1
|
Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J, da Silva LC, de Souza MC, Breitkreitz MC, Rostagno MA. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit Rev Anal Chem 2024; 54:1173-1199. [PMID: 35993795 DOI: 10.1080/10408347.2022.2107871] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.
Collapse
Affiliation(s)
- Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Jaísa Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Laíse Capelasso da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | | | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
2
|
Tiwari V, Sharma S, Tiwari A, Sheoran B, Kaur S, Sharma A, Yadav M, Bhatnagar A, Garg M. Effect of dietary anthocyanins on biomarkers of type 2 diabetes and related obesity: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024; 64:7517-7534. [PMID: 36908207 DOI: 10.1080/10408398.2023.2186121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Anthocyanins have been reported for the protective effects against type 2 diabetes and related obesity. This meta-analysis examined the benefits of anthocyanins on type 2 diabetes and obesity biomarkers in animals and humans. The study included 21 clinical trials and 27 pre-clinical studies. A systematic search was conducted using the following inclusion criteria: in vivo rodent studies; human randomized clinical trials, both aimed at assessing the fasting blood glucose (FBG), HbA1c, total cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein; and study duration of at least two weeks. Out of the 201 examined publications, 48 were shortlisted after implementation of the selection criteria. Results of clinical trials demonstrated that consumption of anthocyanin-rich food significantly reduced the FBG (p < 0.0001), HbA1c (p = 0.02), TC (p = 0.010), TG (p = 0.003), LDL (p = 0.05) and increases the HDL (p = 0.03) levels. Similarly, pre-clinical studies demonstrated the amelioration of the HbA1c (p = 0.02), FBG, TC, TG, and LDL (p < 0.00001), with non-significant changes in the HDL (p = 0.11). Sub-group analysis indicated dose-dependent effect. This compilation confirms that consuming anthocyanin-rich foods positively correlates with the reduction in the blood glucose and lipid levels in diabetic and obese subjects.
Collapse
Affiliation(s)
- Vandita Tiwari
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Saloni Sharma
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Apoorv Tiwari
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Bhawna Sheoran
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR), Delhi, India
| | - Satveer Kaur
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anjali Sharma
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Mona Yadav
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR), Delhi, India
| | | | - Monika Garg
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
3
|
Capolongo G, Damiano S, Suzumoto Y, Zacchia M, Rizzo M, Zona E, Pollastro RM, Simeoni M, Ciarcia R, Trepiccione F, Capasso G. Cyclosporin-induced hypertension is associated with the up-regulation of Na+-K+-2Cl- cotransporter (NKCC2). Nephrol Dial Transplant 2024; 39:297-304. [PMID: 37463050 PMCID: PMC10828191 DOI: 10.1093/ndt/gfad161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples, Naples, Italy
| | - Yoko Suzumoto
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Rizzo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Enrica Zona
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosa Maria Pollastro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples, Naples, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| |
Collapse
|
4
|
Wang S, Xiao F, Yuan Y, Li J, Liang X, Fan X, Zhang M, Yan T, Yang M, He Z, Yang D. Transcriptomic and metabolomic analyses reveal that lemon extract prolongs Drosophila lifespan by affecting metabolism. Genomics 2024; 116:110751. [PMID: 38052259 DOI: 10.1016/j.ygeno.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Ya Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
5
|
Liu Y, Wang Q, Wu K, Sun Z, Tang Z, Li X, Zhang B. Anthocyanins' effects on diabetes mellitus and islet transplantation. Crit Rev Food Sci Nutr 2023; 63:12102-12125. [PMID: 35822311 DOI: 10.1080/10408398.2022.2098464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of diabetes mellitus is dramatically increasing every year, causing a huge global burden. Moreover, existing anti-diabetic drugs inevitably bring adverse reactions, and the application of islet transplantation is often limited by the damage caused by oxidative stress after transplantation. Thus, new approaches are needed to combat the growing burden of diabetes mellitus. Anthocyanins are of great nutritional interest and have been documented that have beneficial effects on chronic diseases, including diabetes mellitus. Here, we describe the health effects of anthocyanins on diabetes mellitus and islet transplantation. Epidemiological studies demonstrated that moderate intake of anthocyanins leading to a reduction in risk of diabetes mellitus. Numerous experiments both animal and clinical studies also showed positive effects of anthocyanins on prevention and treatment of diabetes and diabetic complications. These effects of anthocyanins may be related to mechanisms of improving glucose and lipid metabolism and insulin resistance, antioxidant, and anti-inflammatory activities. In addition, damage and function of pancreatic islets after transplantation are also improved by anthocyanins. These findings suggest that daily intake of anthocyanins may not only improve nutritional metabolism in healthy individuals to prevent from diabetes, but also as a supplementary treatment of diabetes mellitus and islet transplantation. Thus, more evidence is needed to better understand the potential health benefits of anthocyanins.
Collapse
Affiliation(s)
- Yang Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qianwen Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kangze Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyi Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhe Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
7
|
Chen J, Liu F, Wu RA, Chen J, Wang W, Ye X, Liu D, Cheng H. An up-to-date review: differential biosynthesis mechanisms and enrichment methods for health-promoting anthocyanins of citrus fruits during processing and storage. Crit Rev Food Sci Nutr 2022; 64:3989-4015. [PMID: 36322523 DOI: 10.1080/10408398.2022.2137778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anthocyanins, naturally found in citrus, play key roles in improving the qualities of citrus fruits and products. Dietary consumption of fruit-derived anthocyanins is concerned increasingly owing to health-promoting properties. However, anthocyanins are vulnerable to many physical and chemical factors during processing and storage, affecting fruit qualities and consumer acceptance. Thus, the aim of this review is to focus on main advances in chemical structures, differential biosynthesis mechanisms, enrichment methods, and bioactivities of anthocyanins in pigmented and unpigmented citrus fruits. In this review, anthocyanin species and concentrations display tissue specificity in citrus, and the chemical structures and contents of main anthocyanins are summarized. For differential biosynthesis mechanisms, the reasons why most citrus fruits lose the ability of anthocyanin biosynthesis compared with pigmented fruits, and the molecular differences of biosynthesis mechanisms in pigmented citrus fruits are both discussed in detail. Furthermore, anthocyanins' enrichment methods (low-temperature stimulus, light irradiation, xenobiotics inductions, and ripeness influence) during processing and storage have been summarized, which achieve quality improvement by promoting structural gene expression, reducing anthocyanin-degrading enzyme activities, or altering DNA methylation status. Meantime, the health benefits of extract from pigmented citrus and their waste are mentioned, which provides a new approach for citrus waste recycling. HIGHLIGHTSChemical structures of individual anthocyanins in citrus are reviewed.Differential anthocyanin biosynthesis in citrus depends on mutations of Ruby genes.Anthocyanins are enriched in response to exogenous stimulus during storage.Health benefits of extract in blood oranges and their waste are summarized.
Collapse
Affiliation(s)
- Jin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Feifei Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Ricardo Antonio Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, Ningbo, China
| |
Collapse
|
8
|
Longobardi C, Ferrara G, Andretta E, Montagnaro S, Damiano S, Ciarcia R. Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine-A Review. Toxins (Basel) 2022; 14:398. [PMID: 35737059 PMCID: PMC9231272 DOI: 10.3390/toxins14060398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The problem of residues of toxic contaminants in food products has assumed considerable importance in terms of food safety. Naturally occurring contaminants, such as mycotoxins, are monitored routinely in the agricultural and food industries. Unfortunately, the consequences of the presence of mycotoxins in foodstuffs are evident in livestock farms, where both subacute and chronic effects on animal health are observed and could have non-negligible effects on human health. Ochratoxin A (OTA) is a common mycotoxin that contaminates food and feeds. Due to its thermal stability, the eradication of OTA from the food chain is very difficult. Consequently, humans and animals are frequently exposed to OTA in daily life. In this review article, we will devote time to highlighting the redox-based nephrotoxicity that occurs during OTA intoxication. In the past few decades, the literature has improved on the main molecules and enzymes involved in the redox signaling pathway as well as on some new antioxidant compounds as therapeutic strategies to counteract oxidative stress. The knowledge shown in this work will address the use of nutraceutical substances as dietary supplements, which would in turn improve the prophylactic and pharmacological treatment of redox-associated kidney diseases during OTA exposure, and will attempt to promote animal feed supplementation.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| |
Collapse
|
9
|
Chiechio S, Zammataro M, Barresi M, Amenta M, Ballistreri G, Fabroni S, Rapisarda P. A Standardized Extract Prepared from Red Orange and Lemon Wastes Blocks High-Fat Diet-Induced Hyperglycemia and Hyperlipidemia in Mice. Molecules 2021; 26:molecules26144291. [PMID: 34299566 PMCID: PMC8304280 DOI: 10.3390/molecules26144291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Citrus fruits are a rich source of high-value bioactive compounds and their consumption has been associated with beneficial effects on human health. Red (blood) oranges (Citrus sinensis L. Osbeck) are particularly rich in anthocyanins (95% of which are represented by cyanidin-3-glucoside and cyanidin-3-6″-malonyl-glucoside), flavanones (hesperidin, narirutin, and didymin), and hydroxycinnamic acids (caffeic acid, coumaric acid, sinapic, and ferulic acid). Lemon fruit (Citrus limon) is also rich in flavanones (eriocitrin, hesperidin, and diosmin) and other polyphenols. All of these compounds are believed to play a very important role as dietary antioxidants due to their ability to scavenge free radicals. A standardized powder extract, red orange and lemon extract (RLE), was obtained by properly mixing anthocyanins and other polyphenols recovered from red orange processing waste with eriocitrin and other flavanones recovered from lemon peel by a patented extraction process. RLE was used for in vivo assays aimed at testing a potential beneficial effect on glucose and lipid metabolism. In vivo experiments performed on male CD1 mice fed with a high-fat diet showed that an 8-week treatment with RLE was able to induce a significant reduction in glucose, cholesterol and triglycerides levels in the blood, with positive effects on regulation of hyperglycemia and lipid metabolism, thus suggesting a potential use of this new phytoextract for nutraceutical purposes.
Collapse
Affiliation(s)
- Santina Chiechio
- Section of Pharmacology, Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy; (M.Z.); (M.B.)
- Oasi Research Institute IRCCS, 94018 Troina, Italy
- Correspondence:
| | - Magda Zammataro
- Section of Pharmacology, Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy; (M.Z.); (M.B.)
| | - Massimo Barresi
- Section of Pharmacology, Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy; (M.Z.); (M.B.)
| | - Margherita Amenta
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, 95024 Acireale, Italy; (M.A.); (G.B.); (S.F.); (P.R.)
| | - Gabriele Ballistreri
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, 95024 Acireale, Italy; (M.A.); (G.B.); (S.F.); (P.R.)
| | - Simona Fabroni
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, 95024 Acireale, Italy; (M.A.); (G.B.); (S.F.); (P.R.)
| | - Paolo Rapisarda
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, 95024 Acireale, Italy; (M.A.); (G.B.); (S.F.); (P.R.)
| |
Collapse
|
10
|
Maggiolino A, Bragaglio A, Salzano A, Rufrano D, Claps S, Sepe L, Damiano S, Ciarcia R, Dinardo F, Hopkins D, Neglia G, De Palo P. Dietary supplementation of suckling lambs with anthocyanins: Effects on growth, carcass, oxidative and meat quality traits. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
12
|
Salzano A, Damiano S, D’Angelo L, Ballistreri G, Claps S, Rufrano D, Maggiolino A, Neglia G, De Palo P, Ciarcia R. Productive Performance and Meat Characteristics of Kids Fed a Red Orange and Lemon Extract. Animals (Basel) 2021; 11:ani11030809. [PMID: 33805805 PMCID: PMC7999896 DOI: 10.3390/ani11030809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Small ruminant farming can potentially adopt low-input strategies by using agro-industrial byproducts as alternative feeding sources. Byproducts are natural, and thus are preferred by consumers because most of them have antioxidant activity that may improve different aspects linked to meat quality and human health. For this reason, a red orange and lemon extract, (RLE) rich in anthocyanins, is tested as an oral additive on kids’ meat. No differences were recorded on animal performance, but on meat, RLE inclusion improves juiciness and reduces color deterioration. Moreover, RLE reduced cooking loss, and meat quality is positively influenced, due to both delaying lipid oxidation and a better fatty acid profile resulting in healthier meat for human consumption. Abstract This study evaluates the animal performance and meat characteristics of 60 Saanen suckling kids daily fed a red orange and lemon extract (RLE), rich in anthocyanins. In our methodology, after colostrum administration, animals are randomly assigned to two treatments: Treatment group (Group RLE; n = 30) that received RLE (90 mg/kg live body weight) as oral food additive, and a control group (Group CON; n = 30) that received a standard diet. Animals are slaughtered after 40 days. The RLE administration did not influence daily weight gain, carcass measurements, or incidences (expressed as a percentage) of different anatomical regions on the whole carcass weight. On the contrary, RLE supplementation significantly improved the oxidative profile of the meat seven days after slaughtering, as demonstrated by the reduced levels of thiobarbituric acid reactive substances (TBARS; p < 0.01) and hydroperoxides (p < 0.01) in Group RLE compared to Group CON. A significant influence of RLE administration is observed on day 7 for yellowness (p < 0.01). There are also lower saturated and higher monounsaturated and polyunsaturated fatty acids concentration in Group RLE meat (p < 0.01), which also shows lower atherogenic and thrombogenic indexes (p < 0.01) compared to Group CON. The study demonstrates that the supplementation of a diet with RLE rich in anthocyanins is effective to improve the meat quality.
Collapse
Affiliation(s)
- Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy; (A.S.); (S.D.); (L.D.); (G.N.); (R.C.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy; (A.S.); (S.D.); (L.D.); (G.N.); (R.C.)
| | - Livia D’Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy; (A.S.); (S.D.); (L.D.); (G.N.); (R.C.)
| | - Gabriele Ballistreri
- Council for Agricultural Research and Economics (CREA)—Research Centre for Olive, Fruit and Citrus Crops, 95024 Acireale, Italy;
| | - Salvatore Claps
- Council for Agricultural Research and Economics—Research Centre for Animal Production and Aquaculture, 85051 Bella Muro, Italy; (S.C.); (D.R.)
| | - Domenico Rufrano
- Council for Agricultural Research and Economics—Research Centre for Animal Production and Aquaculture, 85051 Bella Muro, Italy; (S.C.); (D.R.)
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University “Aldo Moro” of Bari, 70010 Valenzano, Italy;
- Correspondence:
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy; (A.S.); (S.D.); (L.D.); (G.N.); (R.C.)
| | - Pasquale De Palo
- Department of Veterinary Medicine, University “Aldo Moro” of Bari, 70010 Valenzano, Italy;
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy; (A.S.); (S.D.); (L.D.); (G.N.); (R.C.)
| |
Collapse
|
13
|
Dassoff ES, Guo JX, Liu Y, Wang SC, Li YO. Potential development of non-synthetic food additives from orange processing by-products—a review. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Citrus is the largest fruit crop worldwide. Meanwhile, oranges account for 60 per cent of the total, with their main application in juice production. During orange juice production, only about 50 per cent of the fresh orange weight is transformed into juice, with the remaining 50 per cent comprised of residue (peel, pulp, seeds, orange leaves and whole orange fruits that do not reach the quality requirements). With the resulting tons of orange by-products, there has been an initiative to research possible ways to reutilize and revalorize citrus waste. Orange pomace, the by-product from juicing process, is currently used to extract the essential oils for fragrance and flavor, and a majority of the waste is used as cattle feed; however, these applications do not account for all of the waste or capture all of its potential value. Meanwhile, these by-products are put into landfills at the owner’s expense, and contribute to global warming through carbon emissions. On the other hand, orange by-products still contain many useful nutraceutical components, such as dietary fiber and phytochemicals, which could be utilized for value-added ingredients and new product development. Some research approaches in this area include the production of organic fertilizers and biofuels, or the extraction of essential oils, pectins, and antioxidant compounds. There is little information in the literature and in the food industry in terms of utilizing the orange pomace directly or with some simple treatments. Orange pomace may be used for food product development as a ‘clean-label’, non-synthetic preservative, which rationalizes this review.
Collapse
Affiliation(s)
- Erik S Dassoff
- Department of Nutrition & Food Science, California State Polytechnic University, Pomona, CA, USA
| | - Jonathan X Guo
- Department of Nutrition & Food Science, California State Polytechnic University, Pomona, CA, USA
| | - Yan Liu
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, CA, USA
| | - Selina C Wang
- Department of Food Science & Technology, University of California, Davis, Davis, CA, USA
| | - Yao Olive Li
- Department of Nutrition & Food Science, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
14
|
De Felice E, Giaquinto D, Damiano S, Salzano A, Fabroni S, Ciarcia R, Scocco P, de Girolamo P, D’Angelo L. Distinct Pattern of NPY in Gastro-Entero-Pancreatic System of Goat Kids Fed with a New Standardized Red Orange and Lemon Extract (RLE). Animals (Basel) 2021; 11:ani11020449. [PMID: 33572145 PMCID: PMC7914828 DOI: 10.3390/ani11020449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In the last decades the European ban towards antibiotics resulted in an increase of the number of studies on the effects of natural feed additives, that can enhance the health of farm animals intended for human consumption. Polyphenols such as flavanones and anthocyanins (responsible of the red, purple or blue colors) are bioactive compounds found in fruits and vegetables. Polyphenols possess multiple pharmacological characteristics, like antioxidant, anti-inflammatory and immunostimulant properties. Although many of the biological effects of polyphenols are known, only a limited number of studies has been focused on the effects of their supplementation in ruminant diet. Therefore, we evaluated the effect of a diet supplemented with a standardized powder extract, red (blood) orange and lemon extract (RLE), rich in flavanones, anthocyanins and other polyphenols on the neuropeptide Y (NPY) distribution in the gastro–entero–pancreatic system of goat kids. In mammals, NPY occurs in both the central and peripheral nervous systems and it is involved in the control of different physiological processes, including food intake regulation. For the first time, we document that NPY is widely distributed in the abomasum, duodenum and pancreas of goat kids and that significantly increases in the abomasum and pancreas of RLE supplemented feed animals. Abstract The use of natural compounds as feed additive is also increasing in farm animals, thanks to the beneficial effect on both animals and consumers health. Here, we questioned whether natural extracts, such as red orange and lemon extract (RLE) rich in flavanones, anthocyanins, and other polyphenols, used as feed additives could display an effect on the neuropeptide Y (NPY) in the gastro–entero–pancreatic tract of goat kids. NPY is one of the most abundant neuropeptides in mammals, known for its orexigenic role although it is involved in many central and peripheral functions. We carried out immunohistochemical analyses on samples of abomasum, duodenum and pancreas collected from two experimental groups: one fed with standard diet and one with standard diet + RLE. For the first time we document NPY distribution in the abomasum, duodenum and pancreas of goats and observe the highest number of NPY positive cells in neuroendocrine cells of duodenum. Remarkably, upon RLE feed supplementation, NPY immunoreactive cells increased significantly in abomasal epithelium and pancreatic islets but not in duodenum, likely due to pH variation of abomasum and duodenum. Our observations represent a baseline for future studies on the interaction between neuropeptides and polyphenols, used as feed additive.
Collapse
Affiliation(s)
- Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (E.D.F.); (D.G.); (P.S.)
| | - Daniela Giaquinto
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (E.D.F.); (D.G.); (P.S.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| | - Simona Fabroni
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 95024 Acireale, Italy;
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (E.D.F.); (D.G.); (P.S.)
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
- Correspondence:
| | - Livia D’Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (A.S.); (R.C.); (L.D.)
| |
Collapse
|
15
|
Omelka R, Blahova J, Kovacova V, Babikova M, Mondockova V, Kalafova A, Capcarova M, Martiniakova M. Cornelian Cherry Pulp Has Beneficial Impact on Dyslipidemia and Reduced Bone Quality in Zucker Diabetic Fatty Rats. Animals (Basel) 2020; 10:ani10122435. [PMID: 33352633 PMCID: PMC7766429 DOI: 10.3390/ani10122435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cornelian cherry (Cornus mas L.) is a medicinal plant with a range of biological features. It is often used as a nutritional supplement in the treatment of diabetes mellitus. Our study was aimed to first investigate the effects of Cornelian cherry pulp on bone quality parameters in Zucker diabetic fatty (ZDF) rats. Moreover, lipid-lowering properties of this fruit were also evaluated. Adult rats (n = 28) were assigned into four groups of seven individuals each: L group (non-diabetic lean rats), C group (diabetic obese rats), and E1 and E2 groups (diabetic obese rats receiving 500 and 1000 mg/kg body weight of Cornelian cherry pulp, respectively, for 10 weeks). Significantly lower levels of triglyceride, total cholesterol and alkaline phosphatase activity were determined in the E2 group versus the C group. A higher dose of Cornus mas also had a beneficial impact on femoral weight, cortical bone thickness, relative volume of trabecular bone and trabecular thickness. We observed elevated density of Haversian systems and accelerated periosteal bone apposition in both treated groups (E1 and E2). Our results clearly demonstrate that Cornelian cherry pulp has a favorable effect on lipid disorder and impaired bone quality consistent with type 2 diabetes mellitus in a suitable animal model.
Collapse
Affiliation(s)
- Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
- Correspondence: (R.O.); (M.M.); Tel.: +421-376-408-737 (R.O.)
| | - Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Anna Kalafova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (M.C.)
| | - Marcela Capcarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (M.C.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
- Correspondence: (R.O.); (M.M.); Tel.: +421-376-408-737 (R.O.)
| |
Collapse
|
16
|
Arruda HS, Neri-Numa IA, Kido LA, Maróstica Júnior MR, Pastore GM. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Yang Y, Zhang JL, Zhou Q. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:1119-1143. [PMID: 33078617 DOI: 10.1080/10408398.2020.1835819] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperglycemia and hyperuricemia are both metabolic disorders related to excessive amount of metabolites in blood, which are considered as high risk factors for the development of many chronic diseases. Enzymes, cells, tissues and organs, which are relevant to metabolism and excretion of glucose and UA, are usually regarded to be the targets in treatment of hyperglycemia and hyperuricemia. Several drugs have been commonly applied to combat hyperglycemia and hyperuricemia through various targets but with unignorable side effects. Anthocyanins have become promising alternatives against hyperglycemia and hyperuricemia because of their bio-activities with little side effects. Structurally different anthocyanins from berry fruits, cherries and purple sweet potato lead to the diverse functional activity and property. This review is aimed to illustrate the specific targets that are available for anthocyanins from berry fruits, cherries and purple sweet potato in hyperglycemia and hyperuricemia management, as well as discuss the structure-activity relationship, and the underlying mechanisms associated with intracellular signaling pathway, anti-oxidative stress and anti-inflammation. In addition, the relationship of hyperglycemia and hyperuricemia, and the possibly regulative role of anthocyanins against them, along with the effects of anthocyanins in clinical trial are mentioned.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Ministry of Education, Key Laboratory of Environment Correlative Dietology, Wuhan, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Damiano S, Andretta E, Longobardi C, Prisco F, Paciello O, Squillacioti C, Mirabella N, Florio S, Ciarcia R. Effects of Curcumin on the Renal Toxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2020; 9:antiox9040332. [PMID: 32325727 PMCID: PMC7222377 DOI: 10.3390/antiox9040332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA-induced oxidative damage in the kidneys of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
- Correspondence: ; Tel.: +39-081-2536127
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli” Naples, Largo Madonna delle Grazie, 1, 80138 Napoli, Italy;
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| |
Collapse
|
19
|
Curcumin as an Anticancer Agent in Malignant Mesothelioma: A Review. Int J Mol Sci 2020; 21:ijms21051839. [PMID: 32155978 PMCID: PMC7084180 DOI: 10.3390/ijms21051839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant mesothelioma is an infrequent tumor that initiates from the mesothelial cells lining of body cavities. The great majority of mesotheliomas originate in the pleural cavity, while the remaining cases initiate in the peritoneal cavity, in the pericardial cavity or on the tunica vaginalis. Usually, mesotheliomas grow in a diffuse pattern and tend to enclose and compress the organs in the various body cavities. Mesothelioma incidence is increasing worldwide and still today, the prognosis is very poor, with a reported median survival of approximately one year from presentation. Thus, the development of alternative and more effective therapies is currently an urgent requirement. The aim of this review article was to describe recent findings about the anti-cancer activity of curcumin and some of its derivatives on mesotheliomas. The potential clinical implications of these findings are discussed.
Collapse
|
20
|
Damiano S, Iovane V, Squillacioti C, Mirabella N, Prisco F, Ariano A, Amenta M, Giordano A, Florio S, Ciarcia R. Red orange and lemon extract prevents the renal toxicity induced by ochratoxin A in rats. J Cell Physiol 2020; 235:5386-5393. [PMID: 31898818 DOI: 10.1002/jcp.29425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
In this work, we investigated the effects of red orange and lemon extract (RLE) on ochratoxin A (OTA)-induced nephrotoxicity. In particular, we analyzed the change in renal function and oxidative stress in Sprague-Dawley rats treated with OTA (0.5 mg/kg body weight, b.w.) and with RLE (90 mg/kg b.w.) by oral administration. After OTA treatment, we found alterations of biochemical and oxidative stress parameters in the kidney, related to a severe decrease of glomerular filtration rate. The RLE treatment normalized the activity of antioxidant enzymes and prevented the glomerular hyperfiltration. Histopathological examinations revealed glomerular damages and kidney cortex fibrosis in OTA-rats, while we observed less severe fibrosis in OTA plus RLE group. Then, we demonstrated that oxidative stress could be the cause of OTA renal injury and that RLE reduces this effect.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | | | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Andrea Ariano
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Margherita Amenta
- Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, Acireale, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples, Napoli, Italy
| |
Collapse
|