1
|
Kim H, Kim BJ, Koh S, Cho HJ, Jin X, Kim BG, Choi JY. High mobility group box 1 in the central nervous system: regeneration hidden beneath inflammation. Neural Regen Res 2025; 20:107-115. [PMID: 38767480 PMCID: PMC11246138 DOI: 10.4103/nrr.nrr-d-23-01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields, including neurology and neuroscience. High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern, which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke, Alzheimer's disease, frontotemporal dementia, Parkinson's disease, multiple sclerosis, epilepsy, and traumatic brain injury. Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern, such as glycyrrhizin, ethyl pyruvate, and neutralizing anti-high-mobility group box 1 antibodies, are commonly used to target high-mobility group box 1 activity in central nervous system disorders. Although it is commonly known for its detrimental inflammatory effect, high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders. In this narrative review, we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern, its downstream receptors, and intracellular signaling pathways, how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system, and clues on how to differentiate the pro-regenerative from the pro-inflammatory role. Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
Collapse
Affiliation(s)
- Hanki Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Bum Jun Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Seungyon Koh
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Hyo Jin Cho
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Xuelian Jin
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Geriatrics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
2
|
Ge S, Wu S, Yin Q, Tan M, Wang S, Yang Y, Chen Z, Xu L, Zhang H, Meng C, Xia Y, Asakawa N, Wei W, Gong K, Pan X. Ecliptasaponin A protects heart against acute ischemia-induced myocardial injury by inhibition of the HMGB1/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118612. [PMID: 39047883 DOI: 10.1016/j.jep.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata (Linn.) is a traditional medicinal Chinese herb that displays multiple biological activities, such as encompassing immunomodulatory, anti-inflammatory, anti-tumor, liver-protective, antioxidant, and lipid-lowering effects. Ecliptasaponin A (ESA), a pentacyclic triterpenoid saponin isolated from Eclipta prostrata (Linn.), has been demonstrated to exert superior anti-inflammatory activity against many inflammatory disorders. AIM OF THE STUDY Inflammation plays a critical role in acute myocardial infarction (AMI). This study aims to explore the treatment effects of ESA in AMI, as well as the underlying mechanism. METHODS An AMI mouse model was established in mice via left anterior descending coronary artery (LAD) ligation. After surgery, ESA was injected at doses of 0.5, 1.25, and 2.5 mg/kg, respectively. Myocardial infarction size, cardiomyocyte apoptosis and cardiac echocardiography were studied. The potential mechanism of action of ESA was investigated by RNA-seq, Western blot, surface plasmon resonance (SPR), molecular docking, and immunofluorescence staining. RESULTS ESA treatment not only significantly reduced myocardial infarct size, decreased myocardial cell apoptosis, and inhibited inflammatory cell infiltration, but also facilitated to improve cardiac function. RNA-seq and Western blot analysis proved that ESA treatment-induced differential expression genes mainly enriched in HMGB1/TLR4/NF-κB pathway. Consistently, ESA treatment resulted into the down-regulation of IL-1β, IL-6, and TNF-α levels after AMI. Furthermore, SPR and molecular docking results showed that ESA could bind directly to HMGB1, thereby impeding the activation of the downstream TLR4/NF-κB pathway. The immunofluorescence staining and Western blot results at the cellular level also demonstrated that ESA inhibited the activation of the HMGB1/TLR4/NF-κB pathway in H9C2 cells. CONCLUSION Our study was the first to demonstrate a cardiac protective role of ESA in AMI. Mechanism study indicated that the treatment effects of ESA are mainly attributed to its anti-inflammatory activity that was mediated by the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Sumin Ge
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sihua Wu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qin Yin
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Meng Tan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yonghao Yang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zixuan Chen
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Lei Xu
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Hui Zhang
- School of Medicine, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Wenping Wei
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Kaizheng Gong
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Xin Pan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
3
|
Li B, Liu J, Huang L, Cai J, Guo L, Xu L, Xu Q, Liu J, Huang J, Hu W, Tang X, Liu Z, Liu T. SNRPB2 in the pan-cancer landscape: A bioinformatics exploration and validation in hepatocellular carcinoma. Cell Signal 2024; 124:111445. [PMID: 39366532 DOI: 10.1016/j.cellsig.2024.111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Aberrant splicing is a significant contributor to gene expression abnormalities in cancer. SNRPB2, a component of U2 small nuclear ribonucleoprotein particles (snRNPs), contributes to the assembly of the spliceosome, the molecular machinery responsible for splicing. To date, few studies have investigated the role of SNRPB2 in tumorigenesis. We examined data sourced from various public databases, such as The Cancer Genome Atlas(TCGA), the Clinical Proteomic Tumor Analysis Consortium(CPTAC), and Gene Expression Omnibus(GEO). Our investigation included gene expression, genomic and epigenomic scrutiny, gene set enrichment assessment(GSEA), and immune cell infiltration evaluation. Furthermore, we performed empirical validation to ascertain the impact of SNRPB2 suppression on the proliferation and migration of liver cancer cells. Analysis of gene expression revealed widespread upregulation of SNRPB2 across a spectrum of cancer types, with heightened levels of SNRPB2 expression in numerous tumors linked to unfavorable prognosis. Genomic and epigenomic assessments revealed connections between SNRPB2 expression and variations in SNRPB2 copy number, DNA methylation patterns, and RNA modifications. Through gene set enrichment analysis, the involvement of SNRPB2 in vital biological processes and pathways related to cancer was identified. Furthermore, scrutiny of immune cell infiltration suggested a potential relationship between SNRPB2 and the tumor microenvironment, which was reinforced by multiple single-cell sequencing profiles. Subsequent experimental validation revealed that silencing SNRPB2 effectively impeded the proliferation and migration of liver cancer cells. Taken together, these findings underscore the prospective utility of SNRPB2 as a prognostic biomarker and a promising candidate for immunotherapy in cancer. It is necessary to engage in additional exploration into its underlying mechanisms and clinical treatment potential.
Collapse
Affiliation(s)
- Bowen Li
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi Province, China; Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi Province, China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Liangyun Guo
- Department of Ultrasonography, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Liangzhi Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Qi Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jinghang Liu
- Department of General Surgery, The First People's Hospital of Nanyang, Nanyang 473000, Henan Province, China
| | - Jian Huang
- Department of General Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian Province, China
| | - Wei Hu
- Department of General Surgery, The Central Hospital of Xiaogan, Xiaogan 432003, Hubei Province, China
| | - Xinguo Tang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Zhaohui Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Tiande Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
4
|
Qu L, Huang Y, Wu Y, He L, Liu Y, Chen Z, Ma X, Fan D. Ginsenoside Rk3 Treats Corneal Injury Through the HMGB1/TLR4/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24387-24399. [PMID: 39435975 DOI: 10.1021/acs.jafc.4c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The cornea serves as a vital protective shield for the eye, safeguarding its intricate internal structures from external threats. Damage to the cornea compromises this protective function, triggering inflammation and potentially causing long-term harm. While ginsenoside Rk3 has demonstrated potential for repairing the corneal barrier and reducing inflammation, its effectiveness in treating corneal damage remains relatively unexplored. This comprehensive study uses both in vivo and in vitro models to investigate the therapeutic capabilities of ginsenoside Rk3. Using two models of corneal damage, a benzalkonium chloride-induced mouse model and a high osmolarity-induced human corneal epithelial cell model, we scrutinized the effects of ginsenoside Rk3 treatment. Our results showed that ginsenoside Rk3-treated mice manifested reduced corneal damage and inflammation compared with their untreated counterparts. Furthermore, mice treated with ginsenoside Rk3 exhibited an organized arrangement of corneal cells and diminished stromal layer thickness, indicating reparative properties of ginsenoside Rk3. Additionally, ginsenoside Rk3 increased the expression of tight junction proteins, suppressed inflammatory factors, and decreased HMGB1 protein expression, thereby modulating downstream signaling pathways. Collectively, our findings present compelling evidence that ginsenoside Rk3 is a promising therapeutic option for corneal injury. By repairing the corneal barrier, mitigating inflammation, and modulating specific protein levels, ginsenoside Rk3 opens new avenues for managing corneal damage.
Collapse
Affiliation(s)
- Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Yingcong Huang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Yuqing Wu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Lei He
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Yannan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Zhiqi Chen
- Shaanxi Giant Biotechnology Co., Ltd., Xi'an 710065, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
5
|
Bao T, Liao T, Cai X, Lu B, Dai G, Pei S, Zhang Y, Li Y, Xu B. METTL3 mediated ferroptosis in chondrocytes and promoted pain in KOA via HMGB1 m6A modification. Cell Biol Int 2024; 48:1755-1765. [PMID: 39129231 DOI: 10.1002/cbin.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Methyltransferase-like 3 (METTL3) plays a role in the development of knee osteoarthritis (KOA). However, the mechanism underlying the role of METTL3 in KOA is unclear. This work investigated the effects of MELLT3 on ferroptosis and pain relief in in vitro and in vivo KOA models. Chondrocytes were treated with 10 ng/mL interleukin-1β (IL-1β) or 5 μM Erastin (ferroptosis inducer). IL-1β or Erastin treatment inhibited cell viability and glutathione levels; increased Fe2+, lipid reactive oxygen species and malondialdehyde production; and decreased glutathione peroxidase 4, ferritin light chain and solute carrier family 7 member 11 levels. The overexpression of METTL3 facilitated the N6-methyladenosine methylation of high mobility group box 1 (HMGB1). HMGB1 overexpression reversed the effect of sh-METTL3 on IL-1β-treated chondrocytes. A KOA rat model was established by the injection of monosodium iodoacetate into the joints and successful model establishment was confirmed by haematoxylin and eosin staining and Safranin O/Fast Green staining. METTL3 depletion alleviated cartilage damage, the inflammatory response, ferroptosis and knee pain in KOA model rats, and these effects were reversed by the addition of HMGB1. In conclusion, METTL3 depletion inhibited ferroptosis and the inflammatory response, and ameliorated cartilage damage and knee pain during KOA progression by regulating HMGB1.
Collapse
Affiliation(s)
- Tianchi Bao
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Taiyang Liao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuefeng Cai
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Binjie Lu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gaole Dai
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuai Pei
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yunqing Zhang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yuwei Li
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Bo Xu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
6
|
Engelen Y, Krysko DV, Effimova I, Breckpot K, Versluis M, De Smedt S, Lajoinie G, Lentacker I. Optimizing high-intensity focused ultrasound-induced immunogenic cell-death using passive cavitation mapping as a monitoring tool. J Control Release 2024; 375:389-403. [PMID: 39293525 DOI: 10.1016/j.jconrel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, ultrasound (US) has gathered significant attention and research focus in the realm of medical treatments, particularly within the domain of anti-cancer therapies. This growing interest can be attributed to its non-invasive nature, precision in delivery, availability, and safety. While the conventional objective of US-based treatments to treat breast, prostate, and liver cancer is the ablation of target tissues, the introduction of the concept of immunogenic cell death (ICD) has made clear that inducing cell death can take different non-binary pathways through the activation of the patient's anti-tumor immunity. Here, we investigate high-intensity focused ultrasound (HIFU) to induce ICD by unraveling the underlying physical phenomena and resulting biological effects associated with HIFU therapy using an automated and fully controlled experimental setup. Our in-vitro approach enables the treatment of adherent cancer cells (B16F10 and CT26), analysis for ICD hallmarks and allows to monitor and characterize in real time the US-induced cavitation activity through passive cavitation detection (PCD). We demonstrate HIFU-induced cell death, CRT exposure, HMGB1 secretion and antigen release. This approach holds great promise in advancing our understanding of the therapeutic potential of HIFU for anti-cancer strategies.
Collapse
Affiliation(s)
- Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Iuliia Effimova
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Ye S, Ma F, Mahmood DF, Vera PL. Modulation of persistent bladder pain in mice: The role of macrophage migration inhibitory factor, high mobility group box-1, and downstream signaling pathways. Bladder (San Franc) 2024; 11:e21200011. [PMID: 39539469 PMCID: PMC11555136 DOI: 10.14440/bladder.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Repeated intravesical activation of protease-activated receptor-4 (PAR4) serves as a model of persistent bladder hyperalgesia (BHA) in mice, which lasts several days after the final stimulus. Spinal macrophage migration inhibitory factor (MIF) and high mobility group box 1 (HMGB1) are critical mediators in the persistence of BHA. Objective We aimed to identify effective systemic treatments for persistent BHA using antagonists or transgenic deletions. Methods Persistent BHA was induced through transurethral instillations of a PAR4-activating peptide (PAR4-AP; 100 μM, 1 h; scrambled peptide, control) under anesthesia, administered on Days 0, 2, and 4. Lower abdominal hypersensitivity was measured on Days 0-4 and 7-9. Systemic injections from Days 2-8 included ISO-1 (a MIF antagonist), ethyl pyruvate (an inhibitor of HMGB1 release), phosphate-buffered saline, or 10% DMSO (vehicle control) in C57BL/6 mice. To examine the role of HMGB1 receptors, Toll-like receptor-4 (TLR4)-null mice or systemic treatment with FPS-ZM1 (receptor for advanced glycation end product [RAGE] antagonist) were used. In addition, TIR-domain-containing adaptor-inducing interferon-β (TRIF)-null mice were tested to assess the involvement of TLR4 signaling pathways. Micturition volume and frequency were assessed on Day 9, and the bladder was histopathologically examined to assess inflammation and edema. Results MIF antagonism significantly reversed persistent BHA, whereas HMGB1 antagonism led to a partial reduction of persistent BHA. TLR4 deficiency or systemic administration of FPS-ZM1 significantly mitigated persistent BHA, while TRIF-deficient mice experienced a faster onset of BHA. Only MIF or HMGB1 inhibition resulted in increased micturition volume. The histopathological examination revealed no changes in inflammation or edema. Conclusion MIF and HMGB1, acting through TLR4 and RAGE, mediated persistent BHA, while TRIF might modulate its onset. Further exploration of downstream TLR4 signaling may uncover novel therapeutic targets for treating persistent bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Fei Ma
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Dlovan F.D. Mahmood
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Pedro L. Vera
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
- Department of Physiology, School of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Zhao G, Wang X, Lei H, Ruan N, Yuan B, Tang S, Ni N, Zuo Z, Xun L, Luo M, Zhao Q, Qi J, Fu P. Serum HMGB-1 released by ferroptosis and necroptosis as a novel potential biomarker for systemic lupus erythematosus. Int Immunopharmacol 2024; 140:112886. [PMID: 39128419 DOI: 10.1016/j.intimp.2024.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
High mobility group box proterin-1 (HMGB-1) is a multifunctional protein that can be released by various programmed cell deaths (PCDs), such as necroptosis and ferroptosis. PCDs play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). However, the role of HMGB-1 in the process of SLE remains unclear. This study aims to demonstrate the potential diagnosing role of serum HMGB-1 in SLE that released by necroptosis and ferroptosis. We found that the serum levels of HMGB-1, receptor-interacting protein kinase 3 (RIPK3) /mixed lineage kinase domain-like protein (MLKL) related with necroptosis, and metabolites associated with ferroptosis were significantly upregulated in SLE patients compared to HC individuals. These serum levels were positively correlated with SLE disease activity. Additionally, the serum level of HMGB-1 showed a strong positive correlated with the levels of RIPK3/MLKL and ferroptosis metabolites. Moreover, the serum level of HMGB-1 was correlated with renal involvement and high-antinuclear antibodies (ANA) titer. After SLE serum and interferon γ (IFN-γ) treatment in vitro, the level of necroptosis and ferroptosis markers were activated and HMGB1 was released both in HEK293 and HK2 cells. Clinically, HMGB-1 was considered as a significant independent risk factor in SLE serum by binary logistic assay. Notably, HMGB-1 exhibited outstanding diagnostic ability for SLE by the area under the curve (AUC) in receiver operating characteristic (ROC) curve analysis. Taken together, our study indicates that the serum level of HMGB-1 is a promising biomarker for the diagnosis and monitoring of SLE.
Collapse
Affiliation(s)
- Guowang Zhao
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Xingzi Wang
- Department of Nephrology, Yueyang Central Hospital, Hunan Province, Yueyang 414000, China
| | - Hongtao Lei
- School of Public Health, Kunming Medical University, Yunnan Province, Kunmin 650500, China
| | - Ni Ruan
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Bo Yuan
- Department of organ transplantation department, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunmin 650033, China
| | - Songbiao Tang
- Department of Rheumatology, Yueyang Central Hospital, Hunan Province, Yueyang 414000, China
| | - Nan Ni
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Zan Zuo
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Linting Xun
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Mei Luo
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Qiuyan Zhao
- Department of Gastroenterology, First People's Hospital of Qujing, Yunnan Province, Qujing, China.
| | - Jialong Qi
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China; Yunnan Provincial Key Laboratory of Clinical Virology, The First People's Hospital of Yunnan Province, Kunming, Yunnan,650032, China; Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Geriatric Disorders, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.
| | - Ping Fu
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China.
| |
Collapse
|
9
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
10
|
Zeng M, Liang G, Yuan F, Yan S, Liu J, He Z. Macrophages-derived high-mobility group box-1 protein induces endothelial progenitor cells pyroptosis. iScience 2024; 27:110996. [PMID: 39421592 PMCID: PMC11483297 DOI: 10.1016/j.isci.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Endothelial dysfunction is an important factor in the progress of sepsis. Endothelial progenitor cells (EPCs) are the precursor cells of endothelial cells and play a crucial role in the prognosis and treatment of sepsis. EPCs in the peripheral blood of patients with sepsis undergo pyroptosis, but the mechanism remains much of unknown. Serum high-mobility group box-1 (HMGB1) is significantly elevated in patients with sepsis, but whether it is related to EPCs pyroptosis is unknown. We used a cell model of sepsis in vitro to isolate EPCs for better observation. By detecting the pyroptosis-related indicators of EPCs and the level of release and acetylation of HMGB1 in inflammatory macrophages, it was found that HMGB1 released by inflammatory macrophages combined with receptor for advanced glycation end products (RAGE) is a key pathway to induce pyroptosis of EPCs.
Collapse
Affiliation(s)
- Menghao Zeng
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Guibin Liang
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Fangfang Yuan
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shanshan Yan
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jie Liu
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhihui He
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Engineering Research Center for Human Stem Cells, Changsha, Hunan, China
| |
Collapse
|
11
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
12
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
13
|
Shen L, Yang J, Zhu Z, Li W, Cui J, Gu L. Elevated Serum HMGB1 Levels and Their Association with Recurrence of Acute Ischaemic Stroke. J Inflamm Res 2024; 17:6887-6894. [PMID: 39372585 PMCID: PMC11451516 DOI: 10.2147/jir.s477415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose The study aimed to investigate the correlation between baseline serum levels of high mobility group box 1 (HMGB1) and the recurrence of acute ischemic stroke (AIS). Patients and Methods A total of 544 AIS patients were enrolled and followed up monthly. Serum HMGB1 levels were measured using enzyme-linked immunosorbent assay (ELISA). The primary endpoint was the first recurrence of AIS. Results During a median follow-up period of 43 months, 62 of the 544 AIS patients experienced a recurrence. Both HMGB1 levels and national institute of health stroke scale (NIHSS) scores were significantly higher in the recurrence group compared to the no-recurrence group (p<0.05). According to the receiver operating characteristic curve analysis, the combination (0.855, 95% CI: 0.800-0.911) of HMGB1 (0.745, 95% CI: 0.663-0.826) and NIHSS (0.822, 95% CI: 0.758-0.886) had a higher value for predicting AIS recurrence than either of them (p<0.05). Kaplan-Meier analyses demonstrated that the cumulative survival without AIS recurrence was significantly lower in patients in the high HMGB1 level group than in the low HMGB1 level group (p<0.05). The multifactorial Cox analyses indicated that elevated baseline serum HMGB1 levels (HR: 7.489, 95% CI:4.383-12.795) were a highly effective predictor of recurrence in AIS. Conclusion Elevated baseline serum HMGB1 levels were found to be a highly effective predictor of recurrence in AIS.
Collapse
Affiliation(s)
- Liping Shen
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Jiangsheng Yang
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Zufu Zhu
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Weizhang Li
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Junyou Cui
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Lingyun Gu
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| |
Collapse
|
14
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
15
|
Maugeri N, Manfredi AA. Platelet HMGB1 steers intravascular immunity and thrombosis. J Thromb Haemost 2024:S1538-7836(24)00486-0. [PMID: 39173879 DOI: 10.1016/j.jtha.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Platelets navigate the fine balance between homeostasis and injury. They regulate vascular homeostasis and drive repair after injury amidst leukocyte extravasation. Crucially, platelets initiate extracellular traps generation and promote immunothrombosis. In chronic human diseases, platelet action often extends beyond its normative role, sparking sustained reciprocal activation of leukocytes and mural cells, culminating in adverse vascular remodeling. Studies in the last decade have spotlighted a novel key player in platelet activation, the high mobility group box 1 (HMGB1) protein. Despite its initial characterization as a chromatin molecule, anucleated platelets express abundant HMGB1, which has emerged as a linchpin in thromboinflammatory risks and microvascular remodeling. We propose that a comprehensive assessment of platelet HMGB1, spanning quantification of content, membrane localization, and accumulation of HMGB1-expressing vesicles in biological fluids should be integral to dissecting and quantifying platelet activation. This review provides evidence supporting this claim and underscores the significance of platelet HMGB1 as a biomarker in conditions associated with heightened thrombotic risks and systemic microvascular involvement, spanning cardiovascular, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Norma Maugeri
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| | - Angelo A Manfredi
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
16
|
Bravo GM, Paramasivam P, Bellissimo GF, Jacquez Q, Zheng H, Amorim F, Alvidrez RIM. High-Intensity Interval Training Decreases Circulating HMGB1 in Individuals with Insulin Resistance; Plasma Lipidomics Identifies Associated Cardiometabolic Benefits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608998. [PMID: 39229166 PMCID: PMC11370382 DOI: 10.1101/2024.08.21.608998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background: Exercise is a fundamental primary standard of care for cardiometabolic health. Body Weight (BW) High-Intensity Interval Training (HIIT) is an effective strategy for reducing cardiometabolic markers in individuals with insulin resistance and Type-2 diabetes (T2D). High-mobility group box 1 (HMGB1), a ubiquitous nuclear factor, plays an ample role beyond an alarmin in T2D development and progression. Our group has described this novel role previously, showing the beneficial effect of whole body HMGB1 silencing in decreasing hyperglycemia in diabetic mice. In the present study we tested the hypothesis that BW-HIIT as an effective exercise training modality will decrease cardiometabolic risk with a concomitant decrease in circulating HMGB1 more prominently in insulin resistant individuals compared to non-insulin resistant individuals contrasting to what we can evidence in a preclinical murine model of insulin resistance; Methods: Human and mouse pre- and post-exercise serum/plasma samples were analyzed for Lipidomics as well as Metabolic and Cytokine Multiplex assays. Standard of care, as well as cardiometabolic parameters, was also performed in human subjects; Results: insulin resistant individuals had the most positive effect, primarily with a decrease in the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). as an index of insulin resistance as well as decreased HMGB1 post-exercise. Lipidomic analysis illustrated the highly beneficial effect of exercise training using a modified HIIT program, showing an enhanced panel of circulating lipids post-exercise exclusively in insulin resistant individuals. Plasma multiplex revealed significant translational heterogeneity in our studies with distinct metabolic hormone responses to exercise conditioning with a decrease in inflammatory markers in insulin resistant individuals; Conclusions: The current study demonstrated that 6-week BW-HIIT training improves cardiometabolic, anti-inflammatory markers, metabolic hormones, and insulin sensitivity in humans, strongly associated with decreased circulating HMGB1. Overall, these experiments reinforce the potential of HMGB1 as a marker of changes in insulin resistance and the positive effect of exercise training on insulin resistance possibly preventing the development of T2D and associated complications.
Collapse
|
17
|
Badger-Emeka L, Emeka P, Thirugnanasambantham K, Alatawi AS. The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches. Pharmaceutics 2024; 16:1074. [PMID: 39204419 PMCID: PMC11360345 DOI: 10.3390/pharmaceutics16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Promise Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| |
Collapse
|
18
|
Wang G, Hiramoto K, Ma N, Ohnishi S, Morita A, Xu Y, Yoshikawa N, Chinzei Y, Murata M, Kawanishi S. Immunohistochemical analyses reveal FoxP3 expressions in spleen and colorectal cancer in mice treated with AOM/DSS, and their suppression by glycyrrhizin. PLoS One 2024; 19:e0307038. [PMID: 39150932 PMCID: PMC11329161 DOI: 10.1371/journal.pone.0307038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 08/18/2024] Open
Abstract
We previously demonstrated that glycyrrhizin (GL) suppressed inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer (CC). In this study, we found an accumulation of regulatory T cells (Tregs) in the spleen and suppression by GL in model mice. ICR mice were divided into four groups: Control, GL, CC, and GL-treated CC (CC+GL), and were sacrificed 20 weeks after AOM/DSS treatment. We measured spleen weight, areas of white and red pulp, and CD8+ T cells (cytotoxic T lymphocytes, CTL), and CD11c-positive cells (dendritic cells) in splenic tissues and forkhead box protein 3 (FoxP3)-positive cells (Tregs) in colorectal and splenic tissues. In all cases, the CC group showed a significant increase compared with those in Control group, and GL administration significantly attenuated this increase. These results indicate that Tregs accumulated in the spleen may participate in inflammation-related carcinogenesis by suppressing CTL. We also suggest that GL which binds to high-mobility group box 1 (HMGB1), suppresses carcinogenesis with decreasing Tregs in the spleen. Furthermore, there was an expression of FoxP3 in cancer cells, indicating that it may be involved in the malignant transformation of cancer cells.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Acupuncture and Moxibustion Medical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yifei Xu
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Yasuo Chinzei
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
19
|
Jiao P, Wang Y, Ren G, Chu D, Li Y, Yang Y, Sang T. Urolithin A exerts a protective effect on lipopolysaccharide-induced acute lung injury by regulating HMGB1-mediated MAPK and NF-κB signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5765-5777. [PMID: 38319388 DOI: 10.1007/s00210-024-02977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory disorder that has a high morbidity and mortality rate. Urolithin A (UA) is reported to have anti-inflammatory and anti-oxidative effects in ALI. However, its molecular mechanisms in ALI remain to be explored. Mice and BEAS-2B cells were administrated with lipopolysaccharide (LPS) to mimic the ALI model in vivo and in vitro. Hematoxylin-eosin (HE) staining was used to detect the pathological injury of lung tissues. The levels of proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) and culture supernatant and the levels of oxidative stress markers in lung tissues were measured using ELISA. DCFH-DA probe was used to assess the reactive oxygen species (ROS) level. TUNEL staining and flow cytometry were performed to determine cell apoptosis. The key targets and pathways were confirmed by immunohistochemistry (IHC) and western blot. UA suppressed the pathologic damage, wet/dry weight ratio, and total protein and inflammatory cells in BALF. UA decreased neutrophil infiltration and proinflammatory cytokines production. UA reduced the level of malondialdehyde (MDA) and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in pulmonary tissues. UA also inhibited cell apoptosis in lung tissues by decreasing Bax expression and increasing Bcl-2 expression. In addition, UA suppressed LPS-induced inflammatory factor production, ROS level, and cell apoptosis in BEAS-2B. Importantly, UA decreased the expression of HMGB1 in LPS-treated mice and BEAS-2B cells. HMGB1 overexpression greatly abrogated the inhibition of UA on inflammation, ROS, and cell apoptosis in LPS-administrated BEAS-2B. Furthermore, UA treatment suppressed the phosphorylated levels of p38, JNK, ERK, and p65 in LPS-administrated mice and BEAS-2B cells. UA alleviated lung inflammation, oxidative stress, and apoptosis in ALI by targeting HMGB1 to inactivate the MAPK/NF-κB signaling, suggesting the potential of UA to treat ALI.
Collapse
Affiliation(s)
- Pengfei Jiao
- Department of General Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingrui Wang
- Department of Oncology, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou, 450000, China
| | - Gaofei Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Dan Chu
- Department of General Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yameng Li
- Department of General Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingwu Yang
- Department of Nephropathy, Jiren Diabetes Hospital, Ruzhou, 467500, China
| | - Tianqing Sang
- Department of Oncology, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou, 450000, China.
| |
Collapse
|
20
|
S H, T T, Vellapandian C. Gut-Brain Axis: Unveiling the Interplay Between Diabetes Mellitus and Alzheimer's Disease. Cureus 2024; 16:e68083. [PMID: 39347125 PMCID: PMC11438540 DOI: 10.7759/cureus.68083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
The gut-brain axis (GBA) represents a complex bidirectional communication system linking the gastrointestinal tract with the CNS, influencing various physiological processes, including cognition. Emerging research suggests a significant interplay between diabetes mellitus (DM) and Alzheimer's disease (AD) mediated through this axis. DM, characterized by impaired insulin signaling and chronic inflammation, appears to exacerbate the pathology of AD. Key mechanisms include insulin resistance affecting neuronal function and promoting amyloid-beta accumulation and tau phosphorylation, hallmark features of AD. Additionally, dysbiosis of gut microbiota in DM may contribute to neuroinflammation and oxidative stress, further aggravating AD pathology. The gut microbiota can modulate systemic inflammation and metabolic dysfunction, potentially impacting AD progression in DM individuals. Understanding these interactions is crucial for developing targeted therapeutic strategies that address both DM and AD simultaneously. This abstract highlights the intricate relationship between metabolic disorders like DM and neurodegenerative conditions such as AD, emphasizing the role of the GBA as a pivotal area for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Haripriya S
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Tamilanban T
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Chitra Vellapandian
- Department of Pharmacy/Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
21
|
Chen X, Zhang L, Yu C, Duan A, Jiao B, Chen Y, Dai Y, Li B. The role of HMGB1 on SiC NPs-induced inflammation response in lung epithelial-macrophage co-culture system. Food Chem Toxicol 2024; 190:114762. [PMID: 38871110 DOI: 10.1016/j.fct.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
In recent years, carbonized silicon nanoparticles (SiC NPs) have found widespread scientific and engineering applications, raising concerns about potential human health risks. SiC NPs may induce pulmonary damage through sustained inflammatory responses and oxidative stress, with unclear toxicity mechanisms. This study uses an in vitro co-culture model of alveolar macrophages (NR8383) and alveolar epithelial cells (RLE-6TN) to simulate the interaction between airway epithelial cells and immune cells, providing initial insights into SiC NP-triggered inflammatory responses. The research reveals that increasing SiC NP exposure prompts NR8383 cells to release high mobility group box 1 protein (HMGB1), which migrates into RLE-6TN cells and activates the receptor for advanced glycation end-products (RAGE) and Toll-like receptor 4 (TLR4). RAGE and TLR4 synergistically activate the MyD88/NF-κB inflammatory pathway, ultimately inducing inflammatory responses and oxidative stress in RLE-6TN cells, characterized by excessive ROS generation and altered cytokine levels. Pretreatment with RAGE and TLR4 inhibitors attenuates SiC-induced HMGB1 expression and downstream pathway proteins, reducing inflammatory responses and oxidative damage. This highlights the pivotal role of RAGE-TLR4 crosstalk in SiC NP-induced pulmonary inflammation, providing insights into SiC NP cytotoxicity and nanomaterial safety guidelines.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Linyuan Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Changyan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Airu Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Bo Jiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yuanyuan Chen
- Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yufei Dai
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China; Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Bin Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
22
|
Guo LM, Jiang ZH, Liu HZ, Zhang L. Diagnostic significance of serum levels of serum amyloid A, procalcitonin, and high-mobility group box 1 in identifying necrotising enterocolitis in newborns. World J Gastrointest Surg 2024; 16:2003-2011. [PMID: 39087106 PMCID: PMC11287675 DOI: 10.4240/wjgs.v16.i7.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Necrotising enterocolitis (NEC) is a critical gastrointestinal emergency affecting premature and low-birth-weight neonates. Serum amyloid A (SAA), procalcitonin (PCT), and high-mobility group box 1 (HMGB1) have emerged as potential biomarkers for NEC due to their roles in inflammatory response, tissue damage, and immune regulation. AIM To evaluate the diagnostic value of SAA, PCT, and HMGB1 in the context of NEC in newborns. METHODS The study retrospectively analysed the clinical data of 48 newborns diagnosed with NEC and 50 healthy newborns admitted to the hospital. Clinical, radiological, and laboratory findings, including serum SAA, PCT, and HMGB1 Levels, were collected, and specific detection methods were used. The diagnostic value of the biomarkers was evaluated through statistical analysis, which was performed using chi-square test, t-test, correlation analysis, and receiver operating characteristic (ROC) analysis. RESULTS The study demonstrated significantly elevated levels of serum SAA, PCT, and HMGB1 Levels in newborns diagnosed with NEC compared with healthy controls. The correlation analysis indicated strong positive correlations among serum SAA, PCT, and HMGB1 Levels and the presence of NEC. ROC analysis revealed promising sensitivity and specificity for serum SAA, PCT, and HMGB1 Levels as potential diagnostic markers. The combined model of the three biomarkers demonstrating an extremely high area under the curve (0.908). CONCLUSION The diagnostic value of serum SAA, PCT, and HMGB1 Levels in NEC was highlighted. These biomarkers potentially improve the early detection, risk stratification, and clinical management of critical conditions. The findings suggest that these biomarkers may aid in timely intervention and the enhancement of outcomes for neonates affected by NEC.
Collapse
Affiliation(s)
- Li-Ming Guo
- Department of General Surgery, Qingdao Women and Children’s Hospital, Qingdao 266000, Shandong Province, China
| | - Zhi-Hui Jiang
- Department of General Surgery, Qingdao Women and Children’s Hospital, Qingdao 266000, Shandong Province, China
| | - Hong-Zhen Liu
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan 250022, Shandong Province, China
- Department of Pediatric Surgery, Jinan Children's Hospital, Jinan 250022, Shandong Province, China
| | - Lei Zhang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University (Qingdao), Qingdao 260010, Shandong Province, China
| |
Collapse
|
23
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
24
|
Gu Q, Chang Y, Jin Y, Fang J, Ji T, Lin J, Zhu X, Dong B, Ying H, Fan X, Li Z, Gao Z, Zhu Y, Tong Y, Cai X. Hepatocyte-specific loss of DDB1 attenuates hepatic steatosis but aggravates liver inflammation and fibrosis in MASH. Hepatol Commun 2024; 8:e0474. [PMID: 38934719 PMCID: PMC11213592 DOI: 10.1097/hc9.0000000000000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/21/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND MASH is a common clinical disease that can lead to advanced liver conditions, but no approved pharmacotherapies are available due to an incomplete understanding of its pathogenesis. Damaged DNA binding protein 1 (DDB1) participates in lipid metabolism. Nevertheless, the function of DDB1 in MASH is unclear. METHODS Clinical liver samples were obtained from patients with MASH and control individuals by liver biopsy. Hepatocyte-specific Ddb1-knockout mice and liver Hmgb1 knockdown mice were fed with a methionine-and choline-deficient diet to induce MASH. RESULTS We found that the expression of DDB1 in the liver was significantly decreased in MASH models. Hepatocyte-specific ablation of DDB1 markedly alleviated methionine-and choline-deficient diet-induced liver steatosis but unexpectedly exacerbated inflammation and fibrosis. Mechanistically, DDB1 deficiency attenuated hepatic steatosis by downregulating the expression of lipid synthesis and uptake genes. We identified high-mobility group box 1 as a key candidate target for DDB1-mediated liver injury. DDB1 deficiency upregulated the expression and extracellular release of high-mobility group box 1, which further increased macrophage infiltration and activated HSCs, ultimately leading to the exacerbation of liver inflammation and fibrosis. CONCLUSIONS These data demonstrate the independent regulation of hepatic steatosis and injury in MASH. These findings have considerable clinical implications for the development of therapeutic strategies for MASH.
Collapse
Affiliation(s)
- Qiuxia Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushun Chang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binzhi Dong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zerui Gao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongfen Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Rawls A, Nyugen D, Dziabis J, Anbarci D, Clark M, Dzirasa K, Bilbo SD. Microglial MyD88-dependent pathways are regulated in a sex-specific manner in the context of HMGB1-induced anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590482. [PMID: 38712142 PMCID: PMC11071353 DOI: 10.1101/2024.04.22.590482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chronic stress is a significant risk factor for the development and recurrence of anxiety disorders. Chronic stress impacts the immune system, causing microglial functional alterations in the medial prefrontal cortex (mPFC), a brain region involved in the pathogenesis of anxiety. High mobility group box 1 protein (HMGB1) is an established modulator of neuronal firing and a potent pro-inflammatory stimulus released from neuronal and non-neuronal cells following stress. HMGB1, in the context of stress, acts as a danger-associated molecular pattern (DAMP), instigating robust proinflammatory responses throughout the brain, so much so that localized drug delivery of HMGB1 alters behavior in the absence of any other forms of stress, i.e., social isolation, or behavioral stress models. Few studies have investigated the molecular mechanisms that underlie HMGB1-associated behavioral effects in a cell-specific manner. The aim of this study is to investigate cellular and molecular mechanisms underlying HMGB1-induced behavioral dysfunction with regard to cell-type specificity and potential sex differences. Here, we report that both male and female mice exhibited anxiety-like behavior following increased HMGB1 in the mPFC as well as changes in microglial morphology. Interestingly, our results demonstrate that HMGB1-induced anxiety may be mediated by distinct microglial MyD88-dependent mechanisms in females compared to males. This study supports the hypothesis that MyD88 signaling in microglia may be a crucial mediator of the stress response in adult female mice.
Collapse
Affiliation(s)
- Ashleigh Rawls
- Department of Pharmacology, Duke University, Durham, North Carolina, United States of America
| | - Dang Nyugen
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Julia Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Dilara Anbarci
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Madeline Clark
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Chen RY, Shi JJ, Liu YJ, Yu J, Li CY, Tao F, Cao JF, Yang GJ, Chen J. The State-of-the-Art Antibacterial Activities of Glycyrrhizin: A Comprehensive Review. Microorganisms 2024; 12:1155. [PMID: 38930536 PMCID: PMC11206003 DOI: 10.3390/microorganisms12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| |
Collapse
|
27
|
Sun Z, Lv R, Zhao Y, Cai Z, Si X, Zhang Q, Liu X. Communications between Neutrophil-Endothelial Interaction in Immune Defense against Bacterial Infection. BIOLOGY 2024; 13:374. [PMID: 38927254 PMCID: PMC11200680 DOI: 10.3390/biology13060374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
The endothelial barrier plays a critical role in immune defense against bacterial infection. Efficient interactions between neutrophils and endothelial cells facilitate the activation of both cell types. However, neutrophil activation can have dual effects, promoting bacterial clearance on one hand while triggering inflammation on the other. In this review, we provide a detailed overview of the cellular defense progression when neutrophils encounter bacteria, focusing specifically on neutrophil-endothelial interactions and endothelial activation or dysfunction. By elucidating the underlying mechanisms of inflammatory pathways, potential therapeutic targets for inflammation caused by endothelial dysfunction may be identified. Overall, our comprehensive understanding of neutrophil-endothelial interactions in modulating innate immunity provides deeper insights into therapeutic strategies for infectious diseases and further promotes the development of antibacterial and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhigang Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
| | - Ruoyi Lv
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China;
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Ziwen Cai
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
| | - Xiaohui Si
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
| | - Qian Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China;
| | - Xiaoye Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China;
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| |
Collapse
|
28
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
29
|
Patra S, Roy PK, Dey A, Mandal M. Impact of HMGB1 on cancer development and therapeutic insights focused on CNS malignancy. Biochim Biophys Acta Rev Cancer 2024; 1879:189105. [PMID: 38701938 DOI: 10.1016/j.bbcan.2024.189105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.
Collapse
Affiliation(s)
- Sucharita Patra
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
30
|
Mudimela S, Giridharan VV, Janardhan S. Molecular Docking, Synthesis, and Characterization of Furanyl-Pyrazolyl Acetamide and 2,4-Thiazolidinyl-Furan-3-Carboxamide Derivatives as Neuroinflammatory Protective Agents. Chem Biodivers 2024; 21:e202301260. [PMID: 38513005 DOI: 10.1002/cbdv.202301260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Microglia are key immune cells in the brain that maintain homeostasis and defend against immune threats. Targeting the dysfunctional microglia is one of the most promising approaches to inhibit neuroinflammation. In the current study, a diverse series of molecular hybrids were designed and screened through molecular docking against two neuroinflammatory targets, namely HMGB1 (2LY4) and HMGB1 Box A (4QR9) proteins. Based on the outcomes of docking scores fifteen compounds; ten furanyl-pyrazolyl acetamides 11(a-j), and five 2,4-thiazolidinyl-furan-3-carboxamide 15(a-e) derivatives were selected for further synthesis, followed by biological evaluation. The selected compounds, 11(a-j) and 15(a-e) were successfully synthesized with moderate to good yields, and structures were confirmed by IR, NMR, and mass spectra. The in-vitro cytotoxicity was evaluated on microglial cells namely BV-2, N-9, HMO6, leukemic HAP1, and human fibroblast cells. Further western-blot analysis revealed that 11h, 11f, 11c, 11j, 15d, 15c, 15e, and 15b compounds significantly suppressed anti-inflammatory markers such as TNF-α, IL-1, IL-6, and Bcl-2. All derivatives were moderate in potency compared to reference doxorubicin and could potentially act as novel anti-neuroinflammatory agents. This study can act as a beacon for further research in the application of furan-pyrazole and furan-2,4-thiazolidinediones as lead moieties for anti-neuroinflammatory and related diseases.
Collapse
Affiliation(s)
- Sowjanya Mudimela
- Faculty of Pharmaceutical Sciences, PES University,Hanumanth Nagar, Bangalore, India
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Saravanan Janardhan
- Faculty of Pharmaceutical Sciences, PES University,Hanumanth Nagar, Bangalore, India
| |
Collapse
|
31
|
Sun C, Zhan J, Li Y, Zhou C, Huang S, Zhu X, Huang K. Non-apoptotic regulated cell death mediates reprogramming of the tumour immune microenvironment by macrophages. J Cell Mol Med 2024; 28:e18348. [PMID: 38652105 PMCID: PMC11037416 DOI: 10.1111/jcmm.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yao Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Chulin Zhou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Shuo Huang
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| |
Collapse
|
32
|
Ding N, Xiao H, Zhen L, Li H, Zhang Z, Ge J. Imp7 siRNA nanoparticles protect against mechanical ventilation-associated liver injury by inhibiting HMGB1 production and NETs formation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167085. [PMID: 38369216 DOI: 10.1016/j.bbadis.2024.167085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Mechanical ventilation (MV) has the potential to induce extra-pulmonary organ damage by adversely affecting the lungs and promoting the secretion of inflammatory cytokines. High-mobility group box 1 protein (HMGB1) is a pro-inflammatory mediator in ventilator-induced lung injury (VILI), but its effect on MV-associated liver injury and the mechanisms are poorly understood. In the present study, mice were subjected to high-volume MV (20 ml/kg) to induce VILI. MV-induced HMGB1 prompted neutrophil extracellular traps (NETs) formation and PANoptosis within the liver. Inhibiting NETs formation by DNase I or PAD4 inhibitor, or by HMGB1 neutralizing ameliorated the liver injury. HMGB1 activated neutrophils to form NETs through TLR4/MyD88/TRAF6 pathway. Importantly, Importin7 siRNA nanoparticles inhibited HMGB1 release and protected against MV-associated liver injury. These data provide evidence of MV-induced HMGB1 prompted NETs formation and PANoptosis in the liver via the TLR4/MyD88/TRAF6 pathway. HMGB1 is a potential therapeutic target for MV-associated liver injury.
Collapse
Affiliation(s)
- Ning Ding
- Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Shandong Provincial Key Medical and Health Laboratory of Intensive Care Rehabilitation, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China.
| | - Hui Xiao
- Shandong Provincial Key Medical and Health Laboratory of Intensive Care Rehabilitation, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Lixiao Zhen
- Shandong Provincial Key Medical and Health Laboratory of Intensive Care Rehabilitation, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Huiqing Li
- Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Shandong Provincial Key Medical and Health Laboratory of Intensive Care Rehabilitation, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Zengzhen Zhang
- Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Shandong Provincial Key Medical and Health Laboratory of Intensive Care Rehabilitation, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Junke Ge
- Shandong Provincial Key Medical and Health Laboratory of Intensive Care Rehabilitation, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Department of Intensive Care Medicine, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| |
Collapse
|
33
|
Liu D, Huang Y, Shang Y. Sufentanil Suppresses Cell Carcinogenesis Via Targeting miR-186-5p/HMGB1 Axis and Wnt/β-Catenin Pathway in Non-Small-Cell Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01104-x. [PMID: 38470557 DOI: 10.1007/s12033-024-01104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Sufentanil is a common opioid anesthetic agent, which exerts anti-cancer properties in several cancer types. However, its action mechanisms in non-small cell lung cancer (NSCLC) are unclear. Therefore, the present study investigated the pharmacological effect of sufentanil on miRNAs in NSCLC treatment. In this study, after treatment with sufentanil, the proliferation, migration, invasion and apoptosis of A549 and H1299 NSCLC cell lines were measured by cell counting kit-8 (CCK-8) assay, colony formation assay, transwell assays and flow cytometry. Quantitative real time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of miR-186-5p and high mobility group box-1 (HMGB1), and their interaction was analyzed using luciferase reporter assay. The proteins of HMGB1, and apoptosis- and Wnt/β-catenin pathway-related factors were detected by western blot. It was demonstrated that sufentanil significantly upregulated miR‑186‑5p to restrict NSCLC cell proliferation, migration, invasion, and boost apoptosis in vitro. Mechanically, miR-186-5p interacted with HMGB1 and negatively regulated HMGB1 in NSCLC cells. Furthermore, rescue assay showed that sufentanil exerted antitumor activities by upregulating miR-186-5p, which targeted HMGB1 and restrained Wnt/β-catenin signal pathway in NSCLC cells. In conclusion, these results suggested that sufentanil disrupts the oncogenicity of NSCLC cells by regulating miR-186-5p/HMGB1/β-catenin axis, providing a promising implication for the anti-oncogenic effect of sufentanil.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Ye Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
34
|
Zhao P, Li Y, Xu X, Yang H, Li X, Fu S, Guo Z, Zhang J, Li H, Tian J. Neutrophil extracellular traps mediate cardiomyocyte ferroptosis via the Hippo-Yap pathway to exacerbate doxorubicin-induced cardiotoxicity. Cell Mol Life Sci 2024; 81:122. [PMID: 38456997 PMCID: PMC10923748 DOI: 10.1007/s00018-024-05169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Doxorubicin-induced cardiotoxicity (DIC), which is a cardiovascular complication, has become the foremost determinant of decreased quality of life and mortality among survivors of malignant tumors, in addition to recurrence and metastasis. The limited ability to accurately predict the occurrence and severity of doxorubicin-induced injury has greatly hindered the prevention of DIC, but reducing the dose to mitigate side effects may compromise the effective treatment of primary malignancies. This has posed a longstanding clinical challenge for oncologists and cardiologists. Ferroptosis in cardiomyocytes has been shown to be a pivotal mechanism underlying cardiac dysfunction in DIC. Ferroptosis is influenced by multiple factors. The innate immune response, as exemplified by neutrophil extracellular traps (NETs), may play a significant role in the regulation of ferroptosis. Therefore, the objective of this study was to investigate the involvement of NETs in doxorubicin-induced cardiomyocyte ferroptosis and elucidate their regulatory role. This study confirmed the presence of NETs in DIC in vivo. Furthermore, we demonstrated that depleting neutrophils effectively reduced the occurrence of doxorubicin-induced ferroptosis and myocardial injury in DIC. Additionally, our findings showed the pivotal role of high mobility group box 1 (HMGB1) as a critical molecule implicated in DIC and emphasized its involvement in the modulation of ferroptosis subsequent to NETs inhibition. Mechanistically, we obtained preliminary evidence suggesting that doxorubicin-induced NETs could modulate yes-associated protein (YAP) activity by releasing HMGB1, which subsequently bound to toll like receptor 4 (TLR4) on the cardiomyocyte membrane, thereby influencing cardiomyocyte ferroptosis in vitro. Our findings suggest that doxorubicin-induced NETs modulate cardiomyocyte ferroptosis via the HMGB1/TLR4/YAP axis, thereby contributing to myocardial injury. This study offers a novel approach for preventing and alleviating DIC by targeting alterations in the immune microenvironment.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin City, Harbin, 150001, China
| | - Haobo Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Xintong Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Zihong Guo
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jianing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hairu Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
35
|
Ye J, Gao S, Liu Z, Chen X, He J, Hu Z. The HMGB1-RAGE axis in nucleus accumbens facilitates cocaine-induced conditioned place preference via modulating microglial activation. Brain Behav 2024; 14:e3457. [PMID: 38450910 PMCID: PMC10918599 DOI: 10.1002/brb3.3457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Jian Ye
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuang‐Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Departments of NeurosurgeryThird Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Zi‐Cun Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xi Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jin‐Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhuang‐Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina
- The Research Center for Depression, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
36
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Fan A, Gao M, Tang X, Jiao M, Wang C, Wei Y, Gong Q, Zhong J. HMGB1/RAGE axis in tumor development: unraveling its significance. Front Oncol 2024; 14:1336191. [PMID: 38529373 PMCID: PMC10962444 DOI: 10.3389/fonc.2024.1336191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
High mobility group protein 1 (HMGB1) plays a complex role in tumor biology. When released into the extracellular space, it binds to the receptor for advanced glycation end products (RAGE) located on the cell membrane, playing an important role in tumor development by regulating a number of biological processes and signal pathways. In this review, we outline the multifaceted functions of the HMGB1/RAGE axis, which encompasses tumor cell proliferation, apoptosis, autophagy, metastasis, and angiogenesis. This axis is instrumental in tumor progression, promoting tumor cell proliferation, autophagy, metastasis, and angiogenesis while inhibiting apoptosis, through pivotal signaling pathways, including MAPK, NF-κB, PI3K/AKT, ERK, and STAT3. Notably, small molecules, such as miRNA-218, ethyl pyruvate (EP), and glycyrrhizin exhibit the ability to inhibit the HMGB1/RAGE axis, restraining tumor development. Therefore, a deeper understanding of the mechanisms of the HMGB1/RAGE axis in tumors is of great importance, and the development of inhibitors targeting this axis warrants further exploration.
Collapse
Affiliation(s)
- Anqi Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
38
|
Liu T, Zhao H, Wang Y, Qu P, Wang Y, Wu X, Zhao T, Yang L, Mao H, Peng L, Zhan Y, Li P. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol 2024; 15:1334109. [PMID: 38481996 PMCID: PMC10932975 DOI: 10.3389/fimmu.2024.1334109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background As a damage-associated molecular pattern protein, high mobility group box 1 (HMGB1) is associated with kidney and systemic inflammation. The predictive and therapeutic value of HMGB1 as a biomarker has been confirmed in various diseases. However, its value in diabetic kidney disease (DKD) remains unclear. Therefore, this study aimed to investigate the correlation between serum and urine HMGB1 levels and DKD progression. Methods We recruited 196 patients with type 2 diabetes mellitus (T2DM), including 109 with DKD and 87 T2DM patients without DKD. Additionally, 60 healthy participants without T2DM were also recruited as controls. Serum and urine samples were collected for HMGB1 analysis. Simultaneously, tumor necrosis factor receptor superfamily member 1A (TNFR-1) in serum and kidney injury molecule (KIM-1) in urine samples were evaluated for comparison. Results Serum and urine HMGB1 levels were significantly higher in patients with DKD than in patients with T2DM and healthy controls. Additionally, serum HMGB1 levels significantly and positively correlated with serum TNFR-1 (R 2 = 0.567, p<0.001) and urine KIM-1 levels (R 2 = 0.440, p<0.001), and urine HMGB1 has a similar correlation. In the population with T2DM, the risk of DKD progression increased with an increase in serum HMGB1 levels. Multivariate logistic regression analysis showed that elevated serum HMGB1 level was an independent risk factor for renal function progression in patients with DKD, and regression analysis did not change in the model corrected for multiple variables. The restricted cubic spline depicted a nonlinear relationship between serum HMGB1 and renal function progression in patients with DKD (p-nonlinear=0.007, p<0.001), and this positive effect remained consistent across subgroups. Conclusion Serum HMGB1 was significantly correlated with DKD and disease severity. When the HMGB1 level was ≥27 ng/ml, the risk of renal progression increased sharply, indicating that serum HMGB1 can be used as a potential biomarker for the diagnosis of DKD progression.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yanmei Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Xiai Wu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Tingting Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
39
|
Jing M, Xiong X, Mao X, Song Q, Zhang L, Ouyang Y, Pang Y, Fu Y, Yan W. HMGB1 promotes mitochondrial transfer between hepatocellular carcinoma cells through RHOT1 and RAC1 under hypoxia. Cell Death Dis 2024; 15:155. [PMID: 38378644 PMCID: PMC10879213 DOI: 10.1038/s41419-024-06536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Mitochondrial transfer plays an important role in various diseases, and many mitochondrial biological functions can be regulated by HMGB1. To explore the role of mitochondrial transfer in hepatocellular carcinoma (HCC) and its relationship with HMGB1, field emission scanning electron microscopy, immunofluorescence, and flow cytometry were used to detect the mitochondrial transfer between HCC cells. We found that mitochondrial transfer between HCC cells was confirmed using tunnel nanotubes (TNTs). The transfer of mitochondria from the highly invasive HCC cells to the less invasive HCC cells could enhance the migration and invasion ability of the latter. The hypoxic conditions increased the mitochondrial transfer between HCC cells. Then the mechanism was identified using co-immunoprecipitation, luciferase reporter assay, and chromatin immunoprecipitation. We found that RHOT1, a mitochondrial transport protein, promoted mitochondrial transfer and the migration and metastasis of HCC cells during this process. Under hypoxia, HMGB1 further regulated RHOT1 expression by increasing the expression of NFYA and NFYC subunits of the NF-Y complex. RAC1, a protein associated with TNTs formation, promoted mitochondrial transfer and HCC development. Besides, HMGB1 regulated RAC1 aggregation to the cell membrane under hypoxia. Finally, the changes and significance of related molecules in clinical samples of HCC were analyzed using bioinformatics and tissue microarray analyses. We found that HCC patients with high HMGB1, RHOT1, or RAC1 expression exhibited a relatively shorter overall survival period. In conclusion, under hypoxic conditions, HMGB1 promoted mitochondrial transfer and migration and invasion of HCC cells by increasing the expression of mitochondrial transport protein RHOT1 and TNTs formation-related protein RAC1.
Collapse
Affiliation(s)
- Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaofeng Xiong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Mao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
40
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets. Int J Mol Sci 2024; 25:771. [PMID: 38255845 PMCID: PMC10815563 DOI: 10.3390/ijms25020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a chronic skin disorder that involves both innate and adaptive immune responses in its pathogenesis. Local tissue damage is a hallmark feature of psoriasis and other autoimmune diseases. In psoriasis, damage-associated molecular patterns (DAMPs) released by damaged local tissue act as danger signals and trigger inflammatory responses by recruiting and activating immune cells. They also stimulate the release of pro-inflammatory cytokines and chemokines, which exacerbate the inflammatory response and contribute to disease progression. Recent studies have highlighted the role of DAMPs as key regulators of immune responses involved in the initiation and maintenance of psoriatic inflammation. This review summarizes the current understanding of the immune mechanism of psoriasis, focusing on several important DAMPs and their mechanisms of action. We also discussed the potential of DAMPs as diagnostic and therapeutic targets for psoriasis, offering new insights into the development of more effective treatments for this challenging skin disease.
Collapse
Affiliation(s)
| | | | | | | | - Na Xu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| |
Collapse
|
42
|
Tsai WE, Liu YT, Kuo FH, Cheng WY, Shen CC, Chiao MT, Huang YF, Liang YJ, Yang YC, Hsieh WY, Chen JP, Liu SY, Chiu CD. Crocetin Enhances Temozolomide Efficacy in Glioblastoma Therapy Through Multiple Pathway Suppression. Curr Neurovasc Res 2024; 21:320-336. [PMID: 39092730 DOI: 10.2174/0115672026332275240731054001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that is difficult to remove surgically. Research suggests that substances from saffron, namely crocetin and crocin, could be effective natural treatments, showing abilities to kill cancer cells. METHODS Our study focused on evaluating the effects of crocetin on glioma using the U87 cell line. We specifically investigated how crocetin affects the survival, growth, and spread of glioma cells, exploring its impact at concentrations ranging from 75-150 μM. The study also included experiments combining crocetin with the chemotherapy drug Temozolomide (TMZ) to assess potential synergistic effects. RESULTS Crocetin significantly reduced the viability, proliferation, and migration of glioma cells. It achieved these effects by decreasing the levels of Matrix Metallopeptidase 9 (MMP-9) and Ras homolog family member A (RhoA), proteins that are critical for cancer progression. Additionally, crocetin inhibited the formation of cellular structures necessary for tumor growth. It blocked multiple points of the Ak Strain Transforming (AKT) signaling pathway, which is vital for cancer cell survival. This treatment led to increased cell death and disrupted the cell cycle in the glioma cells. When used in combination with TMZ, crocetin not only enhanced the reduction of cancer cell growth but also promoted cell death and reduced cell replication. This combination therapy further decreased levels of high mobility group box 1 (HMGB1) and Receptor for Advanced Glycation End-products (RAGE), proteins linked to inflammation and tumor progression. It selectively inhibited certain pathways involved in the cellular stress response without affecting others. CONCLUSION Our results underscore the potential of crocetin as a treatment for glioma. It targets various mechanisms involved in tumor growth and spread, offering multiple avenues for therapy. Further studies are essential to fully understand and utilize crocetin's benefits in treating glioma.
Collapse
Affiliation(s)
- Wei-En Tsai
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Yen-Tsen Liu
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Fu-Hsuan Kuo
- Center for Geriatrics and Gerontology, Taichung Veterans Hospital, Taichung, 40705, Taiwan
| | - Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan
- Basic Medical Education, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ming-Tsang Chiao
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Fen Huang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yea-Jiuen Liang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wan-Yu Hsieh
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Szu-Yuan Liu
- Department of Neurosurgery, Oncology Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, College of Life Science, Graduate Institute of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Di Chiu
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
43
|
Mohite R, Doshi G. A Review of Proposed Mechanisms in Rheumatoid Arthritis and Therapeutic Strategies for the Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:291-301. [PMID: 37861027 DOI: 10.2174/0118715303250834230923234802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Rheumatoid arthritis (RA) is characterized by synovial edema, inflammation, bone and cartilage loss, and joint degradation. Patients experience swelling, stiffness, pain, limited joint movement, and decreased mobility as the condition worsens. RA treatment regimens often come with various side effects, including an increased risk of developing cancer and organ failure, potentially leading to mortality. However, researchers have proposed mechanistic hypotheses to explain the underlying causes of synovitis and joint damage in RA patients. This review article focuses on the role of synoviocytes and synoviocytes resembling fibroblasts in the RA synovium. Additionally, it explores the involvement of epigenetic regulatory systems, such as microRNA pathways, silent information regulator 1 (SIRT1), Peroxisome proliferatoractivated receptor-gamma coactivator (PGC1-α), and protein phosphatase 1A (PPM1A)/high mobility group box 1 (HMGB1) regulators. These mechanisms are believed to modulate the function of receptors, cytokines, and growth factors associated with RA. The review article includes data from preclinical and clinical trials that provide insights into potential treatment options for RA.
Collapse
Affiliation(s)
- Rupali Mohite
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
44
|
Goyal A, Agrawal A, Dubey N, Verma A. High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson's Disease. Curr Pharm Biotechnol 2024; 25:937-943. [PMID: 37670710 DOI: 10.2174/1389201025666230905092218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people's health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
45
|
Li S, Li Y, Hou L, Tang L, Gao F. Forsythoside B alleviates osteoarthritis through the HMGB1/TLR4/NF-κB and Keap1/Nrf2/HO-1 pathways. J Biochem Mol Toxicol 2024; 38:e23569. [PMID: 37943572 DOI: 10.1002/jbt.23569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/05/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Osteoarthritis (OA) is a joint pain and dysfunction syndrome resulting from severe joint degeneration. Inflammation and degeneration of the articular cartilage are two main features of OA and have tight interactions during OA progression. Conventional treatment with nonsteroidal anti-inflammatory drugs has been widely utilized clinically, whereas the side effects have restricted their application. Forsythoside B has been found with anti-inflammatory effects and antiapoptosis in inflammatory diseases, whereas in OA it remains poorly understood. Interleukin (IL)-1β (10 ng/mL) was taken to induce an OA cell model on HC-A chondrocytes and an OA rat model was constructed for in vivo experiments. Forsythoside B was adopted to treat HC-A chondrocytes and OA rats. As shown by the data, Forsythoside B hampered IL-1β-elicited rat chondrocyte apoptosis, oxidative stress, and facilitated proliferation. The profiles of inflammatory factors, NOD-like receptor family pyrin domain containing 3 inflammasomes, Kelch-like epichlorohydrin-associated protein-1 (Keap1), and nuclear factor-κB (NF-κB) phosphorylation were suppressed by Forsythoside B, whereas the nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels were promoted. Further, Forsythoside B mitigated cartilage damage and degeneration. Moreover, the oxidative stress and inflammation mediators in the cartilage tissue of OA rats were remarkably abated. Collectively, Forsythoside B hinders the NF-κB and Keap1/Nrf2/HO-1 pathways to curb IL-1β-elicited OA rat oxidative stress and inflammation both in vivo and ex vivo, ameliorating OA development. All over, this study provides an underlying strategy for treating OA, which might help the clinical treatment of OA patients.
Collapse
Affiliation(s)
- Shujuan Li
- Neurology Department, Wuxi People Hosptial, Wuxi, China
| | - Yan Li
- Rehabilitation Medicine Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Hou
- Department of Geriatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Tang
- Rehabilitation Medicine Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Gao
- Rehabilitation Medicine Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Chen B, Di B. Endogenous Ligands of TLR4 in Microglia: Potential Targets for Related Neurological Diseases. Curr Drug Targets 2024; 25:953-970. [PMID: 39234911 DOI: 10.2174/0113894501316051240821060249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Chronic inflammation mediated by microglia is a cause of some neuroinflammatory diseases. TLR4, a natural immune receptor on microglia, plays an important role in the occurrence of inflammation and the process of diseases. TLR4 can be activated by a variety of ligands to trigger inflammatory responses, including endogenous ligands HMGB1, S100A8/9, Heme, and Fetuin-A. As ligands derived from the body itself, they have the ability to bind directly to TLR4 and can be used as inducers of aseptic inflammation. In the past 20 years, targeting ligands rather than receptors has become an emerging therapeutic strategy for the treatment of diseases, so understanding the relationship between microglia, TLR4, TLR4 ligands, and corresponding diseases may have new implications for the treatment of diseases. In the article, we will discuss the TLR4 and the endogenous substances that can activate the TLR4 signaling pathway and present literature support for their role in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Bo Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| |
Collapse
|
47
|
Dai Q, Qing X, Jiang W, Wang S, Liu S, Liu X, Huang F, Zhao H. Aging aggravates liver fibrosis through downregulated hepatocyte SIRT1-induced liver sinusoidal endothelial cell dysfunction. Hepatol Commun 2024; 8:e0350. [PMID: 38126919 PMCID: PMC10749712 DOI: 10.1097/hc9.0000000000000350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Aging increases the susceptibility to chronic liver diseases and hastens liver fibrosis deterioration, but the underlying mechanisms remain partially understood. The aim of this study was to investigate the effect of aging and chronic liver diseases on hepatocyte Sirtuin 1 (SIRT1) and LSECs and their contribution to liver fibrosis pathogeneses. METHODS Young (8-12 wk) and aged (18-20 mo) mice were subjected to carbon tetrachloride-induced liver fibrosis. Primary HSCs and LSECs were isolated and cocultured for in vitro experiments. Liver tissues and blood samples from healthy controls and patients with liver fibrosis were analyzed. RESULTS Downregulated hepatocytes SIRT1 in aged mice increased high mobility group box 1 acetylation, cytoplasmic translocation, and extracellular secretion, causing LSECs dysfunction by means of the toll-like receptor 4/AK strain transforming (AKT)/endothelial nitric oxide synthase pathway, ultimately activating HSCs and increasing susceptibility to liver injury and fibrosis. Adeno-associated virus-mediated overexpression of SIRT1 in hepatocytes suppressed the abovementioned alterations and attenuated carbon tetrachloride-induced liver injury and fibrosis in liver fibrosis mice, and there were no significant differences in liver injury and fibrosis indicators between young and aged mice after SIRT1 overexpression treatment. In vitro experiments demonstrated that SIRT1 overexpression and endothelial nitric oxide synthase agonist YC-1 improved LSECs function and inhibited HSCs activation, mediated by nitric oxide. Similarly, downregulated hepatocytes SIRT1 and LSECs dysfunction were observed in the livers of aged individuals compared to young individuals and were more pronounced in aged patients with liver fibrosis. CONCLUSIONS Aging aggravates liver fibrosis through downregulated hepatocytes SIRT1-induced LSECs dysfunction, providing a prospective curative approach for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Jiang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shouwen Wang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengsheng Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
48
|
Feng ZJ, Wang LS, Ma X, Li K, Li XY, Tang Y, Peng CJ. Catapol attenuates the aseptic inflammatory response to hepatic I/R injury in vivo and in vitro by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway via the microRNA-410-3p. Mol Immunol 2023; 164:66-78. [PMID: 37979473 DOI: 10.1016/j.molimm.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury involves inflammatory necrosis of liver cells as a significant pathological mechanism. Catapol possesses anti-inflammatory activity that is extracted from the traditional Chinese medicine, Rehmannia glutinosa. METHODS The liver function and histopathology, Oxidative stress, and aseptic inflammatory responses were assessed in vivo, and the strongest dose group was selected. For mechanism, the expression of miR-410-3p, HMGB1, and TLR-4/NF-κB signaling pathways was detected. The dual luciferase assay can verify the targeting relationship between miR-410-3p and HMGB1. Knockdown of miR-410-3p in L02 cells is applied in interference experiments. RESULTS CAT pre-treatment significantly decreased the liver function markers alanine and aspartate aminotransferases and reduced the areas of hemorrhage and necrosis induced by hepatic I/R injury. Additionally, it reduced the aseptic inflammatory response and oxidative stress, with the strongest protective effect observed in the high-dose CAT group. Mechanistically, CAT downregulates HMGB1, inhibits TLR-4/NF-κB signaling pathway activation, and reduces inflammatory cytokines TNF-α, and IL-1β. In addition, the I/R-induced downregulation of microRNA-410-3p was inhibited by CAT pre-treatment in vivo and in vitro. HMGB1 was identified as a potential target of microRNA-410-3p using a dual-luciferase reporter assay. Knockdown of microRNA-410-3p abolished the inhibitory effect of CAT on HMGB1, p-NF-κB, and p-IκB-α protein expression. CONCLUSIONS Our study showed that CAT pre-treatment has a protective effect against hepatic I/R injury in rats. Specifically, CAT attenuates the aseptic inflammatory response to hepatic I/R injury in vivo and in vitro by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway via the microRNA-410-3p.
Collapse
Affiliation(s)
- Zan Jie Feng
- Clinical Medical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liu Song Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kai Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Yao Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Tang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ci Jun Peng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
49
|
Cui X, Yao A, Jia L. Starvation insult induces the translocation of high mobility group box 1 to cytosolic compartments in glioma. Oncol Rep 2023; 50:216. [PMID: 37888772 PMCID: PMC10636726 DOI: 10.3892/or.2023.8653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a highly conserved and ubiquitous nuclear protein in eukaryotic cells. In response to stress, it transfers from the nucleus to the cytoplasm and finally, to the extracellular matrix, participating in inflammation and carcinogenesis. Increased HMGB1 protein levels are frequently associated with the reduced survival of patients with glioma. HMGB1 plays contextual roles depending on its subcellular localization. However, the mechanisms underlying its subcellular localization and secretion remain unclear. In the present study, the subcellular localization and secretion of HMGB1 in starved glioma cells were investigated using immunofluorescence microscopy, enzyme‑linked immunosorbent assay, subcellular fractionation, western blotting and immunoelectron microscopy. The results demonstrated that starvation induced HMGB1 translocation from the nucleus to the cytoplasm and finally, to the extracellular milieu in glioma cells. HMGB1 was localized in the mitochondria, endoplasmic reticulum (ER), peroxisomes, autophagosomes, lysosomes, endosomes and the cytoskeleton. Immunoelectron microscopy confirmed that HMGB1 was present within or around cytosolic compartments. Subcellular fractionation further demonstrated that HMGB1 transferred to membrane‑bound compartments. In addition, HMGB1 was localized to specific contact areas between the ER and mitochondria, known as mitochondria‑associated membranes. On the whole, the results of the present study suggest that starvation induces HMGB1 secretion, which can be inhibited through the suppression of autophagy. Starvation insult induces HMGB1 translocation to the cytosolic compartments of glioma cells, and autophagy may be involved in the extracellular secretion of HMGB1 in starved glioma cells.
Collapse
Affiliation(s)
- Xiaohang Cui
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Anhui Yao
- Department of Neurosurgery, 988th Hospital of Joint Logistic Support Force of PLA, Zhengzhou, Henan 450053, P.R. China
| | - Liyun Jia
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
50
|
You Q, Wu J, Liu Y, Zhang F, Jiang N, Tian X, Cai Y, Yang E, Lyu R, Zheng N, Chen D, Wu Z. HMGB1 Release Induced by EV71 Infection Exacerbates Blood-Brain Barrier Disruption via VE-cadherin Phosphorylation. Virus Res 2023; 338:199240. [PMID: 37832655 PMCID: PMC10587765 DOI: 10.1016/j.virusres.2023.199240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE EV71 (Enterovirus 71) is a major causative agent of the outbreaks of HFMD (hand, foot, and mouth disease), which is associated with neurological damage caused by permeability disruption of BBB (blood-brain barrier). HMGB1 (high-mobility group box 1) is a widely expressed nuclear protein that triggers host inflammatory responses. Our work aimed to explore the function of HMGB1 in EV71 infection and its contributions to EV71-related BBB damage. METHODS HeLa cells, HT-29 cells and AG6 mice were used to explore the translocation of HMGB1 in EV71 infection in vitro and in vivo. The roles of released HMGB1 on EV71 replication and associated inflammatory cytokines were investigated using recombinant HMGB1 in HeLa cells. The mechanisms of released HMGB1 in EV71-induced BBB injury were explored using recombinant HMGB1 and anti-HMGB1 neutralizing antibodies in monolayer HCMECs (immortalized human brain microvascular endothelial cells) and AG6 mice brain. RESULTS EV71 induced HMGB1 nucleocytoplasmic translocation and extracellular release in vitro and in vivo. Released HMGB1 acted as an inflammatory mediator in EV71 infection rather than affecting viral replication in vitro. Released HMGB1 disrupted BBB integrity by enhancing VE-cadherin phosphorylation at tyrosine 685 in HCMECs, and reducing total VE-cadherin levels in HCMECs and AG6 mice in EV71 infection. And released HMGB1 induced an increase in activated astrocytes. Neutralization of HMGB1 reversed the increased endothelial hyperpermeability and phosphorylation of VE-cadherin in HCMECs. CONCLUSION The inflammatory mediator HMGB1 released by EV71 exacerbated BBB disruption by enhancing VE-cadherin phosphorylation, which in turn aggravated EV71-induced neuroinflammation.
Collapse
Affiliation(s)
- Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Ye Liu
- China Department of Ophthalmology, Tianjin First Central Hospital, Tianjin, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Sciences, Ningxia University, Yinchuan, PR China
| | - Enhui Yang
- Department of Child Healthcare, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Ruining Lyu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, PR China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|