1
|
Dai J, Sun Y, Liu Z, Zhang Y, Duan S, Wang R. Using In situ Transmission Electron Microscopy to Study Strong Metal-Support Interactions in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409673. [PMID: 39052276 DOI: 10.1002/anie.202409673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in situ TEM studies on the SMSI are also provided.
Collapse
Affiliation(s)
- Jie Dai
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhewei Liu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiyuan Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sibin Duan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Ma Z, Chatzichristodoulou C, Dacayan WL, Mølhave KS, Chiabrera FM, Smitshuysen TEL, Damsgaard CD, Simonsen SB. Experimental Requirements for High-Temperature Solid-State Electrochemical TEM Experiments. SMALL METHODS 2024; 8:e2301356. [PMID: 38195885 DOI: 10.1002/smtd.202301356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Indexed: 01/11/2024]
Abstract
The ability to perform both electrochemical and structural/elemental characterization in the same experiment and at the nanoscale allows to directly link electrochemical performance to the material properties and their evolution over time and operating conditions. Such experiments can be important for the further development of solid oxide cells, solid-state batteries, thermal electrical devices, and other solid-state electrochemical devices. The experimental requirements for conducting solid-state electrochemical TEM experiments in general, including sample preparation, electrochemical measurements, failure factors, and possibilities for optimization, are presented and discussed. Particularly, the methodology of performing reliable electrochemical impedance spectroscopy measurements in reactive gases and at elevated temperatures for both single materials and solid oxide cells is described. The presented results include impedance measurements of electronic conductors, an ionic conductor, and a mixed ionic and electronic conductor, all materials typically applied in solid oxide fuel and electrolysis cells. It is shown that how TEM and impedance spectroscopy can be synergically integrated to measure the transport and surface exchange properties of materials with nanoscale dimensions and to visualize their structural and elemental evolution via TEM/STEM imaging and spectroscopy.
Collapse
Affiliation(s)
- Zhongtao Ma
- DTU Energy, Fysikvej, Kongens Lyngby, 2800, Denmark
| | | | | | | | - Francesco Maria Chiabrera
- DTU Energy, Fysikvej, Kongens Lyngby, 2800, Denmark
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2ª pl., Sant Adrià del Besòs Barcelona, 08930, Spain
| | | | - Christian Danvad Damsgaard
- DTU Nanolab, Ørsteds Plads, Kongens Lyngby, 2800, Denmark
- DTU Physics, Fysikvej, Kongens Lyngby, 2800, Denmark
| | | |
Collapse
|
3
|
Robertson S, McClintock A, Jolley K, Zhou H, Davis S, Wu H, Liu C, Doak S, Zhou Z. Measuring coefficient of thermal expansion of materials of micrometre size using SEM/FIB microscope with in situ MEMS heating stage. J Microsc 2024; 295:191-198. [PMID: 38482774 DOI: 10.1111/jmi.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 07/13/2024]
Abstract
A new method is proposed to measure the linear coefficient of thermal expansion (CTE) of solid metals and ceramics of micron-sized dimensions. This approach uses a focused ion beam (FIB) to extract and transfer a slab of the sample, typically (15-20) ×10 × (3-5) µm onto a Micro-Electro-Mechanical Systems (MEMS) in situ heating holder inside a scanning electron microscope (SEM). CTE is thereafter calculated by image correlating the change of length (ΔL) between the fiducial marks on the slab as a function of temperature, taking advantage of the temperature calibration of the MEMS heating holder and nanometre resolution of the scanning electron microscope. The CTE results are validated to be consistent with standard copper and silicon. We further demonstrate the method on a graphene platelet reinforced copper composite and a graphite filler phase isolated from a bulk sample, these represent materials that cannot be practically synthesised or isolated at the macro-scale. Errors associated with the measurement are discussed.
Collapse
Affiliation(s)
- Stuart Robertson
- Department of Materials, Loughborough Materials Characterisation Centre, Loughborough University, Loughborough, Leicestershire, UK
| | - Andrew McClintock
- Department of Materials, Loughborough University, Loughborough, Leicestershire, UK
| | - Kenny Jolley
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UK
| | - Han Zhou
- Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Sam Davis
- Department of Materials, Loughborough Materials Characterisation Centre, Loughborough University, Loughborough, Leicestershire, UK
| | - Houzheng Wu
- Department of Materials, Loughborough University, Loughborough, Leicestershire, UK
| | - Changqing Liu
- Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Scott Doak
- Department of Materials, Loughborough Materials Characterisation Centre, Loughborough University, Loughborough, Leicestershire, UK
| | - Zhaoxia Zhou
- Department of Materials, Loughborough Materials Characterisation Centre, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
4
|
Kundrát V, Novák L, Bukvišová K, Zálešák J, Kolíbalová E, Rosentsveig R, Sreedhara M, Shalom H, Yadgarov L, Zak A, Kolíbal M, Tenne R. Mechanism of WS 2 Nanotube Formation Revealed by in Situ/ ex Situ Imaging. ACS NANO 2024; 18:12284-12294. [PMID: 38698720 PMCID: PMC11100282 DOI: 10.1021/acsnano.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Multiwall WS2 nanotubes have been synthesized from W18O49 nanowhiskers in substantial amounts for more than a decade. The established growth model is based on the "surface-inward" mechanism, whereby the high-temperature reaction with H2S starts on the nanowhisker surface, and the oxide-to-sulfide conversion progresses inward until hollow-core multiwall WS2 nanotubes are obtained. In the present work, an upgraded in situ SEM μReactor with H2 and H2S sources has been conceived to study the growth mechanism in detail. A hitherto undescribed growth mechanism, named "receding oxide core", which complements the "surface-inward" model, is observed and kinetically evaluated. Initially, the nanowhisker is passivated by several WS2 layers via the surface-inward reaction. At this point, the diffusion of H2S through the already existing outer layers becomes exceedingly sluggish, and the surface-inward reaction is slowed down appreciably. Subsequently, the tungsten suboxide core is anisotropically volatilized within the core close to its tips. The oxide vapors within the core lead to its partial out-diffusion, partially forming a cavity that expands with reaction time. Additionally, the oxide vapors react with the internalized H2S gas, forming fresh WS2 layers in the cavity of the nascent nanotube. The rate of the receding oxide core mode increases with temperatures above 900 °C. The growth of nanotubes in the atmospheric pressure flow reactor is carried out as well, showing that the proposed growth model (receding oxide core) is also relevant under regular reaction parameters. The current study comprehensively explains the WS2 nanotube growth mechanism, combining the known model with contemporary insight.
Collapse
Affiliation(s)
- Vojtěch Kundrát
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
| | - Libor Novák
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
| | - Kristýna Bukvišová
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Jakub Zálešák
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
- Chemistry
and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria
| | - Eva Kolíbalová
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Rita Rosentsveig
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - M.B. Sreedhara
- Solid State
and Structural Chemistry Unit, Indian Institute
of Science, CV Raman Road, Bangalore 560012, India
| | - Hila Shalom
- Department
of Chemical Engineering, Ariel University, Ariel 4070814, Israel
| | - Lena Yadgarov
- Department
of Chemical Engineering, Ariel University, Ariel 4070814, Israel
| | - Alla Zak
- Faculty of
Science, Holon Institute of Technology, Golomb Street 52, Holon 5810201, Israel
| | - Miroslav Kolíbal
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Reshef Tenne
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Zhao Z, Zhao J, Liang L, Zhou Y, Mei Z, Li Y, Zhou Z, Zhang L, Fan S, Li Q, Wei Y. Microheater Chips with Carbon Nanotube Resistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688033 DOI: 10.1021/acsami.3c18496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The specific and excellent properties of the low-dimensional nanomaterials have made them promising building blocks to be integrated into microelectromechanical systems with high performances. Here, we present a new microheater chip for in situ TEM, in which a cross-stacked superaligned carbon nanotube (CNT) film resistor is located on a suspended SiNx membrane via van der Waals (vdW) interactions. The CNT microheater has a fast high-temperature response and low power consumption, thanks to the micro/nanostructure of the CNT materials. Moreover, the membrane bulging amplitude is significantly reduced to only ∼100 nm at 800 °C for the vdW interaction between the CNTs and the SiNx membrane. An in situ observation of the Sn melting process is successfully conducted with the assistance of a customized flexible temperature control system. The uniform wafer-scaled CNT films enable a high level of consistency and cost-effective mass production of such chips. The as-developed in situ chips, as well as the related techniques, hold great promise in nanoscience, materials science, and electrochemistry.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Jie Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Liang Liang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Yushi Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Zhen Mei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Yuheng Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Zuoping Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Lina Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Shoushan Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Qunqing Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Yang Wei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Yaguchi T, Gabriel MLS, Hashimoto A, Howe JY. In-situ TEM study from the perspective of holders. Microscopy (Oxf) 2024; 73:117-132. [PMID: 37986584 DOI: 10.1093/jmicro/dfad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
During the in situ transmission electron microscopy (TEM) observations, the diverse functionalities of different specimen holders play a crucial role. We hereby provide a comprehensive overview of the main types of holders, associated technologies and case studies pertaining to the widely employed heating and gas heating methods, from their initial developments to the latest advancement. In addition to the conventional approaches, we also discuss the emergence of holders that incorporate a micro-electro-mechanical system (MEMS) chip for in situ observations. The MEMS technology offers a multitude of functions within a single chip, thereby enhancing the capabilities and versatility of the holders. MEMS chips have been utilized in environmental-cell designs, enabling customized fabrication of diverse shapes. This innovation has facilitated their application in conducting in situ observations within gas and liquid environments, particularly in the investigation of catalytic and battery reactions. We summarize recent noteworthy studies conducted using in situ liquid TEM. These studies highlight significant advancements and provide valuable insights into the utilization of MEMS chips in environmental-cells, as well as the expanding capabilities of in situ liquid TEM in various research domains.
Collapse
Affiliation(s)
- Toshie Yaguchi
- Electron Microscope Systems Design Department, Hitachi High-Tech Corporation, 552-53 Shinko-cho, Hitachinaka-shi, Ibaraki-ken 312-8504, Japan
| | - Mia L San Gabriel
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON M5S 3E4, Canada
| | - Ayako Hashimoto
- In-situ Electron Microscopy Technique Development Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Jane Y Howe
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON M5S 3E4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
Hata S, Ihara S, Saito H, Murayama M. In-situ heating-and-electron tomography for materials research: from 3D (in-situ 2D) to 4D (in-situ 3D). Microscopy (Oxf) 2024; 73:133-144. [PMID: 38462986 PMCID: PMC11000667 DOI: 10.1093/jmicro/dfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
In-situ observation has expanded the application of transmission electron microscopy (TEM) and has made a significant contribution to materials research and development for energy, biomedical, quantum, etc. Recent technological developments related to in-situ TEM have empowered the incorporation of three-dimensional observation, which was previously considered incompatible. In this review article, we take up heating as the most commonly used external stimulus for in-situ TEM observation and overview recent in-situ TEM studies. Then, we focus on the electron tomography (ET) and in-situ heating combined observation by introducing the authors' recent research as an example. Assuming that in-situ heating observation is expanded from two dimensions to three dimensions using a conventional TEM apparatus and a commercially available in-situ heating specimen holder, the following in-situ heating-and-ET observation procedure is proposed: (i) use a rapid heating-and-cooling function of a micro-electro-mechanical system holder; (ii) heat and cool the specimen intermittently and (iii) acquire a tilt-series dataset when the specimen heating is stopped. This procedure is not too technically challenging and can have a wide range of applications. Essential technical points for a successful 4D (space and time) observation will be discussed through reviewing the authors' example application.
Collapse
Affiliation(s)
- Satoshi Hata
- Faculty of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shiro Ihara
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Hikaru Saito
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Pan-Omics Data-Driven Research Innovation Center, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Mitsuhiro Murayama
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Department of Materials Science and Engineering, Virginia Tech, 445 Old Turner St., Blacksburg, VA 24060, USA
- Reactor Materials and Mechanical Design Group, Energy and Environmental Directorate, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA
| |
Collapse
|
8
|
Pham ST, Tieu AK, Sun C, Wan S, Collins SM. Direct Visualization of Chemical Transport in Solid-State Chemical Reactions by Time-of-Flight Secondary Ion Mass Spectrometry. NANO LETTERS 2024; 24:3702-3709. [PMID: 38477517 PMCID: PMC10979428 DOI: 10.1021/acs.nanolett.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Systematic control and design of solid-state chemical reactions are required for modifying materials properties and in novel synthesis. Understanding chemical dynamics at the nanoscale is therefore essential to revealing the key reactive pathways. Herein, we combine focused ion beam-scanning electron microscopy (FIB-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to track the migration of sodium from a borate coating to the oxide scale during in situ hot corrosion testing. We map the changing distribution of chemical elements and compounds from 50 to 850 °C to reveal how sodium diffusion induces corrosion. The results are validated by in situ X-ray diffraction and post-mortem TOF-SIMS. We additionally retrieve the through-solid sodium diffusion rate by fitting measurements to a Fickian diffusion model. This study presents a step change in analyzing microscopic diffusion mechanics with high chemical sensitivity and selectivity, a widespread analytical challenge that underpins the defining rates and mechanisms of solid-state reactions.
Collapse
Affiliation(s)
- Sang T. Pham
- Bragg
Centre for Materials Research & School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Anh Kiet Tieu
- School
of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Sun
- Bragg
Centre for Materials Research & School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Shanhong Wan
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Sean M. Collins
- Bragg
Centre for Materials Research & School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
9
|
Tankard RE, Romeggio F, Akazawa SK, Krabbe A, Sloth OF, Secher NM, Colding-Fagerholt S, Helveg S, Palmer R, Damsgaard CD, Kibsgaard J, Chorkendorff I. Stable mass-selected AuTiO x nanoparticles for CO oxidation. Phys Chem Chem Phys 2024; 26:9253-9263. [PMID: 38445363 DOI: 10.1039/d4cp00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Stability under reactive conditions poses a common challenge for cluster- and nanoparticle-based catalysts. Since the catalytic properties of <5 nm gold nanoparticles were first uncovered, optimizing their stability at elevated temperatures for CO oxidation has been a central theme. Here we report direct observations of improved stability of AuTiOx alloy nanoparticles for CO oxidation compared with pure Au nanoparticles on TiO2. The nanoparticles were synthesized using a magnetron sputtering, gas-phase aggregation cluster source, size-selected using a lateral time-of-flight mass filter and deposited onto TiO2-coated micro-reactors for thermocatalytic activity measurements of CO oxidation. The AuTiOx nanoparticles exhibited improved stability at elevated temperatures, which is attributed to a self-anchoring interaction with the TiO2 substrate. The structure of the AuTiOx nanoparticles was also investigated in detail using ion scattering spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The measurements showed that the alloyed nanoparticles exhibited a core-shell structure with an Au core surrounded by an AuTiOx shell. The structure of these alloy nanoparticles appeared stable even at temperatures up to 320 °C under reactive conditions, for more than 140 hours. The work presented confirms the possibility of tuning catalytic activity and stability via nanoparticle alloying and self-anchoring on TiO2 substrates, and highlights the importance of complementary characterization techniques to investigate and optimize nanoparticle catalyst designs of this nature.
Collapse
Affiliation(s)
- Rikke Egeberg Tankard
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Filippo Romeggio
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Stefan Kei Akazawa
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alexander Krabbe
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Olivia Fjord Sloth
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Niklas Mørch Secher
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Sofie Colding-Fagerholt
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Stig Helveg
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Richard Palmer
- Nanomaterials Lab, Swansea University, Bay Campus, Swansea, UK
| | - Christian Danvad Damsgaard
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Zorro F, Carbo-Argibay E, Ferreira PJ. Novel Method for the Preparation of Lamellas From Porous and Brittle Materials for In Situ TEM Heating/Biasing. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:41-48. [PMID: 38321710 DOI: 10.1093/micmic/ozad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
A novel method for the preparation of lamellas made from porous and brittle compressed green powder using a focused ion beam (FIB) is described. One of the main purposes for the development of this methodology is to use this type of samples in micro-electromechanical systems (MEMS) chips for in situ transmission electron microscopy heating/biasing experiments, concomitant with maintaining the mechanical integrity and the absence of contamination of samples. This is accomplished through a modification of the standard FIB procedure for the preparation of lamellas, the adaptation of conventional chips, as well as the specific transfer of the lamella onto the chips. This method is versatile enough to be implemented in most commercially available FIB systems and MEMS chips.
Collapse
Affiliation(s)
- Fátima Zorro
- Mechanical Engineering Department and IDMEC, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Enrique Carbo-Argibay
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Paulo J Ferreira
- Mechanical Engineering Department and IDMEC, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
- Materials Science and Engineering Program, University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78712, USA
| |
Collapse
|
11
|
Kundrat V, Bukvisova K, Novak L, Prucha L, Houben L, Zalesak J, Vukusic A, Holec D, Tenne R, Pinkas J. W 18O 49 Nanowhiskers Decorating SiO 2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding. CRYSTAL GROWTH & DESIGN 2024; 24:378-390. [PMID: 38188265 PMCID: PMC10767701 DOI: 10.1021/acs.cgd.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 01/09/2024]
Abstract
Tungsten suboxide W18O49 nanowhiskers are a material of great interest due to their potential high-end applications in electronics, near-infrared light shielding, catalysis, and gas sensing. The present study introduces three main approaches for the fundamental understanding of W18O49 nanowhisker growth and structure. First, W18O49 nanowhiskers were grown from γ-WO3/a-SiO2 nanofibers in situ in a scanning electron microscope (SEM) utilizing a specially designed microreactor (μReactor). It was found that irradiation by the electron beam slows the growth kinetics of the W18O49 nanowhisker, markedly. Following this, an in situ TEM study led to some new fundamental understanding of the growth mode of the crystal shear planes in the W18O49 nanowhisker and the formation of a domain (bundle) structure. High-resolution scanning transmission electron microscopy analysis of a cross-sectioned W18O49 nanowhisker revealed the well-documented pentagonal Magnéli columns and hexagonal channel characteristics for this phase. Furthermore, a highly crystalline and oriented domain structure and previously unreported mixed structural arrangement of tungsten oxide polyhedrons were analyzed. The tungsten oxide phases found in the cross section of the W18O49 nanowhisker were analyzed by nanodiffraction and electron energy loss spectroscopy (EELS), which were discussed and compared in light of theoretical calculations based on the density functional theory method. Finally, the knowledge gained from the in situ SEM and TEM experiments was valorized in developing a multigram synthesis of W18O49/a-SiO2 urchin-like nanofibers in a flow reactor.
Collapse
Affiliation(s)
- Vojtech Kundrat
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Thermo
Fisher Scientific, Vlastimila
Pecha 12, CZ-62700 Brno, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Kristyna Bukvisova
- Thermo
Fisher Scientific, Vlastimila
Pecha 12, CZ-62700 Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkynova 123, CZ-61200 Brno, Czech
Republic
| | - Libor Novak
- Thermo
Fisher Scientific, Vlastimila
Pecha 12, CZ-62700 Brno, Czech Republic
| | - Lukas Prucha
- The
Czech Academy of Sciences, Institute of
Scientific Instruments, Kralovopolska 147, CZ-61264 Brno, Czech Republic
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Jakub Zalesak
- Thermo
Fisher Scientific, Vlastimila
Pecha 12, CZ-62700 Brno, Czech Republic
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Str.
2A, A-5020 Salzburg, Austria
| | - Antonio Vukusic
- Department
of Materials Science, Montanuniversität
Leoben, Franz-Josef-Straße 18, A-8700 Leoben, Austria
| | - David Holec
- Department
of Materials Science, Montanuniversität
Leoben, Franz-Josef-Straße 18, A-8700 Leoben, Austria
| | - Reshef Tenne
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jiri Pinkas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| |
Collapse
|
12
|
Jeangros Q, Bugnet M, Epicier T, Frantz C, Diethelm S, Montinaro D, Tyukalova E, Pivak Y, Van Herle J, Hessler-Wyser A, Duchamp M. Operando analysis of a solid oxide fuel cell by environmental transmission electron microscopy. Nat Commun 2023; 14:7959. [PMID: 38042850 PMCID: PMC10693604 DOI: 10.1038/s41467-023-43683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/16/2023] [Indexed: 12/04/2023] Open
Abstract
Correlating the microstructure of an energy conversion device to its performance is often a complex exercise, notably in solid oxide fuel cell research. Solid oxide fuel cells combine multiple materials and interfaces that evolve in time due to high operating temperatures and reactive atmospheres. We demonstrate here that operando environmental transmission electron microscopy can identify structure-property links in such devices. By contacting a cathode-electrolyte-anode cell to a heating and biasing microelectromechanical system in a single-chamber configuration, a direct correlation is found between the environmental conditions (oxygen and hydrogen partial pressures, temperature), the cell open circuit voltage, and the microstructural evolution of the fuel cell, down to the atomic scale. The results shed important insights into the impact of the anode oxidation state and its morphology on the cell electrical properties.
Collapse
Affiliation(s)
- Q Jeangros
- Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland.
- Centre Suisse d'Electronique et de Microtechnique (CSEM), Jaquet-Droz 1, 2002, Neuchâtel, Switzerland.
| | - M Bugnet
- Univ Lyon, CNRS, INSA-Lyon, UCBL, MATEIS, UMR 5510, 69621, Villeurbanne, France
| | - T Epicier
- Univ Lyon, CNRS, INSA-Lyon, UCBL, MATEIS, UMR 5510, 69621, Villeurbanne, France
- Univ Lyon, UCBL, IRCELYON, UMR CNRS 5256, F-69626, Villeurbanne, France
| | - C Frantz
- Group of Energy Materials (GEM), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| | - S Diethelm
- Group of Energy Materials (GEM), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| | - D Montinaro
- SolydEra S.p.A., 38017, Mezzolombardo, Italy
| | - E Tyukalova
- Laboratory for in situ & operando Electron Nanoscopy, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 63737, Singapore, Singapore
| | - Y Pivak
- DENSsolutions, Informaticalaan 12, 2628 ZD, Delft, The Netherlands
| | - J Van Herle
- Group of Energy Materials (GEM), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| | - A Hessler-Wyser
- Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
| | - M Duchamp
- Laboratory for in situ & operando Electron Nanoscopy, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 63737, Singapore, Singapore.
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
13
|
Zhang L, Fan H, Dang Y, Zhuang Q, Arandiyan H, Wang Y, Cheng N, Sun H, Pérez Garza HH, Zheng R, Wang Z, S Mofarah S, Koshy P, Bhargava SK, Cui Y, Shao Z, Liu Y. Recent advances in in situ and operando characterization techniques for Li 7La 3Zr 2O 12-based solid-state lithium batteries. MATERIALS HORIZONS 2023; 10:1479-1538. [PMID: 37040188 DOI: 10.1039/d3mh00135k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Li7La3Zr2O12 (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li+ migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes. Using conventional ex situ characterization techniques to unravel the reasons that lead to these adverse results often requires disassembly of the battery after operation. The sample may be contaminated during the disassembly process, resulting in changes in the material properties within the battery. In contrast, in situ/operando characterization techniques can capture dynamic information during cycling, enabling real-time monitoring of batteries. Therefore, in this review, we briefly illustrate the key challenges currently faced by LLZO-based SSLBs, review recent efforts to study LLZO-based SSLBs using various in situ/operando microscopy and spectroscopy techniques, and elaborate on the capabilities and limitations of these in situ/operando techniques. This review paper not only presents the current challenges but also outlines future developmental prospects for the practical implementation of LLZO-based SSLBs. By identifying and addressing the remaining challenges, this review aims to enhance the comprehensive understanding of LLZO-based SSLBs. Additionally, in situ/operando characterization techniques are highlighted as a promising avenue for future research. The findings presented here can serve as a reference for battery research and provide valuable insights for the development of different types of solid-state batteries.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Huilin Fan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yuzhen Dang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Quanchao Zhuang
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, China.
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuan Wang
- Institute for Frontier Materials, Deakin University, Melbourne, Vic 3125, Australia
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | | | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhua Cui
- Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
14
|
Zhang X, Zhou Y, Chen Y, Li M, Yu H, Li X. Advanced In Situ TEM Microchip with Excellent Temperature Uniformity and High Spatial Resolution. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094470. [PMID: 37177673 PMCID: PMC10181734 DOI: 10.3390/s23094470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Transmission electron microscopy (TEM) is a highly effective method for scientific research, providing comprehensive analysis and characterization. However, traditional TEM is limited to observing static material structures at room temperature within a high-vacuum environment. To address this limitation, a microchip was developed for in situ TEM characterization, enabling the real-time study of material structure evolution and chemical process mechanisms. This microchip, based on microelectromechanical System (MEMS) technology, is capable of introducing multi-physics stimulation and can be used in conjunction with TEM to investigate the dynamic changes of matter in gas and high-temperature environments. The microchip design ensures a high-temperature uniformity in the sample observation area, and a system of tests was established to verify its performance. Results show that the temperature uniformity of 10 real-time observation windows with a total area of up to 1130 μm2 exceeded 95%, and the spatial resolution reached the lattice level, even in a flowing atmosphere of 1 bar.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
16
|
Zhao J, Liang L, Tang S, Zhang G, Su Y, Zhao Y, Li M, Zhang L, Fan S, Li Q, Wei Y. Graphene Microheater Chips for In Situ TEM. NANO LETTERS 2023; 23:726-734. [PMID: 36515654 DOI: 10.1021/acs.nanolett.2c03510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-dimensional materials are bringing significant innovations to in situ TEM characterization. Here a new graphene microheater chip for TEM was developed by stacking graphene on a suspended SiNx membrane as the Joule heating element. It could be heated up to 800 °C within 26.31 ms with a low power consumption of 0.025 mW/1000 μm2. The bulging was only ∼50 nm at 650 °C, which is 2 orders of magnitude smaller than those of conventional MEMS heaters at similar temperatures. The performances benefit from the employment of graphene, since its monolayer structure greatly reduces the heat capacity, and the vdW contact significantly reduces the interfacial interaction. The TEM observation on the Sn melting process verifies its great potential in resolving thermodynamic processes. Moreover, more multifunctional in situ chips could be developed by integrating other stimuli to such chips. This work opens a new frontier for both graphene and in situ characterization techniques.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liang Liang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiyi Tang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guangqi Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yi Su
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengjuan Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lina Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shoushan Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qunqing Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yang Wei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
17
|
Ronan O, Roy A, Ryan S, Hughes L, Downing C, Jones L, Nicolosi V. Templated Synthesis of SiO 2 Nanotubes for Lithium-Ion Battery Applications: An In Situ (Scanning) Transmission Electron Microscopy Study. ACS OMEGA 2023; 8:925-933. [PMID: 36643545 PMCID: PMC9835544 DOI: 10.1021/acsomega.2c06298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
One of the weaknesses of silicon-based batteries is the rapid deterioration of the charge-storage capacity with increasing cycle numbers. Pure silicon anodes tend to suffer from poor cycling ability due to the pulverization of the crystal structure after repeated charge and discharge cycles. In this work, we present the synthesis of a hollow nanostructured SiO2 material for lithium-ion anode applications to counter this drawback. To improve the understanding of the synthesis route, the crucial synthesis step of removing the ZnO template core is shown using an in situ closed gas-cell sample holder for transmission electron microscopy. A direct visual observation of the removal of the ZnO template from the SiO2 shell is yet to be reported in the literature and is a critical step in understanding the mechanism by which these hollow nanostructures form from their core-shell precursors for future electrode material design. Using this unique technique, observation of dynamic phenomena at the individual particle scale is possible with simultaneous heating in a reactive gas environment. The electrochemical benefits of the hollow morphology are demonstrated with exceptional cycling performance, with capacity increasing with subsequent charge-discharge cycles. This demonstrates the criticality of nanostructured battery materials for the development of next-generation Li+-ion batteries.
Collapse
Affiliation(s)
- Oskar Ronan
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), School of
Chemistry, Trinity College Dublin, DublinDublin 2, Ireland
| | - Ahin Roy
- Materials
Science Centre, Indian Institute of Technology, Kharagpur721302, West Bengal, India
| | - Sean Ryan
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), School of
Chemistry, Trinity College Dublin, DublinDublin 2, Ireland
| | - Lucia Hughes
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), School of
Chemistry, Trinity College Dublin, DublinDublin 2, Ireland
| | - Clive Downing
- Advanced
Microscopy Laboratory (AML), and Advanced Materials and Bioengineering
Research (AMBER), Trinity College Dublin, DublinDublin 2, Ireland
| | - Lewys Jones
- School
of Physics, Advanced Microscopy Laboratory (AML), and Advanced Materials
and Bioengineering Research (AMBER), Trinity
College Dublin, DublinDublin 2, Ireland
| | - Valeria Nicolosi
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), School of
Chemistry, Trinity College Dublin, DublinDublin 2, Ireland
| |
Collapse
|
18
|
Zhang F, Zhang X, Jia Z, Liu W. Precise Drift Tracking for In Situ Transmission Electron Microscopy via a Thon-Ring Based Sample Position Measurement. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-7. [PMID: 35599605 DOI: 10.1017/s1431927622000691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualizing how a catalyst behaves during chemical reactions using in situ transmission electron microscopy (TEM) is crucial for understanding the activity origin and guiding performance optimization. However, the sample drifts as temperature changes during in situ reaction, which weakens the resolution and stability of TEM imaging, blocks insights into the dynamic details of catalytic reaction. Herein, a Thon-ring based sample position measurement (TSPM) was developed to track the sample height variation during in situ TEM observation. Drifting characteristics for three commercially available nanochips were studied, showing large biases in aspects of shifting modes, expansion heights, as well as the thermal conduction hysteresis during rapid heating. Particularly, utilizing the TSPM method, for the first time, the gas layer thickness inside a gas-cell nanoreactor was precisely determined, which varies with reaction temperature and gas pressure in a linear manner with coefficients of ~8 nm/°C and ~50 nm/mbar, respectively. Following drift prediction of TSPM, fast oxidation kinetics of a Ni particle was tracked in real time for 12 s at 500°C. This TSPM method is expected to facilitate the functionality of automatic target tracing for in situ microscopy applications when feedback to hardware control of the microscope.
Collapse
Affiliation(s)
- Fan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhenghao Jia
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
19
|
Krisper R, Lammer J, Pivak Y, Fisslthaler E, Grogger W. The Performance of EDXS at Elevated Sample Temperatures Using a MEMS-Based In Situ TEM Heating System. Ultramicroscopy 2022; 234:113461. [PMID: 35121282 DOI: 10.1016/j.ultramic.2021.113461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
Abstract
Since the development of MEMS heating holders, dynamic in-situ experiments at elevated temperatures may be complemented by X-ray spectrometry for chemical analysis. Although the amount of IR radiation is small when compared to furnace holders, the influence of IR radiation emitted from the heating device on the quality of the X-ray spectra is significant. In this work, we systematically examine the influence of infrared (IR) radiation generated by MEMS-based in situ heating systems (DENSsolutions single- and double-tilt holders) on the results and interpretation of energy-dispersive X-ray (EDX) spectra through simulation and measurement. Focal points of interest in this study are the influence of holder geometry, shadowing and orientation with respect to the different emission characteristics of IR and X-ray photons and their interaction with a side-entry and a multi-detector system. IR photons substantially contribute to count rates, dead time, electronic noise levels, energy resolution, and detection efficiency of semiconductor detectors. At higher sample temperatures, they ultimately limit the feasibility of EDXS for elemental characterization and especially the traceability of low-Z elements. This work provides a quantitative insight into the influence of all relevant parameters related to in situ heating experiments on the spectral quality. Bearing this in mind, we aim to provide a guide to optimizing in situ heating experiments with respect to chemical EDXS analysis.
Collapse
Affiliation(s)
- Robert Krisper
- Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Steyrergasse 17, 8010 Graz, Austria; Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria.
| | - Judith Lammer
- Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Steyrergasse 17, 8010 Graz, Austria; Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Yevheniy Pivak
- DENSsolutions, Informaticalaan 12, Delft, 2628ZD, The Netherlands
| | - Evelin Fisslthaler
- Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Steyrergasse 17, 8010 Graz, Austria
| | - Werner Grogger
- Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Steyrergasse 17, 8010 Graz, Austria; Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| |
Collapse
|
20
|
Minenkov A, Šantić N, Truglas T, Aberl J, Vukušić L, Brehm M, Groiss H. Advanced preparation of plan-view specimens on a MEMS chip for in situ TEM heating experiments. MRS BULLETIN 2022; 47:359-370. [PMID: 35968543 PMCID: PMC9365753 DOI: 10.1557/s43577-021-00255-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 06/15/2023]
Abstract
UNLABELLED In situ transmission electron microscopy (TEM) is a powerful tool for advanced material characterization. It allows real-time observation of structural evolution at the atomic level while applying different stimuli such as heat. However, the validity of analysis strongly depends on the quality of the specimen, which has to be prepared by thinning the bulk material to electron transparency while maintaining the pristine properties. To address this challenge, a novel method of TEM samples preparation in plan-view geometry was elaborated based on the combination of the wedge polishing technique and an enhanced focused ion beam (FIB) workflow. It involves primary mechanical thinning of a broad sample area from the backside followed by FIB-assisted installation on the MEMS-based sample carrier. The complete step-by-step guide is provided, and the method's concept is discussed in detail making it easy to follow and adapt for diverse equipment. The presented approach opens the world of in situ TEM heating experiments for a vast variety of fragile materials. The principle and significant advantage of the proposed method are demonstrated by new insights into the stability and thermal-induced strain relaxation of Ge Stranski-Krastanov islands on Si during in situ TEM heating. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43577-021-00255-5.
Collapse
Affiliation(s)
- Alexey Minenkov
- Christian Doppler Laboratory for Nanoscale Phase Transformations, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Natalija Šantić
- Christian Doppler Laboratory for Nanoscale Phase Transformations, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Tia Truglas
- Christian Doppler Laboratory for Nanoscale Phase Transformations, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
- Tietz Video and Image Processing Systems GmbH, Eremitenweg 1, 82131 Gauting, Germany
| | - Johannes Aberl
- Institute of Semiconductor and Solid-State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Lada Vukušić
- Institute of Semiconductor and Solid-State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Moritz Brehm
- Institute of Semiconductor and Solid-State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Heiko Groiss
- Christian Doppler Laboratory for Nanoscale Phase Transformations, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
21
|
Vijayan S, Wang R, Kong Z, Jinschek JR. Quantification of extreme thermal gradients during in situ transmission electron microscope heating experiments. Microsc Res Tech 2021; 85:1527-1537. [PMID: 34897877 DOI: 10.1002/jemt.24015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/13/2021] [Accepted: 11/28/2021] [Indexed: 11/07/2022]
Abstract
Studies on materials affected by large thermal gradients and rapid thermal cycling are an area of increasing interest, driving the need for real time observations of microstructural evoultion under transient thermal conditions. However, current in situ transmission electron microscope (TEM) heating stages introduce uniform temperature distributions across the material during heating experiments. Here, a methodology is described to generate thermal gradients across a TEM specimen by modifying a commercially available MEMS-based heating stage. It was found that a specimen placed next to the metallic heater, over a window, cut by FIB milling, does not disrupt the overall thermal stability of the device. Infrared thermal imaging (IRTI) experiments were performed on unmodified and modified heating devices, to measure thermal gradients across the device. The mean temperature measured within the central viewing area of the unmodified device was 3-5% lower than the setpoint temperature. Using IRTI data, at setpoint temperatures ranging from 900 to 1,300°C, thermal gradients at the edge of the modified window were calculated to be in the range of 0.6 × 106 to 7.0 × 106 °C/m. Additionally, the Ag nanocube sublimation approach was used, to measure the local temperature across a FIB-cut Si lamella at high spatial resolution inside the TEM, and demonstrate "proof of concept" of the modified MEMS device. The thermal gradient across the Si lamella, measured using the latter approach was found to be 6.3 × 106 °C/m, at a setpoint temperature of 1,000°C. Finally, the applicability of this approach and choice of experimental parameters are critically discussed.
Collapse
Affiliation(s)
- Sriram Vijayan
- Department of Materials Science & Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rongxuan Wang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Zhenyu Kong
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Joerg R Jinschek
- Department of Materials Science & Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Li M, Xie DG, Zhang XX, Yang JC, Shan ZW. Quantifying Real-Time Sample Temperature Under the Gas Environment in the Transmission Electron Microscope Using a Novel MEMS Heater. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:758-766. [PMID: 34018478 DOI: 10.1017/s1431927621000489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability (H)”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.
Collapse
Affiliation(s)
- Meng Li
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - De-Gang Xie
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Xiang Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science & Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Zhi-Wei Shan
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
Lee H, Okello OFN, Kim GY, Song K, Choi SY. TEM sample preparation using micro-manipulator for in-situ MEMS experiment. Appl Microsc 2021; 51:8. [PMID: 34106374 PMCID: PMC8190252 DOI: 10.1186/s42649-021-00057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022] Open
Abstract
Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.
Collapse
Affiliation(s)
- Hyunjong Lee
- Korea Institute of Industrial Technology, Incheon, 21999, South Korea
| | - Odongo Francis Ngome Okello
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gi-Yeop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Kyung Song
- Division of Materials Testing and Reliability, Korea Institute of Materials Science, Changwon, 51508, South Korea.
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
24
|
Ek M, Arnarson L, Georg Moses P, Rasmussen SB, Skoglundh M, Olsson E, Helveg S. Probing surface-sensitive redox properties of VO x/TiO 2 catalyst nanoparticles. NANOSCALE 2021; 13:7266-7272. [PMID: 33889890 DOI: 10.1039/d0nr08943e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Redox processes of oxide materials are fundamental in catalysis. These processes depend on the surface structure and stoichiometry of the oxide and are therefore expected to vary between surface facets. However, there is a lack of direct measurements of redox properties on the nanoscale for analysing the importance of such faceting effects in technical materials. Here, we address the facet-dependent redox properties of vanadium-oxide-covered anatase nanoparticles of relevance to, e.g., selective catalytic reduction of nitrogen oxides. The vanadium oxidation states at individual nanoscale facets are resolved in situ under catalytically relevant conditions by combining transmission electron microscopy imaging and electron energy loss spectroscopy. The measurements reveal that vanadium on {001} facets consistently retain higher oxidation states than on {10l} facets. Insight into such structure-sensitivity of surface redox processes opens prospects of tailoring oxide nanoparticles with enhanced catalytic functionalities.
Collapse
Affiliation(s)
- Martin Ek
- Haldor Topsoe A/S, Haldor Topsøes Allé 1, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Kwon Y, An BS, Shin YJ, Yang CW. Method of Ga removal from a specimen on a microelectromechanical system-based chip for in-situ transmission electron microscopy. Appl Microsc 2020; 50:22. [PMID: 33580423 PMCID: PMC7818376 DOI: 10.1186/s42649-020-00043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.
Collapse
Affiliation(s)
- Yena Kwon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Byeong-Seon An
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeon-Ju Shin
- Cooperative Center for Research Facilities, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Cheol-Woong Yang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
26
|
Goodge BH, Bianco E, Schnitzer N, Zandbergen HW, Kourkoutis LF. Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:439-446. [PMID: 32501193 DOI: 10.1017/s1431927620001427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic-resolution cryogenic scanning transmission electron microscopy (cryo-STEM) has provided a path to probing the microscopic nature of select low-temperature phases in quantum materials. Expanding cryo-STEM techniques to broadly tunable temperatures will give access to the rich temperature-dependent phase diagrams of these materials. With existing cryo-holders, however, variations in sample temperature significantly disrupt the thermal equilibrium of the system, resulting in large-scale sample drift. The ability to tune the temperature without negative impact on the overall instrument stability is crucial, particularly for high-resolution experiments. Here, we test a new side-entry continuously variable temperature dual-tilt cryo-holder which integrates liquid nitrogen cooling with a 6-pin micro-electromechanical system (MEMS) sample heater to overcome some of these experimental challenges. We measure consistently low drift rates of 0.3-0.4 Å/s and demonstrate atomic-resolution cryo-STEM imaging across a continuously variable temperature range from ~100 K to well above room temperature. We conduct additional drift stability measurements across several commercial sample stages and discuss implications for further developments of ultra-stable, flexible cryo-stages.
Collapse
Affiliation(s)
- Berit H Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| | - Elisabeth Bianco
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| | - Noah Schnitzer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, USA
| | - Henny W Zandbergen
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
- HennyZ, 2223 GL Katwijk, The Netherlands
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
27
|
Ravenhorst IK, Geitenbeek RG, Eerden MJ, Tijn van Omme J, Peréz Garza HH, Meirer F, Meijerink A, Weckhuysen BM. In Situ
Local Temperature Mapping in Microscopy Nano‐Reactors with Luminescence Thermometry. ChemCatChem 2019. [DOI: 10.1002/cctc.201900985] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ilse K. Ravenhorst
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Robin G. Geitenbeek
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Condensed Matter and InterfacesDebye Institute for Nanomaterials Science Utrecht Universiteit Princetonplein 1 3584 CC Utrecht The Netherlands
| | - M. J. Eerden
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - J. Tijn van Omme
- DENSsolutions B.V. Informaticalaan 12 2628 ZD Delft The Netherlands
| | | | - Florian Meirer
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Andries Meijerink
- Condensed Matter and InterfacesDebye Institute for Nanomaterials Science Utrecht Universiteit Princetonplein 1 3584 CC Utrecht The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
28
|
Pauls JM, Shuck CE, Genç A, Rouvimov S, Mukasyan AS. In-situ transmission electron microscopy determination of solid-state diffusion in the aluminum-nickel system. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
An BS, Kwon Y, Oh JS, Shin YJ, Ju JS, Yang CW. Evaluation of ion/electron beam induced deposition for electrical connection using a modern focused ion beam system. Appl Microsc 2019; 49:6. [PMID: 33580325 PMCID: PMC7818281 DOI: 10.1186/s42649-019-0008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 11/30/2022] Open
Abstract
Focused ion beam method, which has excellent capabilities such as local deposition and selective etching, is widely used for micro-electromechanical system (MEMS)-based in situ transmission electron microscopy (TEM) sample fabrication. Among the MEMS chips in which one can apply various external stimuli, the electrical MEMS chips require connection between the TEM sample and the electrodes in MEMS chip, and a connected deposition material with low electrical resistance is required to apply the electrical signal. Therefore, in this study, we introduce an optimized condition by comparing the electrical resistance for C-, Pt-, and W- ion beam induced deposition (IBID) at 30 kV and electron beam induced deposition (EBID) at 1 and 5 kV. The W-IBID at 30 kV with the lowest electrical resistance of about 30 Ω shows better electrical properties than C- and Pt-IBID electrodes. The W-EBID at 1 kV has lower electrical resistance than that at 5 kV; thus, confirming its potential as an electrode. Therefore, for the materials that are susceptible to ion beam damage, it is recommended to fabricate electrical connections using W-EBID at 1 kV.
Collapse
Affiliation(s)
- Byeong-Seon An
- School of Advanced Material Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yena Kwon
- School of Advanced Material Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jin-Su Oh
- School of Advanced Material Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yeon-Ju Shin
- Cooperative Center for Research Facilities, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jae-Seon Ju
- Cooperative Center for Research Facilities, Sungkyunkwan University, Suwon, 16419, Korea
| | - Cheol-Woong Yang
- School of Advanced Material Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
30
|
Toward Phase and Catalysis Control: Tracking the Formation of Intermetallic Nanoparticles at Atomic Scale. Chem 2019. [DOI: 10.1016/j.chempr.2019.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Temperature calibration of TEM specimen heating holders by isothermal sublimation of silver nanocubes. Ultramicroscopy 2019; 196:142-153. [DOI: 10.1016/j.ultramic.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022]
|
32
|
van Omme JT, Zakhozheva M, Spruit RG, Sholkina M, Pérez Garza HH. Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability. Ultramicroscopy 2018; 192:14-20. [DOI: 10.1016/j.ultramic.2018.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
33
|
Dahl-Petersen C, Šarić M, Brorson M, Moses PG, Rossmeisl J, Lauritsen JV, Helveg S. Topotactic Growth of Edge-Terminated MoS 2 from MoO 2 Nanocrystals. ACS NANO 2018; 12:5351-5358. [PMID: 29767949 DOI: 10.1021/acsnano.8b00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Layered transition metal dichalcogenides have distinct physicochemical properties at their edge-terminations. The production of an abundant density of edge structures is, however, impeded by the excess surface energy of edges compared to basal planes and would benefit from insight into the atomic growth mechanisms. Here, we show that edge-terminated MoS2 nanostructures can form during sulfidation of MoO2 nanocrystals by using in situ transmission electron microscopy (TEM). Time-resolved TEM image series reveal that the MoO2 surface can sulfide by inward progression of MoO2(202̅):MoS2(002) interfaces, resulting in upright-oriented and edge-exposing MoS2 sheets. This topotactic growth is rationalized in the interplay with density functional theory calculations by successive O-S exchange and Mo sublattice restructuring steps. The analysis shows that formation of edge-terminated MoS2 is energetically favorable at MoO2(110) surfaces and provides a necessary requirement for the propensity of a specific MoO2 surface termination to form edge-terminated MoS2. Thus, the present findings should benefit the rational development of transition metal dichalcogenide nanomaterials with abundant edge terminations.
Collapse
Affiliation(s)
- Christian Dahl-Petersen
- Haldor Topsoe A/S , Haldor Topsøes Allé 1 , DK-2800 Kgs. Lyngby , Denmark
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
| | - Manuel Šarić
- Department of Physics , Technical University of Denmark , DK-2800 Kgs. Lyngby , Denmark
| | - Michael Brorson
- Haldor Topsoe A/S , Haldor Topsøes Allé 1 , DK-2800 Kgs. Lyngby , Denmark
| | - Poul Georg Moses
- Haldor Topsoe A/S , Haldor Topsøes Allé 1 , DK-2800 Kgs. Lyngby , Denmark
| | - Jan Rossmeisl
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Jeppe Vang Lauritsen
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
| | - Stig Helveg
- Haldor Topsoe A/S , Haldor Topsøes Allé 1 , DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
34
|
Luo C, Wang C, Wu X, Zhang J, Chu J. In Situ Transmission Electron Microscopy Characterization and Manipulation of Two-Dimensional Layered Materials beyond Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604259. [PMID: 28783241 DOI: 10.1002/smll.201604259] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) ultra-thin materials beyond graphene with rich physical properties and unique layered structures are promising for applications in electronics, chemistry, energy, and bioscience, etc. The interaction mechanisms among the structures, chemical compositions and physical properties of 2D layered materials are critical for fundamental nanosciences and the practical fabrication of next-generation nanodevices. Transmission electron microscopy (TEM), with its high spatial resolution and versatile external fields, is undoubtedly a powerful tool for the static characterization and dynamic manipulation of nanomaterials and nanodevices at the atomic scale. The rapid development of thin-film and precision microelectromechanical systems (MEMS) techniques allows 2D layered materials and nanodevices to be probed and engineered inside TEM under external stimuli such as thermal, electrical, mechanical, liquid/gas environmental, optical, and magnetic fields at the nanoscale. Such advanced technologies leverage the traditional static TEM characterization into an in situ and interactive manipulation of 2D layered materials without sacrificing the resolution or the high vacuum chamber environment, facilitating exploration of the intrinsic structure-property relationship of 2D layered materials. In this Review, the dynamic properties tailored and observed by the most advanced and unprecedented in situ TEM technology are introduced. The challenges in spatial, time and energy resolution are discussed also.
Collapse
Affiliation(s)
- Chen Luo
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chaolun Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xing Wu
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Junhao Chu
- Shanghai Key Laboratory of Multidimensional Information Processing, State Key Laboratory of Transducer Technology, Department of Electrical Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
35
|
Vijayan S, Jinschek JR, Kujawa S, Greiser J, Aindow M. Focused Ion Beam Preparation of Specimens for Micro-Electro-Mechanical System-based Transmission Electron Microscopy Heating Experiments. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:708-716. [PMID: 28578727 DOI: 10.1017/s1431927617000605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Micro-electro-mechanical systems (MEMS)-based heating holders offer exceptional control of temperature and heating/cooling rates for transmission electron microscopy experiments. The use of such devices is relatively straightforward for nano-particulate samples, but the preparation of specimens from bulk samples by focused ion beam (FIB) milling presents significant challenges. These include: poor mechanical integrity and site selectivity of the specimen, ion beam damage to the specimen and/or MEMS device during thinning, and difficulties in transferring the specimen onto the MEMS device. Here, we describe a novel FIB protocol for the preparation and transfer of specimens from bulk samples, which involves a specimen geometry that provides mechanical support to the electron-transparent region, while maximizing the area of that region and the contact area with the heater plate on the MEMS chip. The method utilizes an inclined stage block that minimizes exposure of the chip to the ion beam during milling. This block also allows for accurate and gentle placement of the FIB-cut specimen onto the chip by using simultaneous electron and ion beam imaging during transfer. Preliminary data from Si and Ag on Si samples are presented to demonstrate the quality of the specimens that can be obtained and their stability during in situ heating experiments.
Collapse
Affiliation(s)
- Sriram Vijayan
- 1Department of Materials Science and Engineering,Institute of Materials Science,University of Connecticut,Unit 3136,97 North Eagleville Road,Storrs,CT 06269-3136,USA
| | | | - Stephan Kujawa
- 2FEI Company,Achtseweg Noord 5,Eindhoven 5651GG,The Netherlands
| | - Jens Greiser
- 2FEI Company,Achtseweg Noord 5,Eindhoven 5651GG,The Netherlands
| | - Mark Aindow
- 1Department of Materials Science and Engineering,Institute of Materials Science,University of Connecticut,Unit 3136,97 North Eagleville Road,Storrs,CT 06269-3136,USA
| |
Collapse
|
36
|
Local temperature measurement in TEM by parallel beam electron diffraction. Ultramicroscopy 2017; 176:161-169. [DOI: 10.1016/j.ultramic.2016.11.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/06/2016] [Accepted: 11/25/2016] [Indexed: 11/23/2022]
|