1
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Xu F, Ye Y, Gao Y, Xu S. Dual Role of Necroptosis in Cervical Cancer: Promoting Tumor Aggression and Modulating the Immune Microenvironment via the JAK2-STAT3 Pathway. J Cancer 2024; 15:5288-5307. [PMID: 39247606 PMCID: PMC11375541 DOI: 10.7150/jca.98738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
In the dynamic landscape of cervical cancer (CC) pathophysiology, this study aimed to elucidate the role of necroptosis in modulating tumor proliferation, invasion, and the immune microenvironment in CC. In this study, the impact of necroptosis on CC was evaluated through a series of bioinformatical analyses and experimental approaches. The impact of necroptosis on CC was illustrated by analyzing its effects on tumor aggression, immune responses, and the JAK2-STAT3 signaling pathway. Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), was also evaluated for its potential induction of necroptosis in CC cells and its interaction with necroptosis inhibitors. Additionally, the study assessed the influence of necroptosis on the immune microenvironment, particularly in T-cell-related pathways and the expression of tumor suppressor genes in CC. Necroptosis was found to enhance VEGFA expression through the activation of the JAK2-STAT3 pathway, promoting tumor proliferative and invasive capabilities in CC. Bevacizumab induced necroptosis in CC cells, potentially leading to resistance to therapy. The combination of bevacizumab with necroptosis inhibitors attenuated VEGFA expression, suggesting a novel therapeutic strategy. Additionally, necroptosis activated T-cell-related pathways and promoted the infiltration and activation of Jurkat T cells. CD3D-a tumor suppressor gene in CC-was identified as a critical marker and its expression could be upregulated by necroptosis via the JAK2-STAT3 pathway in Jurkat T cells. Treatment of CC cells with supernatants from necroptosis-induced Jurkat cells resulted in reduced tumor cell proliferation and invasion. This study reveals a complex interaction between necroptosis, tumor progression, and the immune response in CC. The findings propose a nuanced approach to leveraging necroptosis for therapeutic interventions, highlighting the potential of combining necroptosis inhibitors with existing therapies to improve treatment outcomes in CC.
Collapse
Affiliation(s)
- Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingjun Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yueqing Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Cai Y, Li D, Lv D, Yu J, Ma Y, Jiang T, Ding N, Liu Z, Li Y, Xu J. MHC-I-presented non-canonical antigens expand the cancer immunotherapy targets in acute myeloid leukemia. Sci Data 2024; 11:831. [PMID: 39090129 PMCID: PMC11294462 DOI: 10.1038/s41597-024-03660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Identification of tumor neoantigens is indispensable for the development of cancer immunotherapies. However, we are still lacking knowledge about the potential neoantigens derived from sequences outside protein-coding regions. Here, we comprehensively characterized the immunopeptidome landscape by integrating multi-omics data in acute myeloid leukemia (AML). Both canonical and non-canonical MHC-associated peptides (MAPs) in AML were identified. We found that the quality and characteristics of ncMAPs are comparable or superior to cMAPs, suggesting ncMAPs are indispensable sources for tumor neoantigens. We further proposed a computational framework to prioritize the neoantigens by integrating additional transcriptome and immunopeptidome in normal tissues. Notably, 6 of prioritized 13 neoantigens were derived from ncMAPs. The expressions of corresponding source genes are highly related to infiltrations of immune cells. Finally, a risk model was developed, which exhibited good performance for clinical prognosis in AML. Our findings expand potential cancer immunotherapy targets and provide in-depth insights into AML treatment, laying a new foundation for precision therapies in AML.
Collapse
Affiliation(s)
- Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Zhigang Liu
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Guangzhou, China.
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China.
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
4
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
5
|
Peng D, Liang M, Li L, Yang H, Fang D, Chen L, Guan B. Circ_BBS9 as an early diagnostic biomarker for lung adenocarcinoma: direct interaction with IFIT3 in the modulation of tumor immune microenvironment. Front Immunol 2024; 15:1344954. [PMID: 39139574 PMCID: PMC11320841 DOI: 10.3389/fimmu.2024.1344954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Background Introduction: Circular RNAs (circRNAs) have been identified as significant contributors to the development and advancement of cancer. The objective of this study was to examine the expression and clinical implications of circRNA circ_BBS9 in lung adenocarcinoma (LUAD), as well as its potential modes of action. Methods The expression of Circ_BBS9 was examined in tissues and cell lines of LUAD through the utilization of microarray profiling, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. In this study, we assessed the impact of circ_BBS9 on the proliferation of LUAD cells, as well as its influence on ferroptosis and tumor formation. To analyze these effects, we employed CCK-8 assays and ferroptosis assays. The identification of proteins that interact with Circ_BBS9 was achieved through the utilization of RNA pull-down and mass spectrometry techniques. A putative regulatory network comprising circ_BBS9, miR-7150, and IFIT3 was established using bioinformatics study. The investigation also encompassed the examination of the correlation between the expression of IFIT3 and the invasion of immune cells. Results Circ_BBS9 was significantly downregulated in LUAD tissues and cell lines. Low circ_BBS9 expression correlated with poor prognosis. Functional experiments showed that circ_BBS9 overexpression inhibited LUAD cell proliferation and promoted ferroptosis in vitro and suppressed tumor growth in vivo. Mechanistically, circ_BBS9 was found to directly interact with IFIT3 and regulate its expression by acting as a sponge for miR-7150. Additionally, IFIT3 expression correlated positively with immune infiltration in LUAD. Conclusion Circ_BBS9 has been identified as a tumor suppressor in lung adenocarcinoma (LUAD) and holds promise as a diagnostic biomarker. The potential mechanism of action involves the modulation of ferroptosis and the immunological microenvironment through direct interaction with IFIT3 and competitive binding to miR-7150. The aforementioned findings offer new perspectives on the pathophysiology of LUAD and highlight circ_BBS9 as a potentially valuable target for therapeutic interventions.
Collapse
Affiliation(s)
- Daijun Peng
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Mingyu Liang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Li
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Haisheng Yang
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Di Fang
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Lingling Chen
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Bing Guan
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
6
|
Zang J, Mei Y, Zhu S, Yin S, Feng N, Ci T, Lyu Y. Natural Killer-Based Therapy: A Prospective Thought for Cancer Treatment Related to Diversified Drug Delivery Pathways. Pharmaceutics 2024; 16:939. [PMID: 39065636 PMCID: PMC11279587 DOI: 10.3390/pharmaceutics16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has been a research hotspot due to its low side effects, long-lasting efficacy, and wide anti-tumor spectrum. Recently, NK cell-based immunotherapy has gained broad attention for its unique immunological character of tumor identification and eradication and low risk of graft-versus-host disease and cytokine storm. With the cooperation of a drug delivery system (DDS), NK cells activate tumoricidal activity by adjusting the balance of the activating and inhibitory signals on their surface after drug-loaded DDS administration. Moreover, NK cells or NK-derived exosomes can also be applied as drug carriers for distinct modification to promote NK activation and exert anti-tumor effects. In this review, we first introduce the source and classification of NK cells and describe the common activating and inhibitory receptors on their surface. Then, we summarize the strategies for activating NK cells in vivo through various DDSs. Finally, the application prospects of NK cells in tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jing Zang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yaqi Lyu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| |
Collapse
|
7
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Wei R, Xiao S, Zhao S, Guo W, Liu Y, Mullor MDMR, Rodrìguez RA, Wei Q, Wu Y. Pan-cancer analysis of T-cell proliferation regulatory genes as potential immunotherapeutic targets. Aging (Albany NY) 2024; 16:11224-11247. [PMID: 39068665 PMCID: PMC11315386 DOI: 10.18632/aging.205977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 07/30/2024]
Abstract
T cells are the key to killing tumor cells. However, the exact mechanism of their role in cancer is not fully understood. Therefore, a comprehensive understanding of the role of T-cell proliferation regulatory genes in tumors is needed. In our study, we investigated the expression levels of genes controlling T-cell proliferation, their impact on prognosis, and their genetic variations. Additionally, we explored their associations with TMB, MSI, ESTIMATEScore, ImmuneScore, StromalScore, and immune cell infiltration. We examined the role of these genes in cancer-related pathways using GSEA. Furthermore, we calculated their activity levels across various types of cancer. Drug analysis was also conducted targeting these genes. Single-cell analysis, LASSO Cox model construction, and prognosis analysis were performed. We observed distinct expression patterns of T-cell proliferation regulatory genes across different malignant tumors. Their abnormal expression may be caused by CNA and DNA methylation. In certain cancers, they also showed complex associations with TMB and MSI. Moreover, in many tumors, they exhibited significant positive correlations with ESTIMATEScores, ImmuneScore, and StromalScore. Additionally, in most tumors, their GSVA scores were significantly positively correlated with various T-cell subtypes. GSEA analysis revealed their involvement in multiple immune pathways. Furthermore, we found that model scores were associated with patient prognosis and related to tumor malignancy progression. T-cell proliferation regulatory genes are closely associated with the tumor immune microenvironment (TIM), especially T cells. Targeting them may be an essential approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shihui Xiao
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, Yunnan 650000, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | - Raquel Alarcòn Rodrìguez
- Faculty of Health Sciences, University of Almerìa, Carretera de Sacramento, Almeria 04120, Spain
| | - Qingjun Wei
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
9
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
10
|
Singvogel K, Schittek B. Dormancy of cutaneous melanoma. Cancer Cell Int 2024; 24:88. [PMID: 38419052 PMCID: PMC10903048 DOI: 10.1186/s12935-024-03278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Many cancer-related deaths including melanoma result from metastases that develop months or years after the initial cancer therapy. Even the most effective drugs and immune therapies rarely eradicate all tumor cells. Instead, they strongly reduce cancer burden, permitting dormant cancer cells to persist in niches, where they establish a cellular homeostasis with their host without causing clinical symptoms. Dormant cancers respond poorly to most drugs and therapies since they do not proliferate and hide in niches. It therefore remains a major challenge to develop novel therapies for dormant cancers. In this review we focus on the mechanisms regulating the initiation of cutaneous melanoma dormancy as well as those which are involved in reawakening of dormant cutaneous melanoma cells. In recent years the role of neutrophils and niche components in reawakening of melanoma cells came into focus and indicate possible future therapeutic applications. Sophisticated in vitro and in vivo melanoma dormancy models are needed to make progress in this field and are discussed.
Collapse
Affiliation(s)
- Kathrin Singvogel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Ghasemi A, Martinez-Usatorre A, Li L, Hicham M, Guichard A, Marcone R, Fournier N, Torchia B, Martinez Bedoya D, Davanture S, Fernández-Vaquero M, Fan C, Janzen J, Mohammadzadeh Y, Genolet R, Mansouri N, Wenes M, Migliorini D, Heikenwalder M, De Palma M. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. NATURE CANCER 2024; 5:240-261. [PMID: 37996514 PMCID: PMC10899110 DOI: 10.1038/s43018-023-00668-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting myeloid cells that regulate T cell activation, trafficking and function. Monocyte-derived DCs pulsed with tumor antigens have been tested extensively for therapeutic vaccination in cancer, with mixed clinical results. Here, we present a cell-therapy platform based on mouse or human DC progenitors (DCPs) engineered to produce two immunostimulatory cytokines, IL-12 and FLT3L. Cytokine-armed DCPs differentiated into conventional type-I DCs (cDC1) and suppressed tumor growth, including melanoma and autochthonous liver models, without the need for antigen loading or myeloablative host conditioning. Tumor response involved synergy between IL-12 and FLT3L and was associated with natural killer and T cell infiltration and activation, M1-like macrophage programming and ischemic tumor necrosis. Antitumor immunity was dependent on endogenous cDC1 expansion and interferon-γ signaling but did not require CD8+ T cell cytotoxicity. Cytokine-armed DCPs synergized effectively with anti-GD2 chimeric-antigen receptor (CAR) T cells in eradicating intracranial gliomas in mice, illustrating their potential in combination therapies.
Collapse
Affiliation(s)
- Ali Ghasemi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Luqing Li
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mehdi Hicham
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Alan Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Rachel Marcone
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Darel Martinez Bedoya
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Suzel Davanture
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chaofan Fan
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Janzen
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yahya Mohammadzadeh
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nahal Mansouri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mathias Wenes
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Denis Migliorini
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Oncology, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
12
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
13
|
Rogovskii V. Cancer and Autoimmune Diseases as Two Sides of Chronic Inflammation and the Method of Therapy. Curr Cancer Drug Targets 2024; 24:1089-1103. [PMID: 38288812 DOI: 10.2174/0115680096282480240105071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 09/20/2024]
Abstract
Chronic inflammation is associated with a prolonged increase in various inflammatory factors. According to clinical data, it can be linked with both cancer and autoimmune diseases in the same patients. This raises the critical question of how chronic inflammation relates to seemingly opposing diseases - tumors, in which there is immunosuppression, and autoimmune diseases, in which there is over-activation of the immune system. In this review, we consider chronic inflammation as a prerequisite for both immune suppression and an increased likelihood of autoimmune damage. We also discuss potential disease-modifying therapies targeting chronic inflammation, which can be helpful for both cancer and autoimmunity. On the one hand, pro-inflammatory factors persisting in the areas of chronic inflammation stimulate the production of anti-inflammatory factors due to a negative feedback loop, eliciting immune suppression. On the other hand, chronic inflammation can bring the baseline immunity closer to the threshold level required for triggering an autoimmune response using the bystander activation of immune cells. Focusing on the role of chronic inflammation in cancer and autoimmune diseases may open prospects for more intensive drug discovery for chronic inflammation.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Lee CE, Kim S, Park HW, Lee W, Jangid AK, Choi Y, Jeong WJ, Kim K. Tailoring tumor-recognizable hyaluronic acid-lipid conjugates to enhance anticancer efficacies of surface-engineered natural killer cells. NANO CONVERGENCE 2023; 10:56. [PMID: 38097911 PMCID: PMC10721593 DOI: 10.1186/s40580-023-00406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Natural killer (NK) cells have clinical advantages in adoptive cell therapy owing to their inherent anticancer efficacy and their ability to identify and eliminate malignant tumors. However, insufficient cancer-targeting ligands on NK cell surfaces often inhibit their immunotherapeutic performance, especially in immunosuppressive tumor microenvironment. To facilitate tumor recognition and subsequent anticancer function of NK cells, we developed hyaluronic acid (HA, ligands to target CD44 overexpressed onto cancer cells)-poly(ethylene glycol) (PEG, cytoplasmic penetration blocker)-Lipid (molecular anchor for NK cell membrane decoration through hydrophobic interaction) conjugates for biomaterial-mediated ex vivo NK cell surface engineering. Among these major compartments (i.e., Lipid, PEG and HA), optimization of lipid anchors (in terms of chemical structure and intrinsic amphiphilicity) is the most important design parameter to modulate hydrophobic interaction with dynamic NK cell membranes. Here, three different lipid types including 1,2-dimyristoyl-sn-glycero-3-phosphati-dylethanolamine (C14:0), 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE, C18:0), and cholesterol were evaluated to maximize membrane coating efficacy and associated anticancer performance of surface-engineered NK cells (HALipid-NK cells). Our results demonstrated that NK cells coated with HA-PEG-DSPE conjugates exhibited significantly enhanced anticancer efficacies toward MDA-MB-231 breast cancer cells without an off-target effect on human fibroblasts specifically via increased NK cell membrane coating efficacy and prolonged surface duration of HA onto NK cell surfaces, thereby improving HA-CD44 recognition. These results suggest that our HALipid-NK cells with tumor-recognizable HA-PEG-DSPE conjugates could be further utilized in various cancer immunotherapies.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yonghyun Choi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
15
|
Ridwan SM, Emlein R, Mesbahi A, Annabi A, Hainfeld JF, Smilowitz HM. Radiation-induced dormancy of intracerebral melanoma: endotoxin inflammation leads to both shortened tumor dormancy and long-term survival with localized senescence. Cancer Immunol Immunother 2023; 72:3851-3859. [PMID: 37612405 PMCID: PMC10992577 DOI: 10.1007/s00262-023-03481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/07/2023] [Indexed: 08/25/2023]
Abstract
Radiation therapy (RT) treats approximately half of all cancers and most brain cancers. RT is variably effective at inducing a dormant tumor state i.e. the time between RT and clinical recurrence of tumor growth. Interventions that significantly lengthen tumor dormancy would improve long-term outcomes. Inflammation can promote the escape of experimental tumors from metastatic dormancy in the lung. Previously we showed intracerebral B16F10 melanoma dormancy varied with RT dose; 20.5 Gy induced dormancy lasted ~ 2 to 4 weeks-sufficient time to study escape from dormancy. Tumors were followed over time using bioluminescence. Surprisingly, some tumors in endotoxin-treated mice exited from dormancy slower; a large fraction of the mice survived more than 1-year. A cohort of mice also experienced an accelerated exit from dormancy and increased mortality indicating there might be variation within the tumor or inflammatory microenvironment that leads to both an early deleterious effect and a longer-term protective effect of inflammation. Some of the melanin containing cells at the site of the original tumor were positive for senescent markers p16, p21 and βGal. Changes in some cytokine/chemokine levels in blood were also detected. Follow-up studies are needed to identify cytokines/chemokines or other mechanisms that promote long-term dormancy after RT.
Collapse
Affiliation(s)
- Sharif M Ridwan
- University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Rose Emlein
- University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Asghar Mesbahi
- 6G Research and Innovation Lab, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
| | - Andrew Annabi
- University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Henry M Smilowitz
- University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
16
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
17
|
Bartneck J, Hartmann AK, Stein L, Arnold-Schild D, Klein M, Stassen M, Marini F, Pielenhofer J, Meiser SL, Langguth P, Mack M, Muth S, Probst HC, Schild H, Radsak MP. Tumor-infiltrating CCR2 + inflammatory monocytes counteract specific immunotherapy. Front Immunol 2023; 14:1267866. [PMID: 37849753 PMCID: PMC10577317 DOI: 10.3389/fimmu.2023.1267866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Tumor development and progression is shaped by the tumor microenvironment (TME), a heterogeneous assembly of infiltrating and resident host cells, their secreted mediators and intercellular matrix. In this context, tumors are infiltrated by various immune cells with either pro-tumoral or anti-tumoral functions. Recently, we published our non-invasive immunization platform DIVA suitable as a therapeutic vaccination method, further optimized by repeated application (DIVA2). In our present work, we revealed the therapeutic effect of DIVA2 in an MC38 tumor model and specifically focused on the mechanisms induced in the TME after immunization. DIVA2 resulted in transient tumor control followed by an immune evasion phase within three weeks after the initial tumor inoculation. High-dimensional flow cytometry analysis and single-cell mRNA-sequencing of tumor-infiltrating leukocytes revealed cytotoxic CD8+ T cells as key players in the immune control phase. In the immune evasion phase, inflammatory CCR2+ PDL-1+ monocytes with immunosuppressive properties were recruited into the tumor leading to suppression of DIVA2-induced tumor-reactive T cells. Depletion of CCR2+ cells with specific antibodies resulted in prolonged survival revealing CCR2+ monocytes as important for tumor immune escape in the TME. In summary, the present work provides a platform for generating a strong antigen-specific primary and memory T cell immune response using the optimized transcutaneous immunization method DIVA2. This enables protection against tumors by therapeutic immune control of solid tumors and highlights the immunosuppressive influence of tumor infiltrating CCR2+ monocytes that need to be inactivated in addition for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Joschka Bartneck
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ann-Kathrin Hartmann
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Lara Stein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Danielle Arnold-Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Stassen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jonas Pielenhofer
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Sophie Luise Meiser
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Peter Langguth
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Matthias Mack
- University Hospital Regensburg, Department Nephrology, Regensburg, Germany
| | - Sabine Muth
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hans-Christian Probst
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Philipp Radsak
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
18
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
19
|
Boulch M, Cazaux M, Cuffel A, Guerin MV, Garcia Z, Alonso R, Lemaître F, Beer A, Corre B, Menger L, Grandjean CL, Morin F, Thieblemont C, Caillat-Zucman S, Bousso P. Tumor-intrinsic sensitivity to the pro-apoptotic effects of IFN-γ is a major determinant of CD4 + CAR T-cell antitumor activity. NATURE CANCER 2023; 4:968-983. [PMID: 37248395 PMCID: PMC10368531 DOI: 10.1038/s43018-023-00570-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
CD4+ T cells and CD4+ chimeric antigen receptor (CAR) T cells display highly variable antitumor activity in preclinical models and in patients; however, the mechanisms dictating how and when CD4+ T cells promote tumor regression are incompletely understood. With the help of functional intravital imaging, we report that interferon (IFN)-γ production but not perforin-mediated cytotoxicity was the dominant mechanism for tumor elimination by anti-CD19 CD4+ CAR T cells. Mechanistically, mouse or human CD4+ CAR T-cell-derived IFN-γ diffused extensively to act on tumor cells at distance selectively killing tumors sensitive to cytokine-induced apoptosis, including antigen-negative variants. In anti-CD19 CAR T-cell-treated patients exhibiting elevated CAR CD4:CD8 ratios, strong induction of serum IFN-γ was associated with increased survival. We propose that the sensitivity of tumor cells to the pro-apoptotic activity of IFN-γ is a major determinant of CD4+ CAR T-cell efficacy and may be considered to guide the use of CD4+ T cells during immunotherapy.
Collapse
Affiliation(s)
- Morgane Boulch
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marine Cazaux
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alexis Cuffel
- Université de Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France
- INSERM UMR976, Institut de Recherche St-Louis, Paris, France
| | - Marion V Guerin
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Zacarias Garcia
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Ruby Alonso
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Fabrice Lemaître
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alexander Beer
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Béatrice Corre
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Laurie Menger
- Gustave Roussy, Villejuif, France; INSERM U1015, Villejuif, France
| | - Capucine L Grandjean
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florence Morin
- Université de Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France
| | - Catherine Thieblemont
- Service d'Hémato-Oncologie, Hôpital Saint-Louis, AP-HP, Université de Paris Cité, Paris, France
| | - Sophie Caillat-Zucman
- Université de Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France
- INSERM UMR976, Institut de Recherche St-Louis, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
20
|
Li J, Zhou W, Li D, Huang Y, Yang X, Jiang L, Hu X, Yang J, Fu M, Zhang M, Wang F, Li J, Zhang Y, Yang Y, Yan F, Gao H, Wang W. Co-infusion of CAR T cells with aAPCs expressing chemokines and costimulatory ligands enhances the anti-tumor efficacy in mice. Cancer Lett 2023:216287. [PMID: 37392990 DOI: 10.1016/j.canlet.2023.216287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Chimeric antigen receptor-modified T (CAR-T) cell therapy has shown curable efficacy for treating hematological malignancies, while in solid tumors, the immunosuppressive microenvironment causes poor activation, expansion and survival of CAR-T cells, accounting mainly for the unsatisfactory efficacy. The artificial antigen-presenting cells (aAPCs) have been used for ex vivo expansion and manufacturing of CAR-T cells. Here, we constructed a K562 cell-based aAPCs expressing human epithelial cell adhesion molecule (EpCAM), chemokines (CCL19 and CCL21) and co-stimulatory molecular ligands (CD80 and 4-1BBL). Our data demonstrated that the novel aAPCs enhanced the expansion, and increased the immune memory phenotype and cytotoxicity of CAR-T cells recognizing EpCAM, in vitro. Of note, co-infusion CAR-T and aAPC enhances the infiltration of CAR-T cells in solid tumors, which has certain potential for the treatment of solid tumors Moreover, IL-2-9-21, a cytokine cocktail, prevents CAR-T cells from entering the state of exhaustion prematurely following continuous antigen engagement and boosts the anti-tumor activity of CAR-T cells co-infused with aAPCs. These data provide a new strategy to enhance the therapeutic potential of CAR-T cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaoyi Hu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Hematology, Hematology Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Maorong Fu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengxi Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiaqian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuening Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Feiyang Yan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Haozhan Gao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
21
|
Li YQ, Xin L, Zhao YC, Li SQ, Li YN. Role of vascular endothelial growth factor B in nonalcoholic fatty liver disease and its potential value. World J Hepatol 2023; 15:786-796. [PMID: 37397934 PMCID: PMC10308292 DOI: 10.4254/wjh.v15.i6.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to fatty liver disease caused by liver injury factors other than alcohol. The disease is characterized by diffuse fat infiltration, including simple steatosis (no inflammatory fat deposition), nonalcoholic fatty hepatitis, liver fibrosis, and so on, which may cause liver cirrhosis, liver failure, and even liver cancer in the later stage of disease progression. At present, the pathogenesis of NAFLD is still being studied. The "two-hit" theory, represented by lipid metabolism disorder and inflammatory reactions, is gradually enriched by the "multiple-hit" theory, which includes multiple factors, such as insulin resistance and adipocyte dysfunction. In recent years, vascular endothelial growth factor B (VEGFB) has been reported to have the potential to regulate lipid metabolism and is expected to become a novel target for ameliorating metabolic diseases, such as obesity and type 2 diabetes. This review summarizes the regulatory role of VEGFB in the onset and development of NAFLD and illustrates its underlying molecular mechanism. In conclusion, the signaling pathway mediated by VEGFB in the liver may provide an innovative approach to the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Yu-Qi Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264000, Shandong Province, China
| | - Lei Xin
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Yu-Chi Zhao
- Department of Surgery, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Shang-Qi Li
- The First School of Clinical Medicine, Binzhou Medical University, Yantai 264000, Shandong, China, Yantai 264000, Shandong Province, China
| | - Ya-Nuo Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264000, Shandong Province, China
| |
Collapse
|
22
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
23
|
Ren H, Kang N, Yin S, Xu C, Qu T, Dai D. Characteristic of molecular subtypes based on PANoptosis-related genes and experimental verification of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204720. [PMID: 37171396 DOI: 10.18632/aging.204720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer that originates from liver cells. It is one of the most common types of liver cancer and a leading cause of cancer-related death worldwide. Early detection and treatment can improve the HCC prognosis. Therefore, it is necessary to further improve HCC markers and risk stratification. PANoptosome is a cytoplasmic polymer protein complex that regulates a proinflammatory programmed cell death pathway called "PANoptosis". The role of PANoptosis in HCC remains unclear. In this study, the molecular changes of PANoptosis related genes (PAN-RGs) in HCC were systematically evaluated. We characterized the heterogeneity of HCC by using consensus clustering to identify two distinct subtypes. The two subtypes showed different survival rate, biological function, chemotherapy drug sensitivity and immune microenvironment. After identification of PAN-RG differential expression genes (DEGs), a prognostic model was established by Cox regression analysis using minimum absolute contraction and selection operator (LASSO), and its prognostic value was verified by Cox regression analysis, Kaplan-Meier curve and receiver operating characteristic (ROC) curve. Our own specimens were also used to further validate the prognostic significance and possible clinical value of the selected targets. Subsequently, we conducted a preliminary discussion on the reasons for the influence of the model on the prognosis through TME analysis, drug resistance analysis, TMB analysis and other studies. This study provides a new idea for individualized and precise treatment of HCC.
Collapse
Affiliation(s)
- Haitao Ren
- Department of Interventional Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Na Kang
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Shuan Yin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Chen Xu
- Department of Infectious Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Tengfei Qu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| | - Dongdong Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266071, China
| |
Collapse
|
24
|
Kang Y, Zhang W, Yu Q, Gao L, Quan J, Gu F, Wu Y, Tian Y, Wu Z, Shao S, Zhou H, Duan S, Zhou Y, Zhang L, Gao X, Tian H, Yao W. Self-assembled nanoparticles based on DNA origami and a nitrated T helper cell epitope as a platform for the development of personalized cancer vaccines. Cancer Immunol Immunother 2023:10.1007/s00262-023-03446-y. [PMID: 37119260 DOI: 10.1007/s00262-023-03446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Neoantigen vaccines constitute an emerging and promising cancer immunotherapy. However, not all neoantigens have anti-tumor activity, as poor CD4+ epitope recognition can lead to the lack of greatly limit the persistence of the CD8+ T cell response. Therefore, we designed a self-assembled nanoplatform hereinafter referred to as DNA-coupled nitrated T helper cell epitope nanoparticle (DCNP) based on DNA origami containing a nitrated CD4 + T cell epitope, which can facilitate the effective activation of neoantigen-specific CD8+ T cells. Moreover, we embedded the cytidine-phosphate-guanosine oligonucleotide (CpG ODN) motif sequence in the DNA skeleton to function as a built-in adjuvant to activate Toll-like receptor 9. DCNP can markedly improve adjuvant and neoantigen co-delivery to lymphoid organs and promote neoantigen presentation on dendritic cells. Moreover, DCNP induced robust, and long-lived neoantigen-specific CD8+ T cell responses that significantly delayed tumor growth. Further, these effects were largely dependent on the nitrated T cell epitope. Collectively, our findings indicate that DCNP is a promising platform that could improve the development of personalized therapeutic neoantigen vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanliang Kang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanli Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiumin Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Le Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiale Quan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangling Gu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxin Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yahong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zijie Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shishuai Shao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongyou Zhou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shukang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yixiang Zhou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Zhang
- Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
25
|
Cheng SH, Chiou HYC, Wang JW, Lin MH. Reciprocal Regulation of Cancer-Associated Fibroblasts and Tumor Microenvironment in Gastrointestinal Cancer: Implications for Cancer Dormancy. Cancers (Basel) 2023; 15:2513. [PMID: 37173977 PMCID: PMC10177044 DOI: 10.3390/cancers15092513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a major cause of cancer-related deaths worldwide. Despite the progress made in current treatments, patients with GI cancers still have high recurrence rates after initial treatment. Cancer dormancy, which involves the entry and escape of cancer cells from dormancy, is linked to treatment resistance, metastasis, and disease relapse. Recently, the role of the tumor microenvironment (TME) in disease progression and treatment has received increasing attention. The crosstalk between cancer-associated fibroblasts (CAF)-secreted cytokines/chemokines and other TME components, for example, extracellular matrix remodeling and immunomodulatory functions, play crucial roles in tumorigenesis. While there is limited direct evidence of a relationship between CAFs and cancer cell dormancy, this review explores the potential of CAF-secreted cytokines/chemokines to either promote cancer cell dormancy or awaken dormant cancer cells under different conditions, and the therapeutic strategies that may be applicable. By understanding the interactions between cytokines/chemokines released by CAFs and the TME, and their impact on the entry/escape of cancer dormancy, researchers may develop new strategies to reduce the risk of therapeutic relapse in patients with GI cancers.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
26
|
Lin Q, Zhang M, Kong Y, Huang Z, Zou Z, Xiong Z, Xie X, Cao Z, Situ W, Dong J, Li S, Zhu X, Huang Y. Risk score = LncRNAs associated with doxorubicin metabolism can be used as molecular markers for immune microenvironment and immunotherapy in non-small cell lung cancer. Heliyon 2023; 9:e13811. [PMID: 36879965 PMCID: PMC9984793 DOI: 10.1016/j.heliyon.2023.e13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Doxorubicin is the most effective anthracycline chemotherapy drug in the treatment of cancer, and it is an effective single agent in the treatment of non-small cell lung cancer (NSCLC). There is a lack of studies on the differentially expressed doxorubicin metabolism-related lncRNAs in NSCLC. In this study, we extracted related genes from the TCGA database and matched them with lncRNAs. Doxorubicin metabolism-related lncRNA-based gene signatures (DMLncSig) were gradually screened from univariate regression, LASSO regression, and multivariate regression analysis, and the risk score model was constructed. These DMLncSig were subjected to a GO/KEGG analysis. We then used the risk model to construct the TME model and analyze drug sensitivity. The IMvigor 210 immunotherapy model was cited for validation. Eventually, we performed tumor stemness index differences, survival, and clinical correlation analyses.
Collapse
Affiliation(s)
- Qianyi Lin
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo 255000, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei Province No.3 People's Hospital, Wuhan 430030, China
| | - Ziyuan Huang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhuoheng Zou
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaolin Xie
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Zitong Cao
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Wanyi Situ
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiaxin Dong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Shufang Li
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yongmei Huang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
27
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
28
|
Wang Y, Fang X, Li M, Ye J, Zhao S, Yu L, Wang J, Wang Y, Yan Z. Mesothelin CAR-T cells secreting PD-L1 blocking scFv for pancreatic cancer treatment. Cancer Genet 2022; 268-269:103-110. [PMID: 36288641 DOI: 10.1016/j.cancergen.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
PD-1/PD-L1 pathway caused immunosuppression accounts, at least partly, for the poor therapeutic effect of Chimeric Antigen Receptor T (CAR-T) on solid tumors. In this study, we designed and prepared CAR-T cells that could secrete PD-L1 blocking antibody and target Mesothelin antigen (Sec-MesoCAR-T), to remove the immunosuppressive effect of tumor on CAR-T cells, thereby increasing the therapeutic effect of CAR-T cells on pancreatic cancer. The CAR-T cells that could not secret PD-L1 blocking antibodies (MesoCAR-T) were used as a control. Sec-MesoCAR-T cells showed an enhanced inhibitory effect on BxPC-3 tumor than MesoCAR-T cells in vitro and in vivo. Besides, Sec-MesoCAR-T cells secreted higher level of cytokines including IL-2, IL-6 and IFN-γ in vitro than MesoCAR-T cells. Following injection, there were significantly more CAR-T cells in the peripheral blood of Sec-MesoCAR-T group than that of MesoCAR-T group. This work demonstrated that the PD-L1 antibody secreted by Sec-MesoCAR-T cells relieved the immunosuppressive effect of pancreatic cancer on CAR-T cells and improved the anti-tumor activity of CAR-T cells, which has a good guiding significance for the clinical application of CAR-T cells in treating solid tumors.
Collapse
Affiliation(s)
- Yeying Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P R China
| | - Xiaoyan Fang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China
| | - Minghao Li
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China
| | - Jing Ye
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China
| | - Shimin Zhao
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China
| | - Yiting Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China.
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P R China.
| |
Collapse
|
29
|
Yu T, Yu SK, Lu KH. Comprehensive Molecular Analyses of an SLC Family-Based Model in Stomach Adenocarcinoma. Pathol Oncol Res 2022; 28:1610610. [PMID: 36313898 PMCID: PMC9606230 DOI: 10.3389/pore.2022.1610610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022]
Abstract
Background: Solute carrier (SLC) family members are crucial in transporting amino acids across membranes. Amino acids are indispensable for both cancer and immune cells. However, the clinical significance of amino acid transporting SLC members in stomach adenocarcinoma (STAD) remains unclear. This study aimed to develop an SLC family-based model to predict the prognosis and the response of STAD patients to immunotherapy.Methods: A total of 1239 tumor cases were obtained from online databases. The training set (n = 371) consisted of RNA sequencing profiles obtained from The Cancer Genome Atlas (TCGA), while those from Gene Expression Omnibus (GEO) were used as the test set. Subsequently, the clinical characteristics and immune profiles were investigated, and potential immunotherapy response prediction values of the model were assessed.Results: Based on the TCGA cohort, an SLC family-based model was developed using multivariate Cox analysis. All tumor cases were stratified into high- and low-risk groups considering the SLC model. High-risk patients had a worse overall survival (OS) than low-risk patients, consistent with the results of GEO cohorts. Comprehensive analyses revealed that the high-risk group was correlated with aggressiveness-related pathways, whereas the low-risk group had better T helper cell infiltration and stronger immunotherapy response. Compared to the high-risk group, the low-risk group presented increased PD-L1 and tumor mutation burden.Conclusion: This SLC family-based model has the potential to predict the prognosis and immunotherapy outcomes of STAD patients. The survival of patients in the low-risk group was greatly prolonged, and the patients may benefit more from immunotherapy.
Collapse
|
30
|
Qiu W, Sang T, Chen H, Zhou H, Wang Z, Zhou H. Wenzi Jiedu Recipe ameliorates colorectal cancer by remodeling the gut microbiota and tumor microenvironment. Front Oncol 2022; 12:915498. [PMID: 36212428 PMCID: PMC9541612 DOI: 10.3389/fonc.2022.915498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionWenzi Jiedu Recipe (WJR), traditional Chinese medicine (TCM) formula, has been proven to be clinically useful in the treatment of colorectal cancer (CRC). However, its underlying mechanisms are still elusive, which limits its wider application. Thus, we aimed to evaluate the effect of WJR on CRC and elucidate mechanisms underlying its action.MethodsNetwork pharmacology was employed to clarify the “herb-active ingredient-target” network of WJR. The 16S rDNA sequencing method was used to analyze the changes of gut microbes mediated by WJR in tumor-bearing mice with CRC. The proportions of CD4+ T cell and CD8+ T cell were measured by flow cytometry. Levels of the cytokines interleukin (IL)-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were assessed by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA).ResultsWJR showed significant anti-CRC effects both in vitro and in vivo. Network pharmacology revealed that WJR exerts anti-CRC therapeutic effect on multiple targets and signaling pathways. Gut microbiota analysis revealed that WJR therapy significantly enriched for Oscillibacter and Bacteroides_acidifacien. In particular, we found that WJR significantly increased the proportion of CD8+ T cells and the expression of immune-associated cytokines IL-10, IFN-γ, and TNF-α.ConclusionThe regulation of gut microbiota by WJR may be the breakthrough point to clarify its mechanism of action in the treatment of CRC, and it has a good prospect of clinical application.
Collapse
Affiliation(s)
- Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianqing Sang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongguang Zhou,
| |
Collapse
|
31
|
Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14153720. [PMID: 35954384 PMCID: PMC9367462 DOI: 10.3390/cancers14153720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Basal cell carcinoma (BCC) is the most common malignancy in humans with a range of treatment options available. Tumor and patient characteristics aid in risk-stratification, which influences treatment considerations. Here, we review the advancements in surgical, topical, field, immunotherapeutic, molecular-targeted, and experimental treatment modalities that can be employed in the correct clinical setting for the treatment of BCC. Abstract Basal cell carcinoma (BCC), the most common cancer in humans, is a malignant neoplasm of cells derived from the basal layer of the epidermis. Tumor characteristics such as histologic subtype, primary versus recurrent tumor, anatomic location, size, and patient attributes determine the risk level and acceptable treatment options. Surgical options offer histologic confirmation of tumor clearance. Standard excision provides post-treatment histologic assessment, while Mohs micrographic surgery (MMS) provides complete margin assessment intraoperatively. Additional treatment options may be employed in the correct clinical context. Small and low-risk BCCs, broad field cancerization, locally-advanced disease, metastatic disease, cosmetic concerns, or morbidity with surgical approaches raise consideration of other treatment modalities. We review herein a range of treatment approaches and advances in treatments for BCC, including standard excision, MMS, electrodesiccation and curettage, ablative laser treatment, radiation therapy, targeted molecular therapies, topical therapies, field therapies, immunotherapy, and experimental therapies.
Collapse
|
32
|
Weng J, Li S, Zhu Z, Liu Q, Zhang R, Yang Y, Li X. Exploring immunotherapy in colorectal cancer. J Hematol Oncol 2022; 15:95. [PMID: 35842707 PMCID: PMC9288068 DOI: 10.1186/s13045-022-01294-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy combined with or without targeted therapy is the fundamental treatment for metastatic colorectal cancer (mCRC). Due to the adverse effects of chemotherapeutic drugs and the biological characteristics of the tumor cells, it is difficult to make breakthroughs in traditional strategies. The immune checkpoint blockades (ICB) therapy has made significant progress in the treatment of advanced malignant tumors, and patients who benefit from this therapy may obtain a long-lasting response. Unfortunately, immunotherapy is only effective in a limited number of patients with microsatellite instability-high (MSI-H), and segment initial responders can subsequently develop acquired resistance. From September 4, 2014, the first anti-PD-1/PD-L1 drug Pembrolizumab was approved by the FDA for the second-line treatment of advanced malignant melanoma. Subsequently, it was approved for mCRC second-line treatment in 2017. Immunotherapy has rapidly developed in the past 7 years. The in-depth research of the ICB treatment indicated that the mechanism of colorectal cancer immune-resistance has become gradually clear, and new predictive biomarkers are constantly emerging. Clinical trials examining the effect of immune checkpoints are actively carried out, in order to produce long-lasting effects for mCRC patients. This review summarizes the treatment strategies for mCRC patients, discusses the mechanism and application of ICB in mCRC treatment, outlines the potential markers of the ICB efficacy, lists the key results of the clinical trials, and collects the recent basic research results, in order to provide a theoretical basis and practical direction for immunotherapy strategies.
Collapse
Affiliation(s)
- Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Ruoxin Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China.
| |
Collapse
|
33
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
34
|
Shao J, Ge T, Wei Y, Zhou Y, Shi M, Liu H, Chen Z, Xia Y. Co-interventions with Clostridium butyricum and soluble dietary fiber targeting the gut microbiota improve MAFLD via the Acly/Nrf2/NF-κB signaling pathway. Food Funct 2022; 13:5807-5819. [PMID: 35543143 DOI: 10.1039/d1fo04224f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose: The pathogenesis of metabolic associated fatty liver disease (MAFLD) is complex. Lipid metabolic disorder, chronic inflammation, and oxidative stress are the core events for MAFLD. Dietary intervention is an important treatment strategy for preventing the onset and progression of MAFLD. Clostridium butyricum (CB) and soluble dietary fiber (SDF) are often considered beneficial for health. We explored how two microbiota-targeted interventions (SDF and CB) influence the hepatic immune system, oxidative stress, and lipid metabolism in MAFLD mice. Methods: To explore the role of SDF and CB in MAFLD, we generated MAFLD mouse models by feeding C57BL/6 mice with a high-fat diet (HFD). After 8 weeks of intervention, we measured immune cell function, lipid metabolism, and oxidative stress levels in the livers of mice. Results: Single intervention with SDF or CB was not effective in improving MAFLD; however, co-interventions with SDF and CB increased microbiota diversity and decreased inflammation, oxidative stress, and lipid synthesis. Moreover, we determined that co-intervention with SDF and CB mediated fatty acid oxidation by activating the Acly/Nrf2/NF-κB signaling pathway. Most importantly, co-intervention exerted anti-inflammatory effects by inhibiting the differentiation of macrophages into pro-inflammatory M1 macrophages. Conclusion: This study show that co-intervention with SDF and CB can improve MAFLD, and co-intervention with SDF and CB are suggested to be potential gut microbiota modulators and therapeutic substances for MAFLD.
Collapse
Affiliation(s)
- Junwei Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| | - Tiantian Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Yuhan Zhou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Mengyuan Shi
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Huiyuan Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
35
|
Rahat MA. Mini-Review: Can the Metastatic Cascade Be Inhibited by Targeting CD147/EMMPRIN to Prevent Tumor Recurrence? Front Immunol 2022; 13:855978. [PMID: 35418981 PMCID: PMC8995701 DOI: 10.3389/fimmu.2022.855978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Solid tumors metastasize very early in their development, and once the metastatic cell is lodged in a remote organ, it can proliferate to generate a metastatic lesion or remain dormant for long periods. Dormant cells represent a real risk for future tumor recurrence, but because they are typically undetectable and insensitive to current modalities of treatment, it is difficult to treat them in time. We describe the metastatic cascade, which is the process that allows tumor cells to detach from the primary tumor, migrate in the tissue, intravasate and extravasate the lymphatics or a blood vessel, adhere to a remote tissue and eventually outgrow. We focus on the critical enabling role of the interactions between tumor cells and immune cells, especially macrophages, in driving the metastatic cascade, and on those stages that can potentially be targeted. In order to prevent the metastatic cascade and tumor recurrence, we would need to target a molecule that is involved in all of the steps of the process, and evidence is brought to suggest that CD147/EMMPRIN is such a protein and that targeting it blocks metastasis and prevents tumor recurrence.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Barreyro L, Sampson AM, Ishikawa C, Hueneman KM, Choi K, Pujato MA, Chutipongtanate S, Wyder M, Haffey WD, O'Brien E, Wunderlich M, Ramesh V, Kolb EM, Meydan C, Neelamraju Y, Bolanos LC, Christie S, Smith MA, Niederkorn M, Muto T, Kesari S, Garrett-Bakelman FE, Bartholdy B, Will B, Weirauch MT, Mulloy JC, Gul Z, Medlin S, Kovall RA, Melnick AM, Perentesis JP, Greis KD, Nurmemmedov E, Seibel WL, Starczynowski DT. Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Sci Transl Med 2022; 14:eabb7695. [PMID: 35263148 DOI: 10.1126/scitranslmed.abb7695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery M Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario A Pujato
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Somchai Chutipongtanate
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Wendy D Haffey
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen M Kolb
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Santosh Kesari
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen Medlin
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Elmar Nurmemmedov
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - William L Seibel
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
37
|
Ramelyte E, Restivo G, Mannino M, Levesque MP, Dummer R. Advances in the drug management of basal cell carcinoma. Expert Opin Pharmacother 2022; 23:573-582. [PMID: 35081851 DOI: 10.1080/14656566.2022.2032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common skin cancer in humans. Recently, BCCs were suggested to be classified into 'easy to treat' and 'difficult to treat,' and different therapeutic options are suggested for their management. AREAS COVERED In this review, the authors discuss treatment options that are approved, recommended for, or are still in development for treatment of BCC. The review covers approved local therapies, such as imiquimod and 5-fluorouracil, and systemic therapies, such as hedgehog inhibitors. New medical agents, investigated in clinical trials, are reviewed. These include: targeted therapies, such as GLI antagonists or anti-VEGFR agents, immunotherapies, such as checkpoint inhibitors, recombinant cytokines or silencing RNA, as well as intralesional virotherapies with modified adeno- or herpes viruses. EXPERT OPINION The progress made in recent years has improved the management of patients with advanced BCC; however, neither tumor targeting nor immune system engaging agents provide a cure. New treatment approaches directed not only to known targets but also the tumor microenvironment are in development and are anticipated to improve the management of difficult to treat BCC.
Collapse
Affiliation(s)
- Egle Ramelyte
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Maria Mannino
- Department of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Payne KK. Cellular stress responses and metabolic reprogramming in cancer progression and dormancy. Semin Cancer Biol 2022; 78:45-48. [PMID: 34098105 PMCID: PMC8642459 DOI: 10.1016/j.semcancer.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
Recurrent disease after prolonged cancer dormancy is a major cause of cancer associated mortality, yet many of the mechanisms that are engaged to initiate dormancy as well as later recurrence remain incompletely understood. It is known that cancer cells initiate adaptation mechanisms to adapt tightly regulated cellular processes to non-optimal growth environments; Recent investigations have begun to elucidate the contribution of these mechanisms to malignant progression, with intriguing studies now defining cellular stress as a key contributor to the development and maintenance of cancer dormancy. This review will focus on our current understanding of stress responses facilitating malignant cell adaptation and metabolic reprogramming to establish cancer dormancy.
Collapse
|
39
|
Multifaceted functions of chronic inflammation in regulating tumor dormancy and relapse. Semin Cancer Biol 2022; 78:17-22. [PMID: 33785450 PMCID: PMC8473586 DOI: 10.1016/j.semcancer.2021.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023]
Abstract
Inflammation is a double-edged sword exhibiting multifaceted functions. On one hand, it either induces tumor cell apoptosis, or establishes tumor dormancy by inhibiting tumor cell proliferation; on the other hand, it either facilitates the tumorigenesis process or reawakens dormant tumor cells, resulting in disease recurrences. Each outcome would depend on the balance between type I and type II inflammation as well as the duration of inflammation being acute or chronic. In this essay, we provide a critical review of the empirical evidence suggesting that chronic inflammation, dominated by type I inflammatory cells and cytokines as a result of trauma and microbiome dysbiosis, could facilitate the carcinogenesis process in normal cells and retain nascent transformed cells in a dormant state. On the other hand, an elevated type II inflammation along with inefficient resolution of type I inflammation following trauma or major surgeries could delay the wound healing process and promote the growth and reawakening of dormant tumor cells, resulting in disease recurrences. Finally, cytokines exhibiting type I and II inflammatory functions, simultaneously, tend to promote tumor recurrence when become chronic. Therefore, the risk of reawakening dormant tumor cells should be considered in cancer survivors who experience major surgeries and trauma, or suffer from chronic inflammatory diseases.
Collapse
|
40
|
Yao B, Yang Q, Yang Y, Li Y, Peng H, Wu S, Wang L, Zhang S, Huang M, Wang E, Xiong P, Luo T, Li L, Jia S, Deng Y, Deng Y. Screening for Active Compounds Targeting Human Natural Killer Cell Activation Identifying Daphnetin as an Enhancer for IFN-γ Production and Direct Cytotoxicity. Front Immunol 2021; 12:680611. [PMID: 34956168 PMCID: PMC8693168 DOI: 10.3389/fimmu.2021.680611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells are a potent weapon against tumor and viral infection. Finding active compounds with the capacity of enhancing NK cell effector functions will be effective to develop new anti-cancer drugs. In this study, we initially screened 287 commercially available active compounds by co-culturing with peripheral blood mononuclear cells (PBMCs). We found that five compounds, namely, Daphnetin, MK-8617, LW6, JIB-04, and IOX1, increased the IFN-γ+ NK cell ratio in the presence of IL-12. Further studies using purified human primary NK cells revealed that Daphnetin directly promoted NK cell IFN-γ production in the presence of IL-12 but not IL-15, while the other four compounds acted on NK cells indirectly. Daphnetin also improved the direct cytotoxicity of NK cells against tumor cells in the presence of IL-12. Through RNA-sequencing, we found that PI3K-Akt-mTOR signaling acted as a central pathway in Daphnetin-mediated NK cell activation in the presence of IL-12. This was further confirmed by the finding that both inhibitors of PI3K-Akt and its main downstream signaling mTOR, LY294002, and rapamycin, respectively, can reverse the increase of IFN-γ production and cytotoxicity in NK cells promoted by Daphnetin. Collectively, we identify a natural product, Daphnetin, with the capacity of promoting human NK cell activation via PI3K-Akt-mTOR signaling in the presence of IL-12. Our current study opens up a new potential application for Daphnetin as a complementary immunomodulator for cancer treatments.
Collapse
Affiliation(s)
- Baige Yao
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinglan Yang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yana Li
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Hongyan Peng
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Shuting Wu
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Lili Wang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Shuju Zhang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Minghui Huang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Erqiang Wang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Peiwen Xiong
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Ting Luo
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Liping Li
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yafei Deng
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
41
|
Li Y, Liu W, Zhang X, Fang Y, Yue X, Zhang X, He Q, Fu N, Wang S, Ma T, Li D. Effective Disease Control After Combinatorial Treatment with a PD-1 Antibody and an mTOR Inhibitor for Recurrent Ovarian Clear Cell Carcinomas: A Case Report and Literature Review. Onco Targets Ther 2021; 14:5429-5434. [PMID: 34916808 PMCID: PMC8668246 DOI: 10.2147/ott.s333029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare type of epithelial ovarian cancer characterized by a chemoresistant phenotype and high-grade tumor. Conventional therapies for OCCC include surgery and chemotherapy. However, these OCCC treatment approaches are characterized by a high risk of relapse and drug resistance resulting in poor prognosis. Therefore, alternative therapeutic approaches are required to achieve better outcomes. In this study, a PIK3CA p.R88Q mutation and PD-L1 expression with a tumor proportion score of 10% was explored in a patient who presented with rapid recurrence after surgery and unsuccessful postoperative chemotherapy. Based on the clinical condition and the patient preference, she was administered a novel combinatorial therapy comprising mTOR inhibitor everolimus, which is a well-known and potent inhibitor of the PI3K/AKT signaling pathway, and the anti-PD-1 antibody toripalimab. Treatment with this combinatorial therapy showed good prognosis, with more than eight months of disease control, and no severe adverse events were observed. The findings of this study provide a novel and effective strategy for OCCC patients. To the best of our knowledge, this is the first study to report a new combination regimen of immunotherapy (everolimus plus toripalimab) for solid tumors. Everolimus is not only an antitumor targeted drug but also an immunosuppressant; it’s combination with immunotherapy is controversial. This is the first report to demonstrate that it has a synergistic effect.
Collapse
Affiliation(s)
- Yue Li
- Oncology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Wentao Liu
- Oncology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Xiaoyan Zhang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, People's Republic of China
| | - Yu Fang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, People's Republic of China
| | - Xiaolong Yue
- Oncology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Xin Zhang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, People's Republic of China
| | - Qifan He
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, People's Republic of China
| | - Na Fu
- Oncology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Sizhen Wang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, People's Republic of China
| | - Tonghui Ma
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, People's Republic of China
| | - Dalin Li
- Oncology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
42
|
Ghafarkhani M, Avci CB, Rahbarghazi R, Karimi A, Sadeghizadeh M, Zarebkohan A, Bani F. Mild hyperthermia induced by gold nanorods acts as a dual-edge blade in the fate of SH-SY5Y cells via autophagy. Sci Rep 2021; 11:23984. [PMID: 34907215 PMCID: PMC8671444 DOI: 10.1038/s41598-021-02697-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Unraveling unwanted side effects of nanotechnology-based therapies like photothermal therapy (PTT) is vital in translational nanomedicine. Herein, we monitored the relationship between autophagic response at the transcriptional level by using a PCR array and tumor formation ability by colony formation assay in the human neuroblastoma cell line, SH-SY5Y, 48 h after being exposed to two different mild hyperthermia (43 and 48 °C) induced by PTT. In this regard, the promotion of apoptosis and autophagy were evaluated using immunofluorescence imaging and flow cytometry analyses. Protein levels of Ki-67, P62, and LC3 were measured using ELISA. Our results showed that of 86 genes associated with autophagy, the expression of 54 genes was changed in response to PTT. Also, we showed that chaperone-mediated autophagy (CMA) and macroautophagy are stimulated in PTT. Importantly, the results of this study also showed significant changes in genes related to the crosstalk between autophagy, dormancy, and metastatic activity of treated cells. Our findings illustrated that PTT enhances the aggressiveness of cancer cells at 43 °C, in contrast to 48 °C by the regulation of autophagy-dependent manner.
Collapse
Affiliation(s)
- Maryam Ghafarkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, Bornova, 35100, Izmir, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Padmanabhan S, Gaire B, Zou Y, Uddin MM, DeLeon D, Vancurova I. IFNγ induces JAK1/STAT1/p65 NFκB-dependent interleukin-8 expression in ovarian cancer cells, resulting in their increased migration. Int J Biochem Cell Biol 2021; 141:106093. [PMID: 34626802 PMCID: PMC8639749 DOI: 10.1016/j.biocel.2021.106093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023]
Abstract
Interferon-γ (IFNγ) is a pleiotropic cytokine that has a crucial role in immune response and tumor immunity. Because of its anti-tumor effects, IFNγ has been used in cancer treatment. However, IFNγ also has tumor-promoting functions that are less well understood. Here, we show that IFNγ induces expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) in ovarian cancer (OC) cells. The IFNγ-induced IL-8 expression is dependent on JAK1, STAT1, and p65 NFκB, and is associated with an increased occupancy of K314/315 acetylated p65 NFκB and Ser-727 phosphorylated STAT1 at the IL-8 promoter. Neutralization of IL-8 using anti-IL-8 antibody reduces IFNγ-induced migration of OC cells, and their invasion ability in 3D spheroids. Together, these findings identify IL-8 as a novel target induced by IFNγ/JAK1/STAT1/p65 NFκB signaling, and indicate that the IFNγ-induced IL-8 contributes to IFNγ pro-tumorigenic effects in ovarian cancer cells.
Collapse
Affiliation(s)
- Sveta Padmanabhan
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Bijaya Gaire
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Mohammad M Uddin
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Daniel DeLeon
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
44
|
Jiménez-Morales S, Aranda-Uribe IS, Pérez-Amado CJ, Ramírez-Bello J, Hidalgo-Miranda A. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:737340. [PMID: 34867958 PMCID: PMC8636671 DOI: 10.3389/fimmu.2021.737340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy with high heterogeneity in its biological features and treatments. Although the overall survival (OS) of patients with ALL has recently improved considerably, owing to the application of conventional chemo-therapeutic agents, approximately 20% of the pediatric cases and 40-50% of the adult patients relapse during and after the treatment period. The potential mechanisms that cause relapse involve clonal evolution, innate and acquired chemoresistance, and the ability of ALL cells to escape the immune-suppressive tumor response. Currently, immunotherapy in combination with conventional treatment is used to enhance the immune response against tumor cells, thereby significantly improving the OS in patients with ALL. Therefore, understanding the mechanisms of immune evasion by leukemia cells could be useful for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Sammir Aranda-Uribe
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Departamento de Farmacología, División de Ciencias de la Salud, Universidad de Quintana Roo, Quintana Roo, Mexico
| | - Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
45
|
Mustafa G, Mahrosh HS, Salman M, Sharif S, Jabeen R, Majeed T, Tahir H. Identification of Peptides as Novel Inhibitors to Target IFN- γ, IL-3, and TNF- α in Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1124055. [PMID: 34812407 PMCID: PMC8605925 DOI: 10.1155/2021/1124055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Autoimmune disorder is a chronic immune imbalance which is developed through a series of pathways. The defect in B cells, T cells, and lack of self-tolerance has been greatly associated with the onset of many types of autoimmune complications including rheumatoid arthritis, systemic lupus erythematosus (SLE), multiple sclerosis, and chronic inflammatory demyelinating polyneuropathy. The SLE is an autoimmune disease with a common type of lupus that causes tissue and organ damage due to the wide spread of inflammation. In the current study, twenty anti-inflammatory peptides derived from plant and animal sources were docked as ligands or peptides counter to proinflammatory cytokines. Interferon gamma (IFN-γ), interleukin 3 (IL-3), and tumor necrosis factor alpha (TNF-α) were targeted in this study as these are involved in the pathogenesis of SLE in many clinical studies. Two docking approaches (i.e., protein-ligand docking and peptide-protein docking) were employed in this study using Molecular Operating Environment (MOE) software and HADDOCK web server, respectively. Amongst docked twenty peptides, the peptide DEDTQAMMPFR with S-score of -11.3018 and HADDOCK score of -10.3 ± 2.5 kcal/mol showed the best binding interactions and energy validation with active amino acids of IFN-γ protein in both docking approaches. Depending upon these results, this peptide could be used as a potential drug candidate to target IFN-γ, IL-3, and TNF-α proteins to control inflammatory events. Other peptides (i.e., QEPQESQQ and FRDEHKK) also revealed good binding affinity with IFN-γ with S-scores of -10.98 and -10.55, respectively. Similarly, the peptides KHDRGDEF, FRDEHKK, and QEPQESQQ showed best binding interactions with IL-3 with S-scores of -8.81, -8.64, and -8.17, respectively.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Hafiza Salaha Mahrosh
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Raheela Jabeen
- Department of Biochemistry and Biotechnology, The Women University Multan, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Hafsah Tahir
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
46
|
Chernosky NM, Tamagno I. The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers (Basel) 2021; 13:5621. [PMID: 34830776 PMCID: PMC8615859 DOI: 10.3390/cancers13225621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic spread and recurrence are intimately linked to therapy failure, which remains an overarching clinical challenge for patients with cancer. Cancer cells often disseminate early in the disease process and can remain dormant for years or decades before re-emerging as metastatic disease, often after successful treatment. The interactions of dormant cancer cells and their metastatic niche, comprised of various stromal and immune cells, can determine the length of time that cancer cells remain dormant, as well as when they reactivate. New studies are defining how innate immune cells in the primary tumor may be corrupted to help facilitate many aspects of dissemination and re-emergence from a dormant state. Although the scientific literature has partially shed light on the drivers of immune escape in cancer, the specific mechanisms regulating metastasis and dormancy in the context of anti-tumor immunity are still mostly unknown. This review follows the journey of metastatic cells from dissemination to dormancy and the onset of metastatic outgrowth and recurrent tumor development, with emphasis on the role of the innate immune system. To this end, further research identifying how immune cells interact with cancer cells at each step of cancer progression will pave the way for new therapies that target the reactivation of dormant cancer cells into recurrent, metastatic cancers.
Collapse
Affiliation(s)
- Noah M. Chernosky
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
47
|
Al-Rashidi HE, Refaat S, Ahmed E, Hussein DT, Eltantawy FM, Hamed S. Involvement of INF-γ functional single nucleotide polymorphism +874 T/A (rs2430561) in breast cancer risk. Saudi J Biol Sci 2021; 28:6289-6296. [PMID: 34759748 PMCID: PMC8568710 DOI: 10.1016/j.sjbs.2021.06.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
According Global Cancer Statistics 2020 GLOBOCAN estimates female breast cancer was found as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), and the fourth leading cause (6.9%) of cancer death among women worldwide. Identification of new diagnostic marker sharply characterize the tumor feature is intensive need. The present work was performed to investigate the involvement of the INF-γ + 874 T/A gene polymorphism in different breast cancer prognostic factors. Polymorphism detection analysis was performed on 163 subjects from breast cancer patients, 79 with inflamed cells of breast patients and 144 controls. The gene polymorphism was detected using the amplification refractory mutation system- polymerase chain reaction method (ARMS-PCR). The distribution of INF-γ T + 874A gene polymorphism shows strong significant association between INF-γ + 874 T/A genotypes TT in BC patients (ORTT: 6.41 [95% CI = 2.72-15.1] P < 0.0001) as well as strong significant association regarding T allele (ORT: 1.99 [95% CI = 1.43-2.76] P < 0.0001) when compared to the healthy control. In ICB group the strong association was noted with INF-γ + 874 T/A genotypes AT genotype (ORAT: 2.28 [95% CI = 1.22-4.29] P = 0.007). From the different histological BC hormonal markers the human epidermal growth factor receptor 2 (HER2) was showing significant association in INF-γ + 874 T/A genotypes TT (P = 0.03) and recessive model (TT versus AA + AT P = 0.03). Concerning different BC prognostic models, the poor prognostic one of luminal B, (ER+ve PR+ve Her2+ve) show significant association in the host INF-γ + 874 T/A genotype (TT, P = 0.03) and recessive model (TT versus AA + AT P = 0.02) when compared to the good prognostic hormonal status luminal A model, (ER+ve PR+ve Her2-ve). It seems that this is the first study that interested in correlate the INF-γ + 874 T/A gene polymorphisms in Egyptian BC patients. T allele, TT genotype and recessive model of the INF-γ + 874 T/A gene variants were documented as risk factors for BC pathogenesis. It may be used as practical biomarker to guide the BC carcinogenesis and risk process.
Collapse
Key Words
- ARMS-PCR, amplification refractory mutation system, polymerase chain reaction method
- BC, Breast cancer
- Breast cancer
- C, controls
- CD, cluster of differentiation
- CI, 95% confidence intervals
- ER, estrogen receptor
- GPI, good prognostic index
- Genotypes
- HER2, human epidermal growth factor receptor 2
- ICB, inflamed cells of breast
- IL, interleukin
- INF-γ
- INF-γ, Interferon-γ
- IRB, Institutional Review Board
- ISGs, INF-stimulated genes
- MPI, moderate prognostic index
- NK, natural killer cells
- NPI, the mandatory prognostic index
- OR, odds ratio
- PAM50, Prediction Analysis of Microarray 50
- PPI, poor prognostic index
- PR, progesterone receptor
- Polymorphism
- Risk factor
- SNPs, single nucleotide polymorphism
- TGF-β, transforming growth factor-β
- TNBC, Triple Negative BC
- TNF-α, tumor necrosis factor-α
- Th1, T helper1
Collapse
Affiliation(s)
- Hanan E Al-Rashidi
- Medical Laboratory Technology Department, College of Applied Medical Science, Taibah University, Madinah, Saudi Arabia
| | | | - Enas Ahmed
- Emergency Hospital, Mansoura University, Egypt
| | | | | | - Sahar Hamed
- Urology and Nephrology Center, Mansoura University, Egypt
| |
Collapse
|
48
|
Ren H, Li S, Liu X, Li W, Hao J, Zhao N. Multi-omics analysis of the expression and prognostic value of the butyrophilins in breast cancer. J Leukoc Biol 2021; 110:1181-1195. [PMID: 34411352 DOI: 10.1002/jlb.5ma0321-158rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Butyrophilins (BTNs) belong to the immunoglobulin superfamily of transmembrane proteins and play a role in the regulation of lymphocyte activation, several autoimmune diseases, and the progression of human cancers. However, the associated clinicopathologic characteristics and prognostic value of BTNs in breast cancer remain unknown. This study aimed to discover potential key related BTN genes and signaling pathways in breast cancer, which could provide new insights for immune-based strategies. In the present study, the mRNA expression level and prognostic value of BTN2A1, BTN3A1, BTN3A2, BTN3A3, BTNL2, BTNL9, ERMAP, and MOG were measured. Up-regulation of these genes was significantly correlated with improved overall and relapse-free survival. We then analyzed the prognostic outcomes of breast cancer subtypes, genetic alterations, interaction networks, and the functional enrichment of eight BTN family genes. Our results showed that these eight genes played essential roles in tumor progression. Furthermore, an immune infiltration analysis indicated that most candidate BTN family members were associated with intratumoral immune cell infiltration, especially that of γδ T cells. Finally, gene set enrichment analysis for a single hub gene revealed that each BTN gene played a vital role in tumor progression through immune signaling pathways. These findings provided new insights into breast cancer pathogenesis and identified eight potential biomarkers for breast cancer.
Collapse
Affiliation(s)
- He Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shuliang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, Shandong, China.,Department of Gastrointestinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, Shandong, China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Wanjing Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Vandyck HHLD, Hillen LM, Bosisio FM, van den Oord J, zur Hausen A, Winnepenninckx V. Rethinking the biology of metastatic melanoma: a holistic approach. Cancer Metastasis Rev 2021; 40:603-624. [PMID: 33870460 PMCID: PMC8213587 DOI: 10.1007/s10555-021-09960-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Over the past decades, melanoma-related mortality has remained nearly stable. The main reason is treatment failure of metastatic disease and the inherently linked knowledge gap regarding metastasis formation. In order to elicit invasion, melanoma cells manipulate the tumor microenvironment, gain motility, and adhere to the extracellular matrix and cancer-associated fibroblasts. Melanoma cells thereby express different cell adhesion molecules like laminins, integrins, N-cadherin, and others. Epithelial-mesenchymal transition (EMT) is physiological during embryologic development, but reactivated during malignancy. Despite not being truly epithelial, neural crest-derived malignancies like melanoma share similar biological programs that enable tumorigenesis, invasion, and metastasis. This complex phenomenon is termed phenotype switching and is intertwined with oncometabolism as well as dormancy escape. Additionally, it has been shown that primary melanoma shed exosomes that create a favorable premetastatic niche in the microenvironment of secondary organs and lymph nodes. Although the growing body of literature describes the aforementioned concepts separately, an integrative holistic approach is missing. Using melanoma as a tumor model, this review will shed light on these complex biological principles in an attempt to clarify the mechanistic metastatic pathways that dictate tumor and patient fate.
Collapse
Affiliation(s)
- Hendrik HLD Vandyck
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Lisa M Hillen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Francesca M Bosisio
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
50
|
Morein D, Rubinstein-Achiasaf L, Brayer H, Dorot O, Pichinuk E, Ben-Yaakov H, Meshel T, Pasmanik-Chor M, Ben-Baruch A. Continuous Inflammatory Stimulation Leads via Metabolic Plasticity to a Prometastatic Phenotype in Triple-Negative Breast Cancer Cells. Cells 2021; 10:cells10061356. [PMID: 34072893 PMCID: PMC8229065 DOI: 10.3390/cells10061356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation promotes cancer progression by affecting the tumor cells and their microenvironment. Here, we demonstrate that a continuous stimulation (~6 weeks) of triple-negative breast tumor cells (TNBC) by the proinflammatory cytokines tumor necrosis factor α (TNFα) + interleukin 1β (IL-1β) changed the expression of hundreds of genes, skewing the cells towards a proinflammatory phenotype. While not affecting stemness, the continuous TNFα + IL-1β stimulation has increased tumor cell dispersion and has induced a hybrid metabolic phenotype in TNBC cells; this phenotype was indicated by a transcription-independent elevation in glycolytic activity and by increased mitochondrial respiratory potential (OXPHOS) of TNBC cells, accompanied by elevated transcription of mitochondria-encoded OXPHOS genes and of active mitochondria area. The continuous TNFα + IL-1β stimulation has promoted in a glycolysis-dependent manner the activation of p65 (NF-κB), and the transcription and protein expression of the prometastatic and proinflammatory mediators sICAM-1, CCL2, CXCL8 and CXCL1. Moreover, when TNBC cells were stimulated continuously by TNFα + IL-1β in the presence of a glycolysis inhibitor, their conditioned media had reduced ability to recruit monocytes and neutrophils in vivo. Such inflammation-induced metabolic plasticity, which promotes prometastatic cascades in TNBC, may have important clinical implications in treatment of TNBC patients.
Collapse
Affiliation(s)
- Dina Morein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Linor Rubinstein-Achiasaf
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Hadar Brayer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Orly Dorot
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Hagar Ben-Yaakov
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Tsipi Meshel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Adit Ben-Baruch
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
- Correspondence: ; Tel.: +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|