1
|
Bishop KW, Erion Barner LA, Baraznenok E, Lan L, Poudel C, Brenes D, Serafin RB, True LD, Vaughan JC, Glaser AK, Liu JTC. Axially swept open-top light-sheet microscopy for densely labeled clinical specimens. OPTICS LETTERS 2024; 49:3794-3797. [PMID: 38950270 DOI: 10.1364/ol.521591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
Open-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes. Tight optical sectioning helps to minimize out-of-focus fluorescence for high-contrast imaging in these densely labeled tissues but has been challenging to achieve in OTLS systems due to trade-offs between optical sectioning and field of view. Here we present an OTLS microscope with voice-coil-based axial sweeping to circumvent this trade-off, achieving 2 µm axial resolution over a 750 × 375 µm field of view. We implement our design in a non-orthogonal dual-objective (NODO) architecture, which enables a 10-mm working distance with minimal sensitivity to refractive index mismatches, for high-contrast 3D imaging of clinical specimens.
Collapse
|
2
|
Wang J, Xu X, Ye H, Zhang X, Shi G. Interferometric modulation for generating extended light sheet: improving field of view. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:046501. [PMID: 38629030 PMCID: PMC11020319 DOI: 10.1117/1.jbo.29.4.046501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Significance Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful and versatile imaging technique renowned for its remarkable features, including high-speed 3D tomography, minimal photobleaching, and low phototoxicity. The interference light-sheet fluorescence microscope, with its larger field of view (FOV) and more uniform axial resolution, possesses significant potential for a wide range of applications in biology and medicine. Aim The aim of this study is to investigate the interference behavior among multiple light sheets (LSs) in LSFM and optimize the FOV and resolution of the light-sheet fluorescence microscope. Approach We conducted a detailed investigation of the interference effects among LSs through theoretical derivation and numerical simulations, aiming to find optimal parameters. Subsequently, we constructed a customized system of multi-LSFM that incorporates both interference light sheets (ILS) and noninterference light-sheet configurations. We performed beam imaging and microsphere imaging tests to evaluate the FOV and axial resolution of these systems. Results Using our custom-designed light-sheet fluorescence microscope, we captured the intensity distribution profiles of both interference and noninterference light sheets (NILS). Additionally, we conducted imaging tests on microspheres to assess their imaging outcomes. The ILS not only exhibits a larger FOV compared to the NILS but also demonstrates a more uniform axial resolution. Conclusions By effectively modulating the interference among multiple LSs, it is possible to optimize the intensity distribution of the LSs, expand the FOV, and achieve a more uniform axial resolution.
Collapse
Affiliation(s)
- Jixiang Wang
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Xin Xu
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Hong Ye
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Xin Zhang
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Guohua Shi
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| |
Collapse
|
3
|
Almasian M, Saberigarakani A, Zhang X, Lee B, Ding Y. Light-Sheet Imaging to Reveal Cardiac Structure in Rodent Hearts. J Vis Exp 2024:10.3791/66707. [PMID: 38619234 PMCID: PMC11027943 DOI: 10.3791/66707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Light-sheet microscopy (LSM) plays a pivotal role in comprehending the intricate three-dimensional (3D) structure of the heart, providing crucial insights into fundamental cardiac physiology and pathologic responses. We hereby delve into the development and implementation of the LSM technique to elucidate the micro-architecture of the heart in mouse models. The methodology integrates a customized LSM system with tissue clearing techniques, mitigating light scattering within cardiac tissues for volumetric imaging. The combination of conventional LSM with image stitching and multiview deconvolution approaches allows for the capture of the entire heart. To address the inherent trade-off between axial resolution and field of view (FOV), we further introduce an axially swept light-sheet microscopy (ASLM) method to minimize out-of-focus light and uniformly illuminate the heart across the propagation direction. In the meanwhile, tissue clearing methods such as iDISCO enhance light penetration, facilitating the visualization of deep structures and ensuring a comprehensive examination of the myocardium throughout the entire heart. The combination of the proposed LSM and tissue clearing methods presents a promising platform for researchers in resolving cardiac structures in rodent hearts, holding great potential for the understanding of cardiac morphogenesis and remodeling.
Collapse
Affiliation(s)
- Milad Almasian
- Department of Bioengineering, The University of Texas at Dallas
| | | | - Xinyuan Zhang
- Department of Bioengineering, The University of Texas at Dallas
| | - Brian Lee
- Department of Bioengineering, The University of Texas at Dallas
| | - Yichen Ding
- Department of Bioengineering, The University of Texas at Dallas; Center for Imaging and Surgical Innovation, The University of Texas at Dallas; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center;
| |
Collapse
|
4
|
Guo X, Zhao F, Zhu J, Zhu D, Zhao Y, Fei P. Rapid 3D isotropic imaging of whole organ with double-ring light-sheet microscopy and self-learning side-lobe elimination. BIOMEDICAL OPTICS EXPRESS 2023; 14:6206-6221. [PMID: 38420327 PMCID: PMC10898557 DOI: 10.1364/boe.505217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 03/02/2024]
Abstract
Bessel-like plane illumination forms a new type of light-sheet microscopy with ultra-long optical sectioning distance that enables rapid 3D imaging of fine cellular structures across an entire large tissue. However, the side-lobe excitation of conventional Bessel light sheets severely impairs the quality of the reconstructed 3D image. Here, we propose a self-supervised deep learning (DL) approach that can completely eliminate the residual side lobes for a double-ring-modulated non-diffraction light-sheet microscope, thereby substantially improving the axial resolution of the 3D image. This lightweight DL model utilizes the own point spread function (PSF) of the microscope as prior information without the need for external high-resolution microscopy data. After a quick training process based on a small number of datasets, the grown-up model can restore sidelobe-free 3D images with near isotropic resolution for diverse samples. Using an advanced double-ring light-sheet microscope in conjunction with this efficient restoration approach, we demonstrate 5-minute rapid imaging of an entire mouse brain with a size of ∼12 mm × 8 mm × 6 mm and achieve uniform isotropic resolution of ∼4 µm (1.6-µm voxel) capable of discerning the single neurons and vessels across the whole brain.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fang Zhao
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingtan Zhu
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Dan Zhu
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, 430074, Wuhan, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuxuan Zhao
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, 430074, Wuhan, China
| |
Collapse
|
5
|
Delage E, Guilbert T, Yates F. Successful 3D imaging of cleared biological samples with light sheet fluorescence microscopy. J Cell Biol 2023; 222:e202307143. [PMID: 37847528 PMCID: PMC10583220 DOI: 10.1083/jcb.202307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
In parallel with the development of tissue-clearing methods, over the last decade, light sheet fluorescence microscopy has contributed to major advances in various fields, such as cell and developmental biology and neuroscience. While biologists are increasingly integrating three-dimensional imaging into their research projects, their experience with the technique is not always up to their expectations. In response to a survey of specific challenges associated with sample clearing and labeling, image acquisition, and data analysis, we have critically assessed the recent literature to characterize the difficulties inherent to light sheet fluorescence microscopy applied to cleared biological samples and to propose solutions to overcome them. This review aims to provide biologists interested in light sheet fluorescence microscopy with a primer for the development of their imaging pipeline, from sample preparation to image analysis. Importantly, we believe that issues could be avoided with better anticipation of image analysis requirements, which should be kept in mind while optimizing sample preparation and acquisition parameters.
Collapse
Affiliation(s)
- Elise Delage
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| | - Thomas Guilbert
- Institut Cochin, Institut national de la santé et de la recherche médicale (U1016), Centre National de la Recherche Scientifique (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | - Frank Yates
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Li S, Zhao Y, Wen W, Ma Y, Liu S, Chen G, Ye Y. Simple, non-mechanical and automatic calibration approach for axial-scanning microscopy with an electrically tunable lens. Microsc Res Tech 2023; 86:1391-1400. [PMID: 37119118 DOI: 10.1002/jemt.24337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
We describe a simple and robust calibration approach for axial-scanning microscopy that realizes axial focus shifts with an electrically tunable lens (ETL). We demonstrate the calibration approach based on a microscope with an ETL placed close to the rear stop of the objective lens. By introducing a target-consisted of repeating lines at one known frequency and placed at a ~45° angle to the imaging path, the calibration method captures multiple images at different ETL currents and calibrates the dependence of the axial focus shift on the ETL current by evaluating the sharpness of the captured images. It calibrates the dependence of the magnification of the microscope on the ETL current by measuring the period of the repeating lines in the captured images. The experimental results show that different from the conventional calibration procedure, the proposed scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the ETL current. This might facilitate imaging studies that require the measurement of fine structures in a 3D volume. We also show the calibration procedure can be used to estimate the radius of a conner-arc sample, fabricated using laser micromachining. We believe that this easy-to-use calibration approach may facilitate use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods. RESEARCH HIGHLIGHTS: The proposed calibration scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the electrically tunable lens (ETL) current. It might facilitate imaging studies that require the measurement of fine structures in a 3D volume, and the use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods.
Collapse
Affiliation(s)
- Shengfu Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhao
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Weifent Wen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yuncan Ma
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Shouxian Liu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Guanghua Chen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yan Ye
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| |
Collapse
|
7
|
Brown JA, Petersen N, Centanni SW, Jin AY, Yoon HJ, Cajigas SA, Bedenbaugh MN, Luchsinger JR, Patel S, Calipari ES, Simerly RB, Winder DG. An ensemble recruited by α 2a-adrenergic receptors is engaged in a stressor-specific manner in mice. Neuropsychopharmacology 2023; 48:1133-1143. [PMID: 36085168 PMCID: PMC10267140 DOI: 10.1038/s41386-022-01442-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
α2a-adrenergic receptor (α2a-AR) agonists are candidate substance use disorder therapeutics due to their ability to recruit noradrenergic autoreceptors to dampen stress system engagement. However, we recently found that postsynaptic α2a-ARs are required for stress-induced reinstatement of cocaine-conditioned behavior. Understanding the ensembles recruited by these postsynaptic receptors (heteroceptors) is necessary to understand noradrenergic circuit control. We utilized a variety of approaches in FosTRAP (Targeted Recombination in Active Populations) mice to define an ensemble of cells activated by the α2a-AR partial agonist guanfacine ("Guansembles") in the bed nucleus of the stria terminalis (BST/BNST), a region key to stress-induced reinstatement of drug seeking. We define BNST "Guansembles" and show they differ from restraint stress-activated cells. Guanfacine produced inhibition of cAMP-dependent signaling in Guansembles, while chronic restraint stress increased cAMP-dependent signaling. Guanfacine both excited and inhibited aspects of Guansemble neuronal activity. Further, while some stressors produced overall reductions in Guansemble activity, active coping events during restraint stress and exposure to unexpected shocks were both associated with Guansemble recruitment. Using viral tracing, we define a BNST Guansemble afferent network that includes regions involved in the interplay of stress and homeostatic functions. Finally, we show that activation of Guansembles produces alterations in behavior on the elevated plus maze consistent with task-specific anxiety-like behavior. Overall, we define a population of BNST neurons recruited by α2a-AR signaling that opposes the behavioral action of canonical autoreceptor α2a-AR populations and which are differentially recruited by distinct stressors. Moreover, we demonstrate stressor-specific physiological responses in a specific neuronal population.
Collapse
Affiliation(s)
- Jordan A Brown
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Nicholas Petersen
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Allie Y Jin
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Hye Jean Yoon
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Stephanie A Cajigas
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Michelle N Bedenbaugh
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Joseph R Luchsinger
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Richard B Simerly
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Williford KM, Taylor A, Melchior JR, Yoon HJ, Sale E, Negasi MD, Adank DN, Brown JA, Bedenbaugh MN, Luchsinger JR, Centanni SW, Patel S, Calipari ES, Simerly RB, Winder DG. BNST PKCδ neurons are activated by specific aversive conditions to promote anxiety-like behavior. Neuropsychopharmacology 2023; 48:1031-1041. [PMID: 36941364 PMCID: PMC10209190 DOI: 10.1038/s41386-023-01569-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/22/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNSTPKCδ) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNSTPKCδ cells are recruited during bouts of active stress coping. Here, we first show that in vivo activation of this population is mildly aversive. This aversion was insensitive to prior restraint stress exposure. Further investigation revealed that unlike other BNST subpopulations, BNSTPKCδ cells do not exhibit increased cfos expression following restraint stress. Ex vivo current clamp recordings also indicate they are resistant to firing. To elucidate their afferent control, we next used rabies tracing with whole-brain imaging and channelrhodopsin-assisted circuit mapping, finding that BNSTPKCδ cells receive abundant input from affective, arousal, and sensory regions including the basolateral amygdala (BLA) paraventricular thalamus (PVT) and central amygdala PKCδ-expressing cells (CeAPKCδ). Given these findings, we used in vivo optogenetics and fiber photometry to further examine BNSTPKCδ cells in the context of stress and anxiety-like behavior. We found that BNSTPKCδ cell activity is associated with increased anxiety-like behavior in the elevated plus maze, increases following footshock, and unlike other BNST subpopulations, does not desensitize to repeated stress exposure. Taken together, we propose a model in which BNSTPKCδ cells may serve as threat detectors, integrating exteroceptive and interoceptive information to inform stress coping behaviors.
Collapse
Affiliation(s)
- Kellie M Williford
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Anne Taylor
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - James R Melchior
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Hye Jean Yoon
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Eryn Sale
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Milen D Negasi
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Jordan A Brown
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Michelle N Bedenbaugh
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Joseph R Luchsinger
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard B Simerly
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Peterson T, Mann S, Sun BL, Peng L, Cai H, Liang R. Motionless volumetric structured light sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2209-2224. [PMID: 37206125 PMCID: PMC10191636 DOI: 10.1364/boe.489280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
To meet the increasing need for low-cost, compact imaging technology with cellular resolution, we have developed a microLED-based structured light sheet microscope for three-dimensional ex vivo and in vivo imaging of biological tissue in multiple modalities. All the illumination structure is generated directly at the microLED panel-which serves as the source-so light sheet scanning and modulation is completely digital, yielding a system that is simpler and less prone to error than previously reported methods. Volumetric images with optical sectioning are thus achieved in an inexpensive, compact form factor without any moving parts. We demonstrate the unique properties and general applicability of our technique by ex vivo imaging of porcine and murine tissue from the gastrointestinal tract, kidney, and brain.
Collapse
Affiliation(s)
- Tyler Peterson
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| | - Shivani Mann
- Department of Neuroscience, The University of Arizona, Tucson, Arizona 85721, USA
| | - Belinda L. Sun
- Department of Pathology, College of Medicine, The University of Arizona, Tucson, Arizona 85721, USA
| | - Leilei Peng
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| | - Haijiang Cai
- Department of Neuroscience, The University of Arizona, Tucson, Arizona 85721, USA
| | - Rongguang Liang
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
10
|
Gowda HGB, Bruno BP, Wapler MC, Wallrabe U. Reliability of tunable lenses: feedback sensors and the influence of temperature, orientation, and vibrations. APPLIED OPTICS 2023; 62:3072-3082. [PMID: 37133153 DOI: 10.1364/ao.485639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We compare different aspects of the robustness to environmental conditions of two different types of piezo-actuated fluid-membrane lenses: a silicone membrane lens, where the piezo actuator indirectly deforms the flexible membrane through fluid displacement, and a glass membrane lens, where the piezo actuator directly deforms the stiff membrane. While both lenses operated reliably over the temperature range of 0°-75°C, there was a significant effect on their actuation characteristics, which can be well described through a simple model. The silicone lens in particular showed a variation in focal power of up to 0.1m-1 ∘C-1. We demonstrated that integrated pressure and temperature sensors can provide feedback for focal power, however, limited by the response time of the elastomers in the lenses, with polyurethane in the support structures of the glass membrane lens being more critical than the silicone. Studying the mechanical effects, the silicone membrane lens showed a gravity-induced coma and tilt, and a reduced imaging quality with the Strehl ratio decreasing from 0.89 to 0.31 at a vibration frequency of 100 Hz and an acceleration of 3g. The glass membrane lens was unaffected by gravity, and the Strehl ratio decreased from 0.92 to 0.73 at a vibration of 100 Hz, 3g. Overall, the stiffer glass membrane lens is more robust against environmental influences.
Collapse
|
11
|
Gong Y, Zeng M, Zhu Y, Li S, Zhao W, Zhang C, Zhao T, Wang K, Yang J, Bai J. Flow Cytometry with Anti-Diffraction Light Sheet (ADLS) by Spatial Light Modulation. MICROMACHINES 2023; 14:679. [PMID: 36985086 PMCID: PMC10054044 DOI: 10.3390/mi14030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Flow cytometry is a widespread and powerful technique whose resolution is determined by its capacity to accurately distinguish fluorescently positive populations from negative ones. However, most informative results are discarded while performing the measurements of conventional flow cytometry, e.g., the cell size, shape, morphology, and distribution or location of labeled exosomes within the unpurified biological samples. Herein, we propose a novel approach using an anti-diffraction light sheet with anisotroic feature to excite fluorescent tags. Constituted by an anti-diffraction Bessel-Gaussian beam array, the light sheet is 12 μm wide, 12 μm high, and has a thickness of ~0.8 μm. The intensity profile of the excited fluorescent signal can, therefore, reflect the size and allow samples in the range from O (100 nm) to 10 μm (e.g., blood cells) to be transported via hydrodynamic focusing in a microfluidic chip. The sampling rate is 500 kHz, which provides a capability of high throughput without sacrificing the spatial resolution. Consequently, the proposed anti-diffraction light sheet flow cytometry (ADLSFC) can obtain more informative results than the conventional methodologies, and is able to provide multiple characteristics (e.g., the size and distribution of fluorescent signal) helping to distinguish the target samples from the complex backgrounds.
Collapse
Affiliation(s)
- Yanyan Gong
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Ming Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Yueqiang Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Shangyu Li
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Tianyun Zhao
- School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kaige Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Jiangcun Yang
- Department of Transfusion Medicine, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Jintao Bai
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| |
Collapse
|
12
|
Gowda HGB, Wapler MC, Wallrabe U. Tunable doublets: piezoelectric glass membrane lenses with an achromatic and spherical aberration control. OPTICS EXPRESS 2022; 30:46528-46540. [PMID: 36558604 DOI: 10.1364/oe.479013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
We present two versions of tunable achromatic doublets based on each two piezoelectrically actuated glass membranes that create the surface of fluid volumes with different dispersions: a straightforward back-to-back and a more intricate stack of the fluid volumes. In both cases, we can control the chromatic focal shift and focal power independently by a suitable combination of actuation voltages on both active membranes. The doublets have a large aperture of 12 mm at an outer diameter of the actuator of 18 mm, an overall thickness of 3 mm and a short response time of around 0.5 ms and, in addition, provide spherical aberration correction. The two designs have an achromatic focal power range of ±2.2 m-1 and ±3.2 m-1 or, for the purpose of actively correcting chromatic errors, a chromatic focal shift at vanishing combined focal power of up to ±0.08 m-1 and ±0.12 m-1.
Collapse
|
13
|
Bedenbaugh MN, Brener SC, Maldonado J, Lippert RN, Sweeney P, Cone RD, Simerly RB. Organization of neural systems expressing melanocortin-3 receptors in the mouse brain: Evidence for sexual dimorphism. J Comp Neurol 2022; 530:2835-2851. [PMID: 35770983 PMCID: PMC9724692 DOI: 10.1002/cne.25379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.
Collapse
Affiliation(s)
- Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Samantha C. Brener
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Patrick Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Frantz D, Karamahmutoglu T, Schaser AJ, Kirik D, Berrocal E. High contrast, isotropic, and uniform 3D-imaging of centimeter-scale scattering samples using structured illumination light-sheet microscopy with axial sweeping. BIOMEDICAL OPTICS EXPRESS 2022; 13:4907-4925. [PMID: 36187271 PMCID: PMC9484431 DOI: 10.1364/boe.464039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Light-sheet fluorescent microscopy (LSFM) has, in recent years, allowed for rapid 3D-imaging of cleared biomedical samples at larger and larger scale. However, even in cleared samples, multiple light scattering often degrades the imaging contrast and widens the optical sectioning. Accumulation of scattering intensifies these negative effects as light propagates inside the tissue, which accentuates the issues when imaging large samples. With axially swept light-sheet microscopy (ASLM), centimeter-scale samples can be scanned with a uniform micrometric optical sectioning. But to fully utilize these benefits for 3D-imaging in biomedical tissue samples, suppression of scattered light is needed. Here, we address this by merging ASLM with light-sheet based structured illumination into Structured Illumination Light-sheet Microscopy with Axial Sweeping (SILMAS). The SILMAS method thus enables high-contrast imaging, isotropic micrometric resolution and uniform optical sectioning in centimeter-scale scattering samples, creating isotropic 3D-volumes of e.g., whole mouse brains without the need for any computation-heavy post-processing. We demonstrate the effectiveness of the approach in agarose gel phantoms with fluorescent beads, and in an PFF injected alpha-synuclein transgenic mouse model tagged with a green fluorescent protein (SynGFP). SILMAS imaging is compared to standard ASLM imaging on the same samples and using the same optical setup, and is shown to increase contrast by as much as 370% and reduce widening of optical sectioning by 74%. With these results, we show that SILMAS improves upon the performance of current state-of-the-art light-sheet microscopes for large and imperfectly cleared tissue samples and is a valuable addition to the LSFM family.
Collapse
Affiliation(s)
- David Frantz
- Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden
| | - Tugba Karamahmutoglu
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184, Lund, Sweden
| | - Allison J. Schaser
- Department of Speech, Language, & Hearing Sciences, Purdue Institute for Integrative Neuroscience 207 S. Martin Jischke Dr., DLR, 335, Purdue University, West Lafayette, IN 47907, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184, Lund, Sweden
| | - Edouard Berrocal
- Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Isotropic imaging across spatial scales with axially swept light-sheet microscopy. Nat Protoc 2022; 17:2025-2053. [PMID: 35831614 PMCID: PMC10111370 DOI: 10.1038/s41596-022-00706-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Light-sheet fluorescence microscopy is a rapidly growing technique that has gained tremendous popularity in the life sciences owing to its high-spatiotemporal resolution and gentle, non-phototoxic illumination. In this protocol, we provide detailed directions for the assembly and operation of a versatile light-sheet fluorescence microscopy variant, referred to as axially swept light-sheet microscopy (ASLM), that delivers an unparalleled combination of field of view, optical resolution and optical sectioning. To democratize ASLM, we provide an overview of its working principle and applications to biological imaging, as well as pragmatic tips for the assembly, alignment and control of its optical systems. Furthermore, we provide detailed part lists and schematics for several variants of ASLM that together can resolve molecular detail in chemically expanded samples, subcellular organization in living cells or the anatomical composition of chemically cleared intact organisms. We also provide software for instrument control and discuss how users can tune imaging parameters to accommodate diverse sample types. Thus, this protocol will serve not only as a guide for both introductory and advanced users adopting ASLM, but as a useful resource for any individual interested in deploying custom imaging technology. We expect that building an ASLM will take ~1-2 months, depending on the experience of the instrument builder and the version of the instrument.
Collapse
|
16
|
Liu Y, Rollins AM, Jenkins MW. CompassLSM: axially swept light-sheet microscopy made simple. BIOMEDICAL OPTICS EXPRESS 2021; 12:6571-6589. [PMID: 34745757 PMCID: PMC8547981 DOI: 10.1364/boe.440292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Axially swept light-sheet microscopy (ASLM) is an effective method of generating a uniform light sheet across a large field of view (FOV). However, current ASLM designs are more complicated than conventional light-sheet systems, limiting their adaptation in less experienced labs. By eliminating difficult-to-align components and reducing the total number of components, we show that high-performance ASLM can be accomplished much simpler than existing designs, requiring less expertise and effort to construct, align, and operate. Despite the high simplicity, our design achieved 3.5-µm uniform optical sectioning across a >6-mm FOV, surpassing existing light-sheet designs with similar optical sectioning. With well-corrected chromatic aberration, multi-channel fluorescence imaging can be performed without realignment. This manuscript provides a comprehensive tutorial on building the system and demonstrates the imaging performance with optically cleared whole-mount tissue samples.
Collapse
Affiliation(s)
- Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Zhang Z, Yao X, Yin X, Ding Z, Huang T, Huo Y, Ji R, Peng H, Guo ZV. Multi-Scale Light-Sheet Fluorescence Microscopy for Fast Whole Brain Imaging. Front Neuroanat 2021; 15:732464. [PMID: 34630049 PMCID: PMC8497830 DOI: 10.3389/fnana.2021.732464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Whole-brain imaging has become an increasingly important approach to investigate neural structures, such as somata distribution, dendritic morphology, and axonal projection patterns. Different structures require whole-brain imaging at different resolutions. Thus, it is highly desirable to perform whole-brain imaging at multiple scales. Imaging a complete mammalian brain at synaptic resolution is especially challenging, as it requires continuous imaging from days to weeks because of the large number of voxels to sample, and it is difficult to acquire a constant quality of imaging because of light scattering during in toto imaging. Here, we reveal that light-sheet microscopy has a unique advantage over wide-field microscopy in multi-scale imaging because of its decoupling of illumination and detection. Based on this observation, we have developed a multi-scale light-sheet microscope that combines tiling of light-sheet, automatic zooming, periodic sectioning, and tissue expansion to achieve a constant quality of brain-wide imaging from cellular (3 μm × 3 μm × 8 μm) to sub-micron (0.3 μm × 0.3 μm × 1 μm) spatial resolution rapidly (all within a few hours). We demonstrated the strength of the system by testing it using mouse brains prepared using different clearing approaches. We were able to track electrode tracks as well as axonal projections at sub-micron resolution to trace the full morphology of single medial prefrontal cortex (mPFC) neurons that have remarkable diversity in long-range projections.
Collapse
Affiliation(s)
- Zhouzhou Zhang
- School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Yao
- School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Xinxin Yin
- School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Zhangcan Ding
- SEU-Allen Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Tianyi Huang
- School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yan Huo
- School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Runan Ji
- School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Hanchuan Peng
- SEU-Allen Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Zengcai V Guo
- School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| |
Collapse
|
18
|
Luchsinger JR, Fetterly TL, Williford KM, Salimando GJ, Doyle MA, Maldonado J, Simerly RB, Winder DG, Centanni SW. Delineation of an insula-BNST circuit engaged by struggling behavior that regulates avoidance in mice. Nat Commun 2021; 12:3561. [PMID: 34117229 PMCID: PMC8196075 DOI: 10.1038/s41467-021-23674-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Active responses to stressors involve motor planning, execution, and feedback. Here we identify an insular cortex to BNST (insula→BNST) circuit recruited during restraint stress-induced active struggling that modulates affective behavior. We demonstrate that activity in this circuit tightly follows struggling behavioral events and that the size of the fluorescent sensor transient reports the duration of the struggle event, an effect that fades with repeated exposure to the homotypic stressor. Struggle events are associated with enhanced glutamatergic- and decreased GABAergic signaling in the insular cortex, indicating the involvement of a larger circuit. We delineate the afferent network for this pathway, identifying substantial input from motor- and premotor cortex, somatosensory cortex, and the amygdala. To begin to dissect these incoming signals, we examine the motor cortex input, and show that the cells projecting from motor regions to insular cortex are engaged shortly before struggle event onset. This study thus demonstrates a role for the insula→BNST pathway in monitoring struggling activity and regulating affective behavior.
Collapse
Affiliation(s)
- Joseph R Luchsinger
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tracy L Fetterly
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kellie M Williford
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory J Salimando
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marie A Doyle
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jose Maldonado
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard B Simerly
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Samuel W Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
19
|
Kim B, Na M, Park S, Kim K, Park JH, Chung E, Chang S, Kim KH. Open-top axially swept light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:2328-2338. [PMID: 33996232 PMCID: PMC8086456 DOI: 10.1364/boe.419030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 05/17/2023]
Abstract
Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for high throughput cellular imaging of large tissue specimens including optically cleared tissues by having the entire optical setup below the sample stage. Current OT-LSM systems had relatively low axial resolutions by using weakly focused light sheets to cover the imaging field of view (FOV). In this report, open-top axially swept LSM (OTAS-LSM) was developed for high-throughput cellular imaging with improved axial resolution. OTAS-LSM swept a tightly focused excitation light sheet across the imaging FOV using an electro tunable lens (ETL) and collected emission light at the focus of the light sheet with a camera in the rolling shutter mode. OTAS-LSM was developed by using air objective lenses and a liquid prism and it had on-axis optical aberration associated with the mismatch of refractive indices between air and immersion medium. The effects of optical aberration were analyzed by both simulation and experiment, and the image resolutions were under 1.6µm in all directions. The newly developed OTAS-LSM was applied to the imaging of optically cleared mouse brain and small intestine, and it demonstrated the single-cell resolution imaging of neuronal networks. OTAS-LSM might be useful for the high-throughput cellular examination of optically cleared large tissues.
Collapse
Affiliation(s)
- Bumju Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myeongsu Na
- Department of Physiology and Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Soohyun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk 37673, Republic of Korea
| | - Kitae Kim
- Department of Physiology and Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk 37673, Republic of Korea
| |
Collapse
|
20
|
Landry J, Hamann S, Solgaard O. High-speed axially swept light sheet microscopy using a linear MEMS phased array for isotropic resolution. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200168RR. [PMID: 33098281 PMCID: PMC7720907 DOI: 10.1117/1.jbo.25.10.106504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 05/12/2023]
Abstract
SIGNIFICANCE Axially swept light sheet microscopy is used for deconvolution-free, high-resolution 3D imaging, but usually the axial scan mechanism reduces the top imaging speed. Phased arrays (PAs) for axial scanning enable both high resolution and high speed. AIM A high-speed PA with an update rate faster than the camera row read time is used to track the rolling shutter at camera-limited rates. APPROACH The point spread function is evaluated to ensure sub-micron isotropic resolution, and the technique is demonstrated on a live Drosophila embryo. RESULTS Isotropic resolution is shown down to 720 ± 55 nm in all three spatial dimensions. With an update rate of 2.85 μs, the PA tracks the camera sensor rolling shutter at camera-limited rates. Features in the Drosophila embryo are resolved clearly compared with the equivalent static light sheet case. The random-access nature of the PA enables a camera sensor readout in the same direction for each frame to maintain even temporal sampling in image sequences with no speed loss. CONCLUSIONS Use of PAs is compatible with axially swept light sheet microscopy and offers significant improvements in speed.
Collapse
Affiliation(s)
- Joseph Landry
- Stanford University, Edward L. Ginzton Laboratory, Stanford, California, United States
| | - Stephen Hamann
- Stanford University, Edward L. Ginzton Laboratory, Stanford, California, United States
| | - Olav Solgaard
- Stanford University, Edward L. Ginzton Laboratory, Stanford, California, United States
| |
Collapse
|
21
|
Hirvonen LM, Nedbal J, Almutairi N, Phillips TA, Becker W, Conneely T, Milnes J, Cox S, Stürzenbaum S, Suhling K. Lightsheet fluorescence lifetime imaging microscopy with wide-field time-correlated single photon counting. JOURNAL OF BIOPHOTONICS 2020; 13:e201960099. [PMID: 31661595 PMCID: PMC7065631 DOI: 10.1002/jbio.201960099] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 05/22/2023]
Abstract
We report on wide-field time-correlated single photon counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) with lightsheet illumination. A pulsed diode laser is used for excitation, and a crossed delay line anode image intensifier, effectively a single-photon sensitive camera, is used to record the position and arrival time of the photons with picosecond time resolution, combining low illumination intensity of microwatts with wide-field data collection. We pair this detector with the lightsheet illumination technique, and apply it to 3D FLIM imaging of dye gradients in human cancer cell spheroids, and C. elegans.
Collapse
Affiliation(s)
- Liisa M. Hirvonen
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Jakub Nedbal
- Department of PhysicsKing's College LondonLondonUK
| | - Norah Almutairi
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Thomas A. Phillips
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | | | | | | | - Susan Cox
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Stephen Stürzenbaum
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | |
Collapse
|
22
|
Park YG, Sohn CH, Chen R, McCue M, Yun DH, Drummond GT, Ku T, Evans NB, Oak HC, Trieu W, Choi H, Jin X, Lilascharoen V, Wang J, Truttmann MC, Qi HW, Ploegh HL, Golub TR, Chen SC, Frosch MP, Kulik HJ, Lim BK, Chung K. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol 2018; 37:nbt.4281. [PMID: 30556815 PMCID: PMC6579717 DOI: 10.1038/nbt.4281] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022]
Abstract
Understanding complex biological systems requires the system-wide characterization of both molecular and cellular features. Existing methods for spatial mapping of biomolecules in intact tissues suffer from information loss caused by degradation and tissue damage. We report a tissue transformation strategy named stabilization under harsh conditions via intramolecular epoxide linkages to prevent degradation (SHIELD), which uses a flexible polyepoxide to form controlled intra- and intermolecular cross-link with biomolecules. SHIELD preserves protein fluorescence and antigenicity, transcripts and tissue architecture under a wide range of harsh conditions. We applied SHIELD to interrogate system-level wiring, synaptic architecture, and molecular features of virally labeled neurons and their targets in mouse at single-cell resolution. We also demonstrated rapid three-dimensional phenotyping of core needle biopsies and human brain cells. SHIELD enables rapid, multiscale, integrated molecular phenotyping of both animal and clinical tissues.
Collapse
Affiliation(s)
- Young-Gyun Park
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Chang Ho Sohn
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Ritchie Chen
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Margaret McCue
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Dae Hee Yun
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Gabrielle T. Drummond
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Taeyun Ku
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Nicholas B. Evans
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | | | | | - Heejin Choi
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Xin Jin
- Institute for Medical Engineering and Science
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Varoth Lilascharoen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ji Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Matthias C. Truttmann
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital and Harvard Medical School
| | - Helena W. Qi
- Department of Chemical Engineering
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Todd R. Golub
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science
- Department of Brain and Cognitive Sciences
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| |
Collapse
|
23
|
Zanacchi FC, Diaspro A. Introduction to the special section on light sheet fluorescence illumination microscopy. Microsc Res Tech 2018; 81:923. [DOI: 10.1002/jemt.23136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alberto Diaspro
- Nanoscopy and NIC@IITItalian Institute of Technology Genoa Italy
- Department of PhysicsUniversity of Genoa Genoa Italy
| |
Collapse
|
24
|
Abstract
Minimally-invasive optical imaging requires that light is delivered efficiently to limit the detrimental impact of photodamage on delicate biological systems. Light sheet microscopy represents the exemplar in tissue specific optical imaging of small and mesoscopic samples alike. However, further gains towards gentler imaging require a more selective imaging strategy to limit exposure to multiple yet discrete tissues without overexposing the sample, particularly where the information content is sparse or particularly optically sensitive tissues are present. The development of sample-adaptive imaging techniques is crucial in pursuit of the next generation of smart, autonomous microscopes. Herein, we report a microscope capable of performing 4D (x, y, z, t) light patterning to selectively illuminate multiple, rapidly reconfigurable regions of interest while maintaining the rapid imaging speed and high contrast associated with light sheet microscopy. We illustrate this utility in living zebrafish larvae and phantom samples.
Collapse
|
25
|
Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy. Nat Commun 2017; 8:612. [PMID: 28931809 PMCID: PMC5606987 DOI: 10.1038/s41467-017-00514-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/30/2017] [Indexed: 11/17/2022] Open
Abstract
Optical tissue clearing has revolutionized researchers’ ability to perform fluorescent measurements of molecules, cells, and structures within intact tissue. One common complication to all optically cleared tissue is a spatially heterogeneous refractive index, leading to light scattering and first-order defocus. We designed C-DSLM (cleared tissue digital scanned light-sheet microscopy) as a low-cost method intended to automatically generate in-focus images of cleared tissue. We demonstrate the flexibility and power of C-DSLM by quantifying fluorescent features in tissue from multiple animal models using refractive index matched and mismatched microscope objectives. This includes a unique measurement of myelin tracks within intact tissue using an endogenous fluorescent reporter where typical clearing approaches render such structures difficult to image. For all measurements, we provide independent verification using standard serial tissue sectioning and quantification methods. Paired with advancements in volumetric image processing, C-DSLM provides a robust methodology to quantify sub-micron features within large tissue sections. Optical clearing of tissue has enabled optical imaging deeper into tissue due to significantly reduced light scattering. Here, Ryan et al. tackle first-order defocus, an artefact of a non-uniform refractive index, extending light-sheet microscopy to partially cleared samples.
Collapse
|
26
|
Hedde PN, Malacrida L, Ahrar S, Siryaporn A, Gratton E. sideSPIM - selective plane illumination based on a conventional inverted microscope. BIOMEDICAL OPTICS EXPRESS 2017; 8:3918-3937. [PMID: 29026679 PMCID: PMC5611913 DOI: 10.1364/boe.8.003918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 05/22/2023]
Abstract
Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or vice versa. Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen. Based on an inverted epifluorescence microscope, all of the previous functionality is maintained and modifications to the existing system are kept to a minimum. At the same time, our implementation is able to take full advantage of the speed of the employed sCMOS camera and piezo stage to record data at rates of up to 5 stacks/s. Additionally, sample handling is compatible with established methods and switching magnification to change the field of view from single cells to whole organisms does not require labor intensive adjustments of the system.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Área de Investigación Respiratoria, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur of Montevideo, Montevideo, Uruguay
| | - Siavash Ahrar
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Albert Siryaporn
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
27
|
Wulstein DM, Regan KE, Robertson-Anderson RM, McGorty R. Light-sheet microscopy with digital Fourier analysis measures transport properties over large field-of-view. OPTICS EXPRESS 2016; 24:20881-94. [PMID: 27607692 PMCID: PMC5946909 DOI: 10.1364/oe.24.020881] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Using light-sheet microscopy combined with digital Fourier methods we probe the dynamics of colloidal samples and DNA molecules. This combination, referred to as selective-plane illumination differential dynamic microscopy (SPIDDM), has the benefit of optical sectioning to study, with minimal photobleaching, thick samples allowing us to measure the diffusivity of colloidal particles at high volume fractions. Further, SPIDDM exploits the inherent spatially-varying thickness of Gaussian light-sheets. Where the excitation sheet is most focused, we capture high spatial frequency dynamics as the signal-to-background is high. In thicker regions, we capture the slower dynamics as diffusion out of the sheet takes longer.
Collapse
|