1
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
2
|
Omotehara T, Nakata H, Nagahori K, Itoh M. Comparative anatomy on the development of sperm transporting pathway between the testis and mesonephros. Histochem Cell Biol 2022; 157:321-332. [PMID: 34988611 DOI: 10.1007/s00418-021-02057-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
The male genital tract is diverse among vertebrates, but its development remains unclear, especially in the rete region. In this study, we investigated the testis-mesonephros complex of rabbit, chicken, and frog (Xenopus tropicalis) by immunohistochemistry for markers such as Ad4BP/Sf-1 (gonadal somatic and rete cells in mammals) and Pax2 (mesonephric tubules), and performed a three-dimensional reconstruction. In all investigated animals, testis cords were bundled at the mesonephros side. Rete cells positive for Ad4BP/Sf-1 (rabbit) or Pax2 (chicken and frog) were clustered at the border region between the testis and mesonephros. The cluster possessed two types of cords; one connected to the testis cords and the other to the mesonephric tubules. The latter rete cords were contiguous to Bowman's capsules in rabbit and chicken but to nephrostomes in frog. In conclusion, this study showed that mammals, avian species, and frogs commonly develop the bundle between the testis cords (testis canal) and the cluster of rete cells (lateral kidney canal), indicating that these animals share basic morphogenesis in the male genital tract. The connection site between the rete cells and mesonephric tubules is suggested to have changed from the nephrostome to the Bowman's capsule during vertebrate evolution from anamniote to amniote.
Collapse
Affiliation(s)
- Takuya Omotehara
- Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan.
| | - Hiroki Nakata
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan
| |
Collapse
|
3
|
Bunce C, McKey J, Capel B. Concerted morphogenesis of genital ridges and nephric ducts in the mouse captured through whole-embryo imaging. Development 2021; 148:dev199208. [PMID: 33795229 PMCID: PMC8242465 DOI: 10.1242/dev.199208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
During development of the mouse urogenital complex, the gonads undergo changes in three-dimensional structure, body position and spatial relationship with the mesonephric ducts, kidneys and adrenals. The complexity of genital ridge development obscures potential connections between morphogenesis and gonadal sex determination. To characterize the morphogenic processes implicated in regulating gonad shape and fate, we used whole-embryo tissue clearing and light sheet microscopy to assemble a time course of gonad development in native form and context. Analysis revealed that gonad morphology is determined through anterior-to-posterior patterns as well as increased rates of growth, rotation and separation in the central domain that may contribute to regionalization of the gonad. We report a close alignment of gonad and mesonephric duct movements as well as delayed duct development in a gonad dysgenesis mutant, which together support a mechanical dependency linking gonad and mesonephric duct morphogenesis.
Collapse
Affiliation(s)
| | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Estermann MA, Williams S, Hirst CE, Roly ZY, Serralbo O, Adhikari D, Powell D, Major AT, Smith CA. Insights into Gonadal Sex Differentiation Provided by Single-Cell Transcriptomics in the Chicken Embryo. Cell Rep 2021; 31:107491. [PMID: 32268081 DOI: 10.1016/j.celrep.2020.03.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Although the genetic triggers for gonadal sex differentiation vary across species, the cell biology of gonadal development was long thought to be largely conserved. Here, we present a comprehensive analysis of gonadal sex differentiation, using single-cell sequencing in the embryonic chicken gonad during sexual differentiation. The data show that chicken embryonic-supporting cells do not derive from the coelomic epithelium, in contrast to other vertebrates studied. Instead, they derive from a DMRT1+/PAX2+/WNT4+/OSR1+ mesenchymal cell population. We find a greater complexity of gonadal cell types than previously thought, including the identification of two distinct sub-populations of Sertoli cells in developing testes and derivation of embryonic steroidogenic cells from a differentiated supporting-cell lineage. Altogether, these results indicate that, just as the genetic trigger for sex differs across vertebrate groups, cell lineage specification in the gonad may also vary substantially.
Collapse
Affiliation(s)
- Martin Andres Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Williams
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Claire Elizabeth Hirst
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia
| | - Zahida Yesmin Roly
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Olivier Serralbo
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Andrew Thomas Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Li Y, Li J, Cai M, Qin Z. Development of Testis Cords and the Formation of Efferent Ducts in Xenopus laevis: Differences and Similarities with Other Vertebrates. Sex Dev 2021; 14:66-79. [PMID: 33662961 DOI: 10.1159/000513416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
The knowledge of testis development in amphibians relative to amniotes remains limited. Here, we used Xenopus laevis to investigate the process of testis cord development. Morphological observations revealed the presence of segmental gonomeres consisting of medullary knots in male gonads at stages 52-53, with no distinct gonomeres in female gonads. Further observations showed that cell proliferation occurs at specific sites along the anterior-posterior axis of the future testis at stage 50, which contributes to the formation of medullary knots. At stage 53, adjacent gonomeres become close to each other, resulting in fusion; then (pre-)Sertoli cells aggregate and form primitive testis cords, which ultimately become testis cords when germ cells are present inside. The process of testis cord formation in X. laevis appears to be more complex than in amniotes. Strikingly, steroidogenic cells appear earlier than (pre-)Sertoli cells in differentiating testes of X. laevis, which differs from earlier differentiation of (pre-)Sertoli cells in amniotes. Importantly, we found that the mesonephros is connected to the testis gonomere at a specific site at early larval stages and that these connections become efferent ducts after metamorphosis, which challenges the previous concept that the mesonephric side and the gonadal side initially develop in isolation and then connect to each other in amphibians and amniotes.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Man Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, .,University of Chinese Academy of Sciences, Beijing, China,
| |
Collapse
|
6
|
Estermann MA, Major AT, Smith CA. Gonadal Sex Differentiation: Supporting Versus Steroidogenic Cell Lineage Specification in Mammals and Birds. Front Cell Dev Biol 2020; 8:616387. [PMID: 33392204 PMCID: PMC7775416 DOI: 10.3389/fcell.2020.616387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023] Open
Abstract
The gonads of vertebrate embryos are unique among organs because they have a developmental choice; ovary or testis formation. Given the importance of proper gonad formation for sexual development and reproduction, considerable research has been conducted over the years to elucidate the genetic and cellular mechanisms of gonad formation and sexual differentiation. While the molecular trigger for gonadal sex differentiation into ovary of testis can vary among vertebrates, from egg temperature to sex-chromosome linked master genes, the downstream molecular pathways are largely conserved. The cell biology of gonadal formation and differentiation has long thought to also be conserved. However, recent discoveries point to divergent mechanisms of gonad formation, at least among birds and mammals. In this mini-review, we provide an overview of cell lineage allocation during gonadal sex differentiation in the mouse model, focusing on the key supporting and steroidogenic cells and drawing on recent insights provided by single cell RNA-sequencing. We compare this data with emerging information in the chicken model. We highlight surprising differences in cell lineage specification between species and identify gaps in our current understanding of the cell biology underlying gonadogenesis.
Collapse
|
7
|
Bagheri-Fam S, Combes AN, Ling CK, Wilhelm D. Heterozygous deletion of Sox9 in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Hum Mol Genet 2020; 29:3781-3792. [PMID: 33305798 DOI: 10.1093/hmg/ddaa259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Heterozygous mutations in the human SOX9 gene cause the skeletal malformation syndrome campomelic dysplasia which in 75% of 46, XY individuals is associated with male-to-female sex reversal. Although studies in homozygous Sox9 knockout mouse models confirmed that SOX9 is critical for testis development, mice heterozygous for the Sox9-null allele were reported to develop normal testes. This led to the belief that the SOX9 dosage requirement for testis differentiation is different between humans, which often require both alleles, and mice, in which one allele is sufficient. However, in prior studies, gonadal phenotypes in heterozygous Sox9 XY mice were assessed only by either gross morphology, histological staining or analyzed on a mixed genetic background. In this study, we conditionally inactivated Sox9 in somatic cells of developing gonads using the Nr5a1-Cre mouse line on a pure C57BL/6 genetic background. Section and whole-mount immunofluorescence for testicular and ovarian markers showed that XY Sox9 heterozygous gonads developed as ovotestes. Quantitative droplet digital PCR confirmed a 50% reduction of Sox9 mRNA as well as partial sex reversal shown by an upregulation of ovarian genes. Our data show that haploinsufficiency of Sox9 can perturb testis development in mice, suggesting that mice may provide a more accurate model of human disorders/differences of sex development than previously thought.
Collapse
Affiliation(s)
- Stefan Bagheri-Fam
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander N Combes
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Cheuk K Ling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dagmar Wilhelm
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Lopez-Tello J, Arias-Alvarez M, Gonzalez-Bulnes A, Sferuzzi-Perri AN. Models of Intrauterine growth restriction and fetal programming in rabbits. Mol Reprod Dev 2019; 86:1781-1809. [PMID: 31538701 DOI: 10.1002/mrd.23271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Intrauterine growth restriction (IUGR) affects approximately 10% of human pregnancies globally and has immediate and life-long consequences for offspring health. However, the mechanisms underlying the pathogenesis of IUGR and its association with later health and disease outcomes are poorly understood. To address these knowledge gaps, the use of experimental animals is critically important. Since the 50's different environmental, pharmacological, and surgical manipulations have been performed in the rabbit to improve our knowledge of the control of fetal growth, fetal responses to IUGR, and mechanisms by which offspring may be programmed by an adverse gestational environment. The purpose of this review is therefore to summarize the utility of the rabbit as a model for IUGR research. It first summarizes the knowledge of prenatal and postnatal development in the rabbit and how these events relate to developmental milestones in humans. It then describes the methods used to induce IUGR in rabbits and the knowledge gained about the mechanisms determining prenatal and postnatal outcomes of the offspring. Finally, it discusses the application of state of the art approaches in the rabbit, including high-resolution ultrasound, magnetic resonance imaging, and gene targeting, to gain a deeper integrative understanding of the physiological and molecular events governing the development of IUGR. Overall, we hope to engage and inspire investigators to employ the rabbit as a model organism when studying pregnancy physiology so that we may advance our understanding of mechanisms underlying IUGR and its consequences in humans and other mammalian species.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Maria Arias-Alvarez
- Department of Animal Production. Veterinary Faculty, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | | | - Amanda N Sferuzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Yang Y, Workman S, Wilson M. The molecular pathways underlying early gonadal development. J Mol Endocrinol 2018; 62:JME-17-0314. [PMID: 30042122 DOI: 10.1530/jme-17-0314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022]
Abstract
The body of knowledge surrounding reproductive development spans the fields of genetics, anatomy, physiology and biomedicine, to build a comprehensive understanding of the later stages of reproductive development in humans and animal models. Despite this, there remains much to learn about the bi-potential progenitor structure that the ovary and testis arise from, known as the genital ridge (GR). This tissue forms relatively late in embryonic development and has the potential to form either the ovary or testis, which in turn produce hormones required for development of the rest of the reproductive tract. It is imperative that we understand the genetic networks underpinning GR development if we are to begin to understand abnormalities in the adult. This is particularly relevant in the contexts of disorders of sex development (DSDs) and infertility, two conditions that many individuals struggle with worldwide, with often no answers as to their aetiology. Here, we review what is known about the genetics of GR development. Investigating the genetic networks required for GR formation will not only contribute to our understanding of the genetic regulation of reproductive development, it may in turn open new avenues of investigation into reproductive abnormalities and later fertility issues in the adult.
Collapse
Affiliation(s)
- Yisheng Yang
- Y Yang, Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Megan Wilson
- M Wilson , Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Leerberg DM, Sano K, Draper BW. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish. PLoS Genet 2017; 13:e1006993. [PMID: 28873404 PMCID: PMC5600409 DOI: 10.1371/journal.pgen.1006993] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/15/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.
Collapse
Affiliation(s)
- Dena M. Leerberg
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Kaori Sano
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
- Graduate school of Science and Technologies, Sophia University, Tokyo, Tokyo, Japan
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
11
|
Shlush E, Maghen L, Swanson S, Kenigsberg S, Moskovtsev S, Barretto T, Gauthier-Fisher A, Librach CL. In vitro generation of Sertoli-like and haploid spermatid-like cells from human umbilical cord perivascular cells. Stem Cell Res Ther 2017; 8:37. [PMID: 28202061 PMCID: PMC5312448 DOI: 10.1186/s13287-017-0491-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND First trimester (FTM) and term human umbilical cord-derived perivascular cells (HUCPVCs), which are rich sources of mesenchymal stem cells (MSCs), can give rise to Sertoli cell (SC)-like as well as haploid germ cell (GC)-like cells in vitro using culture conditions that recapitulate the testicular niche. Gamete-like cells have been produced ex vivo using pluripotent stem cells as well as MSCs. However, the production of functional gametes from human stem cells has yet to be achieved. METHODS Three independent lines of FTM and term HUCPVCs were cultured using a novel 5-week step-wise in vitro differentiation protocol recapitulating key physiological signals involved in testicular development. SC- and GC-associated phenotypical properties were assessed by real-time polymerase chain reaction (RT-PCR), quantitative PCR immunocytochemistry, flow cytometry, and fluorescence in-situ hybridization (FISH). Functional spermatogonial stem cell-like properties were assessed using a xenotranplantation assay. RESULTS Within 3 weeks of differentiation, two morphologically distinct cell types emerged including large adherent cells and semi-attached round cells. Both early GC-associated markers (VASA, DAZL, GPR125, GFR1α) and SC-associated markers (FSHR, SOX9, AMH) were upregulated, and 5.7 ± 1.2% of these cells engrafted near the inner basal membrane in a xenograft assay. After 5 weeks in culture, 10-30% of the cells were haploid, had adopted a spermatid-like morphology, and expressed PRM1, Acrosin, and ODF2. Undifferentiated HUCPVCs secreted key factors known to regulate spermatogenesis (LIF, GDNF, BMP4, bFGF) and 10-20% of HUCPVCs co-expressed SSEA4, CD9, CD90, and CD49f. We hypothesize that the paracrine properties and cellular heterogeneity of HUCPVCs may explain their dual capacity to differentiate to both SC- and GC-like cells. CONCLUSIONS HUCPVCs recapitulate elements of the testicular niche including their ability to differentiate into cells with Sertoli-like and haploid spermatid-like properties in vitro. Our study supports the importance of generating a niche-like environment under ex vivo conditions aiming at creating mature GC, and highlights the plasticity of HUCPVCs. This could have future applications for the treatment of some cases of male infertility.
Collapse
Affiliation(s)
- Ekaterina Shlush
- CReATe Fertility Centre, 790 Bay Street, Toronto, Ontario, M5N 1G8, Canada.
| | - Leila Maghen
- CReATe Fertility Centre, 790 Bay Street, Toronto, Ontario, M5N 1G8, Canada
| | - Sonja Swanson
- CReATe Fertility Centre, 790 Bay Street, Toronto, Ontario, M5N 1G8, Canada
| | - Shlomit Kenigsberg
- CReATe Fertility Centre, 790 Bay Street, Toronto, Ontario, M5N 1G8, Canada
| | - Sergey Moskovtsev
- CReATe Fertility Centre, 790 Bay Street, Toronto, Ontario, M5N 1G8, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Tanya Barretto
- CReATe Fertility Centre, 790 Bay Street, Toronto, Ontario, M5N 1G8, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, 790 Bay Street, Toronto, Ontario, M5N 1G8, Canada. .,Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada. .,Department of Gynecology, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Piprek RP, Kloc M, Kubiak JZ. Early Development of the Gonads: Origin and Differentiation of the Somatic Cells of the Genital Ridges. Results Probl Cell Differ 2016; 58:1-22. [PMID: 27300173 DOI: 10.1007/978-3-319-31973-5_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The earliest manifestation of gonadogenesis in vertebrates is the formation of the genital ridges. The genital ridges form through the transformation of monolayer coelomic epithelium into a cluster of somatic cells. This process depends on increased proliferation of coelomic epithelium and disintegration of its basement membrane, which is foreshadowed by the expression of series of regulatory genes. The earliest expressed gene is Gata4, followed by Sf1, Lhx9, Emx2, and Cbx2. The early genital ridge is a mass of somatic SF1-positive cells (gonadal precursor cells) that derive from proliferating coelomic epithelium. Primordial germ cells (PGCs) immigrate to the coelomic epithelium even in the absence of genital ridges, e.g., in mouse null mutants for Gata4. And conversely, the PGCs are not required for the formation of the genital ridges. After reaching genital ridges, the PGCs become enclosed by somatic cells derived from coelomic epithelium. Subsequently, the expression of sex-determining genes begins and the bipotential gonads differentiate into either testes or ovaries. Gonadal precursor cells, derived from coelomic epithelium, give rise to the somatic supporting cells such as Sertoli cells, follicular cells, and probably also peritubular myoid and steroidogenic cells.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Malgorzata Kloc
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Jacek Z Kubiak
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, 35043, Rennes, France
- Université Rennes 1, UEB, UMS Biosit, Faculty of Medicine, 35043, Rennes, France
| |
Collapse
|
13
|
Romereim SM, Cupp AS. Mesonephric Cell Migration into the Gonads and Vascularization Are Processes Crucial for Testis Development. Results Probl Cell Differ 2016; 58:67-100. [PMID: 27300176 DOI: 10.1007/978-3-319-31973-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Testis morphogenesis requires the integration and reorganization of multiple cell types from several sources, one of the more notable being the mesonephric-derived cell population. One of the earliest sex-specific morphogenetic events in the gonad is a wave of endothelial cell migration from the mesonephros that is crucial for (1) partitioning the gonad into domains for testis cords, (2) providing the vasculature of the testis, and (3) signaling to cells both within the gonad and beyond it to coordinately regulate testis development. In addition to endothelial cell migration, there is evidence that precursors of peritubular myoid cells migrate from the mesonephros, an event which is also important for testis cord architecture. Investigation of the mesonephric cell migration event has utilized histology, lineage tracing with mouse genetic markers, and many studies of the signaling molecules/pathways involved. Some of the more well-studied signaling molecules involved include vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and neurotrophins. In this chapter, the morphogenetic events, relevant signaling pathways, mechanisms underlying the migration, and the role of the migratory cells within the testis will be discussed. Overall, the migration of mesonephric cells into the early testis is indispensable for its development and future functionality.
Collapse
|
14
|
Gata4 is required for formation of the genital ridge in mice. PLoS Genet 2013; 9:e1003629. [PMID: 23874227 PMCID: PMC3708810 DOI: 10.1371/journal.pgen.1003629] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022] Open
Abstract
In mammals, both testis and ovary arise from a sexually undifferentiated precursor, the genital ridge, which first appears during mid-gestation as a thickening of the coelomic epithelium on the ventromedial surface of the mesonephros. At least four genes (Lhx9, Sf1, Wt1, and Emx2) have been demonstrated to be required for subsequent growth and maintenance of the genital ridge. However, no gene has been shown to be required for the initial thickening of the coelomic epithelium during genital ridge formation. We report that the transcription factor GATA4 is expressed in the coelomic epithelium of the genital ridge, progressing in an anterior-to-posterior (A-P) direction, immediately preceding an A-P wave of epithelial thickening. Mouse embryos conditionally deficient in Gata4 show no signs of gonadal initiation, as their coelomic epithelium remains a morphologically undifferentiated monolayer. The failure of genital ridge formation in Gata4-deficient embryos is corroborated by the absence of the early gonadal markers LHX9 and SF1. Our data indicate that GATA4 is required to initiate formation of the genital ridge in both XX and XY fetuses, prior to its previously reported role in testicular differentiation of the XY gonad. During mammalian fetal development, the precursor of the testis or ovary first appears as a simple thickening, in a specific region, of the epithelial cell layer that lines the body cavity. The resulting structure is called the genital ridge, which then differentiates into either testis or ovary, depending on whether the sex chromosome constitution is XY or XX. A handful of genes, including Lhx9, Sf1, Wt1, and Emx2, are required to sustain the growth of the genital ridge. However, mice with mutations in any of these genes still undergo the initial step of epithelial thickening, suggesting that an additional step (or factor) is required to initiate genital ridge formation. We found that the evolutionarily conserved transcription factor GATA4 is expressed in the epithelium of the genital ridge before initial thickening. We produced a mouse with a Gata4 mutation in this tissue and demonstrated that the initial thickening does not take place; the mutant embryos fail to initiate gonad development. In support of this observation, the Gata4 mutant does not express the early gonadal markers LHX9 and SF1. These findings indicate that a genetically discrete, Gata4-dependent initiation step precedes the previously known processes that result in formation of testes and ovaries.
Collapse
|
15
|
|
16
|
Cool J, DeFalco T, Capel B. Testis formation in the fetal mouse: dynamic and complex de novo
tubulogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:847-59. [DOI: 10.1002/wdev.62] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Combes AN, Lesieur E, Harley VR, Sinclair AH, Little MH, Wilhelm D, Koopman P. Three-dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Dev Dyn 2009; 238:1033-41. [PMID: 19334288 DOI: 10.1002/dvdy.21925] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Testis cords are specialized tubes essential for generation and export of sperm, yet the mechanisms directing their formation, and the regulation of their position, size, shape, and number remain unclear. Here, we use a novel fluorescence-based three-dimensional modeling approach to show that cords initially form as a network of irregular cell clusters that are subsequently remodeled to form regular parallel loops, joined by a flattened plexus at the mesonephric side. Variation in cord number and structure demonstrates that cord specification is not stereotypic, although cord alignment and diameter becomes relatively consistent, implicating compensatory growth mechanisms. Branched, fused, and internalized cords were commonly observed. We conclude that the tubule-like structure of testis cords arise through a novel form of morphogenesis consisting of coalescence, partitioning, and remodeling. The methods we describe are applicable to investigating defects in testis cord development in mouse models, and more broadly, studying morphogenesis of other tissues.
Collapse
Affiliation(s)
- Alexander N Combes
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Fritz IB. Somatic cell-germ cell relationships in mammalian testes during development and spermatogenesis. CIBA FOUNDATION SYMPOSIUM 2007; 182:271-4; discussion 274-81. [PMID: 7835155 DOI: 10.1002/9780470514573.ch15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the mammalian testis, somatic cells under hormonal regulation greatly influence the different stages of spermatogenesis, both in intermittent breeders and in animals which produce sperm continuously. In turn, specific populations of germinal cells modulate the function of Sertoli cells, the chief somatic cells within mammalian seminiferous tubules. Tubule formation can take place in the absence of germinal cells. Unlike homologous granulosa cells in the ovary, Sertoli cells retain many of their usual functions in germ cell-free animals. Some of the properties of Sertoli cells and their responses to stimulation by androgens or follicle-stimulating hormone are dependent upon information transmitted from neighbouring germinal cells at specific stages of the cycle of the seminiferous epithelium. We review the roles of some of the growth factors and paracrine agents synthesized and secreted by different classes of testicular cells. The potential roles of some of the known factors secreted by Sertoli cells (e.g. activin, inhibin, anti-Müllerian hormones, TGF-beta and somatomedin C) are considered in relation to the control of tubule formation, spermatogonial proliferation and cytodifferentiation, meiosis and the subsequent stages of spermatogenesis. We stress the importance of the unique tubule cytoarchitecture within which cell interactions take place and the changing nature of this cytoarchitecture at different stages of gonadal maturation.
Collapse
Affiliation(s)
- I B Fritz
- Department of Cellular Physiology, AFRC Babraham Research Institute, Cambridge, UK
| |
Collapse
|
20
|
Miqueloto CA, Zorn TM. Characterization and distribution of hyaluronan and the proteoglycans decorin, biglycan and perlecan in the developing embryonic mouse gonad. J Anat 2007; 211:16-25. [PMID: 17543016 PMCID: PMC2375803 DOI: 10.1111/j.1469-7580.2007.00741.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The morphogenesis of tissues and organs requires dynamic changes in cells and in extracellular matrix components. It is known that various extracellular matrix molecules are of fundamental importance for gonad differentiation and growth. In the adult testis, the extracellular matrix represents an important component of the interstitium, participating in the transport of biologically active substances needed for the communication between different cellular components, as well as for the regulation of spermatogenesis and hormone production. The present study was designed in order to identify the proteoglycans biglycan, decorin and perlecan, as well as the glycosaminoglycan hyaluronan, during testis development in mouse embryos. Our data profile the chronology of testis differentiation, as well as the distribution of these extracellular matrix components during testis development in mice. We show that these extracellular matrix molecules are present early in the development of the gonads, suggesting that they play a role in gonad development. In addition, we found no decorin in the testicular cords. Furthermore, of the proteoglycans analysed, only biglycan was seen surrounding immature Sertoli cells and Leydig cell precursors in the testicular cords. This indicates that specific sets of extracellular matrix molecules are required in the various compartments of the developing gonad.
Collapse
Affiliation(s)
- C A Miqueloto
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | |
Collapse
|
21
|
Barrionuevo FJ, Zurita F, Burgos M, Jiménez R. Testis-like development of gonads in female moles. New insights on mammalian gonad organogenesis. Dev Biol 2004; 268:39-52. [PMID: 15031103 DOI: 10.1016/j.ydbio.2003.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 11/24/2003] [Indexed: 11/23/2022]
Abstract
Moles are unique among mammals because all females of several species of genus Talpa have bilateral ovotestes (gonads with both ovarian and testicular tissue). Based on the analysis of a large sample of embryos, foetuses and infants over a 13-year period, we have studied the development of the gonads in male and female moles of the species Talpa occidentalis. Several new field and laboratory procedures were developed specifically to obtain and manage this singular material. Our results reveal that gonads of female moles develop according to a testis-like pattern, which includes cord formation and mesonephric cell migration, and begins at the same time as testis differentiation in males. The first signs of sex differentiation do not appear in males but in females. Female (but not male) gonads are regionalised with a cortex (precursor of the ovarian tissue) and a medulla (precursor of the testicular tissue). Germ cells concentrate only in the cortex, so that the medulla soon becomes sterile. Testicular tissue development is transiently retarded in females for about a week before birth, and resumes afterwards. Development of the ovarian tissue in females is considerably delayed with respect to that of testicular tissue in both males and females. The molecular characterisation of peritubular myoid cells, which are exclusive of testes, evidences the presence of testicular tissue in the gonads of female moles, which also contain Leydig cells. However, the absence of fully differentiated Sertoli cells indicates that these cells are not responsible for triggering the differentiation of such a testicular tissue. Our results are also discussed regarding the definition of Sertoli cell morphology and function, and the possible role of germ cells in the sex-reversal process. Differences observed between XX and XY gonad development in moles suggest that the mammalian testis-determining gene, SRY, has an "anti-regionalisation" role during gonadal development, at least in those mammalian species in which regionalisation of the female gonad occurs.
Collapse
Affiliation(s)
- Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
22
|
Mackay S. Gonadal development in mammals at the cellular and molecular levels. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:47-99. [PMID: 10965466 DOI: 10.1016/s0074-7696(00)00002-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals, although sex is determined chromosomally, gonads in both sexes begin development as similar structures. Until recently it was widely held that female development constituted a "default" pathway of development, which would occur in the absence of a testis-determining gene. This master gene on the Y chromosome, SRY in the human and Sry in the mouse, is thought to act in a cell-autonomous fashion to determine that cells in the gonadal somatic population develop as pre-Sertoli cells. Triggering of somatic cell differentiation along the Sertoli cell pathway is therefore a key event; it was thought that further steps in gonadal differentiation would follow in a developmental cascade. In the absence of Sertoli cells, the lack of anti-Mullerian hormone would allow development of the female Mullerian duct and absence of Leydig cells would prevent maintenance of the Wolffian duct. Recent findings that female signals not only maintain the Mullerian duct and repress the Wolffian duct but also suppress the development of Leydig cells and maintain meiotic germ cells, together with the finding that an X-linked gene is required for ovarian development and must be silenced in the male, have shown that the female default pathway model is an oversimplification. Morphological steps in gonadal differentiation can be correlated with emerging evidence of molecular mechanisms; growth factors, cell adhesion, and signaling molecules interact together, often acting within short time windows via reciprocal control relationships.
Collapse
Affiliation(s)
- S Mackay
- Division of Neuroscience and Biomedical Systems, University of Glasgow, United Kingdom
| |
Collapse
|
23
|
Abstract
The sex determining gene, Sry, determines the sex of the organism by initiating development of a testis rather than an ovary from the cells of the bipotential gonad. In the 10 years since the discovery of Sry, new genes and cellular pathways that operate in the establishment of the gonadal primordium and the initiation of testis development have been discovered. Experiments defining mechanisms downstream of Sry are providing clear examples of how a regulatory transcription factor initiates cellular processes including proliferation and cell migration, which in turn influence architectural patterning, fate commitment, and differentiation of cells within an organ.
Collapse
Affiliation(s)
- B Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Abstract
During mouse development, the gonad begins to form shortly before 10. 5 days postcoitum (dpc) on the ventromedial side of the mesonephros. The XY gonad consists of germ cells and somatic cells. The origin of the germ cells is clearly established; however, the origin of the somatic cells, especially the epithelial supporting cell lineages, called Sertoli cells, is still unclear. Sertoli cells are the first somatic cell type to differentiate in the testis and are thought to express Sry, the male sex-determining gene, and to play a crucial role in directing testis development. Previous data have suggested that the somatic cells of the gonad may arise from the mesonephric tubules, the mesonephric mesenchyme, or the coelomic epithelium. Immunohistochemical staining of the gonad at 11.5 dpc showed that the basement membrane barrier under the coelomic epithelium is discontinuous, suggesting that cells in the coelomic epithelium at this stage might move inward. To test this possibility directly, cells of the coelomic epithelium were labeled using the fluorescent lipophilic dye, DiI. We show that when labeled at tail somite 15-17 stages, corresponding to 11.2-11.4 dpc, the coelomic epithelial cells of both sexes migrated into the gonad. In XY gonads, the migrating coelomic epithelial cells became Sertoli cells, as well as interstitial cells. This ability of the coelomic epithelium to give rise to Sertoli cells was developmentally regulated. When labeled at tail somite 18-20 stages, corresponding to 11.5-11.7 dpc, the coelomic epithelial cells no longer became Sertoli cells. Instead, cells that migrated into the gonad stayed outside testis cords, in the interstitium. Migration gradually decreased and ceased by tail somite 30 stage, corresponding to 12.5 dpc, after testis cords had formed and the basement membrane layer underlying the coelomic epithelium had thickened to form the tunica albuginea. In XX gonads, coelomic epithelial cells also migrated into the gonad, but there was no obvious fate restriction during the same developmental period. Taken together, our data show that the coelomic epithelium is a source of Sertoli cells as well as other somatic cells of the gonad in the developing mouse testis.
Collapse
Affiliation(s)
- J Karl
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | |
Collapse
|
25
|
Appert A, Fridmacher V, Locquet O, Magre S. Patterns of keratins 8, 18 and 19 during gonadal differentiation in the mouse: sex- and time-dependent expression of keratin 19. Differentiation 1998; 63:273-84. [PMID: 9810706 DOI: 10.1046/j.1432-0436.1998.6350273.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The acidic keratins K18 and K19 have been shown to display a sex-specific expression during gonadal differentiation in the rat. To extend these findings, we have undertaken a study of the expression of genes encoding for K18 and K19 and their basic partner K8 in the mouse from 10.5 days of gestation until adulthood, using immunofluorescence, in situ hybridization, and reverse transcriptase polymerase chain reaction (RT-PCR). In the urogenital ridge at 10.5 days of gestation, K18, K19, and K8 are present, in both sexes, in coelomic epithelium in the area of the prospective gonad. At 11 days and 10 h of gestation, they are detected in differentiating gonadal blastema. In male gonads at 11 days and 16 h of gestation the first Sertoli cells differentiate. They are stained for anti-Müllerian hormone by immunofluorescence and appear as dispersed cells throughout the blastema. Progressively, they adhere to each other and form differentiating seminiferous cords. K19 disappears as Sertoli cells differentiate. K18 and K8 continue to be detected in Sertoli cells during fetal life and after birth until 14 days postpartum. In the adult testis, no keratin is observed. In differentiating ovaries, the three keratins are present in somatic cells of the ovigerous cords during fetal life and in primordial follicles differentiating from 1-2 days postpartum. In the course of follicular development, K19 is no longer detected as primordial follicles differentiate into growing follicles. K18 and K18 are present in all stages of follicular development. These results show both differences and similarities with the results previously obtained in the rat. In the mouse, in contrast to the rat, keratins are detected in adult ovaries, and K18 is found in undifferentiated gonads and in ovaries. K18 is, thus, not specific to the testis in the mouse, as it is in the rat. In both species, K19 ceases to be expressed in male gonads as Sertoli cells differentiate and form seminiferous cords. The present observations confirm that downregulation of K19 gene expression in the fetal testis is one of the earliest molecular events attesting the commitment of the undifferentiated gonad to the male differentiative pathway.
Collapse
Affiliation(s)
- A Appert
- Laboratoire de Physiologie de la Reproduction URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
26
|
Brennan J, Karl J, Martineau J, Nordqvist K, Schmahl J, Tilmann C, Ung K, Capel B. Sry and the testis: molecular pathways of organogenesis. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1998; 281:494-500. [PMID: 9662836 DOI: 10.1002/(sici)1097-010x(19980801)281:5<494::aid-jez14>3.0.co;2-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gene Sry acts as a switch, initiating pathways leading to the differentiation of a testis rather than an ovary from the indifferent gonad (genital ridge) in mammals. The early events following Sry expression include rapid changes in the topographical organization of cells in the XY gonad. Sry must therefore initiate signaling pathways that direct male-specific patterns of proliferation, migration, cell-cell organization, and vascularization. We have identified an increase in male-specific proliferation by 12.0 days post coitum, while proliferation in the female gonad declines. We have also observed male-specific cell migration from the mesonephros into the gonad in a composite organ culture system in which gonads from wild-type mice (CD1) and mesonephroi from a transgenic strain expressing beta-galactosidase in all its cells (ROSA26) were grafted together in vitro at the indifferent stage of gonadogenesis. Migration depends on an active signal that requires the presence of a Y chromosome in the gonadal portion of the graft. The signals that trigger migration operate over considerable distances, suggesting either a long-range diffusible factor or the involvement of a rapid and efficient relay mechanism. Identification of the somatic cells contributed from the mesonephros with cell-specific markers indicated that some of the migrating cells were endothelial, revealing differences in processes of vascularization between male and female gonads. A second distinct population of migrating cells lay in close apposition to endothelial cells, and a third population occupied positions circumscribing areas of condensing Sertoli cells.
Collapse
Affiliation(s)
- J Brennan
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B. Male-specific cell migration into the developing gonad. Curr Biol 1997; 7:958-68. [PMID: 9382843 DOI: 10.1016/s0960-9822(06)00415-5] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The gene Sry acts as a developmental switch, initiating a pathway of gene activity that leads to the differentiation of testis rather than ovary from the indifferent gonad (genital ridge) in mammalian embryos. The early events following Sry expression include rapid changes in the topographical organization of cells in the XY gonad. To investigate the contribution of mesonephric cells to this process, gonads from wild-type mice (CD1), and mesonephroi from a transgenic strain ubiquitously expressing beta-galactosidase (ROSA26), were grafted together in vitro. After culture, organs were fixed and stained for beta-galactosidase activity to identify cells contributed from the mesonephros to the male or female gonad. RESULTS Migration of mesonephric cells occurred into XY but not XX gonads from 11.5-16.5 days post coitum (dpc). Somatic cells contributed from the mesonephros were distinguished by their histological location and by available cell-specific markers. Some of the migrating cells were endothelial; a second population occupied positions circumscribing areas of condensing Sertoli cells; and a third population lay in close apposition to endothelial cells. CONCLUSIONS OFFgration from the mesonephros to the gonad is male specific at this stage of development and depends on an active signal that requires the presence of a Y chromosome in the gonad. The signals that trigger migration operate over considerable distances and behave as chemoattractants. We suggest that migration of cells into the bipotential gonad may have a critical role in initiating the divergence of development towards the testis pathway.
Collapse
Affiliation(s)
- J Martineau
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
28
|
Moens A, Fléchon B, Degrouard J, Vignon X, Ding J, Fléchon JE, Betteridge KJ, Renard JP. Ultrastructural and immunocytochemical analysis of diploid germ cells isolated from fetal rabbit gonads. ZYGOTE 1997; 5:47-60. [PMID: 9223245 DOI: 10.1017/s0967199400003555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Germ cells were isolated from rabbit fetal gonads between 18 and 22 days post coitum and examined morphologically, ultrastructurally and for immunocytochemical and cytochemical characteristics. Observations were compared with the information available from the corresponding cells of other mammalian species. The general morphology and ultrastructure of healthy isolated rabbit fetal germ cells were found to be very similar to those of the rabbit and mouse diploid germ cells in situ. Moreover, rabbit fetal germ cells shared common immunocytochemical characteristics with mouse undifferentiated embryonic stem cells or embryonic carcinoma cells, such as the presence of TEC-1 (SSEA-1) antigens, a peripheral network of F-actin, the absence of cytokeratins 8/18 and lamins A/C and an alkaline phosphatase activity. No difference between the sexes was observed. Morphological and physiological similarities with the migrating and cultured primordial germ cells of the mouse also suggest that diploid rabbit germ cells would be good candidates for deriving pluripotential embryonic germ cells (EG cells) if favourable culture conditions could be found. In conclusion, the rabbit may be a suitable model for investigations on EG cells in domestic mammals with delayed meiosis.
Collapse
Affiliation(s)
- A Moens
- Unité de Biologie du Développement, INRA, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Moens A, Chastant S, Chesné P, Fléchon JE, Betteridge KJ, Renard JP. Differential ability of male and female rabbit fetal germ cell nuclei to be reprogrammed by nuclear transfer. Differentiation 1996; 60:339-45. [PMID: 8855377 DOI: 10.1046/j.1432-0436.1996.6050339.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The pluri- or totipotency of gonial cells, isolated from rabbit fetuses at 18-20 days of pregnancy, has been investigated by transferring their nuclei into enucleated oocytes and following the development of the resulting reconstituted embryos both in vitro (in a total of 726 embryos) and in vivo (in 135 embryos). The gonial cells exhibited pseudopodial activity like that of primordial germ cells and ultrastructural studies confirmed that neither male nor female cells had entered meiosis. When the gonial cells were used immediately after isolation, about 37% of the reconstituted embryos of both sexes cleaved, with no significant difference according to sex. However, after a further 4-day culture of the cleaved embryos, the blastocyst formation rate was four times higher in those made with male (16%) than with female (4%) gonial cells. No implantation sites were detected following transfer of reconstituted embryos into recipient females. These results show that the nuclei of male and female rabbit diploid germ cells differ in their capability to be "reprogrammed" and bring about development to the blastocyst stage following nuclear transfer. The origin of this difference, which is evidenced long before the onset of meiosis is discussed.
Collapse
Affiliation(s)
- A Moens
- Unité de Biologie du Développement, INRA, Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
30
|
Ikeda Y. SF-1: a key regulator of development and function in the mammalian reproductive system. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1996; 38:412-9. [PMID: 8840555 DOI: 10.1111/j.1442-200x.1996.tb03516.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1) was isolated as a transcription factor expressed specifically in the mouse primary steroidogenic tissues. SF-1 expression occurs at the earliest stages of adrenal and gonadal development and the expression pattern is sexually dimorphic in gonads during sexual differentiation. The two hormones required for male differentiation, testosterone and Müllerian-inhibiting substance, are regulated by SF-1. Analyses of knockout mice lacking SF-1 by gene targeting disruption demonstrated that the SF-1-disrupted mice lack adrenal glands and gonads, supporting the suggestion that SF-1 is an essential regulator of the endocrine development and differentiation. Additionally, SF-1 is expressed in the pituitary gonadotropes and the ventrolateral hypothalamic nucleus, which are higher levels of the reproductive regulatory axis, of both adults and embryos. These tissues are also affected in SF-1 knockout mice, indicating that SF-1 plays extended roles at all levels of the reproductive axis, by regulating more genes involved in reproductive function and development.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| |
Collapse
|
31
|
Affiliation(s)
- B Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
32
|
Karl J, Capel B. Three-dimensional structure of the developing mouse genital ridge. Philos Trans R Soc Lond B Biol Sci 1995; 350:235-42. [PMID: 8570687 DOI: 10.1098/rstb.1995.0157] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We are interested in understanding how the field of cells which forms the gonad arises, and how the testis-determining gene, Sry, controls morphogenesis of a testis within this field of cells. To appreciate changes in the three-dimensional structure of the mouse genital ridge at this time in development, whole-mount genital ridges taken from male and female embryos over the developmental period when the initiation of testis cord morphogenesis takes place, were stained with an antibody against laminin. Samples were visualized using confocal microscopy. Anti-laminin illuminates the elaborate array of mesonephric duct and tubules which occupy the cranial two-thirds of the mesonephros at the earliest timepoint. This complex structure gradually regresses as testis cords form in male gonads. No structural organisation is recognized by this antibody in the female gonadal region during this period. Confocal sections in the Z-plane reveal continuous cellular connections between 3-6 mesonephric tubules and the gonadal primordium. These cellular bridges are present in male and female gonads, so they do not depend on the expression of Sry. We consider the possibility that these bridges constitute the pathways of the founder cells of the gonadal primordium.
Collapse
Affiliation(s)
- J Karl
- Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
33
|
Fridmacher V, Le Bert M, Guillou F, Magre S. Switch in the expression of the K19/K18 keratin genes as a very early evidence of testicular differentiation in the rat. Mech Dev 1995; 52:199-207. [PMID: 8541209 DOI: 10.1016/0925-4773(95)00401-l] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been shown previously that acidic K18 and K19 keratins display a differential immunohistochemical pattern of expression during sexual differentiation of the gonads in the rat (Fridmacher et al. (1992) Development 115, 503-517). The present results indicate that K18 and K19 gene expression is regulated at the transcriptional level. The analysis was performed by Northern Blot, reverse transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization. PCR products were cloned, sequenced and used as species-specific K18 and K19 riboprobes for in situ hybridization. K19 mRNA but not K18 mRNA was detected in undifferentiated gonads and in somatic cells of ovarian cords throughout the fetal ovary development. K18 mRNA expression appeared in male gonads, at 13.5 days of gestation, at the onset of testicular differentiation, as the first Sertoli cells differentiated and aggregated to form seminiferous cords. As testicular differentiation progressed, K19 mRNA disappeared and, from 14.5 days of gestation on, fetal Sertoli cells expressed exclusively K18 mRNA. The changes in the transcriptional activity of K19 and K18 genes, observed in male gonads, occur characteristically at the very beginning of testicular differentiation. In the male pathway of sexual differentiation, the switch in K19/K18 gene expression is, in addition to the activation of the anti-Müllerian hormone gene, the most precocious regulative event occurring after the expression of the testis determining factor SRY.
Collapse
Affiliation(s)
- V Fridmacher
- Institut d'Embryologie Cellulaire et Moléculaire, Collège de France, Paris, France
| | | | | | | |
Collapse
|
34
|
Paranko J, Haavisto M, Chiquet-Ehrismann R, Aukhil I, Kaipia A. Sex-dependent expression of tenascin-C in the differentiating fetal rat testis and ovary. Differentiation 1995; 58:329-39. [PMID: 7542612 DOI: 10.1046/j.1432-0436.1995.5850329.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cellular mechanisms controlling sexual differentiation of fetal gonads are poorly understood. By examining the protein and mRNA expression of tenascin-C in correlation with the immunocytochemical detection of alpha-smooth muscle actin (alpha-SMA) and basement membrane heparan sulfate proteoglycan (HSPG) we demonstrate a clear-cut sex-and development-dependent expression pattern of tenascin-C in the rat testis, ovary and mesonephros. Immunocytochemistry and in situ hybridization of tenascin-C in 15-day-pc fetal testis and ovary showed protein and mRNA accumulation within the mesenchyme of the mesogonadal connection. In addition to the male and female mesonephros, some labeling could also be seen within the testicular tunica albuginea and intraovarian mesenchymal septa. In the 17-day-pc testis abundant accumulation of tenascin mRNA and protein appeared in the tunica and mediastinum testis, but not at all in the intratesticular mesenchyme. A similar pattern was still seen in the newborns where, however, a decrease in the anti-tenascin immunoreactivity of the tunica and mediastinum could be demonstrated. In contrast to the testis, expression of tenascin in 17-day-pc ovaries was widespread within the hilus and the entire intragonadal mesenchyme where it continued to accumulate also in newborns. Northern blot analysis of tenascin-C mRNAs showed one message of 8.0 kb in the 15-day-pc male and female gonads. An additional weak signal of 6.5 kb was seen in the female mesonephros. In the 18-day-pc testis, the 6.5-kb signal appeared stronger than the 8.0-kb signal. In contrast to the testis, the 6.5-kb message was weak in the developing ovary where the 8.0-kb signal had an intense peak on the day 18 pc. Further, in the ovary, mesenchymal accumulation of HSPG coincided with the spatial distribution of tenascin. In the testicular tunica and in the mesenchyme of the male and female genital ducts expression of tenascin was parallel with the differentiation of smooth muscle tissue, detected by labeling for alpha-SMA, which also indicated the tenascin-negative myoid cells of the testis. Our results indicate that tenascin expression in the fetal rat internal genitalia is involved in the differentiation of smooth muscle cells but not intratesticular myoid cells. In the ovarian mesenchyme, tenascin-C may have a specific function in the dynamic remodeling of the ovarian cords.
Collapse
Affiliation(s)
- J Paranko
- Department of Anatomy, University of Turku, Finland
| | | | | | | | | |
Collapse
|
35
|
Modern concepts of the structural bases for the reparative regeneration of the mammalian and human testis. Bull Exp Biol Med 1994. [DOI: 10.1007/bf02444195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Regadera J, Cobo P, Martínez-García F, Nistal M, Paniagua R. Testosterone immunoexpression in human Leydig cells of the tunica albuginea testis and spermatic cord. A quantitative study in normal foetuses, young adults, elderly men and patients with cryptorchidism. Andrologia 1993; 25:115-22. [PMID: 8100125 DOI: 10.1111/j.1439-0272.1993.tb02693.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A semi-quantitative study of the extra-parenchymal Leydig cells in the tunica albuginea testis and spermatic cord was performed on histological sections immunostained with anti-testosterone antibodies in the testes and spermatic cords obtained from human foetuses, adults and elderly men without testicular or related diseases (autopsy specimens), as well as from adult men with cryptorchidism (surgical specimens). The albugineal Leydig cells appeared in small groups in the vicinity of blood vessels. The Leydig cells of the spermatic cord usually appeared inside or around nerve trunks. The percentages of testes and spermatic cords with extra-parenchymal Leydig cells were higher in the cryptorchid testis group than in the normal male groups. The number of Leydig cells per mm2 in the tunica albuginea testis was higher in normal adult males than in foetuses. This number decreased in elderly men and increased markedly in cryptorchidism. The number of Leydig cells per mm2 in the spermatic cord was also higher in normal adults than in foetuses and it did not change with either advancing age or cryptorchidism. In foetuses, the percentage of cells intensely immunostained by anti-testosterone antibodies in the tunica albuginea and spermatic cord did not differ significantly from that found in the testicular parenchyma, whereas in the other three groups (adult, elderly, and cryptorchid men) the percentages of these cells in the tunica albuginea and spermatic cord were significantly lower than in the testicular parenchyma.
Collapse
Affiliation(s)
- J Regadera
- Department of Morphology, School of Medicine, Autonomous University, Madrid, Spain
| | | | | | | | | |
Collapse
|