1
|
Yang J, Yu YC, Wang ZX, Li QQ, Ding N, Leng XJ, Cai J, Zhang MY, Wang JJ, Zhou Y, Wei TH, Xue X, Dai WC, Sun SL, Yang Y, Li NG, Shi ZH. Research strategies of small molecules as chemotherapeutics to overcome multiple myeloma resistance. Eur J Med Chem 2024; 271:116435. [PMID: 38648728 DOI: 10.1016/j.ejmech.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.
Collapse
Affiliation(s)
- Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
2
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol 2023; 20:250-264. [PMID: 36806788 DOI: 10.1038/s41571-023-00734-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Cachexia is a devastating, multifactorial and often irreversible systemic syndrome characterized by substantial weight loss (mainly of skeletal muscle and adipose tissue) that occurs in around 50-80% of patients with cancer. Although this condition mainly affects skeletal muscle (which accounts for approximately 40% of total body weight), cachexia is a multi-organ syndrome that also involves white and brown adipose tissue, and organs including the bones, brain, liver, gut and heart. Notably, cachexia accounts for up to 20% of cancer-related deaths. Cancer-associated cachexia is invariably associated with systemic inflammation, anorexia and increased energy expenditure. Understanding these mechanisms is essential, and the progress achieved in this area over the past decade could help to develop new therapeutic approaches. In this Review, we examine the currently available evidence on the roles of both the tumour macroenvironment and microenvironment in cancer-associated cachexia, and provide an overview of the novel therapeutic strategies developed to manage this syndrome.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Wang X, Zhang W, Wen T, Miao H, Hu W, Liu H, Lei M, Zhu Y. Design and discovery of novel dipeptide boronic acid ester proteasome inhibitors, an oral slowly-released prodrug for the treatment of multiple myeloma. Eur J Med Chem 2023; 250:115187. [PMID: 36806958 DOI: 10.1016/j.ejmech.2023.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Multiple myeloma (MM), the second most common hematological malignancy, is a disease characterized by a clonal expansion of malignant plasma cells that accumulate in the bone marrow. Ixazomib citrate was the first commercially available oral proteasome inhibitor for the treatment of MM. However, it immediately hydrolyzed into the active form on exposure to aqueous solution and so it was a pseudo prodrug. Herein, a series of dipeptide boronic acid esters as novel oral proteasome inhibitors were designed, synthesized and biologically investigated for the inhibition of the β5 subunit of 20S proteasome. Based on the enzymatic results, structure-activity relationships (SAR) were discussed in detail. Some potent compounds were further evaluated to inhibit the proliferation of MM cell line RPMI-8226. The results showed that some compounds were active against RPMI-8226 with IC50 values of less than 10 nM. The solution stability showed that ixazomib citrate was completely hydrolyzed to its active form ixazomib within 2 min in the simulated gastric juice. However, among the screened compounds, prodrug 18u was stable enough in simulated gastric juice and simulated intestinal juice, and its hydrolysis rate was 59.7% and 3.6% after 2 h, respectively. In addition, 18u exhibited good microsome stabilities and pharmacokinetic properties and displayed strong antiproliferative activity against the RPMI-8226 cell line (5.6 nM). Furthermore, compound 18u exhibited strong in vivo anticancer efficacy in human MM (RPMI-8226) xenograft mouse model.
Collapse
Affiliation(s)
- Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210037, PR China
| | - Wen Zhang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210037, PR China
| | - Tiantian Wen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210037, PR China
| | - Hang Miao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210037, PR China
| | - Wenjiao Hu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210037, PR China
| | - Hailong Liu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210037, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China; Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing, 210046, PR China.
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210037, PR China; Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing, 210046, PR China.
| |
Collapse
|
4
|
Inflammation as a Therapeutic Target in Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14215262. [PMID: 36358681 PMCID: PMC9657920 DOI: 10.3390/cancers14215262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022] Open
Abstract
Cachexia is a common complication of cancer and is associated with poor quality of life and a decrease in survival. Many patients with cancer cachexia suffer from inflammation associated with elevated cytokines, such as interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF). Single-agent trials to treat cancer cachexia have not led to substantial benefit as the type of cytokine which is elevated has rarely been specified and targeted. Cachexia may also be multifactorial, involving inflammation, anorexia, catabolism, depression, and pain, and targeting the multiple causes will likely be necessary to achieve improvement in weight and appetite. A PUBMED search revealed over 3000 articles on cancer cachexia in the past ten years. We attempted to review any studies related to inflammation and cancer cachexia identified by Google Scholar and PUBMED and further search for articles listed in their references. The National Comprehensive Cancer Network (NCCN) guidelines do not provide any suggestion for managing cancer cachexia except a dietary consult. A more targeted approach to developing therapies for cancer cachexia might lead to more personalized and effective therapy.
Collapse
|
5
|
Sakai H, Zhou Y, Miyauchi Y, Suzuki Y, Ikeno Y, Kon R, Ikarashi N, Chiba Y, Hosoe T, Kamei J. Increased 20S Proteasome Expression and the Effect of Bortezomib during Cisplatin-Induced Muscle Atrophy. Biol Pharm Bull 2022; 45:910-918. [PMID: 35786599 DOI: 10.1248/bpb.b22-00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cisplatin is a chemotherapy drug used to treat a variety of cancers. Muscle loss in cancer patients is associated with increased cancer-related mortality. Previously, we suggested that cisplatin administration increases the atrophic gene expressions of ubiquitin E3 ligases, such as atrogin-1 and muscle RING finger-1 (MuRF1), which may lead to muscle atrophy. In this study, C57BL/6J mice were treated with cisplatin (3 mg/kg, intraperitoneally) or saline for 4 consecutive days. Twenty-four hours after the final injection of cisplatin, quadriceps muscles were removed from the mice. The gene expression of Psma and Psmb, which comprise the 20S proteasome, was upregulated by cisplatin administration in the quadriceps muscle of mouse. Systemic administration of cisplatin significantly reduced not only the quadriceps muscle mass but also the diameter of the myofibers. In addition, bortezomib (0.125 mg/kg, intraperitoneally) was administered 30 min before each cisplatin treatment. The co-administration of bortezomib, a proteasome inhibitor, significantly recovered the reductions in the mass of quadriceps and myofiber diameter, although it did not recover the decline in the forelimb and forepaw strength induced by cisplatin. Increased 20S proteasome abundance may play a significant role in the development of cisplatin-induced muscle atrophy. During cisplatin-induced skeletal muscle atrophy, different mechanisms may be involved between loss of muscle mass and strength. In addition, it is suggested that bortezomib has essentially no effect on cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yujie Zhou
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yuta Suzuki
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yohei Ikeno
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University.,Department of Bioregulatory Science, School of Pharmacy, Hoshi University
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University.,Juntendo Advanced Research Institute for Health Science, Juntendo University
| |
Collapse
|
6
|
Cancer- and cardiac-induced cachexia: same fate through different inflammatory mediators? Inflamm Res 2022; 71:771-783. [PMID: 35680678 DOI: 10.1007/s00011-022-01586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Inflammation is widely recognized as the driving force of cachexia induced by chronic diseases; however, therapies targeting inflammation do not always reverse cachexia. Thus, whether inflammation per se plays an important role in the clinical course of cachectic patients is still a matter of debate. AIMS To give new insights into cachexia's pathogenesis and diagnosis, we performed a comprehensive literature search on the contribution of inflammatory markers to this syndrome, focusing on the noncommunicable diseases cancer and cardiovascular diseases. METHODS A systematic review was performed in PubMed using the keywords ("cancer" OR "cardiac" cachexia AND "human" OR "patient" AND "plasma" or "serum"). A total of 744 studies were retrieved and, from these, 206 were selected for full-text screening. In the end, 98 papers focusing on circulating biomarkers of cachexia were identified, which resulted in a list of 113 different mediators. RESULTS Data collected from the literature highlight the contribution of interleukin-6 (IL-6) and C-reactive protein (CRP) to cachexia, independently of the underlying condition. Despite not being specific, once the diagnosis of cachexia is established, CRP might help to monitor the effectiveness of anti-cachexia therapies. In cardiac diseases, B-type natriuretic peptide (BNP), renin, and obestatin might be putative markers of body wasting, whereas in cancer, growth differentiation factor (GDF) 15, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) C seem to be better markers of this syndrome. Independently of the circulating mediators, NF-κB and JAK/STAT signaling pathways play a key role in bridging inflammation with muscle wasting; however, therapies targeting these pathways were not proven effective for all cachectic patients. CONCLUSION The critical and integrative analysis performed herein will certainly feed future research focused on the better comprehension of cachexia pathogenesis toward the improvement of its diagnosis and the development of personalized therapies targeting specific cachexia phenotypes.
Collapse
|
7
|
Jiang Z, Zhang L, Yao Z, Cao W, Ma S, Chen Y, Guang L, Zheng Z, Li C, Yu K, Shyh-Chang N. Machine learning-based phenotypic screening for postmitotic growth inducers uncover vitamin D3 metabolites as small molecule ribosome agonists. Cell Prolif 2022; 55:e13214. [PMID: 35411556 PMCID: PMC9136510 DOI: 10.1111/cpr.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To restore tissue growth without increasing the risk for cancer during aging, there is a need to identify small molecule drugs that can increase cell growth without increasing cell proliferation. While there have been numerous high‐throughput drug screens for cell proliferation, there have been few screens for post‐mitotic anabolic growth. Materials and Methods A machine learning (ML)‐based phenotypic screening strategy was used to discover metabolites that boost muscle growth. Western blot, qRT‐PCR and immunofluorescence staining were used to evaluate myotube hypertrophy/maturation or protein synthesis. Mass spectrometry (MS)‐based thermal proteome profiling‐temperature range (TPP‐TR) technology was used to identify the protein targets that bind the metabolites. Ribo‐MEGA size exclusion chromatography (SEC) analysis was used to verify whether the ribosome proteins bound to calcitriol. Results We discovered both the inactive cholecalciferol and the bioactive calcitriol are amongst the top hits that boost post‐mitotic growth. A large number of ribosomal proteins' melting curves were affected by calcitriol treatment, suggesting that calcitriol binds to the ribosome complex directly. Purified ribosomes directly bound to pure calcitriol. Moreover, we found that calcitriol could increase myosin heavy chain (MHC) protein translation and overall nascent protein synthesis in a cycloheximide‐sensitive manner, indicating that calcitriol can directly bind and enhance ribosomal activity to boost muscle growth. Conclusion Through the combined strategy of ML‐based phenotypic screening and MS‐based omics, we have fortuitously discovered a new class of metabolite small molecules that can directly activate ribosomes to promote post‐mitotic growth.
Collapse
Affiliation(s)
- Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liping Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zipeng Zheng
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Chunwei Li
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Emmert ME, Aggarwal P, Shay-Winkler K, Lee SJ, Goh Q, Cornwall R. Sex-specific role of myostatin signaling in neonatal muscle growth, denervation atrophy, and neuromuscular contractures. eLife 2022; 11:81121. [PMID: 36314781 PMCID: PMC9873256 DOI: 10.7554/elife.81121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/31/2022] [Indexed: 01/27/2023] Open
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that result from impaired longitudinal growth of denervated muscles. This deficit in muscle growth is driven by increased proteasome-mediated protein degradation, suggesting a dysregulation of muscle proteostasis. The myostatin (MSTN) pathway, a prominent muscle-specific regulator of proteostasis, is a putative signaling mechanism by which neonatal denervation could impair longitudinal muscle growth, and thus a potential target to prevent NBPI-induced contractures. Through a mouse model of NBPI, our present study revealed that pharmacologic inhibition of MSTN signaling induces hypertrophy, restores longitudinal growth, and prevents contractures in denervated muscles of female but not male mice, despite inducing hypertrophy of normally innervated muscles in both sexes. Additionally, the MSTN-dependent impairment of longitudinal muscle growth after NBPI in female mice is associated with perturbation of 20S proteasome activity, but not through alterations in canonical MSTN signaling pathways. These findings reveal a sex dimorphism in the regulation of neonatal longitudinal muscle growth and contractures, thereby providing insights into contracture pathophysiology, identifying a potential muscle-specific therapeutic target for contracture prevention, and underscoring the importance of sex as a biological variable in the pathophysiology of neuromuscular disorders.
Collapse
Affiliation(s)
- Marianne E Emmert
- Department of Medical Sciences, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Parul Aggarwal
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Se-Jin Lee
- The Jackson LaboratoryFarmingtonUnited States,Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Orthopaedic Surgery, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Orthopaedic Surgery, University of Cincinnati College of MedicineCincinnatiUnited States,Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
9
|
Mitochondrial Dysfunction in Cancer Cachexia: Impact on Muscle Health and Regeneration. Cells 2021; 10:cells10113150. [PMID: 34831373 PMCID: PMC8621344 DOI: 10.3390/cells10113150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a frequently neglected debilitating syndrome that, beyond representing a primary cause of death and cancer therapy failure, negatively impacts on patients' quality of life. Given the complexity of its multisystemic pathogenesis, affecting several organs beyond the skeletal muscle, defining an effective therapeutic approach has failed so far. Revamped attention of the scientific community working on cancer cachexia has focused on mitochondrial alterations occurring in the skeletal muscle as potential triggers of the complex metabolic derangements, eventually leading to hypercatabolism and tissue wasting. Mitochondrial dysfunction may be simplistically viewed as a cause of energy failure, thus inducing protein catabolism as a compensatory mechanism; however, other peculiar cachexia features may depend on mitochondria. On the one side, chemotherapy also impacts on muscle mitochondrial function while, on the other side, muscle-impaired regeneration may result from insufficient energy production from damaged mitochondria. Boosting mitochondrial function could thus improve the energetic status and chemotherapy tolerance, and relieve the myogenic process in cancer cachexia. In the present work, a focused review of the available literature on mitochondrial dysfunction in cancer cachexia is presented along with preliminary data dissecting the potential role of stimulating mitochondrial biogenesis via PGC-1α overexpression in distinct aspects of cancer-induced muscle wasting.
Collapse
|
10
|
Towards Drug Repurposing in Cancer Cachexia: Potential Targets and Candidates. Pharmaceuticals (Basel) 2021; 14:ph14111084. [PMID: 34832866 PMCID: PMC8618795 DOI: 10.3390/ph14111084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
As a multifactorial and multiorgan syndrome, cancer cachexia is associated with decreased tolerance to antitumor treatments and increased morbidity and mortality rates. The current approaches for the treatment of this syndrome are not always effective and well established. Drug repurposing or repositioning consists of the investigation of pharmacological components that are already available or in clinical trials for certain diseases and explores if they can be used for new indications. Its advantages comparing to de novo drugs development are the reduced amount of time spent and costs. In this paper, we selected drugs already available or in clinical trials for non-cachexia indications and that are related to the pathways and molecular components involved in the different phenotypes of cancer cachexia syndrome. Thus, we introduce known drugs as possible candidates for drug repurposing in the treatment of cancer-induced cachexia.
Collapse
|
11
|
Singh A, Yadav A, Phogat J, Dabur R. Dynamics of autophagy and ubiquitin proteasome system coordination and interplay in skeletal muscle atrophy. Curr Mol Pharmacol 2021; 15:475-486. [PMID: 34365963 DOI: 10.2174/1874467214666210806163851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Skeletal muscles are considered the largest reservoirs of the protein pool in the body and are critical for the maintenances of body homeostasis. Skeletal muscle atrophy is supported by various physiopathological conditions that lead to loss of muscle mass and contractile capacity of the skeletal muscle. Lysosomal mediated autophagy and ubiquitin-proteasomal system (UPS) concede the major intracellular systems of muscle protein degradation that result in the loss of mass and strength. Both systems recognize ubiquitination as a signal of degradation through different mechanisms, a sign of dynamic interplay between systems. Hence, growing shreds of evidence suggest the interdependency of autophagy and UPS in the progression of skeletal muscle atrophy under various pathological conditions. Therefore, understanding the molecular dynamics as well associated factors responsible for their interdependency is a necessity for the new therapeutic insights to counteract the muscle loss. Based on current literature, the present review summarizes the factors interplay in between the autophagy and UPS in favor of enhanced proteolysis of skeletal muscle and how they affect the anabolic signaling pathways under various conditions of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ajay Singh
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Jatin Phogat
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| |
Collapse
|
12
|
Pierucci F, Frati A, Battistini C, Penna F, Costelli P, Meacci E. Control of Skeletal Muscle Atrophy Associated to Cancer or Corticosteroids by Ceramide Kinase. Cancers (Basel) 2021; 13:3285. [PMID: 34209043 PMCID: PMC8269416 DOI: 10.3390/cancers13133285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
Apart from cytokines and chemokines, sphingolipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide 1-phosphate (C1P), contribute to cancer and inflammation. Cancer, as well as other inflammatory conditions, are associated with skeletal muscle (SkM) atrophy, which is characterized by the unbalance between protein synthesis and degradation. Although the signaling pathways involved in SkM mass wasting are multiple, the regulatory role of simple sphingolipids is limited. Here, we report the impairment of ceramide kinase (CerK), the enzyme responsible for the phosphorylation of ceramide to C1P, associated with the accomplishment of atrophic phenotype in various experimental models of SkM atrophy: in vivo animal model bearing the C26 adenocarcinoma or Lewis lung carcinoma tumors, in human and murine SkM cells treated with the conditioned medium obtained from cancer cells or with the glucocorticoid dexamethasone. Notably, we demonstrate in all the three experimental approaches a drastic decrease of CerK expression. Gene silencing of CerK promotes the up-regulation of atrogin-1/MAFbx expression, which was also observed after cell treatment with C8-ceramide, a biologically active ceramide analogue. Conversely, C1P treatment significantly reduced the corticosteroid's effects. Altogether, these findings provide evidence that CerK, acting as a molecular modulator, may be a new possible target for SkM mass regulation associated with cancer or corticosteroids.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| | - Chiara Battistini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, 10125 Torino, Italy; (F.P.); (P.C.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Torino, Italy; (F.P.); (P.C.)
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| |
Collapse
|
13
|
Cancer cachexia: molecular mechanism and pharmacological management. Biochem J 2021; 478:1663-1688. [PMID: 33970218 DOI: 10.1042/bcj20201009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Cancer cachexia often occurs in malignant tumors and is a multifactorial and complex symptom characterized by wasting of skeletal muscle and adipose tissue, resulting in weight loss, poor life quality and shorter survival. The pathogenic mechanism of cancer cachexia is complex, involving a variety of molecular substrates and signal pathways. Advancements in understanding the molecular mechanisms of cancer cachexia have provided a platform for the development of new targeted therapies. Although recent outcomes of early-phase trials have showed that several drugs presented an ideal curative effect, monotherapy cannot be entirely satisfactory in the treatment of cachexia-associated symptoms due to its complex and multifactorial pathogenesis. Therefore, the lack of definitive therapeutic strategies for cancer cachexia emphasizes the need to develop a better understanding of the underlying mechanisms. Increasing evidences show that the progression of cachexia is associated with metabolic alternations, which mainly include excessive energy expenditure, increased proteolysis and mitochondrial dysfunction. In this review, we provided an overview of the key mechanisms of cancer cachexia, with a major focus on muscle atrophy, adipose tissue wasting, anorexia and fatigue and updated the latest progress of pharmacological management of cancer cachexia, thereby further advancing the interventions that can counteract cancer cachexia.
Collapse
|
14
|
Goh Q, Nikolaou S, Shay‐Winkler K, Emmert ME, Cornwall R. Timing of proteasome inhibition as a pharmacologic strategy for prevention of muscle contractures in neonatal brachial plexus injury. FASEB J 2021; 35:e21214. [PMID: 33236396 PMCID: PMC7821701 DOI: 10.1096/fj.202002194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable contractures, or limb stiffness, which result from proteasome-mediated protein degradation impairing the longitudinal growth of neonatally denervated muscles. We recently showed in a mouse model that the 20S proteasome inhibitor, bortezomib, prevents contractures after NBPI. Given that contractures uniquely follow neonatal denervation, the current study tests the hypothesis that proteasome inhibition during a finite window of neonatal development can prevent long-term contracture development. Following neonatal forelimb denervation in P5 mice, we first outlined the minimum period for proteasome inhibition to prevent contractures 4 weeks post-NBPI by treating mice with saline or bortezomib for varying durations between P8 and P32. We then compared the ability of varying durations of longer-term proteasome inhibition to prevent contractures at 8 and 12 weeks post-NBPI. Our findings revealed that proteasome inhibition can be delayed 3-4 days after denervation but is required throughout skeletal growth to prevent contractures long term. Furthermore, proteasome inhibition becomes less effective in preventing contractures beyond the neonatal period. These therapeutic effects are primarily associated with bortezomib-induced attenuation of 20S proteasome β1 subunit activity. Our collective results, therefore, demonstrate that temporary neonatal proteasome inhibition is not a viable strategy for preventing contractures long term. Instead, neonatal denervation causes a permanent longitudinal growth deficiency that must be continuously ameliorated during skeletal growth. Additional mechanisms must be explored to minimize the necessary period of proteasome inhibition and reduce the risk of toxicity from long-term treatment.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Sia Nikolaou
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Kritton Shay‐Winkler
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Marianne E. Emmert
- Department of Biomedical SciencesUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Roger Cornwall
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of Orthopaedic SurgeryUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| |
Collapse
|
15
|
Bernardo B, Joaquim S, Garren J, Boucher M, Houle C, LaCarubba B, Qiao S, Wu Z, Esquejo RM, Peloquin M, Kim H, Breen DM. Characterization of cachexia in the human fibrosarcoma HT-1080 mouse tumour model. J Cachexia Sarcopenia Muscle 2020; 11:1813-1829. [PMID: 32924335 PMCID: PMC7749621 DOI: 10.1002/jcsm.12618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cancer cachexia is a complex metabolic disease with unmet medical need. Although many rodent models are available, none are identical to the human disease. Therefore, the development of new preclinical models that simulate some of the physiological, biochemical, and clinical characteristics of the human disease is valuable. The HT-1080 human fibrosarcoma tumour cell line was reported to induce cachexia in mice. Therefore, the purpose of this work was to determine how well the HT-1080 tumour model could recapitulate human cachexia and to examine its technical performance. Furthermore, the efficacy of ghrelin receptor activation via anamorelin treatment was evaluated, because it is one of few clinically validated mechanisms. METHODS Female severe combined immunodeficient mice were implanted subcutaneously or heterotopically (renal capsule) with HT-1080 tumour cells. The cachectic phenotype was evaluated during tumour development, including body weight, body composition, food intake, muscle function (force and fatigue), grip strength, and physical activity measurements. Heterotopic and subcutaneous tumour histology was also compared. Energy balance was evaluated at standard and thermoneutral housing temperatures in the subcutaneous model. The effect of anamorelin (ghrelin analogue) treatment was also examined. RESULTS The HT-1080 tumour model had excellent technical performance and was reproducible across multiple experimental conditions. Heterotopic and subcutaneous tumour cell implantation resulted in similar cachexia phenotypes independent of housing temperature. Tumour weight and histology was comparable between both routes of administration with minimal inflammation. Subcutaneous HT-1080 tumour-bearing mice presented with weight loss (decreased fat mass and skeletal muscle mass/fibre cross-sectional area), reduced food intake, impaired muscle function (reduced force and grip strength), and decreased spontaneous activity and voluntary wheel running. Key circulating inflammatory biomarkers were produced by the tumour, including growth differentiation factor 15, Activin A, interleukin 6, and TNF alpha. Anamorelin prevented but did not reverse anorexia and weight loss in the subcutaneous model. CONCLUSIONS The subcutaneous HT-1080 tumour model displays many of the perturbations of energy balance and physical performance described in human cachexia, consistent with the production of key inflammatory factors. Anamorelin was most effective when administered early in disease progression. The HT-1080 tumour model is valuable for studying potential therapeutic targets for the treatment of cachexia.
Collapse
Affiliation(s)
- Barbara Bernardo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | | - Jeonifer Garren
- Biostatistics, Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Magalie Boucher
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | | | | | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Matthew Peloquin
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
16
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
17
|
Scalabrin M, Adams V, Labeit S, Bowen TS. Emerging Strategies Targeting Catabolic Muscle Stress Relief. Int J Mol Sci 2020; 21:E4681. [PMID: 32630118 PMCID: PMC7369951 DOI: 10.3390/ijms21134681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle wasting represents a common trait in many conditions, including aging, cancer, heart failure, immobilization, and critical illness. Loss of muscle mass leads to impaired functional mobility and severely impedes the quality of life. At present, exercise training remains the only proven treatment for muscle atrophy, yet many patients are too ill, frail, bedridden, or neurologically impaired to perform physical exertion. The development of novel therapeutic strategies that can be applied to an in vivo context and attenuate secondary myopathies represents an unmet medical need. This review discusses recent progress in understanding the molecular pathways involved in regulating skeletal muscle wasting with a focus on pro-catabolic factors, in particular, the ubiquitin-proteasome system and its activating muscle-specific E3 ligase RING-finger protein 1 (MuRF1). Mechanistic progress has provided the opportunity to design experimental therapeutic concepts that may affect the ubiquitin-proteasome system and prevent subsequent muscle wasting, with novel advances made in regards to nutritional supplements, nuclear factor kappa-light-chain-enhancer of activated B cells (NFB) inhibitors, myostatin antibodies, β2 adrenergic agonists, and small-molecules interfering with MuRF1, which all emerge as a novel in vivo treatment strategies for muscle wasting.
Collapse
Affiliation(s)
- Mattia Scalabrin
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Volker Adams
- Department of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany;
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, 01067 Dresden, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- Myomedix GmbH, Im Biengarten 36, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
18
|
Costamagna D, Duelen R, Penna F, Neumann D, Costelli P, Sampaolesi M. Interleukin-4 administration improves muscle function, adult myogenesis, and lifespan of colon carcinoma-bearing mice. J Cachexia Sarcopenia Muscle 2020; 11:783-801. [PMID: 32103619 PMCID: PMC7296260 DOI: 10.1002/jcsm.12539] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anorexia, body wasting, inflammation, muscle, and adipose tissue loss are hallmarks of cancer cachexia, a syndrome that affects the majority of cancer patients, impairing their ability to endure chemotherapeutic therapies and reducing their lifespan. In the last 10 years, alterations of protein turnover and impairment of adult myogenesis have been proposed as major contributing factors. METHODS Muscle stem cells, including satellite cells, mesoangioblasts, and fibroadipogenic progenitors, were isolated and characterized from C26 colon carcinoma-bearing (C26) mice. Circulating levels of interleukin-4/13 (IL4/IL13) were analysed by ELISA, and the effects of IL4 on muscle mass and function, protein synthesis, muscle regeneration, and myogenic progenitor cell number were analysed at both functional (treadmill and grip test) and molecular levels (qRT-PCR, immunofluorescence analysis, surface sensing of translation, and western blot). The Kaplan-Meier test was used to analyse the survival curve of IL4-treated and IL4-untreated C26 mice. RESULTS The administration of IL4 to C26 mice rescued muscle mass by increasing protein synthesis. The IL4 treatment improved performances and prolonged survival of C26 mice. IL4 administration re-established both number and function of satellite cells and fibroadipogenic progenitors without affecting mesoangioblasts in C26 mice, rescuing myogenesis. Upon IL4 treatment, a high number of cytotoxic lymphocytes and type II macrophages were observed with a subsequent increase in necrotic areas of C26 tumours. CONCLUSIONS The results here presented shed new light on IL4 signalling during muscle wasting and early stages of muscle regeneration that explain the beneficial effect observed in IL4-treated C26 mice. These findings might aid to develop therapeutic approaches to improve mobility and quality of life in cachectic patients.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology, Stem Cell Biology and Embryology, Department of Development and Regeneration, University Hospital Gasthuisberg, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology, Stem Cell Biology and Embryology, Department of Development and Regeneration, University Hospital Gasthuisberg, Leuven, Belgium
| | - Fabio Penna
- Experimental Medicine and Clinical Pathology Unit, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, MHH, Hannover, Germany
| | - Paola Costelli
- Experimental Medicine and Clinical Pathology Unit, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology, Stem Cell Biology and Embryology, Department of Development and Regeneration, University Hospital Gasthuisberg, Leuven, Belgium.,Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
da Fonseca GWP, Farkas J, Dora E, von Haehling S, Lainscak M. Cancer Cachexia and Related Metabolic Dysfunction. Int J Mol Sci 2020; 21:ijms21072321. [PMID: 32230855 PMCID: PMC7177950 DOI: 10.3390/ijms21072321] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex multifactorial syndrome marked by a continuous depletion of skeletal muscle mass associated, in some cases, with a reduction in fat mass. It is irreversible by nutritional support alone and affects up to 74% of patients with cancer-dependent on the underlying type of cancer-and is associated with physical function impairment, reduced response to cancer-related therapy, and higher mortality. Organs, like muscle, adipose tissue, and liver, play an important role in the progression of cancer cachexia by exacerbating the pro- and anti-inflammatory response initially activated by the tumor and the immune system of the host. Moreover, this metabolic dysfunction is produced by alterations in glucose, lipids, and protein metabolism that, when maintained chronically, may lead to the loss of skeletal muscle and adipose tissue. Although a couple of drugs have yielded positive results in increasing lean body mass with limited impact on physical function, a single therapy has not lead to effective treatment of this condition. Therefore, a multimodal intervention, including pharmacological agents, nutritional support, and physical exercise, may be a reasonable approach for future studies to better understand and prevent the wasting of body compartments in patients with cancer cachexia.
Collapse
Affiliation(s)
- Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo SP 05403-900, Brazil or
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
| | - Jerneja Farkas
- Research Unit, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- National Institute of Public Health, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Eva Dora
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Goettingen, DE-37099 Goettingen, Germany
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| | - Mitja Lainscak
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| |
Collapse
|
20
|
Suzuki T, Von Haehling S, Springer J. Promising models for cancer-induced cachexia drug discovery. Expert Opin Drug Discov 2020; 15:627-637. [PMID: 32050816 DOI: 10.1080/17460441.2020.1724954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cachexia is a frequent, multifactorial syndrome associated with cancer afflicting patients' quality of life, their ability to tolerate anti-neoplastic therapies and the therapies efficacy, as well as survival. Currently, there are no approved cancer cachexia treatments other than those for the treatment of the underlying cancer. Cancer cachexia (CC) is poorly understood and hence makes clinical trial design difficult at best. This underlines the importance of well-characterized animal models to further elucidate the pathophysiology of CC and drug discovery/development.Areas covered: This review gives an overview of the available animal models and their value and limitations in translational studies.Expert opinion: Using more than one CC model to test research questions or novel compounds/treatment strategies is strongly advisable. The main reason is that models have unique signaling modalities driving cachexia that may only relate to subgroups of cancer patients. Human xenograph CC models require the use of mice with a compromised immune system, limiting their value for translational experiments. It may prove beneficial to include standard care chemotherapy in the experimental design, as many chemotherapeutic agents can induce cachexia themselves and alter the metabolic and signaling derangements of CC and thus the response to new therapeutic strategies.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Anker MS, Hadzibegovic S, Lena A, Haverkamp W. The difference in referencing in Web of Science, Scopus, and Google Scholar. ESC Heart Fail 2019; 6:1291-1312. [PMID: 31886636 PMCID: PMC6989289 DOI: 10.1002/ehf2.12583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS How often a medical article is cited is important for many people because it is used to calculate different variables such as the h-index and the journal impact factor. The aim of this analysis was to assess how the citation count varies between Web of Science (WoS), Scopus, and Google Scholar in the current literature. METHODS We included the top 50 cited articles of four journals ESC Heart Failure; Journal of cachexia, sarcopenia and muscle; European Journal of Preventive Cardiology; and European Journal of Heart Failure in our analysis that were published between 1 January 2016 and 10 October 2019. We recorded the number of citations of these articles according to WoS, Scopus, and Google Scholar on 10 October 2019. RESULTS The top 50 articles in ESC Heart Failure were on average cited 12 (WoS), 13 (Scopus), and 17 times (Google Scholar); in Journal of cachexia, sarcopenia and muscle 37 (WoS), 43 (Scopus), and 60 times (Google Scholar); in European Journal of Preventive Cardiology 41 (WoS), 56 (Scopus), and 67 times (Google Scholar); and in European Journal of Heart Failure 76 (WoS), 108 (Scopus), and 230 times (Google Scholar). On average, the top 50 articles in all four journals were cited 41 (WoS), 52 (Scopus, 26% higher citations count than WoS, range 8-42% in the different journals), and 93 times (Google Scholar, 116% higher citation count than WoS, range 42-203%). CONCLUSION Scopus and Google Scholar on average have a higher citation count than WoS, whereas the difference is much larger between Google Scholar and WoS.
Collapse
Affiliation(s)
- Markus S Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Charité Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Charité Campus Benjamin Franklin (CBF), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sara Hadzibegovic
- Division of Cardiology and Metabolism, Department of Cardiology, Charité Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Charité Campus Benjamin Franklin (CBF), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Alessia Lena
- Division of Cardiology and Metabolism, Department of Cardiology, Charité Campus Virchow Klinikum (CVK), Berlin, Germany.,Department of Cardiology, Charité Campus Benjamin Franklin (CBF), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Wilhelm Haverkamp
- Division of Cardiology and Metabolism, Department of Cardiology, Charité Campus Virchow Klinikum (CVK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
22
|
Nikolaou S, Cramer AA, Hu L, Goh Q, Millay DP, Cornwall R. Proteasome inhibition preserves longitudinal growth of denervated muscle and prevents neonatal neuromuscular contractures. JCI Insight 2019; 4:128454. [PMID: 31661460 DOI: 10.1172/jci.insight.128454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Muscle contractures are a prominent and disabling feature of many neuromuscular disorders, including the 2 most common forms of childhood neurologic dysfunction: neonatal brachial plexus injury (NBPI) and cerebral palsy. There are currently no treatment strategies to directly alter the contracture pathology, as the pathogenesis of these contractures is unknown. We previously showed in a mouse model of NBPI that contractures result from impaired longitudinal muscle growth. Current presumed explanations for growth impairment in contractures focus on the dysregulation of muscle stem cells, which differentiate and fuse to existing myofibers during growth, as this process has classically been thought to control muscle growth during the neonatal period. Here, we demonstrate in a mouse model of NBPI that denervation does not prevent myonuclear accretion and that reduction in myonuclear number has no effect on functional muscle length or contracture development, providing definitive evidence that altered myonuclear accretion is not a driver of neuromuscular contractures. In contrast, we observed elevated levels of protein degradation in NBPI muscle, and we demonstrate that contractures can be pharmacologically prevented with the proteasome inhibitor bortezomib. These studies provide what we believe is the first strategy to prevent neuromuscular contractures by correcting the underlying deficit in longitudinal muscle growth.
Collapse
Affiliation(s)
| | - Alyssa Aw Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Roger Cornwall
- Division of Orthopaedic Surgery, and.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Betancourt A, Busquets S, Ponce M, Toledo M, Guàrdia‐Olmos J, Peró‐Cebollero M, López‐Soriano FJ, Argilés JM. The animal cachexia score (ACASCO). Animal Model Exp Med 2019; 2:201-209. [PMID: 31773096 PMCID: PMC6762046 DOI: 10.1002/ame2.12082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND None of the published studies involving cancer cachexia experimental models have included a measure of the severity of the syndrome like the scoring system previously developed for human subjects. The aim of the present investigation was to define and validate a cachexia score usable in both rat and mouse tumor models. METHODS In order to achieve this goal, we included in the study one rat model (Yoshida AH-130ascites hepatoma) and two mouse models (Lewis lung carcinoma and Colon26 carcinoma). The Animal cachexia score (ACASCO) includes five components: (a) body and muscle weight loss, (b) inflammation and metabolic disturbances, (c) physical performance, (d) anorexia, and (e) quality of life measured using discomfort symptoms and behavioral tests. RESULTS Using the ACASCO values, three cut-off values were estimated by applying hierarchical cluster analysis. Four groups were originally described, one exactly below the observed mean, a second exactly over the mean, and two other groups adjusted to every cue (inferior and superior). The three cut-off values were estimated through maximization of the classification function. This was accomplished by using a similarity matrix based on the metric properties of the variables and assuming multinormal distribution. The results show that the four groups were: no cachexia, mild cachexia, moderate cachexia and advanced cachexia. CONCLUSIONS The results obtained allow us to conclude that the score could be very useful as an endpoint in pre-clinical studies involving therapeutic strategies for cancer cachexia. The potential usefulness of ACASCO relates to the primary endpoint in pre-clinical cancer cachexia drug evaluations.
Collapse
Affiliation(s)
- Angelica Betancourt
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Marta Ponce
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Joan Guàrdia‐Olmos
- Advanced Statistical Data Analysis Applied to Psychology, Departament de Metodologia de les Ciències del Comportament, Facultat de PsicologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de recerca en CervellCognició i Conducta (IR3C)BarcelonaSpain
| | - Maribel Peró‐Cebollero
- Advanced Statistical Data Analysis Applied to Psychology, Departament de Metodologia de les Ciències del Comportament, Facultat de PsicologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de recerca en CervellCognició i Conducta (IR3C)BarcelonaSpain
| | - Francisco J. López‐Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
24
|
Lei M, Zhang H, Miao H, Du X, Zhou H, Wang J, Wang X, Feng H, Shi J, Liu Z, Shen J, Zhu Y. Preparation and biological evaluation of soluble tetrapeptide epoxyketone proteasome inhibitors. Bioorg Med Chem 2019; 27:4151-4162. [DOI: 10.1016/j.bmc.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
|
25
|
Batt J, Herridge MS, Dos Santos CC. From skeletal muscle weakness to functional outcomes following critical illness: a translational biology perspective. Thorax 2019; 74:1091-1098. [PMID: 31431489 DOI: 10.1136/thoraxjnl-2016-208312] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022]
Abstract
Intensive care unit acquired weakness (ICUAW) is now a well-known entity complicating critical illness. It increases mortality and in the critical illness survivor it is associated with physical disability, substantially increased health resource utilisation and healthcare costs. Skeletal muscle wasting is a key driver of ICUAW and physical functional outcomes in both the short and long term. To date, there is no intervention that can universally and consistently prevent muscle loss during critical illness, or enhance its recovery following intensive care unit discharge, to improve physical function. Clinical trials of early mobilisation or exercise training, or enhanced nutritional support have generated inconsistent results and we have no effective pharmacological interventions. This review will delineate our current understanding of the mechanisms underpinning the development and persistence of skeletal muscle loss and dysfunction in the critically ill individual, highlighting recent discoveries and clinical observations, and utilisation of this knowledge in the development of novel therapeutics.
Collapse
Affiliation(s)
- Jane Batt
- Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada .,Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Margaret S Herridge
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Claudia C Dos Santos
- Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol Med 2019; 25:760-774. [PMID: 31235369 DOI: 10.1016/j.molmed.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
For long-lived contractile cells, such as striated muscle cells, maintaining proteome integrity is a challenging task. These cells require hundreds of components that must be properly synthesized, folded, and incorporated into the basic contractile unit, the sarcomere. Muscle protein quality control in cells is mainly guaranteed by the ubiquitin-proteasome system (UPS), the lysosome-autophagy system, and various molecular chaperones. Recent studies establish the concept of dedicated UPS in the regulation of sarcomere assembly during development and in adult life to maintain the intricate and interwoven organization of protein complexes in muscle. Failure of sarcomere protein quality control often represents the basis of severe myopathies and cardiomyopathies in human, further highlighting its importance in producing and maintaining the contractile machinery of muscle cells in shape.
Collapse
|
27
|
Penna F, Ballarò R, Martinez-Cristobal P, Sala D, Sebastian D, Busquets S, Muscaritoli M, Argilés JM, Costelli P, Zorzano A. Autophagy Exacerbates Muscle Wasting in Cancer Cachexia and Impairs Mitochondrial Function. J Mol Biol 2019; 431:2674-2686. [PMID: 31150737 DOI: 10.1016/j.jmb.2019.05.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by anorexia, weight loss and muscle wasting that impairs patients' quality of life and survival. Aim of this work was to evaluate the impact of either autophagy inhibition (knocking down beclin-1) or promotion (overexpressing TP53INP2/DOR) on cancer-induced muscle wasting. In C26 tumor-bearing mice, stress-induced autophagy inhibition was unable to rescue the loss of muscle mass and worsened muscle morphology. Treating C26-bearing mice with formoterol, a selective β2-agonist, muscle sparing was paralleled by reduced static autophagy markers, although the flux was maintained. Conversely, the stimulation of muscle autophagy exacerbated muscle atrophy in tumor-bearing mice. TP53INP2 further promoted atrogene expression and suppressed mitochondrial dynamics-related genes. Excessive autophagy might impair mitochondrial function through mitophagy. Consistently, tumor-induced mitochondrial dysfunction was detected by reduced ex vivo muscle fiber respiration. Overall, the results evoke a central role for muscle autophagy in cancer-induced muscle wasting.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Riccardo Ballarò
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paula Martinez-Cristobal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - David Sala
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Sebastian
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Busquets
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Josep M Argilés
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Cancer-associated muscle wasting affects many patients and leads to reduced patient function, decreased quality of life and poor responses to surgical and oncological treatments. Despite advancements in the understanding of its pathophysiology, no current treatment or accepted strategy for successful management exists. In this review, we provide an update on potential novel therapeutic targets in cancer cachexia. RECENT FINDINGS Recent research has focused on molecular mechanisms underlying cancer-associated muscle wasting, allowing identification of potential therapeutic targets and the development of several promising drugs. However, due to the multifactorial and patient-specific pathogenesis of cachexia, the demonstration of a measurable and meaningful clinical effect in randomized controlled trials has proven difficult. Potential novel targets such as circulating macrophage inhibitory cytokine 1/growth differentiation factor 15 and ZRT/IRT-like protein 14 have shown relevance in animal models, but their therapeutic manipulation has yet to be translated to patients. Increasing evidence has suggested that a single therapy may not be successful and a targeted, multimodal approach is required. SUMMARY The management of cancer-associated muscle wasting is complex. Future clinical trials should focus on early multimodal therapeutic interventions involving targeted therapies, with careful deliberation of chosen nutritional and functional outcomes.
Collapse
Affiliation(s)
- Janice Miller
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
29
|
Rolfe M, Kamel A, Ahmed MM, Kramer J. Pharmacological management of cardiac cachexia: a review of potential therapy options. Heart Fail Rev 2019; 24:617-623. [DOI: 10.1007/s10741-019-09784-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Therapeutic strategies against cancer cachexia. Eur J Transl Myol 2019; 29:7960. [PMID: 31019661 PMCID: PMC6460215 DOI: 10.4081/ejtm.2019.7960] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia has two main components: anorexia and metabolic alterations. The main changes associated with the development of this multi-organic syndrome are glucose intolerance, fat depletion and muscle protein hypercatabolism. The aim of this paper is to review the more recent therapeutic approaches designed to counteract the wasting suffered by the cancer patient with cachexia. Among the most promising approaches we can include the use of ghrelin agonists, beta-blockers, beta-adrenergic agonists, androgen receptor agonists and anti-myostatin peptides. The multi-targeted approach seems essential in these treatments, which should include the combination of both nutritional support, drugs and a suitable program of physical exercise, in order to ameliorate both anorexia and the metabolic changes associated with cachexia. In addition, another very important and crucial aspect to be taken into consideration in the design of clinical trials for the treatment of cancer cachexia is to staging cancer patients in relation with the degree of cachexia, in order to start as early as possible this triple approach in the course of the disease, even before the weight loss can be detected.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | - Francisco Javier López-Soriano
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | | | - Sílvia Busquets
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| |
Collapse
|
31
|
Penna F, Ballarò R, Beltrà M, De Lucia S, García Castillo L, Costelli P. The Skeletal Muscle as an Active Player Against Cancer Cachexia. Front Physiol 2019; 10:41. [PMID: 30833900 PMCID: PMC6387914 DOI: 10.3389/fphys.2019.00041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
The management of cancer patients is frequently complicated by the occurrence of cachexia. This is a complex syndrome that markedly impacts on quality of life as well as on tolerance and response to anticancer treatments. Loss of body weight, wasting of both adipose tissue and skeletal muscle and reduced survival rates are among the main features of cachexia. Skeletal muscle wasting has been shown to depend, mainly at least, on the induction of protein degradation rates above physiological levels. Such hypercatabolic pattern is driven by overactivation of different intracellular proteolytic systems, among which those dependent on ubiquitin-proteasome and autophagy. Selective rather than bulk degradation of altered proteins and organelles was also proposed to occur. Within the picture described above, the muscle is frequently considered a sort of by-stander tissue where external stimuli, directly or indirectly, can poise protein metabolism toward a catabolic setting. By contrast, several observations suggest that the muscle reacts to the wasting drive imposed by cancer growth by activating different compensatory strategies that include anabolic capacity, the activation of autophagy and myogenesis. Even if muscle response is eventually ill-fated, its occurrence supports the idea that in the presence of appropriate treatments the development of cancer-induced wasting might not be an ineluctable event in tumor hosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Costelli
- Department of Clinical and Biological Sciences, Interuniversity Institute of Myology, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Ballarò R, Beltrà M, De Lucia S, Pin F, Ranjbar K, Hulmi JJ, Costelli P, Penna F. Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations. FASEB J 2019; 33:5482-5494. [PMID: 30653354 DOI: 10.1096/fj.201801862r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by anorexia, body wasting, and muscle and adipose tissue loss, impairing patient's tolerance to anticancer treatments and survival. The aim of the present study was to compare the effects induced in mice by tumor growth alone (C26) or in combination with chemotherapy [C26 oxaliplatin and 5-fluorouracil (oxfu)] and to evaluate the potential of moderate exercise. Oxfu administration to C26 mice exacerbated muscle wasting and triggered autophagy or mitophagy, decreased protein synthesis, and induced mitochondrial alterations. Exercise in C26 oxfu mice counteracted the loss of muscle mass and strength, partially rescuing autophagy and mitochondrial function. Nevertheless, exercise worsened survival in C26 oxfu mice in late stages of cachexia. In summary, chemotherapy further impinges on cancer-induced alterations, worsening muscle wasting. An ideal multifactorial and early intervention to prevent cancer cachexia could take advantage of exercise, improving patient's energy metabolism, mobility, and quality of life.-Ballarò, R., Beltrà, M., De Lucia, S., Pin, F., Ranjbar, K., Hulmi, J. J., Costelli, P., Penna, F. Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations.
Collapse
Affiliation(s)
- Riccardo Ballarò
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Serena De Lucia
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kia Ranjbar
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, University of Tarbiat Modares, Tehran, Iran
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Paola Costelli
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| |
Collapse
|
33
|
Penna F, Costelli P. New developments in investigational HDAC inhibitors for the potential multimodal treatment of cachexia. Expert Opin Investig Drugs 2018; 28:179-189. [PMID: 30526137 DOI: 10.1080/13543784.2019.1557634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cachexia is a frequent feature of chronic diseases. This syndrome includes loss of body weight, depletion of skeletal muscle mass and altered metabolic homeostasis. Acceleration of protein and energy metabolism, impaired myogenesis, and systemic inflammation contribute to cachexia. Its occurrence impinges on treatment tolerance and on the quality of life of the patient, however, no effective therapy is available yet. AREAS COVERED This review focuses on the use of histone deacetylase inhibitors as pharmacological tools to prevent or delay cachexia, with reference to muscle wasting. EXPERT OPINION Novel histone deacetylase inhibitors could be considered as exercise mimetics and this supports their use as a treatment for muscle-wasting associated diseases, such as cachexia. The ability of some of these inhibitors to modulate the release of extracellular vesicles from tumor cells is a potential tool for restricting the development of cancer-induced muscle protein depletion. There are few clinical trials that are testing histone deacetylase inhibitors as a treatment for cachexia; this reflects the lack of robust experimental evidence of effectiveness. The determination of the pathogenic mechanisms of muscle wasting and the identification of suitable histone deacetylase inhibitors that target such mechanisms are necessary.
Collapse
Affiliation(s)
- Fabio Penna
- a Department of Clinical and Biological Science , University of Torino , Italy.,b Interuniversity Institute of Myology , Italy
| | - Paola Costelli
- a Department of Clinical and Biological Science , University of Torino , Italy.,b Interuniversity Institute of Myology , Italy
| |
Collapse
|
34
|
Shewan LG. Contemporary publication patterns in the Journal of Cachexia, Sarcopenia and Muscle by type and sub-speciality: facts and numbers. J Cachexia Sarcopenia Muscle 2018; 9:1192-1195. [PMID: 30697979 PMCID: PMC6351672 DOI: 10.1002/jcsm.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Louise G. Shewan
- Sydney Medical SchoolUniversity of SydneySydneyNew South Wales2006Australia
- University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
35
|
Brown JL, Lee DE, Rosa-Caldwell ME, Brown LA, Perry RA, Haynie WS, Huseman K, Sataranatarajan K, Van Remmen H, Washington TA, Wiggs MP, Greene NP. Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle 2018; 9:987-1002. [PMID: 30328290 PMCID: PMC6204589 DOI: 10.1002/jcsm.12354] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer cachexia occurs in approximately 80% of cancer patients and is a key contributor to cancer-related death. The mechanisms controlling development of tumour-induced muscle wasting are not fully elucidated. Specifically, the progression and development of cancer cachexia are underexplored. Therefore, we examined skeletal muscle protein turnover throughout the development of cancer cachexia in tumour-bearing mice. METHODS Lewis lung carcinoma (LLC) was injected into the hind flank of C57BL6/J mice at 8 weeks age with tumour allowed to develop for 1, 2, 3, or 4 weeks and compared with PBS injected control. Muscle size was measured by cross-sectional area analysis of haematoxylin and eosin stained tibialis anterior muscle. 2 H2 O was used to assess protein synthesis throughout the development of cancer cachexia. Immunoblot and RT-qPCR were used to measure regulators of protein turnover. TUNEL staining was utilized to measure apoptotic nuclei. LLC conditioned media (LCM) treatment of C2C12 myotubes was used to analyse cancer cachexia in vitro. RESULTS Muscle cross-sectional area decreased ~40% 4 weeks following tumour implantation. Myogenic signalling was suppressed in tumour-bearing mice as soon as 1 week following tumour implantation, including lower mRNA contents of Pax7, MyoD, CyclinD1, and Myogenin, when compared with control animals. AchRδ and AchRε mRNA contents were down-regulated by ~50% 3 weeks following tumour implantation. Mixed fractional synthesis rate protein synthesis was ~40% lower in 4 week tumour-bearing mice when compared with PBS controls. Protein ubiquitination was elevated by ~50% 4 weeks after tumour implantation. Moreover, there was an increase in autophagy machinery after 4 weeks of tumour growth. Finally, ERK and p38 MAPK phosphorylations were fourfold and threefold greater than control muscle 4 weeks following tumour implantation, respectively. Inhibition of p38 MAPK, but not ERK MAPK, in vitro partially rescued LCM-induced loss of myotube diameter. CONCLUSIONS Our findings work towards understanding the pathophysiological signalling in skeletal muscle in the initial development of cancer cachexia. Shortly following the onset of the tumour-bearing state alterations in myogenic regulatory factors are apparent, suggesting early onset alterations in the capacity for myogenic induction. Cancer cachexia presents with a combination of a loss of protein synthesis and increased markers of protein breakdown, specifically in the ubiquitin-proteasome system. Also, p38 MAPK may be a potential therapeutic target to combat cancer cachexia via a p38-FOX01-atrogene-ubiquitin-proteasome mechanism.
Collapse
Affiliation(s)
- Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kendra Huseman
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Kavithalakshmi Sataranatarajan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Michael P Wiggs
- Integrated Physiology and Nutrition Laboratory, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
36
|
von Haehling S, Anker MS, Ebner N, Anker SD. Time to jump on the bandwagon: the Journal of Cachexia, Sarcopenia and Muscle in 2018. J Cachexia Sarcopenia Muscle 2018; 9:793-801. [PMID: 30311438 PMCID: PMC6204581 DOI: 10.1002/jcsm.12356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical School, Göttingen, Germany
| | - Markus S Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site: Department of Cardiology Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical School, Göttingen, Germany
| | - Stefan D Anker
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site: Department of Cardiology Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Cole CL, Kleckner IR, Jatoi A, Schwarz E, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM CLINICAL REPORTS 2018. [DOI: 10.17987/jcsm-cr.v3i2.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive skeletal muscle wasting in cancer cachexia involves a process of dysregulated protein synthesis and breakdown. This catabolism may be the result of mal-nutrition, and an upregulation of both pro-inflammatory cytokines and the ubiquitin proteasome pathway (UPP), which can subsequently increase myostatin and activin A release. The skeletal muscle wasting associated with cancer cachexia is clinically significant, it can contribute to treatment toxicity or the premature discontinuation of treatments resulting in increases in morbidity and mortality. Thus, there is a need for further investigation into the pathophysiology of muscle wasting in cancer cachexia to develop effective prophylactic and therapeutic interventions. Several studies have identified a central role for chronic-systemic inflammation in initiating and perpetuating muscle wasting in patients with cancer. Interestingly, while exercise has shown efficacy in improving muscle quality, only recently have investigators begun to assess the impact that exercise has on chronic-systemic inflammation. To put this new information into context with established paradigms, here we review several biological pathways (e.g. dysfunctional inflammatory response, hypothalamus pituitary adrenal axis, and increased myostatin/activin A activity) that may be responsible for the muscle wasting in patients with cancer. Additionally, we discuss the potential impact that exercise has on these pathways in the treatment of cancer cachexia. Exercise is an attractive intervention for muscle wasting in this population, partially because it disrupts chronic-systemic inflammation mediated catabolism. Most importantly, exercise is a potent stimulator of muscle synthesis, and therefore this therapy may reverse muscle damage caused by cancer cachexia.
Collapse
|
38
|
Pierucci F, Frati A, Battistini C, Matteini F, Iachini MC, Vestri A, Penna F, Costelli P, Meacci E. Involvement of released sphingosine 1-phosphate/sphingosine 1-phosphate receptor axis in skeletal muscle atrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3598-3614. [PMID: 30279138 DOI: 10.1016/j.bbadis.2018.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/27/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known. Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts. Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Chiara Battistini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Francesca Matteini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Maria Chiara Iachini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy.
| |
Collapse
|
39
|
Chiu H, Chiu C, Yang R, Chan D, Liu S, Chiang C. Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin-3 down-regulation. J Cachexia Sarcopenia Muscle 2018; 9:585-602. [PMID: 29512306 PMCID: PMC5989760 DOI: 10.1002/jcsm.12289] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/25/2017] [Accepted: 01/07/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A global consensus on the loss of skeletal muscle mass and function in humans refers as sarcopenia and cachexia including diabetes, obesity, renal failure, and osteoporosis. Despite a current improvement of sarcopenia or cachexia with exercise training and supportive therapies, alternative and specific managements are needed to discover for whom are unable or unwilling to embark on these treatments. Alendronate is a widely used drug for osteoporosis in the elderly and postmenopausal women. Osteopenic menopausal women with 6 months of alendronate therapy have been observed to improve not only lumbar bone mineral density but also handgrip strength. However, the effect and mechanism of alendronate on muscle strength still remain unclear. Here, we investigated the therapeutic potential and the molecular mechanism of alendronate on the loss of muscle mass and strength in vitro and in vivo. METHODS Mouse myoblasts and primary human skeletal muscle-derived progenitor cells were used to assess the effects of low-dose alendronate (0.1-1 μM) combined with or without dexamethasone on myotube hypertrophy and myogenic differentiation. Moreover, we also evaluated the effects of low-dose alendronate (0.5 and 1 mg/kg) by oral administration on the limb muscle function and morphology of mice with denervation-induced muscle atrophy and glycerol-induced muscle injury. RESULTS Alendronate inhibited dexamethasone-induced myotube atrophy and myogenic differentiation inhibition in mouse myoblasts and primary human skeletal muscle-derived progenitor cells. Alendronate significantly abrogated dexamethasone-up-regulated sirtuin-3 (SIRT3), but not SIRT1, protein expression in myotubes. Both SIRT3 inhibitor AKG7 and SIRT3-siRNA transfection could also reverse dexamethasone-up-regulated atrogin-1 and SIRT3 protein expressions. Animal studies showed that low-dose alendronate by oral administration ameliorated the muscular malfunction in mouse models of denervation-induced muscle atrophy and glycerol-induced muscle injury with a negative regulation of SIRT3 expression. CONCLUSIONS The putative mechanism by which muscle atrophy was improved with alendronate might be through the SIRT3 down-regulation. These findings suggest that alendronate can be a promising therapeutic strategy for management of muscle wasting-related diseases and sarcopenia.
Collapse
Affiliation(s)
- Hsien‐Chun Chiu
- Institute of Toxicology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Chen‐Yuan Chiu
- Institute of Toxicology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Institute of Food Safety and HealthCollege of Public Health, National Taiwan UniversityTaipeiTaiwan
| | - Rong‐Sen Yang
- Departments of Orthopaedics, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ding‐Cheng Chan
- Department of Geriatrics and Gerontology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shing‐Hwa Liu
- Institute of Toxicology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan
- Department of Pediatrics, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Chih‐Kang Chiang
- Institute of Toxicology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of Internal Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
40
|
Cloos J, Roeten MS, Franke NE, van Meerloo J, Zweegman S, Kaspers GJ, Jansen G. (Immuno)proteasomes as therapeutic target in acute leukemia. Cancer Metastasis Rev 2018; 36:599-615. [PMID: 29071527 PMCID: PMC5721123 DOI: 10.1007/s10555-017-9699-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Margot Sf Roeten
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels E Franke
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan van Meerloo
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan Jl Kaspers
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Princess Màxima Center, Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Modulating Metabolism to Improve Cancer-Induced Muscle Wasting. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7153610. [PMID: 29785246 PMCID: PMC5896402 DOI: 10.1155/2018/7153610] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/25/2017] [Indexed: 12/13/2022]
Abstract
Muscle wasting is one of the main features of cancer cachexia, a multifactorial syndrome frequently occurring in oncologic patients. The onset of cachexia is associated with reduced tolerance and response to antineoplastic treatments, eventually leading to clinical conditions that are not compatible with survival. Among the mechanisms underlying cachexia, protein and energy dysmetabolism play a major role. In this regard, several potential treatments have been proposed, mainly on the basis of promising results obtained in preclinical models. However, at present, no treatment yet reached validation to be used in the clinical practice, although several drugs are currently tested in clinical trials for their ability to improve muscle metabolism in cancer patients. Along this line, the results obtained in both experimental and clinical studies clearly show that cachexia can be effectively approached by a multidirectional strategy targeting nutrition, inflammation, catabolism, and inactivity at the same time. In the present study, approaches aimed to modulate muscle metabolism in cachexia will be reviewed.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Cancer cachexia is a frequent syndrome that affects patient quality of life, anticancer treatment effectiveness, and overall survival. The lack of anticancer cachexia therapies likely relies on the complexity of the syndrome that renders difficult to design appropriate clinical trials and, conversely, on the insufficient knowledge of the underlying pathogenetic mechanisms. The aim of this review is to collect the most relevant latest information regarding cancer cachexia with a special focus on the experimental systems adopted for modeling the disease in translational studies. RECENT FINDINGS The scenario of preclinical models for the study of cancer cachexia is not static and is rapidly evolving in parallel with new prospective treatment options. The well established syngeneic models using rodent cancer cells injected ectopically are now used alongside new ones featuring orthotopic injection, human cancer cell or patient-derived xenograft, or spontaneous tumors in genetically engineered mice. SUMMARY The use of more complex animal models that better resemble cancer cachexia, ideally including also the administration of chemotherapy, will expand the understanding of the underlying mechanisms and will allow a more reliable evaluation of prospective drugs for translational purposes.
Collapse
|
43
|
Cole CL, Kleckner IR, Jatoi A, Schwarz EM, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM CLINICAL REPORTS 2018; 3:e00065. [PMID: 31134216 PMCID: PMC6534125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Progressive skeletal muscle wasting in cancer cachexia involves a process of dysregulated protein synthesis and breakdown. This catabolism may be the result of mal-nutrition, and an upregulation of both pro-inflammatory cytokines and the ubiquitin proteasome pathway (UPP), which can subsequently increase myostatin and activin A release. The skeletal muscle wasting associated with cancer cachexia is clinically significant, it can contribute to treatment toxicity or the premature discontinuation of treatments resulting in increases in morbidity and mortality. Thus, there is a need for further investigation into the pathophysiology of muscle wasting in cancer cachexia to develop effective prophylactic and therapeutic interventions. Several studies have identified a central role for chronic-systemic inflammation in initiating and perpetuating muscle wasting in patients with cancer. Interestingly, while exercise has shown efficacy in improving muscle quality, only recently have investigators begun to assess the impact that exercise has on chronic-systemic inflammation. To put this new information into context with established paradigms, here we review several biological pathways (e.g. dysfunctional inflammatory response, hypothalamus pituitary adrenal axis, and increased myostatin/activin A activity) that may be responsible for the muscle wasting in patients with cancer. Additionally, we discuss the potential impact that exercise has on these pathways in the treatment of cancer-related muscle wasting. Exercise is an attractive intervention for muscle wasting in this population, partially because it disrupts chronic-systemic inflammation mediated catabolism. Most importantly, exercise is a potent stimulator of muscle synthesis, and therefore this therapy may reverse muscle damage caused by cancer cachexia.
Collapse
Affiliation(s)
- Calvin L. Cole
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, 14642
| | - Ian R. Kleckner
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, New York, 14642
| | - Aminah Jatoi
- Department of Oncology, Mayo Medical School, Rochester, Minnesota, 55905
| | - Edward M. Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, 14642
| | - Richard F. Dunne
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, New York, 14642,Division of Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, 14642
| |
Collapse
|
44
|
von Haehling S. Casting the net broader to confirm our imaginations: the long road to treating wasting disorders. J Cachexia Sarcopenia Muscle 2017; 8:870-880. [PMID: 29168628 PMCID: PMC5700431 DOI: 10.1002/jcsm.12256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Wasting embraces muscle and tissue wasting in sarcopenia and cachexia. This article describes recent advances in the field published in the Journal of Cachexia, Sarcopenia and Muscle concerning diagnostic tools, biomarker development, pathophysiology, and treatment. Studies discussed herein embrace those on sarcopenia and cachexia in heart failure, chronic obstructive pulmonary disease, and cancer including also animal models.
Collapse
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
| |
Collapse
|
45
|
Segatto M, Fittipaldi R, Pin F, Sartori R, Dae Ko K, Zare H, Fenizia C, Zanchettin G, Pierobon ES, Hatakeyama S, Sperti C, Merigliano S, Sandri M, Filippakopoulos P, Costelli P, Sartorelli V, Caretti G. Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nat Commun 2017; 8:1707. [PMID: 29167426 PMCID: PMC5700099 DOI: 10.1038/s41467-017-01645-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, Unit of General and Clinical Pathology, University of Turin, 10124, Torino, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Claudio Fenizia
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Elisa Sefora Pierobon
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Shinji Hatakeyama
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Paola Costelli
- Department of Clinical and Biological Sciences, Unit of General and Clinical Pathology, University of Turin, 10124, Torino, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Giuseppina Caretti
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
46
|
|
47
|
von Haehling S, Ebner N, Anker SD. Oodles of opportunities: the Journal of Cachexia, Sarcopenia and Muscle in 2017. J Cachexia Sarcopenia Muscle 2017; 8:675-680. [PMID: 29076661 PMCID: PMC5659063 DOI: 10.1002/jcsm.12247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
| | - Nicole Ebner
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
| | - Stefan D. Anker
- Division of Cardiology and Metabolism—Heart Failure, Cachexia & Sarcopenia, Department of Cardiology (CVK); and Berlin‐Brandenburg Center for Regenerative Therapies (BCRT); Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK) BerlinCharité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
48
|
Abstract
Introduction Cachexia is a common complication of many and varied chronic disease processes, yet it has received very little attention as an area of clinical research effort until recently. We sought to survey the contemporary literature on published research into cachexia to define where it is being published and the proportion of output classified into the main types of research output. Methods I searched the PubMed listings under the topic research term "cachexia" and related terms for articles published in the calendar years of 2015 and 2016, regardless of language. Searches were conducted and relevant papers extracted by two observers, and disagreements were resolved by consensus. Results There were 954 publications, 370 of which were review articles or commentaries, 254 clinical observations or non-randomised trials, 246 original basic science reports and only 26 were randomised controlled trials. These articles were published in 478 separate journals but with 36% of them being published in a core set of 23 journals. The H-index of these papers was 25 and there were 147 papers with 10 or more citations. Of the top 100 cited papers, 25% were published in five journals. Of the top cited papers, 48% were review articles, 18% were original basic science, and 7% were randomised clinical trials. Discussion This analysis shows a steady but modest increase in publications concerning cachexia with a strong pipeline of basic science research but still a relative lack of randomised clinical trials, with none exceeding 1000 patients. Research in cachexia is still in its infancy, but the solid basic science effort offers hope that translation into randomised controlled clinical trials may eventually lead to effective therapies for this troubling and complex clinical disease process.
Collapse
|
49
|
Novel targeted therapies for cancer cachexia. Biochem J 2017; 474:2663-2678. [PMID: 28751550 DOI: 10.1042/bcj20170032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023]
Abstract
Anorexia and metabolic alterations are the main components of the cachectic syndrome. Glucose intolerance, fat depletion, muscle protein catabolism and other alterations are involved in the development of cancer cachexia, a multi-organ syndrome. Nutritional approach strategies are not satisfactory in reversing the cachectic syndrome. The aim of the present review is to deal with the recent therapeutic targeted approaches that have been designed to fight and counteract wasting in cancer patients. Indeed, some promising targeted therapeutic approaches include ghrelin agonists, selective androgen receptor agonists, β-blockers and antimyostatin peptides. However, a multi-targeted approach seems absolutely essential to treat patients affected by cancer cachexia. This approach should not only involve combinations of drugs but also nutrition and an adequate program of physical exercise, factors that may lead to a synergy, essential to overcome the syndrome. This may efficiently reverse the metabolic changes described above and, at the same time, ameliorate the anorexia. Defining this therapeutic combination of drugs/nutrients/exercise is an exciting project that will stimulate many scientific efforts. Other aspects that will, no doubt, be very important for successful treatment of cancer wasting will be an optimized design of future clinical trials, together with a protocol for staging cancer patients in relation to their degree of cachexia. This will permit that nutritional/metabolic/pharmacological support can be started early in the course of the disease, before severe weight loss occurs. Indeed, timing is crucial and has to be taken very seriously when applying the therapeutic approach.
Collapse
|
50
|
Aversa Z, Costelli P, Muscaritoli M. Cancer-induced muscle wasting: latest findings in prevention and treatment. Ther Adv Med Oncol 2017; 9:369-382. [PMID: 28529552 PMCID: PMC5424865 DOI: 10.1177/1758834017698643] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a severe and disabling clinical condition that frequently accompanies the development of many types of cancer. Muscle wasting is the hallmark of cancer cachexia and is associated with serious clinical consequences such as physical impairment, poor quality of life, reduced tolerance to treatments and shorter survival. Cancer cachexia may evolve through different stages of clinical relevance, namely pre-cachexia, cachexia and refractory cachexia. Given its detrimental clinical consequences, it appears mandatory to prevent and/or delay the progression of cancer cachexia to its refractory stage by implementing the early recognition and treatment of the nutritional and metabolic alterations occurring during cancer. Research on the molecular mechanisms underlying muscle wasting during cancer cachexia has expanded in the last few years, allowing the identification of several potential therapeutic targets and the development of many promising drugs. Several of these agents have already reached the clinical evaluation, but it is becoming increasingly evident that a single therapy may not be completely successful in the treatment of cancer-related muscle wasting, given its multifactorial and complex pathogenesis. This suggests that early and structured multimodal interventions (including targeted nutritional supplementation, physical exercise and pharmacological interventions) are necessary to prevent and/or treat the devastating consequences of this cancer comorbidity, and future research should focus on this approach.
Collapse
Affiliation(s)
- Zaira Aversa
- Department of Clinical Medicine, Sapienza University of Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Maurizio Muscaritoli
- Department of Clinical Medicine, Sapienza, University of Rome, Viale dell’Università 37, 00185 Rome, Italy
| |
Collapse
|