: PMC9266176 DOI: 10.3390/ijerph19137782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
The level of environmental microplastics in the sea is constantly increasing. They can enter the human body with food, be absorbed through the gut and have negative effects on the organism’s health after its digestion. To date, microplastics (MPs) are considered new environmental pollutants in the air sea and they are attracting wide attention. The possible toxic effects of MPs isolated at different sea depths of 1, 24 and 78 m were explored in an in vitro model of human gingival fibroblasts (hGFs). MPs isolated from the sea showed different size and were then divided into different sample groups: 1, 24 and 78 m. The results obtained revealed that MPs are able to activate the inflammatory pathway NFkB/MyD88/NLRP3. In detail, the exposure to MPs from 1 and 78 m led to increased levels of inflammatory markers NFkB, MyD88 and NLRP3 in terms of proteins and gene expression. Moreover, cells exposed to MPs showed a lower metabolic activity rate compared to unexposed cells. In conclusion, these findings demonstrate that the inflammation process is stimulated by MPs exposure, providing a new perspective to better understand the intracellular mechanism.
Collapse
|
21
|
Curcumin attenuates LPS-induced sickness behavior and fever in rats by modulating Nrf2 activity. Neurosci Lett 2022; 781:136680. [PMID: 35568344 DOI: 10.1016/j.neulet.2022.136680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
Lipopolysaccharide (LPS) is a potent inducer of inflammation, triggering behavioral changes and fever. The present study aimed to evaluate whether pretreatment with curcumin prevents the behavioral changes and fever induced by LPS through the modulation of nuclear factor-erythroid 2 related factor 2 (Nrf2). Male Wistar rats received either vehicle or LPS and after 2 h, the behavioral responses were assessed through open field test (OFT), social interaction test, forced swim test (FST), and food intake assessment. The febrile response was assessed by telemetry after vehicle or LPS injection to evaluate the effect of curcumin on the thermoregulatory response during the immunological challenge. The pretreatment with curcumin at doses of 50 and 100 mg/kg prevented the reduction of distance traveled on OFT, increased the immobility time of FST, impaired social withdrawal, decreased food intake, and induced fever. In addition, at these doses, it was possible to observe a significant decrease in the plasma levels of cytokines and an increase in Nrf2 translocation to the cell nucleus during the immunological challenge. Our data provide further evidence of curcumin's ability to prevent LPS-induced sickness behavior and fever possibly by a mechanism related to the modulation of Nrf2 translocation.
Collapse
|
22
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Liu R, Zhang Y, Deng P, Huang W, Yin R, Yu L, Li Y, Zhang S, Ni Y, Ling C, Zhu Z, Wu S, Li S. Construction of targeted delivery system for curcumin loaded on magnetic α-Fe 2O 3/Fe 3O 4 heterogeneous nanotubes and its apoptosis mechanism on MCF-7 cell. BIOMATERIALS ADVANCES 2022; 136:212783. [PMID: 35929317 DOI: 10.1016/j.bioadv.2022.212783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, the magnetic α-Fe2O3/Fe3O4 heterogeneous nanotubes were successfully prepared by solvent hydrothermal-controlled calcination method. The effects of additive concentration, hydrothermal temperature and time on morphology of products were investigated. The α-Fe2O3/Fe3O4 nanotubes with a saturation magnetization of 50 emu/g were prepared calcinated at 600 °C for 4 h using 0.8 g of glucose. Their average length, the outer and inner diameters were around 240 nm, 178 nm and 145 nm, respectively. The α-Fe2O3/Fe3O4 heterogeneous nanotubes coated with water-soluble liposome were applied for targeted delivery of curcumin. The release of curcumin inside the hollow structure of the nanocomposites could be triggered and effectively sustained represented a process of slow release. The encapsulation efficiency of curcumin in the α-Fe2O3/Fe3O4-CUR@LIP nanocomposites reached 82.1 ± 0.9%. MTT assays demonstrated that blank carriers had excellent biocompatibility and application of magnetic field significantly elevated the cytotoxicity of α-Fe2O3/Fe3O4-CUR@LIP nanocomposites on MCF-7 cell. Electrochemical experiment and Prussian blue staining indicated that the α-Fe2O3/Fe3O4@LIP nanocomposites could aggregate in cells to promote the internalization of curcumin. Magnetic α-Fe2O3/Fe3O4-CUR@LIP nanocomposites and curcumin enhanced the expression of reactive oxygen species in MCF-7 cells and induced apoptosis by fluorescence detection. Flow cytometry and western blot verified that the α-Fe2O3/Fe3O4@LIP nanocomposites under magnetic field enhanced cells late-apoptosis by adjusting the expression of apoptosis-related proteins.
Collapse
Affiliation(s)
- Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanling Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Deng
- The People's Hospital of Danyang, Zhenjiang 212300, PR China
| | - Wei Huang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ruitong Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lulu Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - You Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shaoshuai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yun Ni
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Chen Ling
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ziye Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shaobo Wu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212013, PR China.
| | - Shasha Li
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| |
Collapse
|
24
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
25
|
Zhang X, Chen L, Hu C, Fast D, Zhang L, Yang B, Kan J, Du J. Curcumin attenuates poly(I:C)-induced immune and inflammatory responses in mouse macrophages by inhibiting TLR3/TBK1/IFNB cascade. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Eating and nutrition links to cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Fumia A, Cicero N, Gitto M, Nicosia N, Alesci A. Role of nutraceuticals on neurodegenerative diseases: neuroprotective and immunomodulant activity. Nat Prod Res 2021; 36:5916-5933. [PMID: 34963389 DOI: 10.1080/14786419.2021.2020265] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is a degenerative process characterized by the progressive loss of the structure and function of neurons that involves several immune cells. It is the primary cause of dementia and other several syndromes, known as neurodegenerative diseases. These disorders are age-related and it is estimated that by 2040 there will be approximately 81.1 million people suffering from these diseases. In addition to the traditional pharmacological therapy, in recent years nutraceuticals, naturally based compounds with a broad spectrum of biological effects: anti-aging, antioxidants, hypoglycaemic, hypocholesterolemic, anticancer, anxiolytic, antidepressant, etc., assumed an important role in counteracting these pathologies. In particular, several compounds such as astaxanthin, baicalein, glycyrrhizin, St. John's wort, and Ginkgo biloba L. extracts show particular neuroprotective and immunomodulatory abilities, involving several immune cells and some neurotransmitters that play a critical role in neurodegeneration, making them particularly useful in improving the symptoms and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico 'G. Martino', Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Gitto
- Department of Clinical and Community Sciences, Fondazione IRCCS Ca' Granada, Ospedale Maggiore Policlinico, U.O.S. di Audiologia, Milano, Italy
| | - Noemi Nicosia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation 'Prof. Antonio Imbesi', University of Messina, Messina, Italy.,Department of Pharmacological Screening, Jagiellonian University, Medical College, Cracow, PL, Poland
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
28
|
Heidari Z, Daei M, Boozari M, Jamialahmadi T, Sahebkar A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother Res 2021; 36:1442-1458. [PMID: 34904764 DOI: 10.1002/ptr.7350] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
This systematic review was designed to determine the clinical efficacy and safety of curcumin supplementation for pediatric patients based on clinical trials in children. We systematically searched electronic databases including PubMed, EMBASE, Web of Science, and Scopus for all studies that investigated curcumin administration in the pediatric population without any time frame limitation. Finally, we identified 16 studies for this review. Clinical efficacy and safety of curcumin were assessed in children with inflammatory and immune disorders (including asthma, inflammatory bowel disease (IBD), and juvenile idiopathic arthritis (JIA)), metabolic disorders, autosomal dominant polycystic kidney disease (ADPKD), cystic fibrosis (CF), tetralogy of Fallot (TOF), and infectious diseases. Curcumin was administered in a wide range of doses (45 mg-4,000 mg daily) and durations (2-48 weeks). Overall, curcumin was well tolerated in all studies and improved the severity of inflammatory and immune disorders and metabolic diseases. However, more studies are needed to clarify the role of curcumin supplementation among children with ADPKD, CF, TOF, and infectious diseases. Because of substantial heterogeneity in methodological quality, design, outcomes, dose, duration of intake, formulations, and study populations across studies, no quantitative analysis was performed. Additional large-scale, randomized, placebo-controlled clinical trials are needed to confirm the results of the conducted studies.
Collapse
Affiliation(s)
- Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Daei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Alborz University of Medical Sciences, Alborz, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Zhou R, Liu L, Wang Y. Viral proteins recognized by different TLRs. J Med Virol 2021; 93:6116-6123. [PMID: 34375002 DOI: 10.1002/jmv.27265] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/08/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022]
Abstract
Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Microbiology, Institute of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Li Liu
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Microbiology, Institute of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| |
Collapse
|
30
|
Diomede F, Fonticoli L, Guarnieri S, Della Rocca Y, Rajan TS, Fontana A, Trubiani O, Marconi GD, Pizzicannella J. The Effect of Liposomal Curcumin as an Anti-Inflammatory Strategy on Lipopolysaccharide e from Porphyromonas gingivalis Treated Endothelial Committed Neural Crest Derived Stem Cells: Morphological and Molecular Mechanisms. Int J Mol Sci 2021; 22:7534. [PMID: 34299157 PMCID: PMC8305631 DOI: 10.3390/ijms22147534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supplement. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encapsulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs) induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis, LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1β inflammation cascade and reactive oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | | | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | | |
Collapse
|
31
|
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82:104503. [PMID: 33897833 PMCID: PMC8057770 DOI: 10.1016/j.jff.2021.104503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin has already acknowledged immense interest from both medical and scientific research because of its multifaceted activity. To date, the promising effects of curcumin were perceived against numerous inflammatory diseases. Besides, curcumin's role as a medicine has been studied in many virus infections like influenza, HIV, etc. There is a need to analyze the cellular mechanisms of curcumin including host-pathogen interaction and immunomodulatory effects, to explore the role of curcumin against COVID-19. With this background, our study suggests that curcumin can prevent COVID-19 infections by inhibiting the pathogen entry, viral genome replication and steps in the endosomal pathway along with inhibition of T-cell signalling by impairing the autophagy-mediated antigen-presenting pathway. This review explicit the possible mechanisms behind curcumin-induced cellular immunity and a therapeutive dosage of curcumin suggesting a preventive strategy against COVID-19.
Collapse
|
32
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2021; 20:116-133. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
33
|
Pascual M, Calvo-Rodriguez M, Núñez L, Villalobos C, Ureña J, Guerri C. Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage. IUBMB Life 2021; 73:900-915. [PMID: 34033211 DOI: 10.1002/iub.2510] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) or pattern recognition receptors respond to pathogen-associated molecular patterns (PAMPs) or internal damage-associated molecular patterns (DAMPs). TLRs are integral membrane proteins with both extracellular leucine-rich and cytoplasmic domains that initiate downstream signaling through kinases by activating transcription factors like AP-1 and NF-κB, which lead to the release of various inflammatory cytokines and immune modulators. In the central nervous system, different TLRs are expressed mainly in microglia and astroglial cells, although some TLRs are also expressed in oligodendroglia and neurons. Activation of TLRs triggers signaling cascades by the host as a defense mechanism against invaders to repair damaged tissue. However, overactivation of TLRs disrupts the sustained immune homeostasis-induced production of pro-inflammatory molecules, such as cytokines, miRNAs, and inflammatory components of extracellular vesicles. These inflammatory mediators can, in turn, induce neuroinflammation, and neural tissue damage associated with many neurodegenerative diseases. This review discusses the critical role of TLRs response in Alzheimer's disease, Parkinson's disease, ischemic stroke, amyotrophic lateral sclerosis, and alcohol-induced brain damage and neurodegeneration.
Collapse
Affiliation(s)
- María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer's Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lucía Núñez
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain.,Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain
| | - Carlos Villalobos
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - Juan Ureña
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
34
|
Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021; 2021:9914854. [PMID: 34195298 PMCID: PMC8181103 DOI: 10.1155/2021/9914854] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background/Aim Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). Methods and Materials To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. Results Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. Conclusion TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.
Collapse
|
35
|
Li H, Sun H, Xu Y, Xing G, Wang X. Curcumin plays a protective role against septic acute kidney injury by regulating the TLR9 signaling pathway. Transl Androl Urol 2021; 10:2103-2112. [PMID: 34159091 PMCID: PMC8185681 DOI: 10.21037/tau-21-385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background This study aims to evaluate the inhibitory effect of curcumin (Cur) on the progression of septic acute kidney injury (SAKI), in order to improve the survival rate in this patient population. Methods Acute kidney injury (AKI) was induced by cecal ligation perforation (CLP) in Sprague-Dawley (SD) rats. Using this AKI animal model, the survival rate of the rats was evaluated at different time points after Cur treatment to explore whether Cur can improve survival in an animal model of AKI. The expression levels of inflammatory factors (NF-κB, TNF-α, and IL-10), organ injury markers [urea nitrogen (UN), creatinine (Cr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), amylase, creatine kinase (CK), and lactate dehydrogenase (LDH)], and disease progression markers [neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and cystatin-C (CysC)] were determined using an enzyme-linked immunosorbent assay (ELISA). Results The serum levels of UN, Cr, NF-κB, ALT, AST, amylase, CK, LDH, inflammatory factors TNF-α and IL-10, and markers of early diagnosis of SAKI (NGAL, CysC, KIM-1) were significantly lower in the curcumin group than those in the placebo group (P<0.05). In addition, serum levels of TLR9 and its downstream molecules MyD88, IRF5, and IRF7 in the curcumin group were significantly lower than those in the placebo group (P<0.05). The application of TLR9-specific inhibitors to experimental rats led to similar results as those obtained in the curcumin group, whose detection indexes were significantly lower than those in the placebo treatment group (P<0.05). Conclusions Given the excellent performance of Cur in anti-tumor, anti-oxidation, anti-inflammatory, and other clinical trials, it is very likely to be further developed as a potential drug for the clinical treatment of AKI.
Collapse
Affiliation(s)
- Huiqing Li
- Department of Nephrology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hui Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yaru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Guihua Xing
- Ultramicropathology Experimental Center, Qiqihar Medical University, Qiqihar, China
| | - Xuehui Wang
- Department of Nephrology, General Hospital of the General Administration of Agriculture and Reclamation of Heilongjiang, Harbin, China
| |
Collapse
|
36
|
Kötting C, Hofmann L, Lotfi R, Engelhardt D, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Theodoraki MN. Immune-Stimulatory Effects of Curcumin on the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13061335. [PMID: 33809574 PMCID: PMC8001767 DOI: 10.3390/cancers13061335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma has been shown to downregulate the host’s antitumor immune response as well as inherent anticancer immunity, inter alia, via increased activation of nuclear factor kappa of activated B-cells (NF-κB). The aim of this study is to examine curcumin’s effects on certain pro- and antitumoral chemokines via NF-κB, as well as the combined effects of curcumin and toll-like receptor 3 agonist Poly I:C on NF-κB and regulatory T-cell attraction. Furthermore, we compare curcumin with established NF-κB inhibitors caffeic acid phenethyl ester and BAY 11-7082. We demonstrate that curcumin has immune-modulating effects, with potent inhibition of the regulatory T-cell-attracting effects of Poly I:C. Therefore, curcumin presents an adjuvant that not only improves the effects of established therapies but also holds the potential to reduce negative side effects in tumor entities with increased NF-κB activation. Abstract Curcumin is known to have immune-modulatory and antitumor effects by interacting with more than 30 different proteins. An important feature of curcumin is the inhibition of nuclear factor kappa of activated B-cells (NF-κB). Here, we evaluate the potential of curcumin to reverse the epithelial to mesenchymal transition (EMT) of head and neck squamous cell carcinoma (HNSCC) cells as a part of tumor escape mechanisms. We examined the impact of curcumin on the expression of different pro- and antitumoral chemokines in ex vivo HNSCC tumor tissue and primary macrophage cultures. Further, we evaluated the combinatorial effect of curcumin and toll-like receptor 3 (TLR3) agonist Poly I:C (PIC) on NF-κB inhibition and regulatory T-cell (Treg) attraction. Mesenchymal markers were significantly reduced in cancer specimens after incubation with curcumin, with simultaneous reduction of key transcription factors of EMT, Snail, and Twist. Furthermore, a decrease of the Treg-attracting chemokine CCL22 was observed. Additionally, curcumin-related inhibition of NF-κB nuclear translocation was evident. The combination of PIC with curcumin resulted in further NF-κB inhibition, whereas PIC alone contrarily resulted in NF-κB activation. Furthermore, curcumin was more effective in inhibiting PIC-dependent NF-κB activation and Treg attraction compared to known NF-κB inhibitors BAY 11-7082 or caffeic acid phenethyl ester (CAPE). The presented results show, for the first time, the immune-modulating effects of curcumin in HNSCC, with potent inhibition of the Treg-attracting effects of PIC. Hence, curcumin presents a promising drug in cancer therapy as a supplement to already established treatments.
Collapse
Affiliation(s)
- Charlotte Kötting
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, 89081 Ulm, Germany;
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Daphne Engelhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
- Correspondence: ; Tel.: +49-731-500-59521
| |
Collapse
|
37
|
Zhou H, Jiang M, Yuan H, Ni W, Tai G. Dual roles of myeloid-derived suppressor cells induced by Toll-like receptor signaling in cancer. Oncol Lett 2020; 21:149. [PMID: 33552267 PMCID: PMC7798029 DOI: 10.3892/ol.2020.12410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major components of the tumor microenvironment (TME), and are the main mediators of tumor-induced immunosuppression. Recent studies have reported that the survival, differentiation and immunosuppressive activity of MDSCs are affected by the Toll-like receptor (TLR) signaling pathway. However, the regulatory effect of TLR signaling on MDSCs remains controversial. TLR-induced MDSC can acquire different immunosuppressive activities to influence the immune response that can be either beneficial or detrimental to cancer immunotherapy. The present review summarizes the effects of TLR signals on the number, phenotype and inhibitory activity of MDSCs, and their role in cancer immunotherapy, which cannot be ignored if effective cancer immunotherapies are to be developed for the immunosuppression of the TME.
Collapse
Affiliation(s)
- Hongyue Zhou
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyu Jiang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
38
|
Yang Z, Liu W, Zhou X, Zhu X, Suo F, Yao S. The effectiveness and safety of curcumin as a complementary therapy in inflammatory bowel disease: A protocol of systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22916. [PMID: 33120843 PMCID: PMC7581072 DOI: 10.1097/md.0000000000022916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), which include Crohn disease and ulcerative colitis, affect several million individuals worldwide. Curcumin as a complementary therapy has been used to cure the IBD, yet the efficacy and safety of curcumin remains to be assessed. In this study, we aim to draw up a protocol for systematic review to evaluate the efficacy and safety of curcumin for IBD. METHODS We will search the following electronic databases from inception to September 31, 2020: PubMed, Cochrane Library, EMBASE, Web of Science, Medline, the China National Knowledge Infrastructure Database, Wan Fang Database, the Chinese Scientific Journal Database, and Chinese Biomedical Literature Database. Clinical trial registrations, potential gray literatures, relevant conference abstracts and reference list of identified studies will also be searched. Relevant randomized controlled clinical trials were enrolled and analyzed. The literature selection, data extraction, and quality assessment will be completed by 2 independent authors. Either the fixed-effects or random-effects model will be used for data synthesis based on the heterogeneity test. Clinical remission will be evaluated as the primary outcome. Clinical response, endoscopic remission, inflammatory markers and adverse events will be assessed as the secondary outcomes. The RevManV.5.3.5 will be used for Meta-analysis. Subgroup analyses of doses, delivery way, frequency of treatment and the degree of IBD severity or different forms of IBD were also conducted. RESULTS This study will provide a synthesis of current evidence of curcumin for IBD from several aspects, such as clinical remission, clinical response, endoscopic remission, inflammatory markers, and adverse events. CONCLUSION The conclusion of our study will provide updated evidence to judge whether curcumin is an effective solution to IBD patients. INPLASY REGISTRATION NUMBER INPLASY202090065.
Collapse
Affiliation(s)
- Zhenhuan Yang
- Graduate School, Beijing University of Chinese Medicine
- Department of Gastroenterology
| | - Wenjing Liu
- Graduate School, Beijing University of Chinese Medicine
- Department of Dermatology and Venerology
| | - Xuefeng Zhou
- Graduate School, Beijing University of Chinese Medicine
- Beijing Key Laboratory for Immune-Mediated Inflammatory Disease, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoran Zhu
- Graduate School, Beijing University of Chinese Medicine
- Department of Gastroenterology
| | - Feiya Suo
- Graduate School, Beijing University of Chinese Medicine
- Department of Gastroenterology
| | | |
Collapse
|
39
|
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8:5215-5227. [PMID: 33133525 PMCID: PMC7590269 DOI: 10.1002/fsn3.1858] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of Medicine, Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
40
|
Chiaoprakobkij N, Suwanmajo T, Sanchavanakit N, Phisalaphong M. Curcumin-Loaded Bacterial Cellulose/Alginate/Gelatin as A Multifunctional Biopolymer Composite Film. Molecules 2020; 25:E3800. [PMID: 32825570 PMCID: PMC7503693 DOI: 10.3390/molecules25173800] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Multifunctional biopolymer composites comprising mechanically-disintegrated bacterial cellulose, alginate, gelatin and curcumin plasticized with glycerol were successfully fabricated through a simple, facile, cost-effective mechanical blending and casting method. SEM images indicate a well-distributed structure of the composites. The water contact angles existed in the range of 50-70°. Measured water vapor permeability values were 300-800 g/m2/24 h, which were comparable with those of commercial dressing products. No release of curcumin from the films was observed during the immersion in PBS and artificial saliva, and the fluid uptakes were in the range of 100-700%. Films were stretchable and provided appropriate stiffness and enduring deformation. Hydrated films adhered firmly onto the skin. In vitro mucoadhesion time was found in the range of 0.5-6 h with porcine mucosa as model membrane under artificial saliva medium. The curcumin-loaded films had substantial antibacterial activity against E. coli and S. aureus. The films showed non-cytotoxicity to human keratinocytes and human gingival fibroblasts but exhibited potent anticancer activity in oral cancer cells. Therefore, these curcumin-loaded films showed their potential for use as leave-on skin applications. These versatile films can be further developed to achieve desirable characteristics for local topical patches for wound care, periodontitis and oral cancer treatment.
Collapse
Affiliation(s)
- Nadda Chiaoprakobkij
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thapanar Suwanmajo
- Centre of Excellence in Materials Science and Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Neeracha Sanchavanakit
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
41
|
Focaccetti C, Benvenuto M, Ciuffa S, Fazi S, Scimeca M, Nardi A, Miele MT, Battisti A, Bonanno E, Modesti A, Masuelli L, Bei R. Curcumin Enhances the Antitumoral Effect Induced by the Recombinant Vaccinia Neu Vaccine (rV- neuT) in Mice with Transplanted Salivary Gland Carcinoma Cells. Nutrients 2020; 12:nu12051417. [PMID: 32423101 PMCID: PMC7284625 DOI: 10.3390/nu12051417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The survival rate for head and neck cancer patients has not substantially changed in the last two decades. We previously showed that two rV-neuT intratumoral injections induced an efficient antitumor response and rejection of transplanted Neu (rat ErbB2/neu oncogene-encoded protein)-overexpressing salivary gland tumor cells in BALB-neuT mice (BALB/c mice transgenic for the rat ErbB2/neu oncogene). However, reiterated poxviral vaccinations increase neutralizing antibodies to viral proteins in humans that prevent immune response against the recombinant antigen expressed by the virus. Curcumin (CUR) is a polyphenol with antineoplastic and immunomodulatory properties. The aim of this study was to employ CUR administration to boost the anti-Neu immune response and anticancer activity induced by one rV-neuT intratumoral vaccination in BALB-neuT mice. Here, we demonstrated that the combined rV-neuT+CUR treatment was more effective at reducing tumor growth and increasing mouse survival, anti-Neu humoral response, and IFN-γ/IL-2 T-cell release in vitro than the individual treatment. rV-neuT+CUR-treated mice showed an increased infiltration of CD4+/CD8+ T lymphocytes within the tumor as compared to those that received the individual treatment. Overall, CUR enhanced the antitumoral effect and immune response to Neu induced by the rV-neuT vaccine in mice. Thus, the combined treatment might represent a successful strategy to target ErbB2/Neu-overexpressing tumors.
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy; (C.F.); (M.S.)
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
- Saint Camillus International University of Health and Medical Sciences, via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Manuel Scimeca
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy; (C.F.); (M.S.)
- Saint Camillus International University of Health and Medical Sciences, via di Sant’Alessandro 8, 00131 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Alessandra Nardi
- Department of Mathematics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Battisti
- Maxillo Facial Oncologic and Reconstructive Unit, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Neuromed Group, ‘Diagnostica Medica’ & ‘Villa dei Platani’, 83100 Avellino, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
- Correspondence: ; Tel.: +39-06-7259-6522
| |
Collapse
|
42
|
Jiang M, Li Z, Zhu G. Immunological regulatory effect of flavonoid baicalin on innate immune toll-like receptors. Pharmacol Res 2020; 158:104890. [PMID: 32389860 DOI: 10.1016/j.phrs.2020.104890] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
As an essential component of the innate immune system, Toll-like receptors (TLRs) are a family of well-recognized ligand-binding receptors found in various organisms and initiate host immune responses. Activation of TLRs signaling pathways lead to the induction of numerous genes that function in host defense. Baicalin is a natural compound from the dry raw root of Scutellaria baicalensis (S. baicalensis) and it has been found to exhibit several pharmaceutical actions, such as anti-inflammation, anti-tumor and antivirus. These biological activities are mainly related to the regulatory effect of baicalin on the host immune response. In this review, we provide an overview of the regulation of baicalin on TLRs signaling pathways in various pathological conditions, and highlight potential targets for the development of the regulatory effect of natural compound from traditional Chinese medicine on innate immune system.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
43
|
Faria FR, Gomes AC, Antunes A, Rezende KR, Pimentel GD, Oliveira CLP, Antunes BM, Lira FS, Aoki MS, Mota JF. Effects of turmeric extract supplementation on inflammation and muscle damage after a half-marathon race: a randomized, double-blind, placebo-controlled trial. Eur J Appl Physiol 2020; 120:1531-1540. [DOI: 10.1007/s00421-020-04385-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
|
44
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
45
|
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. Implication of HMGB1 signaling pathways in Amyotrophic lateral sclerosis (ALS): From molecular mechanisms to pre-clinical results. Pharmacol Res 2020; 156:104792. [PMID: 32278047 DOI: 10.1016/j.phrs.2020.104792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/14/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressing neurodegenerative disorder with no effective disease-modifying treatment up to date. The underlying molecular mechanisms of ALS are not yet completely understood. However, the critical role of the innate immune system and neuroinflammation in ALS pathogenesis has gained increased attention. High mobility group box 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, acting as a pro-inflammatory cytokine mainly through activation of its principal receptors, the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) which are crucial components of the innate immune system. HMGB1 is an endogenous ligand for both RAGE and TLR4 that mediate its biological effects. Herein, on the ground of pre-clinical findings we unravel the underlying mechanisms behind the plausible contribution of HMGB1 and its receptors (RAGE and TLR4) in the ALS pathogenesis. Furthermore, we provide an account of the therapeutic outcomes associated with inhibition/blocking of HMGB1 receptor signalling in preventing motor neuron's death and delaying disease progression in ALS experimental models. There is strong evidence that HMGB1, RAGE and TLR4 signaling axes might present potential targets against ALS, opening a novel headway in ALS research that could plausibly bridge the current treatment gap.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
46
|
Skyvalidas DΝ, Mavropoulos A, Tsiogkas S, Dardiotis E, Liaskos C, Mamuris Z, Roussaki-Schulze A, Sakkas LI, Zafiriou E, Bogdanos DP. Curcumin mediates attenuation of pro-inflammatory interferon γ and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr Res 2020; 75:95-108. [PMID: 32114280 DOI: 10.1016/j.nutres.2020.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Curcumin exhibits anti-inflammatory properties and has been used for centuries in traditional medicine and as dietary supplement. Data from clinical trials has strengthened the notion that curcumin may exert an anti-inflammatory and immunosuppressive role in patients with psoriatic disease, but its mode of action has remained elusive. We hypothesized that curcumin could inhibit interferon (IFN)-γ and interleukin (IL)-17 production in peripheral blood mononuclear cells from patients with psoriasis and psoriatic arthritis (PsA). To this end, we assessed the in vitro effect of curcumin on IFN-γ production by cluster differentiation (CD)4(+), CD8(+) T cells, natural killer (NK) and NKT cells and on IL-17 production by CD4(+) T cells from 34 patients with psoriatic disease (22 with psoriasis and 12 with PsA); 15 normal subjects were included as healthy controls. We also assessed the effect of curcumin on signal transducer and activator of transcription (STAT)3 activation. Curcumin significantly decreased, in a dose dependent manner, IFNγ-production by CD4(+) and CD8(+) T cells, and NK and NKT cells in patients with psoriatic disease and healthy controls. It also decreased IL-17 production by CD4(+) T cells (Th17). At the molecular level, curcumin increased STAT3 serine 727 phosphorylation intensity and p-STAT3(+) CD4(+) T cells in patients with PsA and psoriasis. In conclusion, curcumin in vitro inhibits pro-inflammatory IFN-γ and IL-17 production in psoriatic disease, and this may strengthen its role as a dietary immunosuppressant in patients with this disease.
Collapse
Affiliation(s)
- Dimitrios Ν Skyvalidas
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Sotirios Tsiogkas
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Larissa, Greece
| | | | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
47
|
Deveci Ozkan A, Kaleli S, Onen HI, Sarihan M, Guney Eskiler G, Kalayci Yigin A, Akdogan M. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. Immunopharmacol Immunotoxicol 2020; 42:93-100. [PMID: 32048561 DOI: 10.1080/08923973.2020.1725040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Toll-like receptors (TLRs) are often expressed in natural immune cells as well as in tumor cells. TLR4 exhibits both tumor promoting and tumor-suppressing roles and higher TLR9 expression is an important marker of poor prognosis in prostate cancer (PCa). Nobiletin (NOB) is an O-methylated flavonoid and NOB has been proven to have anti-cancer effect in PCa cells. However, there is no study in the literature investigating the potential anti-inflammatory effects of NOB on the TLR signaling pathways in cancer. Therefore, we aimed to explore the potential anti-inflammatory effects of NOB on the TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in different types of PCa cell lines, for the first time.Material and methods: In the current study, the cytotoxic effect of NOB PC-3 (hormone-independent and metastatic) and LNCaP cells (hormone-dependent) was evaluated by WST-1 assay. Furthermore, the inhibitory effects of NOB on TLR4/TRIF/IRF3 and TLR9/IRF7signaling pathway were determined by RT-PCR, western blotting and ELISA analysis.Results: NOB demonstrated an inhibitory effect on PCa cell growth and LNCaP cells were more sensitive to NOB than PC-3 cells due to androjen receptor status. Furthermore, NOB alone could suppress TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways through the downregulation of their associated pathways (mRNA and related protein levels) and the release of IFN-α and IFN-β compared to LPS or CpG-ODN stimulated PCa cells.Conclusions: NOB potentially inhibited TLR4 and TL9-dependent signaling pathway in PCa cells. However, the efficacy of NOB was different in PCa cells due to the hormone status and aggressive features.
Collapse
Affiliation(s)
- Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Hacer Ilke Onen
- Department of Medical Biology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Mehmet Sarihan
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Aysel Kalayci Yigin
- Department of Medical Genetic, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Mehmet Akdogan
- Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
48
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
49
|
Abstract
Toll-like receptors (TLRs) are associated with tumor growth and immunosuppression, as well as apoptosis and immune system activation. TLRs can activate apoptosis and innate and adaptive immunity pathways, which can be pharmacologically targeted for the development of anticancer oncotherapies. Several studies and clinical trials indicate that TLR agonists are promising adjuvants or elements of novel therapies, particularly when used in conjunction with chemotherapy or radiotherapy. An increasing number of studies suggest that the activation of TLRs in various cancer types is related to oncotherapy; however, before this finding can be applied to clinical practice, additional studies are required. Research suggests that TLR agonists may have potential applications in cancer therapy; nevertheless, because TLR signaling can also promote tumorigenesis, a critical and comprehensive evaluation of TLR action is warranted. This review focuses on recent studies that have assessed the strengths and weaknesses of utilizing TLR agonists as potential anticancer agents.
Collapse
Affiliation(s)
- Caiqi Liu
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Ci Han
- Department of Critical Care Medicine, Third Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Jinfeng Liu
- Department of Pain, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|