1
|
Chuang CH, Tai YA, Wu TJ, Ho YJ, Yeh SL. Quercetin attenuates cisplatin-induced fatigue through mechanisms associated with the regulation of the HPA axis and MCP-1 signaling. Front Nutr 2025; 12:1530132. [PMID: 39949542 PMCID: PMC11821496 DOI: 10.3389/fnut.2025.1530132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Cancer-related fatigue (CRF) is a common symptom induced by chemotherapy. The main objective of the present study was to investigate whether quercetin regulates the hypothalamic-pituitary-adrenal (HPA) axis and chemoattractant protein-1 (MCP-1) signaling, two factors contributing to CRF in mice exposed to cisplatin. Methods Male BALB/c mice were randomly assigned to the following five groups for 15 weeks: Control, CDDP, CDDP+TAK779 (an antagonist of MCP-1 receptor, human CC chemokine receptor R2 (CCR2)), CDDP+OQ (a diet containing 1% quercetin) and CDDP+IQ (quercetin given by ip, 10 mg/kg, 3 times/week). Results The results first showed that OQ and IQ significantly increased grip strength and locomotor activity, decreased plasma cortisol/corticosterone levels, and decreased the corticotropin releasing hormone (CRH) mRNA level in the brain tissues in mice exposed to CDDP. OQ and IQ also decreased CDDP-induced plasma levels of MCP-1 as well as the mRNA expression of MCP-1 and CCR2 in the brain stem. TAK779 significantly increased grip strength and tended to decrease the cortisol/corticosterone levels in CDDP-exposed mice, indicating the association between the HPA axis and MCP-1 signaling. Conclusion Taken together, the study suggests that quercetin could attenuate CDDP-induced CRF through the mechanisms associated with downregulation of the HPA axis and MCP-1 signaling in mice.
Collapse
Affiliation(s)
| | - Yu-An Tai
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Ting-Jing Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Lan Yeh
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Snoke DB, van der Velden JL, Bellafleur ER, Dearborn JS, Lenahan SM, Heininger SCJ, Ather JL, Sarausky H, Stephenson D, Reisz JA, D'Alessandro A, Majumdar D, Ahern TP, Sandler KL, Landman BA, Janssen-Heininger YMW, Poynter ME, Seward DJ, Toth MJ. Early adipose tissue wasting in a novel preclinical model of human lung cancer cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615385. [PMID: 39651308 PMCID: PMC11623500 DOI: 10.1101/2024.09.27.615385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Cancer cachexia (CC), a syndrome of skeletal muscle and adipose tissue wasting, reduces responsiveness to therapies and increases mortality. There are no approved treatments for CC, which may relate to discordance between pre-clinical models and human CC. To address the need for clinically relevant models, we generated tamoxifen-inducible, epithelial cell specific Kras G12D/+ ( G12D ) mice. G12D mice develop CC over a protracted time course and phenocopy tissue, cellular, mutational, transcriptomic, and metabolic characteristics of human lung CC. CC in G12D mice is characterized by early loss of adipose tissue, a phenotype confirmed in a large cohort of patients with lung cancer. Tumor-released factors promote adipocyte lipolysis, a driver of adipose wasting in human CC, and adipose tissue wasting was inversely related to tumor burden. Thus, G12D mice model key features of human lung CC and suggest a novel role for early adipose tissue wasting in CC.
Collapse
|
4
|
Pryce BR, Oles A, Talbert EE, Romeo MJ, Vaena S, Sharma S, Spadafora V, Tolliver L, Mahvi DA, Morgan KA, Lancaster WP, Beal E, Koren N, Watts B, Overstreet M, Berto S, Subramanian S, Calisir K, Crawford A, Neelon B, Ostrowski MC, Zimmers TA, Tidball JG, Wang DJ, Guttridge DC. Muscle inflammation is regulated by NF-κB from multiple cells to control distinct states of wasting in cancer cachexia. Cell Rep 2024; 43:114925. [PMID: 39475511 PMCID: PMC11774514 DOI: 10.1016/j.celrep.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024] Open
Abstract
Although cancer cachexia is classically characterized as a systemic inflammatory disorder, emerging evidence indicates that weight loss also associates with local tissue inflammation. We queried the regulation of this inflammation and its causality to cachexia by exploring skeletal muscle, whose atrophy strongly associates with poor outcomes. Using multiple mouse models and patient samples, we show that cachectic muscle is marked by enhanced innate immunity. Nuclear factor κB (NF-κB) activity in multiple cells, including satellite cells, myofibers, and fibro-adipogenic progenitors, promotes macrophage expansion equally derived from infiltrating monocytes and resident cells. Moreover, NF-κB-activated cells and macrophages undergo crosstalk; NF-κB+ cells recruit macrophages to inhibit regeneration and promote atrophy but, interestingly, also protect myofibers, while macrophages stimulate NF-κB+ cells to sustain an inflammatory feedforward loop. Together, we propose that NF-κB functions in multiple cells in the muscle microenvironment to stimulate macrophages that both promote and protect against muscle wasting in cancer.
Collapse
Affiliation(s)
- Benjamin R Pryce
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Oles
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Erin E Talbert
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sudarshana Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Victoria Spadafora
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren Tolliver
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David A Mahvi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Katherine A Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - William P Lancaster
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Eryn Beal
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Natlie Koren
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Bailey Watts
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Morgan Overstreet
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Suganya Subramanian
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kubra Calisir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna Crawford
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Neelon
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael C Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Teresa A Zimmers
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Portland, Oregon Health Science University, Portland, OR 97239, USA
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David J Wang
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Hayashi Y, Kamimura-Aoyagi Y, Nishikawa S, Noka R, Iwata R, Iwabuchi A, Watanabe Y, Matsunuma N, Yuki K, Kobayashi H, Harada Y, Harada H. IL36G-producing neutrophil-like monocytes promote cachexia in cancer. Nat Commun 2024; 15:7662. [PMID: 39266531 PMCID: PMC11393454 DOI: 10.1038/s41467-024-51873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Most patients with advanced cancer develop cachexia, a multifactorial syndrome characterized by progressive skeletal muscle wasting. Despite its catastrophic impact on survival, the critical mediators responsible for cancer cachexia development remain poorly defined. Here, we show that a distinct subset of neutrophil-like monocytes, which we term cachexia-inducible monocytes (CiMs), emerges in the advanced cancer milieu and promotes skeletal muscle loss. Unbiased transcriptome analysis reveals that interleukin 36 gamma (IL36G)-producing CD38+ CiMs are induced in chronic monocytic blood cancer characterized by prominent cachexia. Notably, the emergence of CiMs and the activation of CiM-related gene signatures in monocytes are confirmed in various advanced solid cancers. Stimuli of toll-like receptor 4 signaling are responsible for the induction of CiMs. Genetic inhibition of IL36G-mediated signaling attenuates skeletal muscle loss and rescues cachexia phenotypes in advanced cancer models. These findings indicate that the IL36G-producing subset of neutrophil-like monocytes could be a potential therapeutic target in cancer cachexia.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
- Laboratory of Cancer Pathobiology and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| | - Yasushige Kamimura-Aoyagi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sayuri Nishikawa
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rena Noka
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rika Iwata
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Asami Iwabuchi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yushin Watanabe
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Natsumi Matsunuma
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kanako Yuki
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroki Kobayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
6
|
Geppert J, Rohm M. Cancer cachexia: biomarkers and the influence of age. Mol Oncol 2024; 18:2070-2086. [PMID: 38414161 PMCID: PMC11467804 DOI: 10.1002/1878-0261.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cachexia (Ccx) is a complex metabolic condition characterized by pronounced muscle and fat wasting, systemic inflammation, weakness and fatigue. Up to 30% of cancer patients succumb directly to Ccx, yet therapies that effectively address this perturbed metabolic state are rare. In recent decades, several characteristics of Ccx have been established in mice and humans, of which we here highlight adipose tissue dysfunction, muscle wasting and systemic inflammation, as they are directly linked to biomarker discovery. To counteract cachexia pathogenesis as early as possible and mitigate its detrimental impact on anti-cancer treatments, identification and validation of clinically endorsed biomarkers assume paramount importance. Ageing was recently shown to affect both the validity of Ccx biomarkers and Ccx development, but the underlying mechanisms are still unknown. Thus, unravelling the intricate interplay between ageing and Ccx can help to counteract Ccx pathogenesis and tailor diagnostic and treatment strategies to individual needs.
Collapse
Affiliation(s)
- Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Maria Rohm
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
7
|
Alissa N, Fang WB, Medrano M, Bergeron N, Kozai Y, Hu Q, Redding C, Thyfault J, Hamilton-Reeves J, Berkland C, Cheng N. CCL2 signaling promotes skeletal muscle wasting in non-tumor and breast tumor models. Dis Model Mech 2024; 17:dmm050398. [PMID: 38973385 DOI: 10.1242/dmm.050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Nadia Alissa
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nick Bergeron
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuuka Kozai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chloe Redding
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John Thyfault
- Department of Cell Biology and Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Nikki Cheng
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
9
|
Wang Y, Ding S. Extracellular vesicles in cancer cachexia: deciphering pathogenic roles and exploring therapeutic horizons. J Transl Med 2024; 22:506. [PMID: 38802952 PMCID: PMC11129506 DOI: 10.1186/s12967-024-05266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China
- School of Medicine, Nantong University, Nantong, 226001, P.R. China
| | - Shengguang Ding
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China.
| |
Collapse
|
10
|
Liu M, Ren Y, Zhou Z, Yang J, Shi X, Cai Y, Arreola AX, Luo W, Fung KM, Xu C, Nipp RD, Bronze MS, Zheng L, Li YP, Houchen CW, Zhang Y, Li M. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia. Cancer Cell 2024; 42:885-903.e4. [PMID: 38608702 PMCID: PMC11162958 DOI: 10.1016/j.ccell.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yu Ren
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xiuhui Shi
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yang Cai
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex X Arreola
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wenyi Luo
- Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ryan D Nipp
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael S Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yi-Ping Li
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
11
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
12
|
Gan X, Zeng Y, Huang J, Chen X, Kang H, Huang S. Tumor-Derived Sarcopenia Factors Are Diverse in Different Tumor Types: A Pan-Cancer Analysis. Biomedicines 2024; 12:329. [PMID: 38397931 PMCID: PMC10887289 DOI: 10.3390/biomedicines12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer-associated muscle wasting is a widespread syndrome in people with cancer and is characterized by weight loss and muscle atrophy, leading to increased morbidity and mortality. However, the tumor-derived factors that affect the development of muscle wasting and the mechanism by which they act remain unknown. To address this knowledge gap, we aimed to delineate differences in tumor molecular characteristics (especially secretion characteristics) between patients with and without sarcopenia across 10 tumor types from The Cancer Genome Atlas (TCGA). We integrated radiological characteristics from CT scans of TCGA cancer patients, which allowed us to calculate skeletal muscle area (SMA) to confirm sarcopenia. We combined TCGA and GTEx (The Genotype-Tissue Expression) data to analyze upregulated secretory genes in 10 tumor types compared with normal tissues. Upregulated secretory genes in the tumor microenvironment and their relation to SMA were analyzed to identify potential muscle wasting biomarkers (560 samples). Meanwhile, their predictive values for patient survival was validated in 3530 samples in 10 tumor types. A total of 560 participants with transcriptomic data and SMA were included. Among those, 136 participants (24.28%) were defined as having sarcopenia based on SMA. Enrichment analysis for upregulated secretory genes in cancers revealed that pathways associated with muscle wasting were strongly enriched in tumor types with a higher prevalence of sarcopenia. A series of SMA-associated secretory protein-coding genes were identified in cancers, which showed distinct gene expression profiles according to tumor type, and could be used to predict prognosis in cancers (p value ≤ 0.002). Unfortunately, those genes were different and rarely overlapped across tumor types. Tumor secretome characteristics were closely related to sarcopenia. Highly expressed secretory mediators in the tumor microenvironment were associated with SMA and could affect the overall survival of cancer patients, which may provide a valuable starting point for the further understanding of the molecular basis of muscle wasting in cancers. More importantly, tumor-derived pro-sarcopenic factors differ across tumor types and genders, which implies that mechanisms of cancer-associated muscle wasting are complex and diverse across tumors, and may require individualized treatment approaches.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Yunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Shuaiwen Huang
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular Mechanisms of Cachexia: A Review. Cells 2024; 13:252. [PMID: 38334644 PMCID: PMC10854699 DOI: 10.3390/cells13030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Cachexia is a condition characterized by substantial loss of body weight resulting from the depletion of skeletal muscle and adipose tissue. A considerable fraction of patients with advanced cancer, particularly those who have been diagnosed with pancreatic or gastric cancer, lung cancer, prostate cancer, colon cancer, breast cancer, or leukemias, are impacted by this condition. This syndrome manifests at all stages of cancer and is associated with an unfavorable prognosis. It heightens the susceptibility to surgical complications, chemotherapy toxicity, functional impairments, breathing difficulties, and fatigue. The early detection of patients with cancer cachexia has the potential to enhance both their quality of life and overall survival rates. Regarding this matter, blood biomarkers, although helpful, possess certain limitations and do not exhibit universal application. Additionally, the available treatment options for cachexia are currently limited, and there is a lack of comprehensive understanding of the underlying molecular pathways associated with this condition. Thus, this review aims to provide an overview of molecular mechanisms associated with cachexia and potential therapeutic targets for the development of effective treatments for this devastating condition.
Collapse
Affiliation(s)
- Mahdi Neshan
- Department of General Surgery, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915887857, Iran;
| | - Diamantis I. Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Xu Han
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| |
Collapse
|
14
|
Tambaro F, Imbimbo G, Ferraro E, Andreini M, Belli R, Amabile MI, Ramaccini C, Lauteri G, Nigri G, Muscaritoli M, Molfino A. Assessment of lipolysis biomarkers in adipose tissue of patients with gastrointestinal cancer. Cancer Metab 2024; 12:1. [PMID: 38167536 PMCID: PMC10762976 DOI: 10.1186/s40170-023-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Adipose tissue metabolism may be impaired in patients with cancer. In particular, increased lipolysis was described in cancer-promoting adipose tissue atrophy. For this reason, we assessed the expression of the lipolysis-associated genes and proteins in subcutaneous adipose tissue (SAT) of gastrointestinal (GI) cancer patients compared to controls to verify their involvement in cancer, among different types of GI cancers, and in cachexia. METHODS We considered patients with GI cancer (gastric, pancreatic, and colorectal) at their first diagnosis, with/without cachexia, and controls with benign diseases. We collected SAT and total RNA was extracted and ATGL, HSL, PPARα, and MCP1 were analyzed by qRT-PCR. Western blot was performed to evaluate CGI-58, PLIN1 and PLIN5. RESULTS We found higher expression of ATGL and HSL in GI cancer patients with respect to controls (p ≤ 0.008) and a trend of increase for PPARα (p = 0.055). We found an upregulation of ATGL in GI cancer patients with cachexia (p = 0.033) and without cachexia (p = 0.017) vs controls. HSL was higher in patients with cachexia (p = 0.020) and without cachexia (p = 0.021), compared to controls. ATGL was upregulated in gastric cancer vs controls (p = 0.014) and higher HSL was found in gastric (p = 0.008) and in pancreatic cancer (p = 0.033) vs controls. At the protein level, we found higher CGI-58 in cancer vs controls (p = 0.019) and in cachectic vs controls (p = 0.029), as well as in gastric cancer vs controls (p = 0.027). CONCLUSION In our cohort of GI cancer patients, we found a modulation in the expression of genes and proteins involved in lipolysis, and differences were interestingly detected according to cancer type.
Collapse
Affiliation(s)
- Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Imbimbo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Martina Andreini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Ida Amabile
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Lauteri
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Nigri
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Qiu X, Lu R, He Q, Chen S, Huang C, Lin D. Metabolic signatures and potential biomarkers for the diagnosis and treatment of colon cancer cachexia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1913-1924. [PMID: 37705348 PMCID: PMC11294056 DOI: 10.3724/abbs.2023151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer cachexia (CAC) is a debilitating condition that often arises from noncachexia cancer (NCAC), with distinct metabolic characteristics and medical treatments. However, the metabolic changes and underlying molecular mechanisms during cachexia progression remain poorly understood. Understanding the progression of CAC is crucial for developing diagnostic approaches to distinguish between CAC and NCAC stages, facilitating appropriate treatment for cancer patients. In this study, we establish a mouse model of colon CAC and categorize the mice into three groups: CAC, NCAC and normal control (NOR). By performing nuclear magnetic resonance (NMR)-based metabolomic profiling on mouse sera, we elucidate the metabolic properties of these groups. Our findings unveil significant differences in the metabolic profiles among the CAC, NCAC and NOR groups, highlighting significant impairments in energy metabolism and amino acid metabolism during cachexia progression. Additionally, we observe the elevated serum levels of lysine and acetate during the transition from the NCAC to CAC stages. Using multivariate ROC analysis, we identify lysine and acetate as potential biomarkers for distinguishing between CAC and NCAC stages. These biomarkers hold promise for the diagnosis of CAC from noncachexia cancer. Our study provides novel insights into the metabolic mechanisms underlying cachexia progression and offers valuable avenues for the diagnosis and treatment of CAC in clinical settings.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qiqing He
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Shu Chen
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Caihua Huang
- Research and Communication Center of Exercise and HealthXiamen University of TechnologyXiamen361005China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
16
|
McNearney TA, Digbeu BDE, Baillargeon JG, Ladnier D, Rahib L, Matrisian LM. Pre-Diagnosis Pain in Patients With Pancreatic Cancer Signals the Need for Aggressive Symptom Management. Oncologist 2023; 28:e1185-e1197. [PMID: 37285228 PMCID: PMC10712702 DOI: 10.1093/oncolo/oyad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVE This study assessed the impact of pancreatic cancer (PC) pain on associated symptoms, activities, and resource utilization from 2016 to 2020 in an online patient registry. PATIENTS AND METHODS Responses from PC patient volunteers (N = 1978) were analyzed from online surveys in a cross-sectional study. Comparisons were performed between PC patient groups reporting, (1) the presence vs. absence of pre-diagnosis PC pain, (2) high (4-8) vs. low (0-3) pain intensity scores on an 11-point numerical rating scale (NRS), and (3) year of PC diagnosis (2010-2020). Descriptive statistics and all bivariate analyses were performed using Chi-square or Fisher's Exact tests. RESULTS PC pain was the most frequently reported pre-diagnosis symptom (62%). Pre-diagnostic PC pain was reported more frequently by women, those with a younger age at diagnosis, and those with PC that spread to the liver and peritoneum. Those with pre-diagnostic PC pain vs. those without reported higher pain intensities (2.64 ± 2.54 vs.1.56 ± 2.01 NRS mean ± SD, respectively, P = .0039); increased frequencies of post-diagnosis symptoms of cramping after meals, feelings of indigestion, and weight loss (P = .02-.0001); and increased resource utilization in PC pain management: (ER visits N = 86 vs. N = 6, P = .018 and analgesic prescriptions, P < .03). The frequency of high pain intensity scores was not decreased over a recent 11-year span. CONCLUSIONS PC pain continues to be a prominent PC symptom. Patients reporting pre-diagnosis PC pain experience increased GI metastasis, symptoms burden, and are often undertreated. Its mitigation may require novel treatments, more resources dedicated to ongoing pain management and surveillance to improve outcomes.
Collapse
Affiliation(s)
- Terry A McNearney
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| | | | | | - Dennis Ladnier
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| | - Lola Rahib
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| | - Lynn M Matrisian
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| |
Collapse
|
17
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
18
|
Agulló-Ortuño MT, Mancebo E, Grau M, Núñez Sobrino JA, Paz-Ares L, López-Martín JA, Flández M. Tryptophan Modulation in Cancer-Associated Cachexia Mouse Models. Int J Mol Sci 2023; 24:13005. [PMID: 37629186 PMCID: PMC10455959 DOI: 10.3390/ijms241613005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome that interferes with treatment and reduces the quality of life and survival of patients. Currently, there is no effective treatment or biomarkers, and pathophysiology is not clear. Our group reported alterations on tryptophan metabolites in cachectic patients, so we aim to investigate the role of tryptophan using two cancer-associated cachexia syngeneic murine models, melanoma B16F10, and pancreatic adenocarcinoma that is KPC-based. Injected mice showed signs of cancer-associated cachexia as reduction in body weight and raised spleen weight, MCP1, and carbonilated proteins in plasma. CRP and Myostatin also increased in B16F10 mice. Skeletal muscle showed a decrease in quadriceps weight and cross-sectional area (especially in B16F10). Higher expression of atrophy genes, mainly Atrogin1, was also observed. Plasmatic tryptophan levels in B16F10 tumor-bearing mice decreased even at early steps of tumorigenesis. In KPC-injected mice, tryptophan fluctuated but were also reduced and in cachectic patients were significantly lower. Treatment with 1-methyl-tryptophan, an inhibitor of tryptophan degradation, in the murine models resulted in the restoration of plasmatic tryptophan levels and an improvement on splenomegaly and carbonilated proteins levels, while changes in plasmatic inflammatory markers were mild. After the treatment, CCR2 expression in monocytes diminished and lymphocytes, Tregs, and CD8+, were activated (seen by increased in CD127 and CD25 expression, respectively). These immune cell changes pointed to an improvement in systemic inflammation. While treatment with 1-MT did not show benefits in terms of muscle wasting and atrophy in our experimental setting, muscle functionality was not affected and central nuclei fibers appeared, being a feature of regeneration. Therefore, tryptophan metabolism pathway is a promising target for inflammation modulation in cancer-associated cachexia.
Collapse
Affiliation(s)
- M. Teresa Agulló-Ortuño
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain; (M.T.A.-O.); (L.P.-A.)
- Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
- Biomedical Research Networking Centre on Oncology—CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nursing, Facultad de Fisioterapia y Enfermería, Universidad de Castilla La-Mancha (UCLM), 45071 Toledo, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Montserrat Grau
- Animal Facility, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Juan Antonio Núñez Sobrino
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Luis Paz-Ares
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain; (M.T.A.-O.); (L.P.-A.)
- Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
- Biomedical Research Networking Centre on Oncology—CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
- Medicine Department, Facultad de Medicina y Cirugía, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - José A. López-Martín
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. Córdoba s/n, 28041 Madrid, Spain;
| | - Marta Flández
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Av. Córdoba s/n, 28041 Madrid, Spain; (M.T.A.-O.); (L.P.-A.)
- Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
19
|
Yamakawa T, Zhang G, Najjar LB, Li C, Itakura K. The uncharacterized transcript KIAA0930 confers a cachexic phenotype on cancer cells. Oncotarget 2023; 14:723-737. [PMID: 37477523 PMCID: PMC10360925 DOI: 10.18632/oncotarget.28476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Patients with cancer cachexia have a poor prognosis and impaired quality of life. Numerous studies using preclinical models have shown that inflammatory cytokines play an important role in the development of cancer cachexia; however, no clinical trial targeting cytokines has been successful. Therefore, it is essential to identify molecular mechanisms to develop anti-cachexia therapies. Here we identified the uncharacterized transcript KIAA0930 as a candidate cachexic factor based on analyses of microarray datasets and an in vitro muscle atrophy assay. While conditioned media from pancreatic, colorectal, gastric, and tongue cancer cells caused muscle atrophy in vitro, conditioned medium from KIAA0930 knockdown cells did not. The PANC-1 orthotopic xenograft study showed that the tibialis anterior muscle weight and cross-sectional area were increased in mice bearing KIAA0930 knockdown cells compared to control mice. Interestingly, KIAA0930 knockdown did not cause consistent changes in the secretion of inflammatory cytokines/chemokines from a variety of cancer cell lines. An initial characterization experiment showed that KIAA0930 is localized in the cytosol and not secreted from cells. These data suggest that the action of KIAA0930 is independent of the expression of cytokines/chemokines and that KIAA0930 could be a novel therapeutic target for cachexia.
Collapse
Affiliation(s)
- Takahiro Yamakawa
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guoxiang Zhang
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Liza Bengrine Najjar
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chun Li
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
20
|
Liao WC, Chen CT, Tsai YS, Wang XY, Chang YT, Wu MS, Chow LP. S100A8, S100A9 and S100A8/A9 heterodimer as novel cachexigenic factors for pancreatic cancer-induced cachexia. BMC Cancer 2023; 23:513. [PMID: 37280516 DOI: 10.1186/s12885-023-11009-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Cancer cachexia, occurring in ~ 80% pancreatic cancer (PC) patients overall, is a paraneoplastic syndrome mediated by cancer-induced systemic inflammation and characterized by weight loss and skeletal muscle wasting. Identifying clinically relevant PC-derived pro-inflammatory factors with cachexigenic potential may provide novel insights and therapeutic strategies. METHODS Pro-inflammatory factors with cachexigenic potential in PC were identified by bioinformatic analysis. The abilities of selected candidate factors in inducing skeletal muscle atrophy were investigated. Expression levels of candidate factors in tumors and sera was compared between PC patients with and without cachexia. Associations between serum levels of the candidates and weight loss were assessed in PC patients. RESULTS S100A8, S100A9, and S100A8/A9 were identified and shown to induce C2C12 myotube atrophy. Tumors of PC patients with cachexia had markedly elevated expression of S100A8 (P = 0.003) and S100A9 (P < 0.001). PC patients with cachexia had significantly higher serum levels of S100A8, S100A9 and S100A8/A9. Serum levels of these factors positively correlated with percentage of weight loss [correlation coefficient: S100A8: 0.33 (P < 0.001); S100A9: 0.30 (P < 0.001); S100A8/A9: 0.24 (P = 0.004)] and independently predicted the occurrence of cachexia [adjusted odds ratio (95% confidence interval) per 1ng/ml increase: S100A8 1.11 (1.02-1.21), P = 0.014; S100A9 1.10 (1.04-1.16), P = 0.001; per 1 µg/ml increase: S100A8/A9 1.04 (1.01-1.06), P = 0.009]. CONCLUSIONS Atrophic effects of S100A8, S100A9, and S100A8/A9 indicated them as potential pathogenic factors of PC-induced cachexia. In addition, the correlation with the degree of weight loss and prediction of cachexia in PC patients implicated their potential utility in the diagnosis of PC-induced cachexia.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ta Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - You-Shu Tsai
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Xin-Ya Wang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Yen-Tzu Chang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan.
| |
Collapse
|
21
|
Dolly A, Pötgens SA, Thibaut MM, Neyrinck AM, de Castro GS, Galbert C, Lefevre C, Wyart E, Gomes SP, Gonçalves DC, Lanthier N, Baldin P, Huot JR, Bonetto A, Seelaender M, Delzenne NM, Sokol H, Bindels LB. Impairment of aryl hydrocarbon receptor signalling promotes hepatic disorders in cancer cachexia. J Cachexia Sarcopenia Muscle 2023; 14:1569-1582. [PMID: 37127348 PMCID: PMC10235873 DOI: 10.1002/jcsm.13246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AHR) is expressed in the intestine and liver, where it has pleiotropic functions and target genes. This study aims to explore the potential implication of AHR in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. Specifically, we tested the hypothesis that targeting AHR can alleviate cachectic features, particularly through the gut-liver axis. METHODS AHR pathways were explored in multiple tissues from four experimental mouse models of cancer cachexia (C26, BaF3, MC38 and APCMin/+ ) and from non-cachectic mice (sham-injected mice and non-cachexia-inducing [NC26] tumour-bearing mice), as well as in liver biopsies from cancer patients. Cachectic mice were treated with an AHR agonist (6-formylindolo(3,2-b)carbazole [FICZ]) or an antibody neutralizing interleukin-6 (IL-6). Key mechanisms were validated in vitro on HepG2 cells. RESULTS AHR activation, reflected by the expression of Cyp1a1 and Cyp1a2, two major AHR target genes, was deeply reduced in all models (C26 and BaF3, P < 0.001; MC38 and APCMin/+ , P < 0.05) independently of anorexia. This reduction occurred early in the liver (P < 0.001; before the onset of cachexia), compared to the ileum and skeletal muscle (P < 0.01; pre-cachexia stage), and was intrinsically related to cachexia (C26 vs. NC26, P < 0.001). We demonstrate a differential modulation of AHR activation in the liver (through the IL-6/hypoxia-inducing factor 1α pathway) compared to the ileum (attributed to the decreased levels of indolic AHR ligands, P < 0.001), and the muscle. In cachectic mice, FICZ treatment reduced hepatic inflammation: expression of cytokines (Ccl2, P = 0.005; Cxcl2, P = 0.018; Il1b, P = 0.088) with similar trends at the protein levels, expression of genes involved in the acute-phase response (Apcs, P = 0.040; Saa1, P = 0.002; Saa2, P = 0.039; Alb, P = 0.003), macrophage activation (Cd68, P = 0.038) and extracellular matrix remodelling (Fga, P = 0.008; Pcolce, P = 0.025; Timp1, P = 0.003). We observed a decrease in blood glucose in cachectic mice (P < 0.0001), which was also improved by FICZ treatment (P = 0.026) through hepatic transcriptional promotion of a key marker of gluconeogenesis, namely, G6pc (C26 vs. C26 + FICZ, P = 0.029). Strikingly, these benefits on glycaemic disorders occurred independently of an amelioration of the gut barrier dysfunction. In cancer patients, the hepatic expression of G6pc was correlated to Cyp1a1 (Spearman's ρ = 0.52, P = 0.089) and Cyp1a2 (Spearman's ρ = 0.67, P = 0.020). CONCLUSIONS With this set of studies, we demonstrate that impairment of AHR signalling contributes to hepatic inflammatory and metabolic disorders characterizing cancer cachexia, paving the way for innovative therapeutic strategies in this context.
Collapse
Affiliation(s)
- Adeline Dolly
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUCLouvain, Université catholique de LouvainBrusselsBelgium
| | - Sarah A. Pötgens
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUCLouvain, Université catholique de LouvainBrusselsBelgium
| | - Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUCLouvain, Université catholique de LouvainBrusselsBelgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUCLouvain, Université catholique de LouvainBrusselsBelgium
| | - Gabriela S. de Castro
- Cancer Metabolism Research Group, Department of Surgery, LIM26 HC‐USPUniversity of São PauloSão PauloBrazil
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Chloé Galbert
- Sorbonne Université, INSERM, Centre de Recherche Saint‐Antoine, CRSA, AP‐HP, Saint Antoine Hospital, Gastroenterology DepartmentParisFrance
- Paris Center for Microbiome Medicine (PaCeMM) FHUParisFrance
| | - Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUCLouvain, Université catholique de LouvainBrusselsBelgium
| | - Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Silvio P. Gomes
- Departamento de Cirurgia, Faculdade de Medicina VeterinariaUniversidade de São PauloSão PauloBrazil
| | | | - Nicolas Lanthier
- Service d'Hépato‐Gastroentérologie, Cliniques universitaires Saint‐LucUCLouvainBrusselsBelgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et CliniqueUCLouvainBrusselsBelgium
| | - Pamela Baldin
- Service d'Anatomie Pathologique, Cliniques Universitaires Saint‐LucUCLouvainBrusselsBelgium
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Andrea Bonetto
- Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Marília Seelaender
- Cancer Metabolism Research Group, Department of Surgery, LIM26 HC‐USPUniversity of São PauloSão PauloBrazil
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUCLouvain, Université catholique de LouvainBrusselsBelgium
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint‐Antoine, CRSA, AP‐HP, Saint Antoine Hospital, Gastroenterology DepartmentParisFrance
- Paris Center for Microbiome Medicine (PaCeMM) FHUParisFrance
- INRAE, UMR1319 Micalis and AgroParisTechJouy‐en‐JosasFrance
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUCLouvain, Université catholique de LouvainBrusselsBelgium
- WELBIO DepartmentWEL Research InstituteWavreBelgium
| |
Collapse
|
22
|
Han Y, Kim HI, Park J. The Role of Natural Products in the Improvement of Cancer-Associated Cachexia. Int J Mol Sci 2023; 24:ijms24108772. [PMID: 37240117 DOI: 10.3390/ijms24108772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The enormous library of natural products and herbal medicine prescriptions presents endless research avenues. However, the lack of research evidence and trials on cancer-induced cachexia limit the therapeutic potential of natural products. Cancer-induced cachexia is a systemic wasting syndrome characterized by continuous body weight loss with skeletal muscle and adipose tissue atrophy. Cancer cachexia is a problem in itself and reduces the quality of life by lessening the treatment efficacy of anticancer drugs. This review summarizes single natural product extracts for cancer-induced cachexia, not compounds derived from natural products and herbal medicine prescriptions. This article also discusses the effect of natural products on cachexia induced by anticancer drugs and the role of AMPK in cancer-induced cachexia. The article included the mice model used in each experiment to encourage researchers to utilize animal models for research on cancer-induced cachexia in the future.
Collapse
Affiliation(s)
- Yohan Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Liz-Pimenta J, Tavares V, Neto BV, Santos JMO, Guedes CB, Araújo A, Khorana AA, Medeiros R. Thrombosis and cachexia in cancer: two partners in crime? Crit Rev Oncol Hematol 2023; 186:103989. [PMID: 37061076 DOI: 10.1016/j.critrevonc.2023.103989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Among cancer patients, thrombosis and cachexia are major causes of morbidity and mortality. Although the two may occur together, little is known about their possible relationship. Thus, a literature review was conducted by screening the databases PubMed, Scopus, SciELO, Medline and Web of Science. To summarize, cancer-associated thrombosis (CAT) and cancer-associated cachexia (CAC) seem to share several patient-, tumour- and treatment-related risk factors. Inflammation alongside metabolic and endocrine derangement is the potential missing link between CAT, CAC and cancer. Many key players, including specific pro-inflammatory cytokines, immune cells and hormones, appear to be implicated in both thrombosis and cachexia, representing attractive predictive markers and potential therapeutic targets. Altogether, the current evidence suggests a link between CAT and CAC, however, epidemiological studies are required to explore this potential relationship. Given the high incidence and negative impact of both diseases, further studies are needed for the better management of cancer patients.
Collapse
Affiliation(s)
- Joana Liz-Pimenta
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal; FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Valéria Tavares
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Beatriz Vieira Neto
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Joana M O Santos
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Catarina Brandão Guedes
- Department of Imunohemotherapy, Hospital da Senhora da Oliveira, 4835-044 Guimarães, Portugal
| | - António Araújo
- Department of Medical Oncology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal; UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alok A Khorana
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States of America
| | - Rui Medeiros
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer - Regional Nucleus of the North, 4200-172 Porto, Portugal; Biomedical Research Center, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
24
|
Zhao Z, Liu L, Li S, Hou X, Yang J. Advances in research on the relationship between thymoquinone and pancreatic cancer. Front Oncol 2023; 12:1092020. [PMID: 36686732 PMCID: PMC9846546 DOI: 10.3389/fonc.2022.1092020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer has one of the worst prognoses among the most common cancers in the world. Its characteristics include a high rate of metastasis and chemotherapeutic resistance, which present major challenges to the medical community. The potential anticancer effects of thymoquinone (TQ), which is the main bioactive compound of the black seeds of the Nigella sativa plant, have recently received widespread attention for their potential use in treating pancreatic cancer. TQ can inhibit cell proliferation, promote cancer cell apoptosis, inhibit cell invasion and metastasis, enhance chemotherapeutic sensitivity, inhibit angiogenesis, and exert anti-inflammatory effects. These anticancer effects predominantly involve the nuclear factor (NF)-κB, phosphoinositide 3 kinase (PI3K)/Akt, Notch, transforming growth factor (TGF)-β, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways as well as the regulation of the cell cycle, matrix metallopeptidase (MMP)-9 expression, and pyruvate kinase isozyme type M2 (PKM2) activity. TQ regulates the occurrence and development of pancreatic cancer at multiple levels and through multiple targets that communicate with each other. In this review, we summarize and discuss the analogs and carriers of TQ that have been developed in recent years. Given its multilevel anticancer effects, TQ may become a new therapeutic drug for treating pancreatic cancer in the future. This review presents a brief introduction to the research that has been conducted on TQ in relation to pancreatic cancer to provide a theoretical basis for future studies on the topic.
Collapse
Affiliation(s)
- Zhanxue Zhao
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China,Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Linxun Liu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Shuai Li
- Department of Clinical Pharmacy, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Xiaofan Hou
- Graduate school, Qinghai University, Xining, Qinghai, China
| | - Jinyu Yang
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China,*Correspondence: Jinyu Yang,
| |
Collapse
|
25
|
Murphy BT, Mackrill JJ, O'Halloran KD. Impact of cancer cachexia on respiratory muscle function and the therapeutic potential of exercise. J Physiol 2022; 600:4979-5004. [PMID: 36251564 PMCID: PMC10091733 DOI: 10.1113/jp283569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer cachexia is defined as a multi-factorial syndrome characterised by an ongoing loss of skeletal muscle mass and progressive functional impairment, estimated to affect 50-80% of patients and responsible for 20% of cancer deaths. Elevations in the morbidity and mortality rates of cachectic cancer patients has been linked to respiratory failure due to atrophy and dysfunction of the ventilatory muscles. Despite this, there is a distinct scarcity of research investigating the structural and functional condition of the respiratory musculature in cancer, with the majority of studies exclusively focusing on limb muscle. Treatment strategies are largely ineffective in mitigating the cachectic state. It is now widely accepted that an efficacious intervention will likely combine elements of pharmacology, nutrition and exercise. However, of these approaches, exercise has received comparatively little attention. Therefore, it is unlikely to be implemented optimally, whether in isolation or combination. In consideration of these limitations, the current review describes the mechanistic basis of cancer cachexia and subsequently explores the available respiratory- and exercise-focused literature within this context. The molecular basis of cachexia is thoroughly reviewed. The pivotal role of inflammatory mediators is described. Unravelling the mechanisms of exercise-induced support of muscle via antioxidant and anti-inflammatory effects in addition to promoting efficient energy metabolism via increased mitochondrial biogenesis, mitochondrial function and muscle glucose uptake provide avenues for interventional studies. Currently available pre-clinical mouse models including novel transgenic animals provide a platform for the development of multi-modal therapeutic strategies to protect respiratory muscles in people with cancer.
Collapse
Affiliation(s)
- Ben T. Murphy
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - John J. Mackrill
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Ken D. O'Halloran
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
26
|
Yu YC, Ahmed A, Lai HC, Cheng WC, Yang JC, Chang WC, Chen LM, Shan YS, Ma WL. Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1057930. [PMID: 36465353 PMCID: PMC9713001 DOI: 10.3389/fonc.2022.1057930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived cachexia (PDAC-CC) is a systemic disease involving the complex interplay between the tumor and multiple organs. The endocrine organ-like tumor (EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious homeostatic shifts that occur in PDAC-CC. Several studies have reported a markedly heterogeneous collection of cachectic mediators, signaling mechanisms, and metabolic pathways, including exocrine pancreatic insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC necessitate a careful review of recent literature summarizing cachectic mediators, corresponding metabolic functions, and the collateral impacts on wasting organs. The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic changes (microRNAs) are involved in cachexia development. Both tumors and host tissues can secrete multiple cachectic factors (beyond only inflammatory mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-specific, resulting in insufficient energy production to support tumor/cachexia development. Due to these complexities, changes in a single factor can trigger bi-directional feedback circuits that exacerbate PDAC and result in the development of irreversible cachexia. We provide an integrated review based on 267 papers and 20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the EOLT hypothesis that may provide a fundamental understanding of cachexia development and response to current treatments.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Chern Yang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yan-Shen Shan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan
| | - Wen-Lung Ma
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Identification of Potential Biomarkers for Cancer Cachexia and Anti-Fn14 Therapy. Cancers (Basel) 2022; 14:cancers14225533. [PMID: 36428623 PMCID: PMC9688504 DOI: 10.3390/cancers14225533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Developing therapies for cancer cachexia has not been successful to date, in part due to the challenges of achieving robust quantitative measures as a readout of patient treatment. Hence, identifying biomarkers to assess the outcomes of treatments for cancer cachexia is of great interest and important for accelerating future clinical trials. METHODS We established a novel xenograft model for cancer cachexia with a cachectic human PC3* cell line, which was responsive to anti-Fn14 mAb treatment. Using RNA-seq and secretomic analysis, genes differentially expressed in cachectic and non-cachectic tumors were identified and validated by digital droplet PCR (ddPCR). Correlation analysis was performed to investigate their impact on survival in cancer patients. RESULTS A total of 46 genes were highly expressed in cachectic PC3* tumors, which were downregulated by anti-Fn14 mAb treatment. High expression of the top 10 candidates was correlated with low survival and high cachexia risk in different cancer types. Elevated levels of LCN2 were observed in serum samples from cachectic patients compared with non-cachectic cancer patients. CONCLUSION The top 10 candidates identified in this study are candidates as potential biomarkers for cancer cachexia. The diagnostic value of LCN2 in detecting cancer cachexia is confirmed in patient samples.
Collapse
|
28
|
Wu HY, Trevino JG, Fang BL, Riner AN, Vudatha V, Zhang GH, Li YP. Patient-Derived Pancreatic Cancer Cells Induce C2C12 Myotube Atrophy by Releasing Hsp70 and Hsp90. Cells 2022; 11:cells11172756. [PMID: 36078164 PMCID: PMC9455268 DOI: 10.3390/cells11172756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer (PC) patients are highly prone to cachexia, a lethal wasting syndrome featuring muscle wasting with an undefined etiology. Recent data indicate that certain murine cancer cells induce muscle wasting by releasing Hsp70 and Hsp90 through extracellular vesicles (EVs) to activate p38β MAPK-mediated catabolic pathways primarily through Toll-like receptor 4 (TLR4). However, whether human PC induces cachexia through releasing Hsp70 and Hsp90 is undetermined. Here, we investigated whether patient-derived PC cells induce muscle cell atrophy directly through this mechanism. We compared cancer cells isolated from patient-derived xenografts (PDX) from three PC patients who had cachexia (PCC) with those of three early-stage lung cancer patients without cachexia (LCC) and two renal cancer patients who were not prone to cachexia (RCC). We observed small increases of Hsp70 and Hsp90 released by LCC and RCC in comparison to non-cancer control cells (NCC). However, PCC released markedly higher levels of Hsp70 and Hsp90 (~ 6-fold on average) than LCC and RCC. In addition, PCC released similarly increased levels of Hsp70/90-containing EVs. In contrast to RCC and LCC, PCC-conditioned media induced a potent catabolic response in C2C12 myotubes including the activation of p38 MAPK and transcription factor C/EBPβ, upregulation of E3 ligases UBR2 and MAFbx, and increase of autophagy marker LC3-II, resulting in the loss of the myosin heavy chain (MHC ~50%) and myotube diameter (~60%). Importantly, the catabolic response was attenuated by Hsp70- and Hsp90-neutralizing antibodies in a dose-dependent manner. These data suggest that human PC cells release high levels of Hsp70 and Hsp90 that induce muscle atrophy through a direct action on muscle cells.
Collapse
Affiliation(s)
- Hong-Yu Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bing-Liang Fang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea N. Riner
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guo-Hua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-500-6498; Fax: +1-(713)-500-0689
| |
Collapse
|
29
|
Chakedis JM, Dillhoff ME, Schmidt CR, Rajasekera PV, Evans DC, Williams TM, Guttridge DC, Talbert EE. Identification of circulating plasma ceramides as a potential sexually dimorphic biomarker of pancreatic cancer-induced cachexia. JCSM RAPID COMMUNICATIONS 2022; 5:254-265. [PMID: 36591536 PMCID: PMC9797184 DOI: 10.1002/rco2.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/01/2022] [Indexed: 06/17/2023]
Abstract
Background Cancer patients who exhibit cachexia lose weight and have low treatment tolerance and poor outcomes compared to cancer patients without weight loss. Despite the clear increased risk for patients, diagnosing cachexia still often relies on self-reported weight loss. A reliable biomarker to identify patients with cancer cachexia would be a valuable tool to improve clinical decision making and identification of patients at risk of adverse outcomes. Methods Targeted metabolomics, that included panels of amino acids, tricarboxylic acids, fatty acids, acylcarnitines, and sphingolipids, were conducted on plasma samples from patients with confirmed pancreatic ductal adenocarcinoma (PDAC) with and without cachexia and control patients without cancer (n=10/group, equally divided by sex). Additional patient samples were analyzed (total n=95) and Receiver Operating Characteristic (ROC) analyses were performed to establish if any metabolite could effectively serve as a biomarker of cachexia. Results Targeted profiling revealed that cachectic patients had decreased circulating levels of three sphingolipids compared to either non-cachectic PDAC patients or patients without cancer. The ratio of C18-ceramide to C24-ceramide (C18:C24) outperformed a number of other previously proposed biomarkers of cachexia (area under ROC = 0.810). It was notable that some biomarkers, including C18:C24, were only altered in cachectic males. Conclusions Our findings identify C18:C24 as a potentially new biomarker of PDAC-induced cachexia that also highlight a previously unappreciated sexual dimorphism in cancer cachexia.
Collapse
Affiliation(s)
- Jeffery M. Chakedis
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210, USA
- Present Address: Department of General Surgery, The Permanente Medical Group, Kaiser Permanente Walnut Creek Medical Center, Walnut Creek, CA 94596, USA
| | - Mary E. Dillhoff
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Carl R. Schmidt
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210, USA
- Present Address: Department of Surgery, West Virginia University, Morgantown, WV 26506
| | - Priyani V. Rajasekera
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - David C. Evans
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Division of Trauma, Critical Care, and Burn, The Ohio State University, Columbus, OH 43210, USA
- Present Address: OhioHealth Trauma Services, Columbus, OH 43215, USA
| | - Terence M. Williams
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
- Present Address: Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, 91010 USA
| | - Denis C. Guttridge
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Erin E. Talbert
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Present Address: Department of Health and Human Physiology and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Talbert EE, Guttridge DC. Emerging signaling mediators in the anorexia-cachexia syndrome of cancer. Trends Cancer 2022; 8:397-403. [PMID: 35190301 PMCID: PMC9035074 DOI: 10.1016/j.trecan.2022.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
The cachexia syndrome in cancer is characterized by weight loss resulting from the combination of anorexia and atrophy of adipose and skeletal muscle. For decades, inflammatory circulatory factors have been identified to regulate wasting, but inhibitors of these factors have not yielded the same clinical benefit as in animal models. Therefore, additional mediators of cachexia likely regulate this syndrome, and such factors might be more suitable for targeted intervention. We highlight several anorexia-cachexia signaling mediators, including activin A, myostatin, GDF15, and lipocalin-2. We discuss current evidence that these factors associate with cachexia in cancer patients, and summarize translational efforts including essential early-phase clinical trials. We conclude with thoughts on targeted and personalized approaches for future anti-cachexia treatments.
Collapse
Affiliation(s)
- Erin E Talbert
- Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University Iowa, Iowa City, IA 52242, USA
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, and the Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
31
|
Lai KC, Hong ZX, Hsieh JG, Lee HJ, Yang MH, Hsieh CH, Yang CH, Chen YR. IFIT2-depleted metastatic oral squamous cell carcinoma cells induce muscle atrophy and cancer cachexia in mice. J Cachexia Sarcopenia Muscle 2022; 13:1314-1328. [PMID: 35170238 PMCID: PMC8977969 DOI: 10.1002/jcsm.12943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) is a reported metastasis suppressor in oral squamous cell carcinoma (OSCC). Metastases and cachexia may coexist. The effect of cancer metastasis on cancer cachexia is largely unknown. We aimed to address this gap in knowledge by characterizing the cachectic phenotype of an IFIT2-depleted metastatic OSCC mouse model. METHODS Genetically engineered and xenograft tumour models were used to explore the effect of IFIT2-depleted metastatic OSCC on cancer cachexia. Muscle and organ weight changes, tumour burden, inflammatory cytokine profiles, body composition, food intake, serum albumin and C-reactive protein (CRP) levels, and survival were assessed. The activation of the IL6/p38 pathway in atrophied muscle was measured. RESULTS IFIT2-depleted metastatic tumours caused marked body weight loss (-18.2% vs. initial body weight, P < 0.001) and a poor survival rate (P < 0.01). Skeletal muscles were markedly smaller in IFIT2-depleted metastatic tumour-bearing mice (quadriceps: -28.7%, gastrocnemius: -29.4%, and tibialis: -24.3%, all P < 0.001). Tumour-derived circulating granulocyte-macrophage colony-stimulating factor (+772.2-fold, P < 0.05), GROα (+1283.7-fold, P < 0.05), IL6 (+245.8-fold, P < 0.001), IL8 (+616.9-fold, P < 0.001), IL18 (+24-fold, P < 0.05), IP10 (+18.8-fold, P < 0.001), CCL2 (+439.2-fold, P < 0.001), CCL22 (+9.1-fold, P < 0.01) and tumour necrosis factor α (+196.8-fold, P < 0.05) were elevated in IFIT2-depleted metastatic tumour-bearing mice. Murine granulocyte colony-stimulating factor (+61.4-fold, P < 0.001) and IL6 (+110.9-fold, P < 0.01) levels were significantly increased in IFIT2-depleted metastatic tumour-bearing mice. Serum CRP level (+82.1%, P < 0.05) was significantly increased in cachectic shIFIT2 mice. Serum albumin level (-26.7%, P < 0.01) was significantly decreased in cachectic shIFIT2 mice. An assessment of body composition revealed decreased fat (-81%, P < 0.001) and lean tissue (-21.7%, P < 0.01), which was consistent with the reduced food intake (-19.3%, P < 0.05). Muscle loss was accompanied by a smaller muscle cross-sectional area (-23.3%, P < 0.05). Muscle atrophy of cachectic IFIT2-depleted metastatic tumour-bearing mice (i.v.-shIFIT2 group) was associated with elevated IL6 (+2.7-fold, P < 0.05), phospho-p38 (+2.8-fold, P < 0.05), and atrogin-1 levels (+2.3-fold, P < 0.05) in the skeletal muscle. Neutralization of IL6 rescued shIFIT2 conditioned medium-induced myotube atrophy (+24.6%, P < 0.01). CONCLUSIONS Our results suggest that the development of shIFIT2 metastatic OSCC lesions promotes IL6 production and is accompanied by the loss of fat and lean tissue, anorexia, and muscle atrophy. This model is appropriate for the study of OSCC cachexia, especially in linking metastasis with cachexia.
Collapse
Affiliation(s)
- Kuo-Chu Lai
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Zi-Xuan Hong
- Masters Program in Pharmacology & Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyh-Gang Hsieh
- Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Humanities, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Ju Lee
- Department of Research and Development, Immunwork, Inc., Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Husu Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan.,Division of Hematology and Oncology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Han Yang
- Deportment of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yan-Ru Chen
- Masters Program in Pharmacology & Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Singh SK, Singh R. Cytokines and Chemokines in Cancer Cachexia and Its Long-Term Impact on COVID-19. Cells 2022; 11:cells11030579. [PMID: 35159388 PMCID: PMC8834385 DOI: 10.3390/cells11030579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cachexia remains a serious public health concern worldwide, particularly as cancer rates rise. Treatment is endangered, and survival is reduced, because this illness is commonly misdiagnosed and undertreated. Although weight loss is the most evident sign of cachexia, there are other early metabolic and inflammatory changes that occur before the most obvious symptoms appear. Cachexia-related inflammation is induced by a combination of factors, one of which is the release of inflammation-promoting chemicals by the tumor. Today, more scientists are beginning to believe that the development of SARS-CoV-2 (COVID-19) related cachexia is similar to cancer-related cachexia. It is worth noting that patients infected with COVID-19 have a significant inflammatory response and can develop cachexia. These correlations provide feasible reasons for the variance in the occurrence and severity of cachexia in human malignancies, therefore, specific therapeutic options for these individuals must be addressed based on disease types. In this review, we highlighted the role of key chemokines, cytokines, and clinical management in relation to cancer cachexia and its long-term impact on COVID-19 patients.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-756-6661; Fax: +1-404-752-1179
| |
Collapse
|
33
|
Ubachs J, van de Worp WRPH, Vaes RDW, Pasmans K, Langen RC, Meex RCR, van Bijnen AAJHM, Lambrechts S, Van Gorp T, Kruitwagen RFPM, Olde Damink SWM, Rensen SS. Ovarian cancer ascites induces skeletal muscle wasting in vitro and reflects sarcopenia in patients. J Cachexia Sarcopenia Muscle 2022; 13:311-324. [PMID: 34951138 PMCID: PMC8818657 DOI: 10.1002/jcsm.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cachexia-associated skeletal muscle wasting or 'sarcopenia' is highly prevalent in ovarian cancer and contributes to poor outcome. Drivers of cachexia-associated sarcopenia in ovarian cancer remain elusive, underscoring the need for novel and better models to identify tumour factors inducing sarcopenia. We aimed to assess whether factors present in ascites of sarcopenic vs. non-sarcopenic ovarian cancer patients differentially affect protein metabolism in skeletal muscle cells and to determine if these effects are correlated to cachexia-related patient characteristics. METHODS Fifteen patients with an ovarian mass and ascites underwent extensive physical screening focusing on cachexia-related parameters. Based on computed tomography-based body composition imaging, six cancer patients were classified as sarcopenic and six were not; three patients with a benign condition served as an additional non-sarcopenic control group. Ascites was collected, and concentrations of cachexia-associated factors were assessed by enzyme-linked immunosorbent assay. Subsequently, ascites was used for in vitro exposure of C2C12 myotubes followed by measurements of protein synthesis and breakdown by radioactive isotope tracing, qPCR-based analysis of atrophy-related gene expression, and NF-κB activity reporter assays. RESULTS C2C12 protein synthesis was lower after exposure to ascites from sarcopenic patients (sarcopenia 3.1 ± 0.1 nmol/h/mg protein vs. non-sarcopenia 5.5 ± 0.2 nmol/h/mg protein, P < 0.01), and protein breakdown rates tended to be higher (sarcopenia 31.2 ± 5.2% vs. non-sarcopenia 20.9 ± 1.9%, P = 0.08). Ascites did not affect MuRF1, Atrogin-1, or REDD1 expression of C2C12 myotubes, but NF-κB activity was specifically increased in cells exposed to ascites from sarcopenic patients (sarcopenia 2.2 ± 0.4-fold compared with control vs. non-sarcopenia 1.2 ± 0.2-fold compared with control, P = 0.01). Protein synthesis and breakdown correlated with NF-κB activity (rs = -0.60, P = 0.03 and rs = 0.67, P = 0.01, respectively). The skeletal muscle index of the ascites donors was also correlated to both in vitro protein synthesis (rs = 0.70, P = 0.005) and protein breakdown rates (rs = -0.57, P = 0.04). CONCLUSIONS Ascites of sarcopenic ovarian cancer patients induces pronounced skeletal muscle protein metabolism changes in C2C12 cells that correlate with clinical muscle measures of the patient and that are characteristic of cachexia. The use of ascites offers a new experimental tool to study the impact of both tumour-derived and systemic factors in various cachexia model systems, enabling identification of novel drivers of tissue wasting in ovarian cancer.
Collapse
Affiliation(s)
- Jorne Ubachs
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Wouter R P H van de Worp
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Pulmonology, Maastricht University, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kenneth Pasmans
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Ramon C Langen
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Pulmonology, Maastricht University, Maastricht, The Netherlands
| | - Ruth C R Meex
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Annemarie A J H M van Bijnen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Toon Van Gorp
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Roy F P M Kruitwagen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
34
|
Zhang G, Anderson LJ, Gao S, Sin TK, Zhang Z, Wu H, Jafri SH, Graf SA, Wu PC, Dash A, Garcia JM, Li YP. Weight Loss in Cancer Patients Correlates With p38β MAPK Activation in Skeletal Muscle. Front Cell Dev Biol 2021; 9:784424. [PMID: 34950660 PMCID: PMC8688918 DOI: 10.3389/fcell.2021.784424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Unintentional weight loss, a first clinical sign of muscle wasting, is a major threat to cancer survival without a defined etiology. We previously identified in mice that p38β MAPK mediates cancer-induced muscle wasting by stimulating protein catabolism. However, whether this mechanism is relevant to humans is unknown. In this study, we recruited men with cancer and weight loss (CWL) or weight stable (CWS), and non-cancer controls (NCC), who were consented to rectus abdominis (RA) biopsy and blood sampling (n = 20/group). In the RA of both CWS and CWL, levels of activated p38β MAPK and its effectors in the catabolic pathways were higher than in NCC, with progressively higher active p38β MAPK detected in CWL. Remarkably, levels of active p38β MAPK correlated with weight loss. Plasma analysis for factors that activate p38β MAPK revealed higher levels in some cytokines as well as Hsp70 and Hsp90 in CWS and/or CWL. Thus, p38β MAPK appears a biomarker of weight loss in cancer patients.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Song Gao
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Thomas K Sin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Hongyu Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Syed H Jafri
- Department of Medicine, Section of Oncology, University of Texas Health Science Center, Houston, TX, United States
| | - Solomon A Graf
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter C Wu
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, United States.,Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Atreya Dash
- Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States.,Department of Urology, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
35
|
Jiang L, Yang M, He S, Li Z, Li H, Niu T, Xie D, Mei Y, He X, Wei L, Huang P, Huang M, Zhang R, Wang L, Li J. MMP12 knockout prevents weight and muscle loss in tumor-bearing mice. BMC Cancer 2021; 21:1297. [PMID: 34863141 PMCID: PMC8642861 DOI: 10.1186/s12885-021-09004-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer is a malignant gastrointestinal cancer, in which some advanced patients would develop cancer cachexia (CAC). CAC is defined as a multi-factorial syndrome characterized by weight loss and muscle loss (with or without fat mass), leading to progressive dysfunction, thereby increasing morbidity and mortality. ApcMin/+ mice develop spontaneous intestinal adenoma, which provides an established model of colorectal cancer for CAC study. Upon studying the ApcMin/+ mouse model, we observed a marked decrease in weight gain beginning around week 15. Such a reduction in weight gain was rescued when ApcMin/+ mice were crossed with MMP12-/- mice, indicating that MMP12 has a role in age-related ApcMin/+-associated weight loss. As a control, the weight of MMP12-/- mice on a weekly basis, their weight were not significantly different from those of WT mice. METHODS ApcMin/+; MMP12-/- mice were obtained by crossing ApcMin/+ mice with MMP12 knockout (MMP12 -/-) mice. Histological scores were assessed using hematoxylin-eosin (H&E) staining. MMP12 expression was confirmed by immunohistochemistry and immunofluorescence staining. ELISA, protein microarrays and quantitative Polymerase Chain Reaction (qPCR) were used to investigate whether tumor could up-regulate IL-6. Cell-based assays and western blot were used to verify the regulatory relationship between IL-6 and MMP12. Fluorescence intensity was measured to determine whether MMP12 is associated with insulin and insulin-like growth factor 1 (IGF-1) in vitro. MMP12 inhibitors were used to explore whether MMP12 could affect the body weight of ApcMin/+ mice. RESULTS MMP12 knockout led to weight gain and expansion of muscle fiber cross-sectional area (all mice had C57BL/6 background) in ApcMin/+ mice, while inhibiting MMP12 could suppress weight loss in ApcMin/+ mice. MMP12 was up-regulated in muscle tissues and peritoneal macrophages of ApcMin/+ mice. IL-6 in tumor cells and colorectal cancer patients is up-regulation. IL-6 stimulated MMP12 secretion of macrophage. CONCLUSIONS MMP12 is essential for controlling body weight of Apc Min/+ mice. Our study shows that it exists the crosstalk between cancer cells and macrophages in muscle tissues that tumor cells secrete IL-6 inducing macrophages to up-regulate MMP12. This study may provide a new perspective of MMP12 in the treatment for weight loss induced by CAC.
Collapse
Affiliation(s)
- Lingbi Jiang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Mingming Yang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.,The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shihui He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhengyang Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Haobin Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ting Niu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Dehuan Xie
- The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaodong He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Lili Wei
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Pinzhu Huang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mingzhe Huang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rongxin Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Pu X, Chen D. Targeting Adipokines in Obesity-Related Tumors. Front Oncol 2021; 11:685923. [PMID: 34485124 PMCID: PMC8415167 DOI: 10.3389/fonc.2021.685923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, a global epidemic, is an independent risk factor for the occurrence and development of a variety of tumors, such as breast cancer, pancreatic cancer, ovarian cancer and colorectal cancer. Adipocytes are important endocrine cells in the tumor microenvironment of obesity-related tumors, which can secrete a variety of adipokines (such as leptin, adiponectin, estrogen, resistin, MIF and MCP-1, etc.), among which leptin, adiponectin and estrogen are the most in-depth and valuable ones. These adipokines are closely related to tumorigenesis and the progression of tumors. In recent years, more and more studies have shown that under chronic inflammatory conditions such as obesity, adipocytes secrete more adipokines to promote the tumorigenesis and development of tumors. However, it is worth noting that although adiponectin is also secreted by adipocytes, it has an anti-tumor effect, and can cross-talk with other adipokines (such as leptin and estrogen) and insulin to play an anti-tumor effect together. In addition, obesity is the main cause of insulin resistance, which can lead to the increase of the expression levels of insulin and insulin-like growth factor (IGF). As important regulators of blood glucose and lipid metabolism, insulin and IGF also play an important role in the progress of obesity related tumors. In view of the important role of adipokines secreted by adipocytes and insulin/IGF in tumors, this article not only elaborates leptin, adiponectin and estrogen secreted by adipocytes and their mechanism of action in the development of obesity- related tumors, but also introduces the relationship between insulin/IGF, a regulator of lipid metabolism, and obesity related tumors. At the same time, it briefly describes the cancer-promoting mechanism of resistin, MIF and MCP-1 in obesity-related tumors, and finally summarizes the specific treatment opinions and measures for various adipokines and insulin/insulin-like growth factors in recent years.
Collapse
Affiliation(s)
- Xi Pu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
37
|
Rupert JE, Narasimhan A, Jengelley DH, Jiang Y, Liu J, Au E, Silverman LM, Sandusky G, Bonetto A, Cao S, Lu X, O’Connell TM, Liu Y, Koniaris LG, Zimmers TA. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med 2021; 218:e20190450. [PMID: 33851955 PMCID: PMC8185651 DOI: 10.1084/jem.20190450] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Most patients with pancreatic adenocarcinoma (PDAC) suffer cachexia; some do not. To model heterogeneity, we used patient-derived orthotopic xenografts. These phenocopied donor weight loss. Furthermore, muscle wasting correlated with mortality and murine IL-6, and human IL-6 associated with the greatest murine cachexia. In cell culture and mice, PDAC cells elicited adipocyte IL-6 expression and IL-6 plus IL-6 receptor (IL6R) in myocytes and blood. PDAC induced adipocyte lipolysis and muscle steatosis, dysmetabolism, and wasting. Depletion of IL-6 from malignant cells halved adipose wasting and abolished myosteatosis, dysmetabolism, and atrophy. In culture, adipocyte lipolysis required soluble (s)IL6R, while IL-6, sIL6R, or palmitate induced myotube atrophy. PDAC cells activated adipocytes to induce myotube wasting and activated myotubes to induce adipocyte lipolysis. Thus, PDAC cachexia results from tissue crosstalk via a feed-forward, IL-6 trans-signaling loop. Malignant cells signal via IL-6 to muscle and fat, muscle to fat via sIL6R, and fat to muscle via lipids and IL-6, all targetable mechanisms for treatment of cachexia.
Collapse
Affiliation(s)
- Joseph E. Rupert
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | | | - Yanlin Jiang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Ernie Au
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
| | - Libbie M. Silverman
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - George Sandusky
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Sha Cao
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Xiaoyu Lu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas M. O’Connell
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Yunlong Liu
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
| | - Teresa A. Zimmers
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, IN
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
38
|
Wijler LA, Raats DAE, Elias SG, Dijk FJ, Quirindongo H, May AM, Furber MJW, Dorresteijn B, van Dijk M, Kranenburg O. Specialized nutrition improves muscle function and physical activity without affecting chemotherapy efficacy in C26 tumour-bearing mice. J Cachexia Sarcopenia Muscle 2021; 12:796-810. [PMID: 33956410 PMCID: PMC8200448 DOI: 10.1002/jcsm.12703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Skeletal muscle wasting and fatigue are commonly observed in cancer patients receiving chemotherapy and associated with reduced treatment outcome and quality of life. Nutritional support may mitigate these side effects, but potential interference with chemotherapy efficacy could be of concern. Here, we investigated the effects of an ω-3 polyunsaturated fatty acid (eicosapentaenoic acid and docosahexaenoic acid), leucine-enriched, high-protein (100% whey), additional vitamin D, and prebiotic fibres 'specific nutritional composition' (SNC) and chemotherapy on state-of-the-art tumour organoids and muscle cells and studied muscle function, physical activity, systemic inflammation, and chemotherapy efficacy in a mouse model of aggressive colorectal cancer (CRC). METHODS Tumour-bearing mice received a diet with or without SNC. Chemotherapy treatment consisted of oxaliplatin and 5-fluorouracil. Tumour formation was monitored by calliper measurements. Physical activity was continuously monitored by infrared imaging. Ex vivo muscle performance was determined by myography, muscle fatty acid composition by gas chromatography, and plasma cytokine levels by Luminex xMAP technology. Patient-derived CRC organoids and C2C12 myotubes were used to determine whether SNC affects chemotherapy sensitivity in vitro. RESULTS Specific nutritional composition increased muscle contraction capacity of chemotherapy-treated tumour-bearing mice (P < 0.05) and enriched ω-3 fatty acid composition in muscle without affecting treatment efficacy (P < 0.0001). Mice receiving SNC maintained physical activity after chemotherapy and showed decreased systemic inflammation. Therapeutic response of CRC organoids was unaffected by SNC nutrients, while cell viability and protein synthesis of muscle cells significantly improved. CONCLUSIONS The results show that specialized nutritional support can be used to maintain muscle function and physical activity levels during chemotherapy without increasing tumour viability. Therefore, nutritional strategies have potential value in promoting cancer and chemotherapy tolerance.
Collapse
Affiliation(s)
- Liza A Wijler
- Laboratory of Translational Oncology, Division of Imaging and Cancer, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danielle A E Raats
- Laboratory of Translational Oncology, Division of Imaging and Cancer, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Anne M May
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Onno Kranenburg
- Laboratory of Translational Oncology, Division of Imaging and Cancer, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.,Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Lin C, Wang Z, Shen L, Yi G, Li M, Li D. Genetic Variants, Circulating Level of MCP1 with Risk of Chronic Obstructive Pulmonary Disease: A Case-Control Study. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:561-567. [PMID: 34007204 PMCID: PMC8124012 DOI: 10.2147/pgpm.s303799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Background Chronic obstructive pulmonary disease (COPD) ranks one of the major causes of mortality worldwide. Inflammation is greatly involved in the pathogenesis of COPD. Monocyte chemoattractant protein-1 (MCP1) has been implicated to play an important role in the inflammatory response of various pathological processes. Methods In this study, we conducted a hospital-based case-control study in a Chinese population, aiming to evaluate the potential associations of genetic polymorphisms of the MCP1 gene (rs1024611, rs2857656, and rs4586) and circulating level of MCP1 with COPD risk. Results We found that rs1024611 (OR=1.37; 95% CI=1.11–1.69; P-value=0.004) and rs4586 (OR=1.33; 95% CI=1.09–1.63; P-value=0.006) were significantly associated with increased COPD risk. In the dominant model, both rs1024611 (OR=1.46; 95% CI=1.11–1.92; P-value=0.006) and rs4586 (OR=1.56; 95% CI=1.18–2.07; P-value=0.002) were significantly associated with increased COPD risk. Genotypes of rs1024611 and rs4586 with minor alleles had a significantly higher circulating level of MCP1 (P<0.001). Meanwhile, a circulating level of MCP1 was significantly associated with increased COPD risk (OR for per quartile increment=1.35, 95% CI=1.21–1.52, P<0.001). Conclusion Our study indicated that genetic polymorphisms of the MCP1 gene and circulating level of MCP1 contributed to the COPD risk in the Chinese population. MCP1 contributed importantly to the pathophysiological process and occurrence of COPD.
Collapse
Affiliation(s)
- Chunyi Lin
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Zhimin Wang
- Intensive Care Unit (ICU), The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Lu Shen
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Gao Yi
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Meichan Li
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Defu Li
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| |
Collapse
|
40
|
Pancreatic cancer cachexia: three dimensions of a complex syndrome. Br J Cancer 2021; 124:1623-1636. [PMID: 33742145 PMCID: PMC8110983 DOI: 10.1038/s41416-021-01301-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome that is characterised by a loss of skeletal muscle mass, is commonly associated with adipose tissue wasting and malaise, and responds poorly to therapeutic interventions. Although cachexia can affect patients who are severely ill with various malignant or non-malignant conditions, it is particularly common among patients with pancreatic cancer. Pancreatic cancer often leads to the development of cachexia through a combination of distinct factors, which, together, explain its high prevalence and clinical importance in this disease: systemic factors, including metabolic changes and pathogenic signals related to the tumour biology of pancreatic adenocarcinoma; factors resulting from the disruption of the digestive and endocrine functions of the pancreas; and factors related to the close anatomical and functional connection of the pancreas with the gut. In this review, we conceptualise the various insights into the mechanisms underlying pancreatic cancer cachexia according to these three dimensions to expose its particular complexity and the challenges that face clinicians in trying to devise therapeutic interventions.
Collapse
|
41
|
Cao Z, Zhao K, Jose I, Hoogenraad NJ, Osellame LD. Biomarkers for Cancer Cachexia: A Mini Review. Int J Mol Sci 2021; 22:4501. [PMID: 33925872 PMCID: PMC8123431 DOI: 10.3390/ijms22094501] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer cachexia is a common condition in many cancer patients, particularly those with advanced disease. Cancer cachexia patients are generally less tolerant to chemotherapies and radiotherapies, largely limiting their treatment options. While the search for treatments of this condition are ongoing, standards for the efficacy of treatments have yet to be developed. Current diagnostic criteria for cancer cachexia are primarily based on loss of body mass and muscle function. However, these criteria are rather limiting, and in time, when weight loss is noticeable, it may be too late for treatment. Consequently, biomarkers for cancer cachexia would be valuable adjuncts to current diagnostic criteria, and for assessing potential treatments. Using high throughput methods such as "omics approaches", a plethora of potential biomarkers have been identified. This article reviews and summarizes current studies of biomarkers for cancer cachexia.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Kening Zhao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Irvin Jose
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Nick J. Hoogenraad
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Laura D. Osellame
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| |
Collapse
|
42
|
Prokopchuk O, Hermann CD, Schoeps B, Nitsche U, Prokopchuk OL, Knolle P, Friess H, Martignoni ME, Krüger A. A novel tissue inhibitor of metalloproteinases-1/liver/cachexia score predicts prognosis of gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 2021; 12:378-392. [PMID: 33590974 PMCID: PMC8061407 DOI: 10.1002/jcsm.12680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cachexia, a devastating syndrome in cancer patients, critically determines survival and life quality. It is characterized by impaired homeostasis of multiple organs including the liver, involves tissue wasting, and is conventionally diagnosed and classified by weight loss (WL). However, recent studies pointed at the problem that WL is not sufficient for precise classification of cancer patients according to disease severity (i.e. prognosis). Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an easily accessible cachexia-associated biomarker in the blood, known to alter liver homeostasis. Here, we investigated the value of combining blood levels of TIMP-1 with parameters of liver functionality towards establishment of a cachexia-associated clinical score, which predicts survival of cancer patients, reflects the clinical manifestation of cachexia, and is easily accessible in the clinic. METHODS The TIMP-1/liver cachexia (TLC) score, expressed as numerical value ranging from 0 to 1, was calculated by categorizing the blood levels of TIMP-1 and parameters of liver functionality (C-reactive protein, ferritin, gamma-glutamyl transferase, albumin, and total protein) for each patient as below/above a certain risk threshold. The TLC score was tested in a cohort of colorectal cancer (CRC) patients (n = 82, 35.4% women, 64.6% men, median age: 70 years) and validated in a cohort of pancreatic cancer (PC) patients (n = 84, 54.8% women, 45.2% men, median age: 69 years). RESULTS In CRC patients, the TLC score positively correlated with presence of cachexia-related symptoms (WL, impaired liver function), predicted survival [P < 0.001, hazard ratio (HR): 96.91 (9.85-953.90)], and allowed classification of three prognostically distinct patient subpopulations [low (LO)-risk, intermediate (IM)-risk, and high (HI)-risk groups; LO vs. IM: P = 0.003, LO vs. HI: P < 0.001, IM vs. HI: P = 0.029]. The prognostic power of the cachexia-associated TLC score [P < 0.001, HR: 7.37 (2.80-19.49)] and its application to define risk groups (LO vs. IM: P = 0.032, LO vs. HI: P < 0.001, IM vs. HI: P = 0.014) was confirmed in a cohort of PC patients. The prognostic power of the TLC score was independent of presence of liver metastases in CRC or PC patients and was superior to clinically established staging classifications. CONCLUSIONS The TLC score, a result of straightforward determination of blood parameters, is an objective cachexia-associated clinical tool for precise survival prediction of gastrointestinal cancer patients.
Collapse
Affiliation(s)
- Olga Prokopchuk
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.,Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Benjamin Schoeps
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Oleksii L Prokopchuk
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Percy Knolle
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| |
Collapse
|
43
|
Pancreatic cancer induces muscle wasting by promoting the release of pancreatic adenocarcinoma upregulated factor. Exp Mol Med 2021; 53:432-445. [PMID: 33731895 PMCID: PMC8080719 DOI: 10.1038/s12276-021-00582-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer cachexia is a highly debilitating condition characterized by weight loss and muscle wasting that contributes significantly to the morbidity and mortality of pancreatic cancer. The factors that induce cachexia in pancreatic cancer are largely unknown. We previously showed that pancreatic adenocarcinoma upregulated factor (PAUF) secreted by pancreatic cancer cells is responsible for tumor growth and metastasis. Here, we analyzed the relation between pancreatic cancer-derived PAUF and cancer cachexia in mice and its clinical significance. Body weight loss and muscle weight loss were significantly higher in mice with Panc-1/PAUF tumors than in those with Panc-1/Mock tumors. Direct administration of rPAUF to muscle recapitulated tumor-induced atrophy, and a PAUF-neutralizing antibody abrogated tumor-induced muscle wasting in Panc-1/PAUF tumor-bearing mice. C2C12 myotubes treated with rPAUF exhibited rapid inactivation of Akt-Foxo3a signaling, resulting in Atrogin1/MAFbx upregulation, myosin heavy chain loss, and muscle atrophy. The neutrophil-to-lymphocyte ratio and body weight loss were significantly higher in pancreatic cancer patients with high PAUF expression than in those with low PAUF expression. Analysis of different pancreatic cancer datasets showed that PAUF expression was significantly higher in the pancreatic cancer group than in the nontumor group. Analysis of The Cancer Genome Atlas data found associations between high PAUF expression or a high DNA copy number and poor overall survival. Our data identified tumor-secreted circulating PAUF as a key factor of cachexia, causing muscle wasting in mice. Neutralizing PAUF may be a useful therapeutic strategy for the treatment of pancreatic cancer-induced cachexia.
Collapse
|
44
|
Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments. Cells 2021; 10:cells10030516. [PMID: 33671024 PMCID: PMC7997313 DOI: 10.3390/cells10030516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor prognosis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers, as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and respiratory muscle wasting was also associated with improved survival. However, the definitive proof that improved survival directly results from muscle preservation following blockade of ACVR2 signaling is still lacking, especially considering that concurrent beneficial effects in organs other than skeletal muscle have also been described in the presence of cancer or following chemotherapy treatments paired with counteraction of ACVR2 signaling. Hence, here, we aim to provide an up-to-date literature review on the multifaceted anti-cachectic effects of ACVR2 blockade in preclinical models of cancer, as well as in combination with anticancer treatments.
Collapse
|
45
|
Kasprzak A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int J Mol Sci 2021; 22:ijms22041565. [PMID: 33557173 PMCID: PMC7913937 DOI: 10.3390/ijms22041565] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cachexia (CC) is a multifactorial syndrome in patients with advanced cancer characterized by weight loss via skeletal-muscle and adipose-tissue atrophy, catabolic activity, and systemic inflammation. CC is correlated with functional impairment, reduced therapeutic responsiveness, and poor prognosis, and is a major cause of death in cancer patients. In colorectal cancer (CRC), cachexia affects around 50–61% of patients, but remains overlooked, understudied, and uncured. The mechanisms driving CC are not fully understood but are related, at least in part, to the local and systemic immune response to the tumor. Accumulating evidence demonstrates a significant role of tumor microenvironment (TME) cells (e.g., macrophages, neutrophils, and fibroblasts) in both cancer progression and tumor-induced cachexia, through the production of multiple procachectic factors. The most important role in CRC-associated cachexia is played by pro-inflammatory cytokines, including the tumor necrosis factor α (TNFα), originally known as cachectin, Interleukin (IL)-1, IL-6, and certain chemokines (e.g., IL-8). Heterogeneous CRC cells themselves also produce numerous cytokines (including chemokines), as well as novel factors called “cachexokines”. The tumor microenvironment (TME) contributes to systemic inflammation and increased oxidative stress and fibrosis. This review summarizes the current knowledge on the role of TME cellular components in CRC-associated cachexia, as well as discusses the potential role of selected mediators secreted by colorectal cancer cells in cooperation with tumor-associated immune and non-immune cells of tumor microenvironment in inducing or potentiating cancer cachexia. This knowledge serves to aid the understanding of the mechanisms of this process, as well as prevent its consequences.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
| |
Collapse
|
46
|
Liu G, Zeng T. Sporoderm-Removed Ganoderma lucidum Spore Powder May Suppress the Proliferation, Migration, and Invasion of Esophageal Squamous Cell Carcinoma Cells Through PI3K/AKT/mTOR and Erk Pathway. Integr Cancer Ther 2021; 20:15347354211062157. [PMID: 34841952 PMCID: PMC8649442 DOI: 10.1177/15347354211062157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor metastasis is a key factor of therapeutic failure in tumor patients, but the underlying molecular mechanism remains to be explored and novel effective curative strategies are urgently required. Emerging evidence suggests that sporoderm-removed Ganoderma lucidum spore powder can suppress tumor growth and metastasis. However, the molecular mechanisms of action remain elusive. In the present study, we investigated the effects and mechanisms of sporoderm-removed Ganoderma lucidum spore powder against esophageal squamous cell carcinomas (ESCC). The expression of MCP-1 in esophageal squamous cell carcinoma cells was detected by Western blotting. The MTS assay was used to assess the esophageal squamous cell carcinoma cells viability. The clone formation assay was used to evaluate to the proliferation ability of KYSE140 and KYSE510 cells. Apoptosis and the cell cycle were analyzed by flow cytometry. Wound healing and Transwell assays were used to analyze the migration of KYSE140 and KYSE510 cells. Invasion was also analyzed by the Transwell assay. The expressions of PI3K, AKT/p-AKT, Erk/p-Erk, JNK1, and mTOR were detected by Western blotting. We found that the MCP-1 protein was highly expressed in KYSE140 and KYSE510. In addition, sporoderm-removed Ganoderma lucidum spore powder treatment was found to inhibit esophageal squamous cell carcinoma cell proliferation, to block the cell cycle, to induce cell apoptosis and to inhibit cell migration and invasion. Finally, we found that sporoderm-removed Ganoderma lucidum spore powder decreased the expression of PI3K/AKT/mTOR and Erk signaling pathways. Taken together, these findings demonstrate that sporoderm-removed Ganoderma lucidum spore powder suppresses esophageal squamous cell carcinomas by involving MCP-1, regulated by PI3K/AKT/mTOR and Erk signal pathways.
Collapse
Affiliation(s)
- Guiping Liu
- Department of Medical Laboratory,
Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P.R.
China
- Department of Laboratory Medicine,
Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Tao Zeng
- Department of Medical Laboratory,
Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P.R.
China
| |
Collapse
|
47
|
Iwamoto H, Izumi K, Mizokami A. Is the C-C Motif Ligand 2-C-C Chemokine Receptor 2 Axis a Promising Target for Cancer Therapy and Diagnosis? Int J Mol Sci 2020; 21:ijms21239328. [PMID: 33297571 PMCID: PMC7730417 DOI: 10.3390/ijms21239328] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
C-C motif ligand 2 (CCL2) was originally reported as a chemical mediator attracting mononuclear cells to inflammatory tissue. Many studies have reported that CCL2 can directly activate cancer cells through a variety of mechanisms. CCL2 can also promote cancer progression indirectly through increasing the recruitment of tumor-associated macrophages into the tumor microenvironment. The role of CCL2 in cancer progression has gradually been understood, and various preclinical cancer models elucidate that CCL2 and its receptor C-C chemokine receptor 2 (CCR2) are attractive targets for intervention in cancer development. However, clinically available drugs that regulate the CCL2-CCR2 axis as anticancer agents are not available at this time. The complete elucidation of not only the oncological but also the physiological functions of the CCL2-CCR2 axis is required for achieving a satisfactory effect of the CCL2-CCR2 axis-targeted therapy.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
48
|
Armstrong VS, Fitzgerald LW, Bathe OF. Cancer-Associated Muscle Wasting-Candidate Mechanisms and Molecular Pathways. Int J Mol Sci 2020; 21:ijms21239268. [PMID: 33291708 PMCID: PMC7729509 DOI: 10.3390/ijms21239268] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Excessive muscle loss is commonly observed in cancer patients and its association with poor prognosis has been well-established. Cancer-associated sarcopenia differs from age-related wasting in that it is not responsive to nutritional intervention and exercise. This is related to its unique pathogenesis, a result of diverse and interconnected mechanisms including inflammation, disordered metabolism, proteolysis and autophagy. There is a growing body of evidence that suggests that the tumor is the driver of muscle wasting by its elaboration of mediators that influence each of these pro-sarcopenic pathways. In this review, evidence for these tumor-derived factors and putative mechanisms for inducing muscle wasting will be reviewed. Potential targets for future research and therapeutic interventions will also be reviewed.
Collapse
Affiliation(s)
- Victoria S. Armstrong
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Liam W. Fitzgerald
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Oliver F. Bathe
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Departments of Surgery and Oncology, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: ; Tel.: +1-403-521-3275
| |
Collapse
|
49
|
Affiliation(s)
- Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
50
|
Lim S, Brown JL, Washington TA, Greene NP. Development and progression of cancer cachexia: Perspectives from bench to bedside. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:177-185. [PMID: 34447946 PMCID: PMC8386816 DOI: 10.1016/j.smhs.2020.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cachexia (CC) is a devastating syndrome characterized by weight loss, reduced fat mass and muscle mass that affects approximately 80% of cancer patients and is responsible for 22%-30% of cancer-associated deaths. Understanding underlying mechanisms for the development of CC are crucial to advance therapies to treat CC and improve cancer outcomes. CC is a multi-organ syndrome that results in extensive skeletal muscle and adipose tissue wasting; however, CC can impair other organs such as the liver, heart, brain, and bone as well. A considerable amount of CC research focuses on changes that occur within the muscle, but cancer-related impairments in other organ systems are understudied. Furthermore, metabolic changes in organ systems other than muscle may contribute to CC. Therefore, the purpose of this review is to address degenerative mechanisms which occur during CC from a whole-body perspective. Outlining the information known about metabolic changes that occur in response to cancer is necessary to develop and enhance therapies to treat CC. As much of the current evidences in CC are from pre-clinical models we should note the majority of the data reviewed here are from preclinical models.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| | - Jacob L. Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, USA
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| | - Nicholas P. Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| |
Collapse
|