1
|
Zheng C, Li J, Chen H, Ma X, Si T, Zhu W. Dual role of CD177 + neutrophils in inflammatory bowel disease: a review. J Transl Med 2024; 22:813. [PMID: 39223577 PMCID: PMC11370282 DOI: 10.1186/s12967-024-05539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of recurrent chronic inflammatory disorders associated with autoimmune dysregulation, typically characterized by neutrophil infiltration and mucosal inflammatory lesions. Neutrophils, as the earliest immune cells to arrive at inflamed tissues, play a dual role in the onset and progression of mucosal inflammation in IBD. Most of these cells specifically express CD177, a molecule increasingly recognized for its critical role in the pathogenesis of IBD. Under IBD-related inflammatory stimuli, CD177 is highly expressed on neutrophils and promotes their migration. CD177 + neutrophils activate bactericidal and barrier-protective functions at IBD mucosal inflammation sites and regulate the release of inflammatory mediators highly correlated with the severity of inflammation in IBD patients, thus playing a dual role. However, mitigating the detrimental effects of neutrophils in inflammatory bowel disease remains a challenge. Based on these data, we have summarized recent articles on the role of neutrophils in intestinal inflammation, with a particular emphasis on CD177, which mediates the recruitment, transepithelial migration, and activation of neutrophils, as well as their functional consequences. A better understanding of CD177 + neutrophils may contribute to the development of novel therapeutic targets to selectively modulate the protective role of this class of cells in IBD.
Collapse
Affiliation(s)
- Chengli Zheng
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiekai Li
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailin Chen
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Ma
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Si
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Geng S, Zhang Y, Lu R, Irimia D, Li L. Resolving neutrophils through genetic deletion of TRAM attenuate atherosclerosis pathogenesis. iScience 2024; 27:110097. [PMID: 38883832 PMCID: PMC11179630 DOI: 10.1016/j.isci.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Daniel Irimia
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02114, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| |
Collapse
|
3
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Schofield CJ, Tirouvanziam R, Garratt LW. OMIP-100: A flow cytometry panel to investigate human neutrophil subsets. Cytometry A 2024; 105:81-87. [PMID: 38179854 DOI: 10.1002/cyto.a.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
This 14-color, 13-antibody optimized multicolor immunofluorescence panel (OMIP) was designed for deep profiling of neutrophil subsets in various types of human samples to contextualize neutrophil plasticity in a range of healthy and diseased states. Markers present in the OMIP allow the profiling of neutrophil subsets associated with ontogeny, migration, phagocytosis capacity, granule release, and immune modulation. For panel design, we ensured that the commonly available fluorophores FITC/AF488, PE, and APC were assigned to the intracellular subset marker Olfactomedin 4, the maturity and activation marker CD10, and whole blood subset marker CD177, respectively. These markers can be easily replaced without affecting the core identification of neutrophils, enabling antibodies to new neutrophil antigens of interest or for fluorescent substrates to assess different neutrophil functions to be easily explored. Panel optimization was performed on whole blood and purified neutrophils. We demonstrate applications on clinical samples (whole blood and saliva) and experimental endpoints (purified neutrophils stimulated through an in vitro transmigration assay). We hope that providing a uniform platform to analyze neutrophil plasticity in various sample types will facilitate the future understanding of neutrophil subsets in health and disease.
Collapse
Affiliation(s)
- Craig J Schofield
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Luke W Garratt
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
5
|
Chang YT, Lin CY, Chen CJ, Hwang E, Alshetaili A, Yu HP, Fang JY. Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates. Acta Biomater 2024; 174:331-344. [PMID: 38061677 DOI: 10.1016/j.actbio.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/02/2024]
Abstract
There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Yan Q, Jia S, Li D, Yang J. The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: From the activation to becoming potential biomarkers. Biomed Pharmacother 2023; 169:115821. [PMID: 37952355 DOI: 10.1016/j.biopha.2023.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, have emerged as critical mediators in the communication between the human microbiota and its host. As the first responder to the inflammatory site, neutrophils play an important role in protecting the host against bacterial infections. Recent investigations revealed that SCFAs generated from microbiota influence various neutrophil activities, including activation, migration, and generation of mediators of inflammatory processes. SCFAs have also been demonstrated to exhibit potential therapeutic benefits in a variety of disorders related to neutrophil dysfunction, including inflammatory bowel disease, viral infectious disorders, and cancer. This study aims to examine the molecular processes behind the complicated link between SCFAs and neutrophils, as well as their influence on neutrophil-driven inflammatory disorders. In addition, we will also provide an in-depth review of current research on the diagnostic and therapeutic value of SCFAs as possible biomarkers for neutrophil-related diseases.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
7
|
Mulet M, Osuna-Gómez R, Zamora C, Artesero I, Arús M, Vera-Artazcoz P, Cordón A, Vilalta N, San-José P, Abril A, Moliné A, Morán I, López-Contreras J, Vidal S. Dysregulated neutrophil extracellular traps formation in sepsis. Immunology 2023; 170:374-387. [PMID: 37381594 DOI: 10.1111/imm.13676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
The migration and antimicrobial functions of neutrophils seem to be impaired during sepsis and contribute to the dysregulation of immune responses and disease pathogenesis. However, the role of neutrophil extracellular traps (NETs) remains to be clarified. The study aimed to analyse sequential phenotypic and functional changes of neutrophils during the time following the diagnosis of sepsis. We prospectively enrolled 49 septic and 18 non-septic patients from the intensive care unit (ICU) and emergency room (ER) and 20 healthy volunteers (HV). Baseline blood samples from septic and non-septic patients were collected within 12 h of admission to the hospital. Additional septic samples were drawn at 24, 48 and 72 h after baseline. Neutrophil phenotype and degranulation capacity were assessed by flow cytometry and NET formation was quantified by fluorescence. Neutrophils from septic patients exhibited increased CD66b, CD11b and CD177 expression but displayed reduced NET formation at baseline compared with non-septic patients and HV controls. Neutrophils expressing CD177 interacted less with platelets, were related to reduced NETosis and tended to indicate a worse sepsis outcome. In vitro experiments revealed that neutrophil function is compromised by the origin of sepsis, including the pathogen type and the affected organ. Assessing a decision tree model, our study showed that CD11b expression and NETosis values are useful variables to discriminate septic from non-septic patients. We conclude that sepsis induces changes in neutrophil phenotype and function that may compromise the effective capacity of the host to eliminate pathogens.
Collapse
Affiliation(s)
- Maria Mulet
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ruben Osuna-Gómez
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carlos Zamora
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Iris Artesero
- Infectious Disease Division, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marc Arús
- Unit of Haemostasis and Thrombosis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Paula Vera-Artazcoz
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alejandra Cordón
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Noelia Vilalta
- Unit of Haemostasis and Thrombosis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Paula San-José
- Hematology Core Laboratory, Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrés Abril
- Emergency Care Department, Hospital Sant Joan de Déu, Manresa, Spain
| | - Antoni Moliné
- Department of Emergency Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Indalecio Morán
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Joaquín López-Contreras
- Infectious Disease Division, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Vidal
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Chen J, Bai Y, Xue K, Li Z, Zhu Z, Li Q, Yu C, Li B, Shen S, Qiao P, Li C, Luo Y, Qiao H, Dang E, Yin W, Gudjonsson JE, Wang G, Shao S. CREB1-driven CXCR4 hi neutrophils promote skin inflammation in mouse models and human patients. Nat Commun 2023; 14:5894. [PMID: 37736772 PMCID: PMC10516899 DOI: 10.1038/s41467-023-41484-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Neutrophils have a pathogenic function in inflammation via releasing pro-inflammatory mediators or neutrophil extracellular traps (NETs). However, their heterogeneity and pro-inflammatory mechanisms remain unclear. Here, we demonstrate that CXCR4hi neutrophils accumulate in the blood and inflamed skin in human psoriasis, and correlate with disease severity. Compared to CXCR4lo neutrophils, CXCR4hi neutrophils have enhanced NETs formation, phagocytic function, neutrophil degranulation, and overexpression of pro-inflammatory cytokines and chemokines in vitro. This is accompanied by a metabolic shift in CXCR4hi neutrophils toward glycolysis and lactate release, thereby promoting vascular permeability and remodeling. CXCR4 expression in neutrophils is dependent on CREB1, a transcription factor activated by TNF and CXCL12, and regulated by de novo synthesis. In vivo, CXCR4hi neutrophil infiltration amplifies skin inflammation, whereas blockade of CXCR4hi neutrophils through CXCR4 or CXCL12 inhibition leads to suppression of immune responses. In this work, our study identifies CREB1 as a critical regulator of CXCR4hi neutrophil development and characterizes the contribution of CXCR4hi neutrophils to vascular remodeling and inflammatory responses in skin.
Collapse
Affiliation(s)
- Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shengxian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Caixia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
9
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
10
|
Lin CY, Yu HP, Chang YT, Lin ZC, Alalaiwe A, Hwang TL, Fang JY. Targeting anti-inflammatory immunonanocarriers to human and murine neutrophils via the Ly6 antigen for psoriasiform dermatitis alleviation. Biomater Sci 2023; 11:873-893. [PMID: 36515218 DOI: 10.1039/d2bm01521h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psoriasis is a refractory and difficult-to-treat skin disorder. The neutrophil-targeting approach represents a promising option for psoriasis therapy. This study developed and examined NIMP-R14-conjugated immunonanoparticles for specific targeting to neutrophils associated with psoriasiform dermatitis. In the process, roflumilast (RFL), as a phosphodiesterase (PDE) 4 inhibitor, was encapsulated in the nanocarriers to assess the anti-inflammatory capability against primary neutrophil activation and murine psoriasiform lesion. The average size and surface charge of the immunonanocarriers were 305 ± 36 nm and -18 ± 6 mV, respectively. The monovalent antibody-conjugated nanoparticles offered precise uptake by both human and mouse neutrophils but failed to exhibit this effect in monocytes and lymphocytes. The intracellular RFL concentration of the immunonanocarriers was five-fold superior to that of the passive counterparts. The immunonanocarriers specifically recognized the neutrophils through the Ly6 antigen with no apparent cytotoxicity. The antibody-conjugated nanoparticles mitigated superoxide anion production and migration of the activated human neutrophils. The in vivo biodistribution in the psoriasiform mice, found using an in vivo imaging system (IVIS) and liquid chromatography (LC)-mass-mass analysis, showed that the antibody conjugation increased the nanoparticle residence in systemic circulation after intravenous administration. On the other hand, most of the nanoparticles were accumulated in the lesional skin after subcutaneous injection. The actively-targeted nanocarriers were better than the free RFL and unfunctionalized nanoparticles in suppressing psoriasiform inflammation. The immunonanocarriers reduced neutrophil recruitment and epidermal hyperplasia in the plaque. Intravenous and subcutaneous treatments with the immunonanocarriers significantly reduced the overexpressed cytokines and chemokines in the inflamed skin, demonstrating that the nanosystems could both systematically and locally alleviate inflammation. The results indicated that the NIMP-R14-conjugated RFL-loaded nanoparticles have potential as an anti-autoimmune disease delivery system for neutrophil targeting.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yen-Tzu Chang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Tsong-Long Hwang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
11
|
Sansores-España LD, Melgar-Rodríguez S, Vernal R, Carrillo-Ávila BA, Martínez-Aguilar VM, Díaz-Zúñiga J. Neutrophil N1 and N2 Subsets and Their Possible Association with Periodontitis: A Scoping Review. Int J Mol Sci 2022; 23:12068. [PMID: 36292925 PMCID: PMC9603394 DOI: 10.3390/ijms232012068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022] Open
Abstract
Periodontitis is a chronic non-communicable disease caused by dysbiotic changes that affect the subgingival microbiota. During periodontitis, neutrophils play a central role in the initial recognition of bacteria, and their number increases with the appearance of the first signs of periodontal inflammation. Recent evidence has led to the proposition that neutrophils can also functionally polarize, determining selective activity patterns related to different diseases. Two well-defined neutrophil phenotypes have been described, the pro-inflammatory N1 subset and the suppressor N2 subset. To date, it has not been established whether these different neutrophil subtypes play a role in the pathogenesis of periodontitis. Thus, this scoping review aimed to determine whether there was evidence to suggest that the neutrophils present in periodontal tissues can be associated with certain phenotypes. The research question, population, concept, and context sought to identify original articles, in humans, that detected the presence of neutrophils in the periodontal tissues of people affected by periodontitis. Based on the search strategy, we found 3658 studies. After removing the papers with abstracts not related to the outcome measures and eligibility criteria, 16 articles were included for qualitative analysis. Several studies identified the presence of different neutrophil subsets, specifically, the naive, pro- and para-inflammatory, hyper-reactive and hyper-active, and high- and low-responder phenotypes. The existing evidence demonstrates the presence of pro-inflammatory, hyper-reactive and high-responder neutrophils in periodontal tissues affected with periodontitis. There is no evidence demonstrating the presence of the N1 or N2 phenotypes in periodontal tissues during periodontitis. However, the existence of pro-inflammatory phenotypes, which increase NETosis and degranulation, and increase the production of pro-inflammatory cytokines, could be suggestive of the N1 phenotypes.
Collapse
Affiliation(s)
- Luis Daniel Sansores-España
- Faculty of Dentistry, Autonomous University of Yucatán, Merida 97000, Mexico
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile
| | | | | | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile
- Department of Medicine, Faculty of Medicine, University of Atacama, Copiapo 7500015, Chile
| |
Collapse
|
12
|
Oh C, Kim HJ, Kim HM. Transepithelial channels for leukocytes in the junctional epithelium. J Periodontal Res 2022; 57:1093-1100. [PMID: 35920408 DOI: 10.1111/jre.13043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES The junctional epithelium (JE) has been recognized as a defensive organ rich in polymorphonuclear leukocytes (PMNs). However, the migration of PMNs through the JE has not been clearly documented. For mucosal defense, PMNs migrate outwards over the epithelium to defend the intestinal or respiratory tract on the epithelial surface. With this background, the present study investigated whether there is any structural evidence showing the transepithelial migration of PMNs through the JE in gingival mucosa. METHODS Three-dimensional modeling of gingiva surrounding mouse molars at varying ages was performed by array tomography. Images of the serial sections for array tomography at the 800 nm thickness were obtained using back scattered electron (BSE) detector equipped in the field-emission scanning electron microscopy (FESEM). Expressions of neutrophil marker or CD47 were immunohistochemically examined on the frozen sections. RESULTS Array tomography using FESEM and 3-dimensional modeling clearly showed that a system of epithelial channels developed between keratinocytes and generally ran along the long axis of the JE. Most PMNs were found inside the channels, rather than being scattered throughout the JE. The channels could be traced from the base of the JE to the bottom of the gingival sulcus, although some channels were fragmented and interrupted with short intercellular gaps. CONCLUSIONS These findings suggest that the JE may be an organ for transepithelial migration of PMNs to the bottom of the gingival sulcus through epithelial channels, as occurs in the epithelial lining of other organs such as the intestinal or respiratory tract.
Collapse
Affiliation(s)
- Changseok Oh
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun Jung Kim
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Man Kim
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Metcalfe S, Anselmi N, Escobar A, Visser MB, Kay JG. Innate Phagocyte Polarization in the Oral Cavity. Front Immunol 2022; 12:768479. [PMID: 35069541 PMCID: PMC8770816 DOI: 10.3389/fimmu.2021.768479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
The oral cavity is a complex environment constantly exposed to antigens from food and the oral microbiota. Innate immune cells play an essential role in maintaining health and homeostasis in the oral environment. However, these cells also play a significant role in disease progression. This review will focus on two innate phagocytes in the oral cavity: macrophages and neutrophils, and examine their roles during homeostasis and disease development, with a focus on periodontal disease and cancer. Macrophages have a well-known ability to polarize and be activated towards a variety of phenotypes. Several studies have found that macrophages’ polarization changes can play an essential role in maintaining health in the oral cavity and contribute to disease. Recent data also finds that neutrophils display phenotypic heterogeneity in the oral cavity. In both cases, we focus on what is known about how these cellular changes alter these immune cells’ interactions with the oral microbiota, including how such changes can lead to worsening, rather than improving, disease states.
Collapse
Affiliation(s)
- Sarah Metcalfe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Natalie Anselmi
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Michelle B Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Saha R, Pradhan SS, Shalimar, Das P, Mishra P, Singh R, Sivaramakrishnan V, Acharya P. Inflammatory signature in acute-on-chronic liver failure includes increased expression of granulocyte genes ELANE, MPO and CD177. Sci Rep 2021; 11:18849. [PMID: 34552111 PMCID: PMC8458283 DOI: 10.1038/s41598-021-98086-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Acute-on-Chronic Liver Failure (ACLF) is associated with innate immune dysfunction and high short-term mortality. Neutrophils have been identified to influence prognosis in ACLF. Neutrophil biology is under-evaluated in ACLF. Therefore, we investigated neutrophil-specific genes and their association with ACLF outcomes. This is an observational study. Enriched granulocytes, containing neutrophils, isolated from study participants in three groups- ACLF(n = 10), chronic liver disease (CLD, n = 4) and healthy controls (HC, n = 4), were analysed by microarray. Differentially expressed genes were identified and validated by qRT-PCR in an independent cohort of ACLF, CLD and HC (n = 30, 15 and 15 respectively). The association of confirmed overexpressed genes with ACLF 28-day non-survivors was investigated. The protein expression of selected neutrophil genes was confirmed using flow cytometry and IHC. Differential gene expression analysis showed 1140 downregulated and 928 upregulated genes for ACLF versus CLD and 2086 downregulated and 1091 upregulated genes for ACLF versus HC. Significant upregulation of neutrophilic inflammatory signatures were found in ACLF compared to CLD and HC. Neutrophil enriched genes ELANE, MPO and CD177 were highly upregulated in ACLF and their expression was higher in ACLF 28-day non-survivors. Elevated expression of CD177 protein on neutrophil surface in ACLF was confirmed by flow cytometry. IHC analysis in archival post mortem liver biopsies showed the presence of CD177+ neutrophils in the liver tissue of ACLF patients. Granulocyte genes ELANE, MPO and CD177 are highly overexpressed in ACLF neutrophils as compared to CLD or HC. Further, this three-gene signature is highly overexpressed in ACLF 28-day non-survivors.
Collapse
Affiliation(s)
- Rohini Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Mishra
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India
| | - Rohan Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India.
| |
Collapse
|
15
|
Yaykasli KO, Schauer C, Muñoz LE, Mahajan A, Knopf J, Schett G, Herrmann M. Neutrophil Extracellular Trap-Driven Occlusive Diseases. Cells 2021; 10:2208. [PMID: 34571857 PMCID: PMC8466545 DOI: 10.3390/cells10092208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.
Collapse
Affiliation(s)
- Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Aparna Mahajan
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
16
|
Wang J, Zhou Y, Ren B, Zou L, He B, Li M. The Role of Neutrophil Extracellular Traps in Periodontitis. Front Cell Infect Microbiol 2021; 11:639144. [PMID: 33816343 PMCID: PMC8012762 DOI: 10.3389/fcimb.2021.639144] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic, destructive disease of periodontal tissues caused by multifaceted, dynamic interactions. Periodontal bacteria and host immunity jointly contribute to the pathological processes of the disease. The dysbiotic microbial communities elicit an excessive immune response, mainly by polymorphonuclear neutrophils (PMNs). As one of the main mechanisms of PMN immune response in the oral cavity, neutrophil extracellular traps (NETs) play a crucial role in the initiation and progression of late-onset periodontitis. NETs are generated and released by neutrophils stimulated by various irritants, such as pathogens, host-derived mediators, and drugs. Chromatin and proteins are the main components of NETs. Depending on the characteristics of the processes, three main pathways of NET formation have been described. NETs can trap and kill pathogens by increased expression of antibacterial components and identifying and trapping bacteria to restrict their spread. Moreover, NETs can promote and reduce inflammation, inflicting injuries on the tissues during the pro-inflammation process. During their long-term encounter with NETs, periodontal bacteria have developed various mechanisms, including breaking down DNA of NETs, degrading antibacterial proteins, and impacting NET levels in the pocket environment to resist the antibacterial function of NETs. In addition, periodontal pathogens can secrete pro-inflammatory factors to perpetuate the inflammatory environment and a friendly growth environment, which are responsible for the progressive tissue damage. By learning the strategies of pathogens, regulating the periodontal concentration of NETs becomes possible. Some practical ways to treat late-onset periodontitis are reducing the concentration of NETs, administering anti-inflammatory therapy, and prescribing broad-spectrum and specific antibacterial agents. This review mainly focuses on the mechanism of NETs, pathogenesis of periodontitis, and potential therapeutic approaches based on interactions between NETs and periodontal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Stockfelt M, Larsson G, Engström H, Puttonen H, Zetterberg H, Blennow K, Sjöwall C, Strevens H, Jönsen A, Bengtsson AA, Majczuk Sennström M, Zickert A, Svenungsson E, Gunnarsson I, Trysberg E, Jacobsson B, Hultgård Ekwall AK, Christenson K, Bylund J, Svensson MND, Lundell AC. Activated low-density granulocytes in peripheral and intervillous blood and neutrophil inflammation in placentas from SLE pregnancies. Lupus Sci Med 2021; 8:8/1/e000463. [PMID: 33685997 PMCID: PMC7942245 DOI: 10.1136/lupus-2020-000463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Women with SLE face an increased risk of adverse pregnancy outcomes compared with healthy women, but the underlying immunological mechanisms are unknown. Given the recognised association of neutrophil activation with SLE pathogenesis, we examined whether there is increased neutrophil activation and inflammation in blood and placenta in SLE relative to healthy pregnancy. METHODS At delivery, peripheral blood, maternal-derived intervillous blood and placentas were collected from 12 SLE and 10 healthy control pregnancies. The proportion of low-density granulocytes (LDGs) and the activation status of LDG and normal-density granulocytes were examined with flow cytometry. The chemokines CXCL8 and CXCL1 were quantified with a cytometric bead-based assay and interferon alpha (IFNα) protein levels with a Simoa method. IFNα-stimulated maternal-derived decidual stromal cells were examined for CXCL8 gene expression with qPCR. A pathologist, blinded to the patient background, examined all placentas. RESULTS Women with SLE had significantly higher proportions of LDG in peripheral blood compared with controls (p=0.02), and LDG in both peripheral and intervillous blood were more activated in SLE relative to healthy pregnancies (peripheral blood: p=0.002 and intervillous blood: p=0.05). There were higher levels of CXCL8 and CXCL1 in intervillous compared with peripheral blood in women with SLE (p=0.004 and p=<0.0001, respectively) but not in controls. In SLE pregnancy, IFNα was detectable in 6 out of 10 intervillous blood samples but only in one control. Stimulation with IFNα upregulated CXCL8 gene expression in decidual stromal cells from both SLE and healthy pregnancy. Histological chorioamnionitis was present in 6 out of 12 placentas from women with SLE and in 1 out of 10 controls. CONCLUSIONS In women with SLE, locally produced chemokines in the placenta are increased and may attract and activate neutrophils. This in turn could contribute to placental inflammation and dysfunction and increased risk of placenta-related pregnancy complications.
Collapse
Affiliation(s)
- Marit Stockfelt
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Larsson
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engström
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henri Puttonen
- Department of Pathology, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research, Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helena Strevens
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Skåne University Hospital, Lund, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences, Rheumatology, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Rheumatology, Lund University, Lund, Sweden
| | - Maria Majczuk Sennström
- Department of Womens and Childrens Health, Division for Obstetrics and Gynecology, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Estelle Trysberg
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Obstetrics and Gynecology, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Anna-Karin Hultgård Ekwall
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Goteborg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Goteborg, Sweden
| | - Mattias N D Svensson
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Dahlstrand Rudin A, Khamzeh A, Venkatakrishnan V, Persson T, Gabl M, Savolainen O, Forsman H, Dahlgren C, Christenson K, Bylund J. Porphyromonas gingivalis Produce Neutrophil Specific Chemoattractants Including Short Chain Fatty Acids. Front Cell Infect Microbiol 2021; 10:620681. [PMID: 33542906 PMCID: PMC7851090 DOI: 10.3389/fcimb.2020.620681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Neutrophil migration from blood to tissue-residing microbes is governed by a series of chemoattractant gradients of both endogenous and microbial origin. Periodontal disease is characterized by neutrophil accumulation in the gingival pocket, recruited by the subgingival biofilm consisting mainly of gram-negative, anaerobic and proteolytic species such as Porphyromonas gingivalis. The fact that neutrophils are the dominating cell type in the gingival pocket suggests that neutrophil-specific chemoattractants are released by subgingival bacteria, but characterization of chemoattractants released by subgingival biofilm species remains incomplete. In the present study we characterized small (< 3 kDa) soluble chemoattractants released by growing P. gingivalis, and show that these are selective for neutrophils. Most neutrophil chemoattractant receptors are expressed also by mononuclear phagocytes, the free fatty acid receptor 2 (FFAR2) being an exception. In agreement with the selective neutrophil recruitment, the chemotactic activity found in P. gingivalis supernatants was mediated in part by a mixture of short chain fatty acids (SCFAs) that are recognized by FFAR2, and other leukocytes (including monocytes) did not respond to SCFA stimulation. Although SCFAs, produced by bacterial fermentation of dietary fiber in the gut, has previously been shown to utilize FFAR2, our data demonstrate that the pronounced proteolytic metabolism employed by P. gingivalis (and likely also other subgingival biofilm bacteria associated with periodontal diseases) may result in the generation of SCFAs that attract neutrophils to the gingival pocket. This finding highlights the interaction between SCFAs and FFAR2 in the context of P. gingivalis colonization during periodontal disease, but may also have implications for other inflammatory pathologies involving proteolytic bacteria.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tishana Persson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Volkmann J, von Vietinghoff S. Letter to the Editor. J Leukoc Biol 2020; 108:1707. [PMID: 32794203 DOI: 10.1002/jlb.3lt0720-404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Julia Volkmann
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
20
|
Dahlstrand Rudin A, Bylund J. Reply to Julia Volkmann and Sibylle von Vietinghoff. J Leukoc Biol 2020; 108:1709-1710. [PMID: 32767377 DOI: 10.1002/jlb.3lt0720-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|