1
|
Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian K, Gerzanich V, Simard JM, Nimmagadda VKC, Bever CT. Immunomodulatory therapy with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep 2023; 13:5635. [PMID: 37024509 PMCID: PMC10079956 DOI: 10.1038/s41598-023-29852-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/11/2023] [Indexed: 04/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are found in lesions of multiple sclerosis (MS) and animal models of MS such as experimental autoimmune encephalomyelitis (EAE), and may contribute to the neuronal loss that underlies permanent impairment. We investigated whether glatiramer acetate (GA) can reduce these changes in the spinal cords of chronic EAE mice by using routine histology, immunostaining, and electron microscopy. EAE spinal cord tissue exhibited increased inflammation, demyelination, mitochondrial dysfunction, ER stress, downregulation of NAD+ dependent pathways, and increased neuronal death. GA reversed these pathological changes, suggesting that immunomodulating therapy can indirectly induce neuroprotective effects in the CNS by mediating ER stress.
Collapse
Affiliation(s)
- Tapas K Makar
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA.
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA.
| | - Poornachander R Guda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sugata Ray
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sanketh Andhavarapu
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Vamshi K C Nimmagadda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Christopher T Bever
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, Office of Research and Development, Washington, USA
| |
Collapse
|
2
|
Vorup-Jensen T, Jensen RK. Structural Immunology of Complement Receptors 3 and 4. Front Immunol 2018; 9:2716. [PMID: 30534123 PMCID: PMC6275225 DOI: 10.3389/fimmu.2018.02716] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.
Collapse
Affiliation(s)
- Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rasmus Kjeldsen Jensen
- Department of Molecular Biology and Genetics-Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
van der Touw W, Kang K, Luan Y, Ma G, Mai S, Qin L, Bian G, Zhang R, Mungamuri SK, Hu HM, Zhang CC, Aaronson SA, Feldmann M, Yang WC, Chen SH, Pan PY. Glatiramer Acetate Enhances Myeloid-Derived Suppressor Cell Function via Recognition of Paired Ig-like Receptor B. THE JOURNAL OF IMMUNOLOGY 2018; 201:1727-1734. [PMID: 30068593 DOI: 10.4049/jimmunol.1701450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/25/2018] [Indexed: 01/26/2023]
Abstract
Glatiramer acetate (GA; Copaxone) is a copolymer therapeutic that is approved by the Food and Drug Administration for the relapsing-remitting form of multiple sclerosis. Despite an unclear mechanism of action, studies have shown that GA promotes protective Th2 immunity and stimulates release of cytokines that suppress autoimmunity. In this study, we demonstrate that GA interacts with murine paired Ig-like receptor B (PIR-B) on myeloid-derived suppressor cells and suppresses the STAT1/NF-κB pathways while promoting IL-10/TGF-β cytokine release. In inflammatory bowel disease models, GA enhanced myeloid-derived suppressor cell-dependent CD4+ regulatory T cell generation while reducing proinflammatory cytokine secretion. Human monocyte-derived macrophages responded to GA by reducing TNF-α production and promoting CD163 expression typical of alternative maturation despite the presence of GM-CSF. Furthermore, GA competitively interacts with leukocyte Ig-like receptors B (LILRBs), the human orthologs of PIR-B. Because GA limited proinflammatory activation of myeloid cells, therapeutics that target LILRBs represent novel treatment modalities for autoimmune indications.
Collapse
Affiliation(s)
- William van der Touw
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kyeongah Kang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX 77030
| | - Yi Luan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ge Ma
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sunny Mai
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX 77030
| | - Lihui Qin
- Department of Pathology, Weill Cornell Medical College, New York, NY 10065
| | - Guanglin Bian
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ruihua Zhang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sathish Kumar Mungamuri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR 97213
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; .,Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX 77030.,Center for Infectious Diseases and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; and.,Cancer Center, Houston Methodist Research Institute, Houston, TX 77030
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; .,Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX 77030.,Cancer Center, Houston Methodist Research Institute, Houston, TX 77030
| |
Collapse
|
4
|
Grossman I, Kolitz S, Komlosh A, Zeskind B, Weinstein V, Laifenfeld D, Gilbert A, Bar-Ilan O, Fowler KD, Hasson T, Konya A, Wells-Knecht K, Loupe P, Melamed-Gal S, Molotsky T, Krispin R, Papir G, Sahly Y, Hayden MR. Compositional differences between Copaxone and Glatopa are reflected in altered immunomodulation ex vivo in a mouse model. Ann N Y Acad Sci 2017; 1407:75-89. [PMID: 29168242 DOI: 10.1111/nyas.13547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 12/30/2022]
Abstract
Copaxone (glatiramer acetate, GA), a structurally and compositionally complex polypeptide nonbiological drug, is an effective treatment for multiple sclerosis, with a well-established favorable safety profile. The short antigenic polypeptide sequences comprising therapeutically active epitopes in GA cannot be deciphered with state-of-the-art methods; and GA has no measurable pharmacokinetic profile and no validated pharmacodynamic markers. The study reported herein describes the use of orthogonal standard and high-resolution physicochemical and biological tests to characterize GA and a U.S. Food and Drug Administration-approved generic version of GA, Glatopa (USA-FoGA). While similarities were observed with low-resolution or destructive tests, differences between GA and USA-FoGA were measured with high-resolution methods applied to an intact mixture, including variations in surface charge and a unique, high-molecular-weight, hydrophobic polypeptide population observed only in some USA-FoGA lots. Consistent with published reports that modifications in physicochemical attributes alter immune-related processes, genome-wide expression profiles of ex vivo activated splenocytes from mice immunized with either GA or USA-FoGA showed that 7-11% of modulated genes were differentially expressed and enriched for immune-related pathways. Thus, differences between USA-FoGA and GA may include variations in antigenic epitopes that differentially activate immune responses. We propose that the assays reported herein should be considered during the regulatory assessment process for nonbiological complex drugs such as GA.
Collapse
Affiliation(s)
- Iris Grossman
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Sarah Kolitz
- Immuneering Corporation, Cambridge, Massachusetts
| | - Arthur Komlosh
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | - Vera Weinstein
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Daphna Laifenfeld
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Adrian Gilbert
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Oren Bar-Ilan
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | - Tal Hasson
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Attila Konya
- Teva Pharmaceutical Works Ltd., Gödöllő, Hungary
| | - Kevin Wells-Knecht
- Research and Development, Teva Pharmaceutical Industries, West Chester, Pennsylvania
| | - Pippa Loupe
- Research and Development, Teva Pharmaceutical Industries, Overland Park, Kansas
| | - Sigal Melamed-Gal
- Research and Development, Teva Pharmaceutical Industries, Frazer, Pennsylvania
| | - Tatiana Molotsky
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Revital Krispin
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Galia Papir
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Yousif Sahly
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| | - Michael R Hayden
- Research and Development, Teva Pharmaceutical Industries, Petach Tikva, Israel
| |
Collapse
|
5
|
Christiansen SH, Murphy RA, Juul-Madsen K, Fredborg M, Hvam ML, Axelgaard E, Skovdal SM, Meyer RL, Sørensen UBS, Möller A, Nyengaard JR, Nørskov-Lauritsen N, Wang M, Gadjeva M, Howard KA, Davies JC, Petersen E, Vorup-Jensen T. The Immunomodulatory Drug Glatiramer Acetate is Also an Effective Antimicrobial Agent that Kills Gram-negative Bacteria. Sci Rep 2017; 7:15653. [PMID: 29142299 PMCID: PMC5688084 DOI: 10.1038/s41598-017-15969-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
Classic drug development strategies have failed to meet the urgent clinical needs in treating infections with Gram-negative bacteria. Repurposing drugs can lead to timely availability of new antibiotics, accelerated by existing safety profiles. Glatiramer acetate (GA) is a widely used and safe formulation for treatment of multiple sclerosis. It contains a large diversity of essentially isomeric polypeptides with the cationic and amphiphilic character of many antimicrobial peptides (AMP). Here, we report that GA is antibacterial, targeting Gram-negative organisms with higher activity towards Pseudomonas aeruginosa than the naturally-occurring AMP LL-37 in human plasma. As judged from flow cytometric assays, bacterial killing by GA occurred within minutes. Laboratory strains of Escherichia coli and P. aeruginosa were killed by a process of condensing intracellular contents. Efficient killing by GA was also demonstrated in Acinetobacter baumannii clinical isolates and approximately 50% of clinical isolates of P. aeruginosa from chronic airway infection in CF patients. By contrast, the Gram-positive Staphylococcus aureus cells appeared to be protected from GA by an increased formation of nm-scale particulates. Our data identify GA as an attractive drug repurposing candidate to treat infections with Gram-negative bacteria.
Collapse
Affiliation(s)
- Stig Hill Christiansen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ronan A Murphy
- CF and Chronic Lung Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kristian Juul-Madsen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marlene Fredborg
- Dept. of Clinical Microbiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Dept. of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Axelgaard
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sandra M Skovdal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Dept. of Bioscience, Aarhus University, Aarhus, Denmark
| | - Uffe B Skov Sørensen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Arne Möller
- Dept. of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Niels Nørskov-Lauritsen
- Dept. of Clinical Microbiology, Aarhus University Hospital Skejby, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikala Wang
- Dept. of Clinical Microbiology, Aarhus University Hospital Skejby, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mihaela Gadjeva
- Dept. of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Dept. of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Jane C Davies
- CF and Chronic Lung Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Dept. of Paediatric Respiratory Medicine, Royal Brompton & Harefield Foundation Trust, London, UK
| | - Eskild Petersen
- Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Aarhus University Network for Interdisciplinary Drug Resistance Research, Aarhus, Denmark.,Dept. of Infectious Diseases, The Royal Hospital, Muscat, Sultanate of Oman
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark. .,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark. .,Aarhus University Network for Interdisciplinary Drug Resistance Research, Aarhus, Denmark.
| |
Collapse
|
6
|
Abstract
Glatiramer acetate is a mixture of synthetic peptides that are cross-reactive with MBP. The antigen-based therapy induces a shift to an anti-inflammatory Th2 bias and is used in the treatment of relapsing-remitting multiple sclerosis. Like other peptide antigens, GA induces an antibody response in all patients. In contrast to biologically active agents, such as the recombinant interferon beta drugs, GA is a peptide antigen that lacks intrinsic biological activity. In vitro and in vivo data have shown that GA-reactive antibodies are not neutralizing. Antibodies do not alter the principal immunological effects of GA, including binding to MHC Class II molecules, activation and proliferation of GA-reactive T cells, and the release of anti-inflammatory Th2 cytokines. Higher antibody titres do not appear to be associated with a deterioration in clinical endpoints, such as relapse rate, EDSS progression or the occurrence of side effects in MS patients treated with GA. The presence of GA-reactive antibodies may promote remyelination and enhance the immunological and clinical effects of GA, indicating that they may be part of GA's mechanism of action. Multiple Sclerosis 2007; 13: S28—S35. http://msj.sagepub.com
Collapse
|
7
|
Christiansen SH, Zhang X, Juul-Madsen K, Hvam ML, Vad BS, Behrens MA, Thygesen IL, Jalilian B, Pedersen JS, Howard KA, Otzen DE, Vorup-Jensen T. The random co-polymer glatiramer acetate rapidly kills primary human leukocytes through sialic-acid-dependent cell membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:425-437. [PMID: 28064019 DOI: 10.1016/j.bbamem.2017.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 01/02/2023]
Abstract
The formulation glatiramer acetate (GA) is widely used in therapy of multiple sclerosis. GA consists of random copolymers of four amino acids, in ratios that produce a predominantly positive charge and an amphipathic character. With the extraordinary complexity of the drug, several pharmacological modes-of-action were suggested, but so far none, which rationalizes the cationicity and amphipathicity as part of the mode-of-action. Here, we report that GA rapidly kills primary human T lymphocytes and, less actively, monocytes. LL-37 is a cleavage product of human cathelicidin with important roles in innate immunity. It shares the positive charge and amphipathic character of GA, and, as shown here, also the ability to kill human leukocyte. The cytotoxicity of both compounds depends on sialic acid in the cell membrane. The killing was associated with the generation of CD45+ debris, derived from cell membrane deformation. Nanoparticle tracking analysis confirmed the formation of such debris, even at low GA concentrations. Electric cell-substrate impedance sensing measurements also recorded stable alterations in T lymphocytes following such treatment. LL-37 forms oligomers through weak hydrophobic contacts, which is critical for the lytic properties. In our study, SAXS showed that GA also forms this type of contacts. Taken together, our study offers new insight on the immunomodulatory mode-of-action of positively charged co-polymers. The comparison of LL-37 and GA highlights a consistent requirement of certain oligomeric and chemical properties to support cytotoxic effects of cationic polymers targeting human leukocytes.
Collapse
Affiliation(s)
- Stig Hill Christiansen
- Dept. of Biomedicine, Aarhus University, The Bartholin Building (1240), Bartholins Allé 6, DK-8000 Aarhus C, Denmark.
| | - Xianwei Zhang
- Dept. of Biomedicine, Aarhus University, The Bartholin Building (1240), Bartholins Allé 6, DK-8000 Aarhus C, Denmark.
| | - Kristian Juul-Madsen
- Dept. of Biomedicine, Aarhus University, The Bartholin Building (1240), Bartholins Allé 6, DK-8000 Aarhus C, Denmark.
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - Brian Stougaard Vad
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - Manja Annette Behrens
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - Ida Lysgaard Thygesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; Dept. of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark.
| | - Babak Jalilian
- Dept. of Biomedicine, Aarhus University, The Bartholin Building (1240), Bartholins Allé 6, DK-8000 Aarhus C, Denmark.
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - Thomas Vorup-Jensen
- Dept. of Biomedicine, Aarhus University, The Bartholin Building (1240), Bartholins Allé 6, DK-8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Denmark; MEMBRANES Research Center, Aarhus University, Denmark; Center for Neurodegenerative Inflammation Prevention (NEURODIN), Aarhus University, Denmark.
| |
Collapse
|
8
|
An interferon-β-resistant and NLRP3 inflammasome-independent subtype of EAE with neuronal damage. Nat Neurosci 2016; 19:1599-1609. [PMID: 27820602 DOI: 10.1038/nn.4421] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022]
Abstract
Inflammation induced by innate immunity influences the development of T cell-mediated autoimmunity in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). We found that strong activation of innate immunity induced Nod-like receptor protein 3 (NLRP3) inflammasome-independent and interferon-β (IFNβ)-resistant EAE (termed type B EAE), whereas EAE induced by weak activation of innate immunity requires the NLRP3 inflammasome and is sensitive to IFNβ treatment. Instead, an alternative inflammatory mechanism, including membrane-bound lymphotoxin-β receptor (LTβR) and CXC chemokine receptor 2 (CXCR2), is involved in type B EAE development, and type B EAE is ameliorated by antagonizing these receptors. Relative expression of Ltbr and Cxcr2 genes was indeed enhanced in patients with IFNβ-resistant multiple sclerosis. Remission was minimal in type B EAE due to neuronal damages induced by semaphorin 6B upregulation on CD4+ T cells. Our data reveal a new inflammatory mechanism by which an IFNβ-resistant EAE subtype develops.
Collapse
|
9
|
De Riccardis L, Ferramosca A, Danieli A, Trianni G, Zara V, De Robertis F, Maffia M. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients. BBA CLINICAL 2016; 6:131-137. [PMID: 27785417 PMCID: PMC5079236 DOI: 10.1016/j.bbacli.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Glatiramer acetate (GA; Copaxone) is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS). Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4+, the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4+ T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs) and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4+ T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4+ T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress. GA is able to reduce CD4 + T cell's dysfunctions in MS patients; A CD4 + T cell metabolic response in GA treated patients is proposed; Metabolic response relies on changes in mitochondrial activity and in antioxidative status.
Collapse
Key Words
- CAT, catalase
- CD4+ T cells
- CNS, central nervous system
- CS, citrate synthase
- EAE, experimental autoimmune encephalomyelitis
- GPX, glutathione peroxidase
- GR, glutathione reductase
- Glycolysis
- HK, hexokinase
- MCT, mono-carboxylate transporters
- MS, Multiple Sclerosis
- Multiple sclerosis
- OXPHOS
- OXPHOS, oxidative phosphorylation
- Oxidative stress
- PBMC, peripheral blood mononuclear cell
- PFK, phosphofructokinase
- RCR, respiratory control ratio
- ROS, reactive oxygen species
- RRMS, Relapsing-Remitting Multiple Sclerosis
- SOD, superoxide dismutase
- Th, T helper
Collapse
Affiliation(s)
- Lidia De Riccardis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, Lecce, Italy
| | - Antonio Danieli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, Lecce, Italy
| | - Giorgio Trianni
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, Lecce, Italy
| | | | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, Lecce, Italy
| |
Collapse
|
10
|
Schwartz M, Deczkowska A. Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol 2016; 37:668-679. [DOI: 10.1016/j.it.2016.08.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
11
|
Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S, Jeganathan V, Wright P, Najjar S, Cao Y, Sands W, Keskin DB, Stern JNH. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res 2016; 63:58-69. [PMID: 26475738 DOI: 10.1007/s12026-015-8719-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. It is characterized by demyelination of neurons and loss of neuronal axons and oligodendrocytes. In MS, auto-reactive T cells and B cells cross the blood-brain barrier (BBB), causing perivenous demyelinating lesions that form multiple discrete inflammatory demyelinated plaques located primarily in the white matter. In chronic MS, cortical demyelination and progressive axonal transections develop. Treatment for MS can be stratified into disease-modifying therapies (DMTs) and symptomatic therapy. DMTs aim to decrease circulating immune cells or to prevent these cells from crossing the BBB and reduce the inflammatory response. There are currently 10 DMTs approved for the relapsing forms of MS; these vary with regard to their efficacy, route and frequency of administration, adverse effects, and toxicity profile. Better drug delivery systems are being developed in order to decrease adverse effects, increase drug efficacy, and increase patient compliance through the direct targeting of pathologic cells. Here, we address the uses and benefits of advanced drug delivery systems, including nanoparticles, microparticles, fusion antibodies, and liposomal formulations. By altering the properties of therapeutic particles and enhancing targeting, breakthrough drug delivery technologies potentially applicable to multiple disease treatments may rapidly emerge.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Mark D Messina
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Catherine Bangeranye
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Jeffrey Goldstein
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Karen M Blitz-Shabbir
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Suly Machado
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Venkatesh Jeganathan
- Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Paul Wright
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Souhel Najjar
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Yonghao Cao
- Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Warren Sands
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Derin B Keskin
- Department of Cancer Immunology and AIDS, Dana Farber-Harvard Cancer Institute, Boston, MA, USA
| | - Joel N H Stern
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA. .,Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| |
Collapse
|
12
|
Moore S, Khalaj AJ, Patel R, Yoon J, Ichwan D, Hayardeny L, Tiwari-Woodruff SK. Restoration of axon conduction and motor deficits by therapeutic treatment with glatiramer acetate. J Neurosci Res 2014; 92:1621-36. [PMID: 24989965 PMCID: PMC4305217 DOI: 10.1002/jnr.23440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022]
Abstract
Glatiramer acetate (GA; Copaxone) is an approved drug for the treatment of multiple sclerosis (MS). The underlying multifactorial anti-inflammatory, neuroprotective effect of GA is in the induction of reactive T cells that release immunomodulatory cytokines and neurotrophic factors at the injury site. These GA-induced cytokines and growth factors may have a direct effect on axon function. Building on previous findings that suggest a neuroprotective effect of GA, we assessed the therapeutic effects of GA on brain and spinal cord pathology and functional correlates using the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Therapeutic regimens were utilized based on promising prophylactic efficacy. More specifically, C57BL/6 mice were treated with 2 mg/mouse/day GA for 8 days beginning at various time points after EAE post-induction day 15, yielding a thorough, clinically relevant assessment of GA efficacy within the context of severe progressive disease. Therapeutic treatment with GA significantly decreased clinical scores and improved rotorod motor performance in EAE mice. These functional improvements were supported by an increase in myelinated axons and fewer amyloid precursor protein-positive axons in the spinal cords of GA-treated EAE mice. Furthermore, therapeutic GA decreased microglia/macrophage and T cell infiltrates and increased oligodendrocyte numbers in both the spinal cord and corpus callosum of EAE mice. Finally, GA improved callosal axon conduction and nodal protein organization in EAE. Our results demonstrate that therapeutic GA treatment has significant beneficial effects in a chronic mouse model of MS, in which its positive effects on both myelinated and non-myelinated axons results in improved axon function.
Collapse
Affiliation(s)
- Spencer Moore
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Anna J Khalaj
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Rhusheet Patel
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - JaeHee Yoon
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Daniel Ichwan
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative Research and Development, Teva Pharmaceutical IndustriesNetanya, Israel
| | - Seema K Tiwari-Woodruff
- Department of Neurology, UCLA School of MedicineLos Angeles, California
- Brain Research Institute, UCLA School of MedicineLos Angeles, California
| |
Collapse
|
13
|
Cohen IR. Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: A comprehensive review. J Autoimmun 2014; 54:112-7. [DOI: 10.1016/j.jaut.2014.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 12/25/2022]
|
14
|
Steinman L, Shoenfeld Y. From defining antigens to new therapies in multiple sclerosis: honoring the contributions of Ruth Arnon and Michael Sela. J Autoimmun 2014; 54:1-7. [PMID: 25308417 DOI: 10.1016/j.jaut.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Ruth Arnon and Michael Sela profoundly influenced the development of a model system to test new therapies in multiple sclerosis (MS). Their application of the animal model, known as experimental autoimmune encephalomyelitis (EAE), for the discovery of Copaxone, opened a new path for testing of drug candidates in MS. By measuring clinical, pathologic, and immunologic outcomes, the biological implications of new drugs could be elucidated. Using EAE they established the efficacy of Copaxone as a therapy for preventing and reducing paralysis and inflammation in the central nervous system without massive immune suppression. This had a huge impact on the field of drug discovery for MS. Much like the use of parabiosis to discover soluble factors associated with obesity, or the replica plating system to probe antibiotic resistance in bacteria, the pioneering research on Copaxone using the EAE model, paved the way for the discovery of other therapeutics in MS, including Natalizumab and Fingolimod. Future applications of this approach may well elucidate novel therapies for the neurodegenerative phase of multiple sclerosis associated with disease progression.
Collapse
Affiliation(s)
- Lawrence Steinman
- Beckman Center for Molecular Medicine, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
15
|
Effects of glatiramer acetate in a spontaneous model of autoimmune neuroinflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2056-65. [PMID: 24819960 DOI: 10.1016/j.ajpath.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/16/2014] [Accepted: 03/20/2014] [Indexed: 01/14/2023]
Abstract
Glatiramer acetate (GA) (Copaxone), a well-established drug for the treatment of multiple sclerosis, is believed to modulate numerous pathways including antigen-presenting cells or cytokine responses. A new generation of spontaneous experimental autoimmune encephalomyelitis mouse models has been developed that mimic certain aspects of multiple sclerosis spectrum disorders. We assessed the effects of GA in the opticospinal encephalomyelitis model, which involves MOG35-55 peptide-specific T cells and B cells. A nonsignificant trend toward lower disease incidence was found for GA treatment (started on postnatal day 20). Immunohistochemical evaluations revealed no significant differences for inflammatory lesions and demyelination, cytokine production, proliferation, and cell surface markers of immune cells between GA-treated and PBS-treated (control) mice. Although a good correlation was found between the disease score of individual mice and some readout parameters (eg, immunohistochemical staining), this was not the case for others (eg, IFN-γ production). It seems plausible that a major effect of GA lies on alternative immunological pathways, such as initiating of an immune response that is not sufficiently reflected in this spontaneous experimental autoimmune encephalomyelitis model. Thus, the main advantage of the opticospinal encephalomyelitis model in our hands lies in the elucidation of factors influencing the onset of experimental autoimmune encephalomyelitis (eg, susceptibility factors). The model seems less suitable for investigation of disease severity modifications after therapeutic interventions.
Collapse
|
16
|
Abstract
Glatiramer acetate (Copaxone) is a disease-modifying agent approved by several health authorities worldwide for the treatment of relapsing-remitting multiple sclerosis. Although its primary target is the inflammatory component of the disease, there are emerging pieces of evidence suggesting that glatiramer acetate might also have a neuroprotective effect. In this review, the results of glatiramer acetate clinical trials and other relevant studies as well as the place of glatiramer acetate among other approved disease-modifying treatments for relapsing-remitting multiple sclerosis are discussed critically.
Collapse
Affiliation(s)
- Domenico M Mezzapesa
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|
17
|
Begum-Haque S, Christy M, Wang Y, Kasper E, Ochoa-Reparaz J, Smith JY, Haque A, Kasper LH. Glatiramer acetate biases dendritic cells towards an anti-inflammatory phenotype by modulating OPN, IL-17, and RORγt responses and by increasing IL-10 production in experimental allergic encephalomyelitis. J Neuroimmunol 2013; 254:117-24. [DOI: 10.1016/j.jneuroim.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/26/2012] [Accepted: 10/09/2012] [Indexed: 02/02/2023]
|
18
|
Jalilian B, Einarsson HB, Vorup-Jensen T. Glatiramer acetate in treatment of multiple sclerosis: a toolbox of random co-polymers for targeting inflammatory mechanisms of both the innate and adaptive immune system? Int J Mol Sci 2012; 13:14579-605. [PMID: 23203082 PMCID: PMC3509598 DOI: 10.3390/ijms131114579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 10/23/2012] [Accepted: 11/05/2012] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis is a disease of the central nervous system, resulting in the demyelination of neurons, causing mild to severe symptoms. Several anti-inflammatory treatments now play a significant role in ameliorating the disease. Glatiramer acetate (GA) is a formulation of random polypeptide copolymers for the treatment of relapsing-remitting MS by limiting the frequency of attacks. While evidence suggests the influence of GA on inflammatory responses, the targeted molecular mechanisms remain poorly understood. Here, we review the multiple pharmacological modes-of-actions of glatiramer acetate in treatment of multiple sclerosis. We discuss in particular a newly discovered interaction between the leukocyte-expressed integrin α(M)β(2) (also called Mac-1, complement receptor 3, or CD11b/CD18) and perspectives on the GA co-polymers as an influence on the function of the innate immune system.
Collapse
Affiliation(s)
- Babak Jalilian
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| | - Halldór Bjarki Einarsson
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1242, DK-8000, Aarhus C, Denmark; E-Mails: (B.J.); (H.B.E.)
| |
Collapse
|
19
|
|
20
|
García E, Silva-García R, Mestre H, Flores N, Martiñón S, Calderón-Aranda ES, Ibarra A. Immunization with A91 peptide or copolymer-1 reduces the production of nitric oxide and inducible nitric oxide synthase gene expression after spinal cord injury. J Neurosci Res 2011; 90:656-63. [PMID: 22002544 DOI: 10.1002/jnr.22771] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/01/2011] [Accepted: 07/22/2011] [Indexed: 11/11/2022]
Abstract
Immunization with neurally derived peptides (INDP) boosts the action of an autoreactive immune response that has been shown to induce neuroprotection in several neurodegenerative diseases, especially after spinal cord (SC) injury. This strategy provides an environment that promotes neuronal survival and tissue preservation. The mechanisms by which this autoreactive response exerts its protective effects is not totally understood at the moment. A recent study showed that INDP reduces lipid peroxidation. Lipid peroxidation is a neurodegenerative phenomenon caused by the increased production of reactive nitrogen species such as nitric oxide (NO). It is possible that INDP could be interfering with NO production. To test this hypothesis, we examined the effect of INDP on the amount of NO produced by glial cells when cocultured with autoreactive T cells. We also evaluated the amount of NO and the expression of the inducible form of nitric oxide synthase (iNOS) at the injury site of SC-injured animals. The neural-derived peptides A91 and Cop-1 were used to immunize mice and rats with SC injury. In vitro studies showed that INDP significantly reduces the production of NO by glial cells. This observation was substantiated by in vivo experiments demonstrating that INDP decreases the amount of NO and iNOS gene expression at the site of injury. The present study provides substantial evidence on the inhibitory effect of INDP on NO production, helpingour understanding of the mechanisms through which protective autoimmunity promotes neuroprotection.
Collapse
Affiliation(s)
- Elisa García
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan Edo. de México, México
| | | | | | | | | | | | | |
Collapse
|
21
|
Yablecovitch D, Shabat-Simon M, Aharoni R, Eilam R, Brenner O, Arnon R. Beneficial effect of glatiramer acetate treatment on syndecan-1 expression in dextran sodium sulfate colitis. J Pharmacol Exp Ther 2011; 337:391-9. [PMID: 21310817 DOI: 10.1124/jpet.110.174276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Syndecan-1, the most abundant heparan sulfate proteoglycan in the gastrointestinal tract, is reduced in the regenerative epithelium in inflammatory bowel disease (IBD). This study explored the effects of the immunomodulator glatiramer acetate (GA; Copaxone) treatment on syndecan-1 expression in dextran sodium sulfate (DSS)-induced colitis. Acute and chronic colitis was induced in C57BL/6 mice by 2 and 1.5% DSS in tap water, respectively. GA was applied subcutaneously, 2 mg per mouse per day, starting on the day of DSS induction until the mice were sacrificed. Syndecan-1 expression was assessed by immunohistochemistry. The effect of adoptive transfer of GA-specific T cells as an organ-specific therapy also was evaluated. Syndecan-1 expression was significantly lower in both colitis groups compared with that in naive mice (p < 0.0001). GA attenuated clinical scores and pathological manifestations of colitis and led to the reinstatement of normal levels of syndecan-1. After adoptive transfer, GA-specific cells homed to the surface epithelium of the distal colon, accompanied by the augmentation of syndecan-1 staining in their vicinity. We concluded that syndecan-1 expression is reduced in DSS-induced colitis and could be a potential prognostic factor in IBD. Treatment with GA exerts not only an anti-inflammatory effect but also a possible beneficial effect in stabilizing the intestinal epithelium barrier and tissue repair in DSS colitis. GA may be applied as a novel drug for IBD, shifting treatment from immunosuppression toward immunomodulation.
Collapse
Affiliation(s)
- Doron Yablecovitch
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. J Neuroimmunol 2010; 232:136-44. [PMID: 21111489 DOI: 10.1016/j.jneuroim.2010.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 10/25/2010] [Indexed: 11/24/2022]
Abstract
We recently showed that B cells reduce CNS inflammation in mice with experimental allergic encephalomyelitis (EAE). Here, we demonstrate that adoptively transferred CD5/CD19+ B cells protect against EAE severity. Furthermore, we show that glatiramer acetate (GA), a therapeutic for relapsing multiple sclerosis treatment, amplifies this effect. Transfer of GA-conditioned B cells leads to increased production of immunoregulatory cytokines and reduced CNS inflammation, as well as decreased expression of the chemokine receptor, CXCR5, and elevated BDNF expression in the CNS. Thus B cells can protect against EAE, and GA augments this effect in maintaining immune homeostasis and controlling EAE disease progression.
Collapse
|
23
|
Glenski S, Conner J. 29 gauge needles improve patient satisfaction over 27 gauge needles for daily glatiramer acetate injections. DRUG HEALTHCARE AND PATIENT SAFETY 2009; 1:81-6. [PMID: 21701612 PMCID: PMC3108689 DOI: 10.2147/dhps.s8495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Indexed: 11/23/2022]
Abstract
Using three surveys, a comparative assessment of needle performance and patient preference for 27-gauge (G) and 29G needles for glatiramer acetate administration for multiple sclerosis therapy was performed. Eligible patients participated in a specialty pharmacy program and administered glatiramer acetate for ≥1 month. In Survey 1 on the 27G needle, 545 (82.70%) patients reported no needle problems, 106 (16.09%) cited one type (dull, bent, or broken), five (0.76%) cited two types, and three (0.46%) cited all three types. In Survey 2 on the 29G needle, 553 (98.05%) indicated no problems, two (0.35%) cited dull needles, and nine (1.60%) cited bent needles. On the 29G needles versus 27G needles pain comparison, 219 (38.83%) reported the 29G needle was a little better, and 155 (27.48%) reported it was a lot better than the 27G. For injection-site experiences, 515 patients (91.31%) reported no, very slight, or mild reactions with the 29G needle. In Survey 3, over 76% of patients preferred the 29G to the 27G needle and significantly fewer patients reported one or more problems with the 29G needle compared to patients reporting problems with the 27G needle (P < 0.00001). In conclusion, significantly fewer patients reported problems after 30 days of use of the 29G than the 27G needle. Fewer injection-site experiences occurred with the 29G needle and the 29G needle was preferred overall.
Collapse
|
24
|
Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate. J Neural Transm (Vienna) 2009; 116:1443-9. [DOI: 10.1007/s00702-009-0272-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
25
|
Mosley RL, Gordon PH, Hasiak CM, Van Wetering FJ, Mitsumoto H, Gendelman HE. Glatiramer acetate immunization induces specific antibody and cytokine responses in ALS patients. ACTA ACUST UNITED AC 2009; 8:235-42. [PMID: 17653922 DOI: 10.1080/17482960701374601] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We assessed humoral and cytokine responses in monthly plasma samples from ALS patients who received glatiramer acetate (GA) immunization every day or every other week, or remained untreated (control) from a six-month phase II trial. Samples were evaluated by GA-specific ELISA assays for detection of combined immunoglobulin (Ig) classes (IgM,A,G), IgG alone, and IgG subclasses (IgG1, IgG2, IgG3, and IgG4). T-helper (Th) type 1 and 2 (Th1 and Th2) cytokine levels were determined by flow cytometric cytokine bead arrays. Fourteen of 21 GA-immunized patients produced anti-GA Ig responses. Those treated every day produced anti-GA responses within one month, while those treated every other week exhibited responses by month two. All anti-GA IgG subclass concentrations were increased in excess of 4.2-fold in plasma from treated patients, and anti-GA IgG1 comprised the majority of the humoral response. Mean plasma cytokine levels were statistically indistinguishable between treatment regimens; however, stratification by patient and time on study showed more prevalent trends in changes of Th1 or Th2 cytokine levels following GA treatment every other week or every day, respectively. These data show significant humoral responses and cytokine trends following GA immunization in ALS patients.
Collapse
Affiliation(s)
- R Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Perrin Ross A. The Importance of Early Treatment. J Neurosci Nurs 2009. [DOI: 10.1097/jnn.0b013e3181a23ea9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
T cell receptors in an IL-10-secreting amino acid copolymer-specific regulatory T cell line that mediates bystander immunosuppression. Proc Natl Acad Sci U S A 2009; 106:3336-41. [PMID: 19204292 DOI: 10.1073/pnas.0813197106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The T cell receptors from the regulatory IL-10-secreting T cell line induced by the random amino acid copolymers poly(F,Y,A,K,)n in SJL mice (H-2(s)) have been characterized, cloned, sequenced and expressed both in 293T cells and in 2 different TCR alpha(-)/beta(-) T cell hybridomas. The usage of TCR alpha and beta V regions in the cell line was oligoclonal. Four TCR alpha/beta pairs cloned from single cells of the T cell line were inserted into a retrovirus vector linked by an oligonucleotide encoding the 2A peptide that spontaneously cleaves in vivo. After cotransfection of this vector with a CD3 vector into the 293T cells, the TCR were surface expressed. Moreover, after transduction into the 2 T cell hybridomas, all 4 were functional as evidenced by their response to stimulation by poly(F,Y,A,K)n. All 4 pairs were Valpha3.2(3.5)/Vbeta14, a prominent clonotype found in the poly(F,Y,A,K)n-specific T cell line. These V regions are identical to those recently found in a regulatory T cell line that secretes both IL-4 and IL-10 induced in B10.PL mice with a different MHC hapotype (H-2(u)) by a small peptide obtained from an autoimmune TCR of that strain. These data lead to a hypothesis regarding the origin of the epigenetic modifications that lead to selective cytokine secretion in T cells.
Collapse
|
28
|
|
29
|
Aharoni R, Brenner O, Cohen A, Arnon R. The therapeutic effect of TV-5010 in a murine model of inflammatory bowel disease — Dextran induced colitis. Int Immunopharmacol 2008; 8:1578-88. [DOI: 10.1016/j.intimp.2008.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 06/29/2008] [Accepted: 06/30/2008] [Indexed: 11/29/2022]
|
30
|
Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2008; 105:11358-63. [PMID: 18678887 DOI: 10.1073/pnas.0804632105] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The interplay between demyelination and remyelination is critical in the progress of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). In the present study, we explored the capacity of glatiramer acetate (GA, Copaxone) to affect the demyelination process and/or lead to remyelination in mice inflicted by chronic EAE, using both scanning electron microscopy and immunohistological methods. Spinal cords of untreated EAE mice revealed substantial demyelination accompanied by tissue destruction and axonal loss. In contrast, in spinal cords of GA-treated mice, in which treatment started concomitantly with disease induction (prevention), no pathology was observed. Moreover, when treatment was initiated after the appearance of clinical symptoms (suppression) or even in the chronic disease phase (delayed suppression) when substantial demyelination was already manifested, it resulted in a significant decrease in the pathological damage. Detection of oligodendrocyte progenitor cells (OPCs) expressing the NG2 or O4 markers via colocalization with the proliferation marker BrdU indicated their elevated levels in spinal cords of GA-treated mice. The mode of action of GA in this system is attributed to increased proliferation, differentiation, and survival of OPCs along the oligodendroglial maturation cascade and their recruitment into injury sites, thus enhancing repair processes in situ.
Collapse
|
31
|
Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, Przedborski S, Gendelman HE. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One 2008; 3:e2740. [PMID: 18648532 PMCID: PMC2481277 DOI: 10.1371/journal.pone.0002740] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/25/2008] [Indexed: 12/12/2022] Open
Abstract
Background Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS). However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1) transgenic (Tg) mice and subsequently in ALS patients. Methods and Findings Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt) littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1) immunization to affect longevity. In addition, among CD4+ T cells in ALS patients, levels of CD45RA+ (naïve) T cells were diminished, while CD45RO+ (memory) T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4+CD25+ T regulatory cells (Treg) or CD4+CD25− T effector cells (Teff) from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage. Conclusions A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings, taken together, suggest caution in ascribing vaccination outcomes when these animal models of human ALS are used for study. Nonetheless, the abilities to improve neurological function and life expectancy in G93A-SOD1 Tg mice by reconstitution with activated T cells do provide opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Banerjee
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (RM); (SP); (HG)
| | - Ashley D. Reynolds
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alok Dhar
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vernice Jackson-Lewis
- Department of Neurology, Center for Motor Neuron Biology and Disease, Eleanor and Lou Gehrig MDA/ALS Research Center, Columbia University, New York, New York, United States of America
| | - Paul H. Gordon
- Department of Neurology, Center for Motor Neuron Biology and Disease, Eleanor and Lou Gehrig MDA/ALS Research Center, Columbia University, New York, New York, United States of America
| | - Serge Przedborski
- Department of Neurology, Center for Motor Neuron Biology and Disease, Eleanor and Lou Gehrig MDA/ALS Research Center, Columbia University, New York, New York, United States of America
- * E-mail: (RM); (SP); (HG)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (RM); (SP); (HG)
| |
Collapse
|
32
|
Zheng B, Switzer K, Marinova E, Zhang J, Han S. Exacerbation of autoimmune arthritis by copolymer-I through promoting type 1 immune response and autoantibody production. Autoimmunity 2008; 41:363-71. [PMID: 18568641 DOI: 10.1080/08916930801931001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Copolymer-I (COP-I) is an unique immune regulatory polymer that has been shown to suppress experimental autoimmune encephalomyelitis (EAE) and is a treatment option for multiple sclerosis (MS). To investigate whether its immune suppressive effects can be extended to other autoimmune diseases, we treated mice with COP-I during the induction of collagen-induced arthritis (CIA). Our results show that COP-I treatment exacerbated CIA, leading to faster onset, more severe and longer-lasting disease. The mechanisms underlying the exacerbation of CIA by COP-I treatment include enhanced activation and inflammatory cytokine production by autoreactive T cells and elevated production of autoreactive antibodies. In addition, germinal center response was significantly enhanced by COP-I treatment. Thus, great caution should be taken when COP-I is to be used in MS patients with other autoimmune complications or its potential therapeutic effects are to be extended beyond autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Biao Zheng
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
33
|
Gorantla S, Liu J, Wang T, Holguin A, Sneller HM, Dou H, Kipnis J, Poluektova L, Gendelman HE. Modulation of innate immunity by copolymer-1 leads to neuroprotection in murine HIV-1 encephalitis. Glia 2008; 56:223-32. [PMID: 18046731 DOI: 10.1002/glia.20607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Virus-infected and immune-competent mononuclear phagocytes (MP; perivascular macrophages and microglia) drive the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1) infection. Modulation of the MP phenotype from neurodestructive to neuroprotective underlies adjunctive therapeutic strategies for human disease. We reasoned that, as Copolymer-1 (Cop-1) can induce neuroprotective activities in a number of neuroinflammatory and neurodegenerative disorders, it could directly modulate HIV-1-infected MP neurotoxic activities. We now demonstrate that, in laboratory assays, Cop-1-stimulated virus-infected human monocyte-derived macrophages (MDM) protect against neuronal injury. Severe combined immune-deficient (SCID) mice were stereotactically injected with HIV-1-infected human MDM, into the basal ganglia, to induce HIV-1 encephalitis (HIVE). Cop-1 was administered subcutaneously for 7 days. In HIVE mice, Cop-1 treatment led to anti-inflammatory and neuroprotective responses. Reduced micro- and astrogliosis, and conserved NeuN/MAP-2 levels were observed in virus-affected brain regions in Cop-1-treated mice. These were linked to interleukin-10 and brain-derived neurotrophic factor expression and downregulation of inducible nitric oxide synthase. The data, taken together, demonstrate that Cop-1 can modulate innate immunity and, as such, improve disease outcomes in an animal model of HIVE.
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gorantla S, Liu J, Sneller H, Dou H, Holguin A, Smith L, Ikezu T, Volsky DJ, Poluektova L, Gendelman HE. Copolymer-1 induces adaptive immune anti-inflammatory glial and neuroprotective responses in a murine model of HIV-1 encephalitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:4345-56. [PMID: 17878329 DOI: 10.4049/jimmunol.179.7.4345] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Copolymer-1 (COP-1) elicits neuroprotective activities in a wide range of neurodegenerative disorders. This occurs, in part, by adaptive immune-mediated suppression of microglial inflammatory responses. Because HIV infection and immune activation of perivascular macrophages and microglia drive a metabolic encephalopathy, we reasoned that COP-1 could be developed as an adjunctive therapy for disease. To test this, we developed a novel animal model system that reflects HIV-1 encephalitis in rodents with both innate and adaptive arms of the immune system. Bone marrow-derived macrophages were infected with HIV-1/vesicular stomatitis-pseudotyped virus and stereotactically injected into the basal ganglia of syngeneic mice. HIV-1 pseudotyped with vesicular stomatitis virus envelope-infected bone marrow-derived macrophages induced significant neuroinflammation, including astrogliosis and microglial activation with subsequent neuronal damage. Importantly, COP-1 immunization reduced astro- and microgliosis while diminishing neurodegeneration. Hippocampal neurogenesis was, in part, restored. This paralleled reductions in proinflammatory cytokines, including TNF-alpha and IL-1beta, and inducible NO synthase, and increases in brain-derived neurotrophic factor. Ingress of Foxp3- and IL-4-expressing lymphocytes into brains of COP-1-immunized animals was observed. We conclude that COP-1 may warrant therapeutic consideration for HIV-1-associated cognitive impairments.
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arnon R, Aharoni R. Neurogenesis and Neuroprotection in the CNS — Fundamental Elements in the Effect of Glatiramer Acetate on Treatment of Autoimmune Neurological Disorders. Mol Neurobiol 2007; 36:245-53. [DOI: 10.1007/s12035-007-8002-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/09/2006] [Indexed: 12/18/2022]
|
36
|
Abstract
The hallmark of prion disease-induced neurodegeneration is the accumulation of PrP(Sc), a misfolded form of PrP(C). In addition, several lines of evidence indicate a role for the immune system and, in particular, inflammation in prion disease pathogenesis. In this work, we tested whether Copaxone, an immunomodulatory agent currently used for the treatment of multiple sclerosis, can affect prion disease manifestation in scrapie-infected hamsters. We show here that Copaxone exerted no effect on prion disease incubation time when treatment commenced 2 weeks after i.p. prion infection. However, when Copaxone was mixed with the initial prion inoculum or administered to hamsters weekly starting on the day of infection, prion disease incubation time was prolonged by 30 days. This suggests that Copaxone may affect the initial infection process. In vitro experiments indicate that Copaxone significantly reduced PrP(Sc) binding to both Chinese hamster ovary (CHO) cells and heparin beads and also binds to heparin by itself. Interestingly, Copaxone also abolished PrP(Sc) accumulation in scrapie-infected cells. We propose that Copaxone delays prion infection by competing with the PrP(Sc)-glycosaminoglycans interaction. Whether the immunomodulating activity of Copaxone is related to its heparin binding and anti-prion properties remains to be established.
Collapse
Affiliation(s)
- R Engelstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
37
|
Ibarra A, Avendaño H, Cruz Y. Copolymer-1 (Cop-1) improves neurological recovery after middle cerebral artery occlusion in rats. Neurosci Lett 2007; 425:110-3. [PMID: 17868996 DOI: 10.1016/j.neulet.2007.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 02/06/2023]
Abstract
The damage in ischemic stroke is caused by two events: (i) the ischemic phenomenon by itself; (ii) the self-destructive mechanisms developed as a consequence of ischemia. The inflammatory response is one of these destructive phenomena that accompanies and exacerbates the developing injury. Since it has been suggested that immune cells participate in neuroprotective and restorative processes, modulation rather than elimination of this inflammatory response could be a strategy to improve the neurological outcome. The immune modulator copolymer-1 (Cop-1), a synthetic basic random copolymer of amino acids, is a potent inducer of Th2 regulatory cells which, aside from exerting modulatory actions, is capable of releasing neurotrophic factors. There is evidence that Cop-1-specific T cells exert neuroprotective and even restorative effects in diverse neurodegenerative diseases. In order to test the ability of Cop-1 to prevent ischemic injury in a model of transient middle cerebral artery (MCA) occlusion, two groups of rats were treated either with Cop-1 or with saline solution (SS). Seven days after occlusion, Cop-1 treated rats presented a significant improvement in neurological function compared to SS-treated animals (1.2+/-0.4 and 2.8+/-0.5 mean+/-S.D., respectively; p=0.008). Histological findings showed that the percentage of infarct volume was smaller in Cop-1 treated rats (4.8+/-1.5), in comparison with those receiving SS (32.2+/-8.6; p=0.004). Cop-1 constitutes a promising therapy for stroke; thereby, the enforcement of further experimental investigation is encouraged in order to be able to formulate the best strategy.
Collapse
Affiliation(s)
- Antonio Ibarra
- Unidad de Investigación Médica en Enfermedades Neurológicas, HE, CMN Siglo XXI, IMSS, Av. Cuauhtemoc No. 330, Col. Doctores, C.P. 06720, México, D.F., Mexico.
| | | | | |
Collapse
|
38
|
Aharoni R, Sonego H, Brenner O, Eilam R, Arnon R. The therapeutic effect of glatiramer acetate in a murine model of inflammatory bowel disease is mediated by anti-inflammatory T-cells. Immunol Lett 2007; 112:110-9. [PMID: 17719654 DOI: 10.1016/j.imlet.2007.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/15/2007] [Accepted: 07/15/2007] [Indexed: 10/23/2022]
Abstract
Inflammatory bowel diseases (IBDs) are complex multifactorial immunological disorders characterized by dysregulated immune reactivity in the gut and imbalance between pro-inflammatory and anti-inflammatory reactivity. The therapeutic effect of the immunomodulatory drug glatiramer acetate (GA, Copaxone, copolymer 1) has been established in several IBD models, including trinitrobenzene sulfonic acid (TNBS) and dextran sulfate sodium (DSS)-induced colitis, as well as in a spontaneous colitis model. In the present study we investigated the mechanism of action of GA and cells specifically induced by it. Immunization of naive mice by GA, generated a lymphocyte population of the Th2/3 subtype, that drastically reduced disease manifestations upon their adoptive transfer to mice with DSS colitis. This was demonstrated by the substantial decrease in weight loss, intestinal bleeding and diarrhea, as well as by the prevention of macroscopic and microscopic colonic damage. In contrast, adoptive transfer of control lysozyme-specific cells did not induce any beneficial effect on the disease. Moreover, GA-specific short-term T-cell lines, either exogenously labeled or genetically marked, adoptively transferred by the intraperitoneal route to colitis-induced mice, localized in the inner layers of the colon and secreted in situ the regulatory cytokine TGF-beta. These results demonstrate the accumulation of GA-specific Th2/3 cells secreting regulatory cytokines in the injured colon, and thus draw a direct linkage between the therapeutic effect of GA in IBD and an immunomodulatory effect at the site in which the pathological process occurs.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
39
|
Horani A, Muhanna N, Pappo O, Melhem A, Alvarez CE, Doron S, Wehbi W, Dimitrios K, Friedman SL, Safadi R. Beneficial effect of glatiramer acetate (Copaxone) on immune modulation of experimental hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol 2007; 292:G628-38. [PMID: 17038628 DOI: 10.1152/ajpgi.00137.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While CD8 subsets activate hepatic fibrosis, natural killer (NK) cells exhibit antifibrotic activity. Glatiramer acetate (GA) is an immune modulator for multiple sclerosis. We assessed the potential impact of GA on mouse hepatic fibrogenesis. Hepatic fibrosis was induced in C57BL/6 mice by intraperitoneal administration of carbon tetrachloride (CCl(4)) for 6 wk. During the last 2 wk, animals were also treated with either GA (200 mu/day ip) or medium and compared with naive and fibrotic mice (8 animals/group). GA markedly attenuated fibrosis without altering reactive oxygen species production. By morphometric measurement of Sirius red-stained tissue sections, the relative fibrosis area decreased from 5.28 +/- 0.32% (mean +/- SE) in the untreated CCl(4) group to 2.01 +/- 0.28% in CCl(4)+GA-treated animals, compared with 0.38 +/- 0.07% in naive mice. alpha-Smooth muscle actin immunoblotting and mRNA expression revealed a similar pattern. Serum aminotransferase and Ishak-Knodell necroinflammatory score were markedly elevated, to the same extent, in both CCl(4)-treated groups. Fibrosis induction was associated with significant increase in CD8 subsets and decrease in CD4 T cells. After GA treatment, however, NK content, CD4(+)CD25(+)FoxP3(+) cells, hepatic expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and apoptosis of hepatic stellate cells were all increased. Serum interleukin (IL)-10 levels markedly rose, whereas IL-4 fell. In vitro activation of human hepatic stellate cells cocultured with hepatitis C virus-derived peripheral blood lymphocytes decreased when lymphocytes were preincubated with GA before coculture. In an animal model of hepatic fibrosis, GA has an antifibrotic effect associated with decreased CD8 cells and reduced serum IL-4 levels and increased NK cells, CD4(+)CD25(+)FoxP3(+) cells, TRAIL, and elevated serum IL-10 levels.
Collapse
Affiliation(s)
- Amjad Horani
- Liver and Gastroenterology Units, Div of Medicine, Hadassah University Hospital, 91120 Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Laurie C, Reynolds A, Coskun O, Bowman E, Gendelman HE, Mosley RL. CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neuroimmunol 2007; 183:60-8. [PMID: 17196666 DOI: 10.1016/j.jneuroim.2006.11.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 11/15/2006] [Accepted: 11/15/2006] [Indexed: 11/15/2022]
Abstract
Adoptive transfer of lymphoid cells from Copolymer 1 (Cop-1) immunized mice leads to T cell accumulation within the substantia nigra, modulation of microglial responses, upregulation of glial cell derived neurotrophic factor, and protection of the nigrostriatum following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. We now demonstrate that T cells isolated from lymph nodes and spleens of Cop-1 immunized animals protect the nigrostriatal system from MPTP-induced neurodegeneration in a dose-dependent manner. CD4+ T cells elicited the most significant neuroprotective response while high titers of anti-Cop-1 antibodies showed no effect. These data further support the use of immunomodulatory strategies for Parkinson's disease.
Collapse
Affiliation(s)
- Chad Laurie
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
41
|
Vanbesien-Mailliot CCA, Wolowczuk I, Mairesse J, Viltart O, Delacre M, Khalife J, Chartier-Harlin MC, Maccari S. Prenatal stress has pro-inflammatory consequences on the immune system in adult rats. Psychoneuroendocrinology 2007; 32:114-24. [PMID: 17240075 DOI: 10.1016/j.psyneuen.2006.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/30/2022]
Abstract
The in utero environment is critical for initiating the ontogeny of several physiological systems, including the immune surveillance. Yet, little is known about adverse early experiences on the offspring's immunity and vulnerability to disease. The present work aimed at investigating the impact of restraint prenatal stress (PS) on the development and responsiveness of in vitro and in vivo cellular and humoral immunity of male progeny aged 7 weeks and 6 months. In adult 6-month-old rats, we detected increased circulating CD8(+)-expressing and NK cells in PS rats as compared to controls, associated with higher mRNA expression of IFN-gamma. In addition, in vitro stimulation with phytohemagglutinin-A induced an increase in both the proliferation of T lymphocytes and the secretion of IFN-gamma in PS rats. Interestingly, these alterations were undetectable in younger PS rats (7-week old), except for a slight increase in the mRNA expression of several pro-inflammatory cytokines in peripheral blood mononuclear cells. Moreover, in vivo neutralization of IFN-gamma in young rats had no effects in PS group. In conclusion, we report for the first time long-lasting pro-inflammatory consequences of PS in rats.
Collapse
|
42
|
Tischner D, Weishaupt A, van den Brandt J, Ip CW, Kerkau T, Gold R, Reichardt HM. Antigen therapy of experimental autoimmune encephalomyelitis selectively induces apoptosis of pathogenic T cells. J Neuroimmunol 2007; 183:146-50. [PMID: 17198735 DOI: 10.1016/j.jneuroim.2006.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/26/2006] [Accepted: 11/29/2006] [Indexed: 11/30/2022]
Abstract
Administration of high-dose myelin antigen induces massive T cell apoptosis in experimental autoimmune encephalomyelitis (EAE) but the nature of the target cells remains elusive. Here we have used a cell line established in eGFP-transgenic Lewis rats to distinguish between pathogenic and bystander T cells in adoptive transfer EAE. Intravenous application of gpMBP strongly reduced the amount of encephalitogenic cells in spinal cord and spleen while the number of the other T cells remained constant. This could be attributed to their differential sensitivity to apoptosis. Thus, antigen therapy selectively targets pathogenic T cells and should therefore limit potential adverse effects.
Collapse
Affiliation(s)
- Denise Tischner
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, and Department of Neurology, St. Josef-Hospital, University of Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Kasper LH, Haque A, Haque S. Regulatory mechanisms of the immune system in multiple sclerosis. T regulatory cells: turned on to turn off. J Neurol 2007. [DOI: 10.1007/s00415-007-1003-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Reynolds A, Laurie C, Mosley RL, Gendelman HE. Oxidative stress and the pathogenesis of neurodegenerative disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:297-325. [PMID: 17678968 DOI: 10.1016/s0074-7742(07)82016-2] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microglia-derived inflammatory neurotoxins play a principal role in the pathogenesis of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and HIV-associated dementia; chief among these is reactive oxygen species. The detrimental effects of oxidative stress in the brain and nervous system are primarily a result of the diminished capacity of the central nervous system to prevent ongoing oxidative damage. A spectrum of environmental cues, mitochondrial dysfunction, accumulation of aberrant misfolded proteins, inflammation, and defects in protein clearance are known to evolve and form as a result of disease progression. These factors likely affect glial function serving to accelerate the tempo of disease. Understanding the relationships between disease progression, free radical formation, neuroinflammation, and neurotoxicity is critical to elucidating disease mechanisms and the development of therapeutic modalities to combat disease processes. In an era where populations continue to age, the prevalence and incidence of age-related neurodegenerative diseases are on the rise; therefore, the need for novel therapeutic strategies that attenuate neuroinflammation and protect neurons against oxidative stress is ever more immediate.
Collapse
Affiliation(s)
- Ashley Reynolds
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
45
|
Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. CLINICAL NEUROSCIENCE RESEARCH 2006; 6:261-281. [PMID: 18060039 PMCID: PMC1831679 DOI: 10.1016/j.cnr.2006.09.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroinflammatory processes play a significant role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies all support the presence of an neuroinflammatory cascade in disease. This is highlighted by the neurotoxic potential of microglia . In steady state, microglia serve to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of innate and adaptive immune responses. In neurodegenerative diseases, activated microglia affect neuronal injury and death through production of glutamate, pro-inflammatory factors, reactive oxygen species, quinolinic acid amongst others and by mobilization of adaptive immune responses and cell chemotaxis leading to transendothelial migration of immunocytes across the blood-brain barrier and perpetuation of neural damage. As disease progresses, inflammatory secretions engage neighboring glial cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation perpetuating tissue injury. Such pathogenic processes contribute to neurodegeneration in PD. Research from others and our own laboratories seek to harness such inflammatory processes with the singular goal of developing therapeutic interventions that positively affect the tempo and progression of human disease.
Collapse
Affiliation(s)
- R. Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Eric J. Benner
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Mark Thomas
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Michael D. Boska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- Radiology, University of Nebraska Medical Center, Omaha, NE
| | - Khader Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas School at Houston, Houston, TX
| | - Chad Laurie
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
46
|
Biegler BW, Yan SX, Ortega SB, Tennakoon DK, Racke MK, Karandikar NJ. Glatiramer acetate (GA) therapy induces a focused, oligoclonal CD8+ T-cell repertoire in multiple sclerosis. J Neuroimmunol 2006; 180:159-71. [PMID: 16935352 DOI: 10.1016/j.jneuroim.2006.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 07/14/2006] [Accepted: 07/19/2006] [Indexed: 11/22/2022]
Abstract
We have demonstrated that GA therapy induces a differential upregulation of GA-specific, cytotoxic/suppressor CD8+ T-cell responses in MS patients. We utilized a novel combination of flow sorting and anchored PCR to analyze the evolving clonal composition of GA-specific CD4+ and CD8+ T-cells. TCRbeta chain analysis revealed the development of an oligoclonal GA-specific CD8+ repertoire with persistence of dominant clones over long periods. Interestingly, some sequences resembled published oligoclonal CD8+ TCR sequences from MS lesions. In contrast, GA-specific CD4+ responses were polyclonal and showed continual evolution of their repertoire. This clonotypic and functional analysis provides mechanistic insights into GA therapy.
Collapse
Affiliation(s)
- Brian W Biegler
- Department of Pathology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | | | | | | | | | | |
Collapse
|
47
|
Aharoni R, Kayhan B, Brenner O, Domev H, Labunskay G, Arnon R. Immunomodulatory Therapeutic Effect of Glatiramer Acetate on Several Murine Models of Inflammatory Bowel Disease. J Pharmacol Exp Ther 2006; 318:68-78. [PMID: 16624971 DOI: 10.1124/jpet.106.103192] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by detrimental immune reactivity in the gut and imbalance between proinflammatory and anti-inflammatory reactivity. In an attempt to down-regulate colitis, we investigated the effect of the immunomodulator glatiramer acetate (GA, Copaxone, copolymer 1) on two murine models of IBD, chemically induced and spontaneous. Acute experimental colitis of different levels of severity was induced in C57BL/6 mice by dextran sulfate sodium (DSS) administered orally at different concentrations and frequencies. It was manifested in weight loss, intestinal bleeding, and diarrhea, as well as by macroscopic and microscopic colon damage. GA treatment led to amelioration of all of these pathological manifestations, resulting in improved long-term survival. Moreover, even when colitis was induced by three cycles of DSS in this highly susceptible mouse strain, as well as in BALB/c mice that exhibit a chronic disease pattern, a substantial reduction in disease activity and mortality was obtained. GA treatment induced a beneficial effect also in a spontaneous model of colitis developed in the C3H/HeJBir IL-10-deficient mice. The detrimental proinflammatory response manifested by proliferation, tumor necrosis factor-alpha, and interferon-gamma expression was modulated by GA, whereas the regulatory anti-inflammatory transforming growth factor-beta and IL-10 cytokines response was elevated. This was demonstrated on the level of protein secretion in splenocytes and local mesenteric lymphocytes in response to syngeneic colon extract and in the overall response to anti-CD3, as well as on the level of mRNA expression in the colon.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | | | |
Collapse
|
48
|
Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 2006; 25:8217-28. [PMID: 16148229 PMCID: PMC6725544 DOI: 10.1523/jneurosci.1859-05.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain insults such as the autoimmune inflammatory process in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) induce a measure of neurogenesis, but its regenerative therapeutic consequence is limited, because it fails to regenerate functional neurons and compensate the damage. Here, we investigated whether peripheral immunomodulatory treatment for MS/EAE, glatiramer acetate (GA), can enhance neurogenesis and generate neuroprotection in the CNS of EAE-inflicted mice. EAE was induced by myelin oligodendrocyte glycoprotein peptide, either in yellow fluorescent protein (YFP) 2.2 transgenic mice, which selectively express YFP on their neuronal population, or in C57BL/6 mice. The in situ effect of GA was studied in various brain regions; neuroprotection and neurogeneration were evaluated and quantified by measuring the expression of different neuronal antigens and in vivo proliferation markers. The results demonstrated that in EAE-inflicted mice, neuroproliferation was initially elevated after disease appearance but subsequently declined below that of naive mice. In contrast, GA treatment in various stages of the disease led to sustained reduction in the neuronal/axonal damage typical to the neurodegenerative disease course. Moreover, three processes characteristic of neurogenesis, namely cell proliferation, migration, and differentiation, were augmented and extended by GA treatment in EAE mice compared with EAE-untreated mice and naive controls. The newborn neuroprogenitors manifested massive migration through exciting and dormant migration pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype. This suggests a direct linkage between immunomodulation, neurogenesis, and an in situ therapeutic consequence in the CNS.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
49
|
Fontoura P, Garren H, Steinman L. Antigen-specific therapies in multiple sclerosis: going beyond proteins and peptides. Int Rev Immunol 2006; 24:415-46. [PMID: 16318989 DOI: 10.1080/08830180500379655] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a complex immune-mediated disease resulting largely from an autoimmune attack against components of central nervous system myelin, including several proteins and lipids. Knowledge about the details of this anomalous immune response has come mostly from studies in the animal model experimental autoimmune encephalomyelitis (EAE). In this model, it has been possible to prevent and effectively treat established disease through several antigen-specific therapeutic strategies, which have included administration of whole myelin or myelin proteins by various routes, random copolymers consisting of the main major histocompatability complex (MHC) and T-cell receptor (TCR) contact amino acid residues, altered peptide ligands of dominant myelin epitopes in which one or more residues are selectively substituted, and lately DNA vaccination encoding self-myelin antigens. However, there have been difficulties in making successful transitions from animal models to human clinical trials, due either to lack of efficacy or unforeseen complications. Despite these problems, antigen-specific therapies have retained their attraction for clinicians and scientists alike, and hopefully the upcoming generation of agents--including altered peptide ligands and DNA vaccines--will benefit from the increasing knowledge about this disease and surmount existing difficulties to make an impact in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Paulo Fontoura
- Department of Immunology, Faculty of Medical Sciences, New University of Lisbon, Portugal
| | | | | |
Collapse
|
50
|
Gur C, Karussis D, Golden E, Doron S, Ilan Y, Safadi R. Amelioration of experimental colitis by Copaxone is associated with class-II-restricted CD4 immune blocking. Clin Immunol 2006; 118:307-16. [PMID: 16290121 DOI: 10.1016/j.clim.2005.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 10/02/2005] [Accepted: 10/05/2005] [Indexed: 01/21/2023]
Abstract
UNLABELLED Copaxone modifies TH1 immune response in multiple sclerosis. As Crohn's disease shares TH1 predominance, this study came to investigate the anti-inflammatory response of Copaxone in animal model of colitis. METHODS Colitis was induced by intra-rectal instillation of TNBS in 2 animal groups; one of them was daily treated intraperitoneally by 300 mug Copaxone starting 48 h post-colitis induction. Both colitis groups were compared to naive group. Eight male C57Bl6 mice were used in each group. At day 12, distal colon was excised for standard scoring, splenocytes were isolated for FACS and serum cytokines were assessed. Splenocytes were in-vitro-stimulated with colitis protein extracts in the presence or absence of Copaxone. Lymphocytes were blocked by either MHC anti-class I or anti-class II antibodies prior to Copaxone administration. RESULTS Copaxone markedly alleviated macro/microscopic colitis scoring as they decreased from 2.9 +/- 1.1/2.6 +/- 0.8 in colitis group to 1.7 +/- 1/1.5 +/- 0.5 in Copaxone-treated mice (P = 0.03/P = 0.008, respectively) compared to 0 +/- 0/1 +/- 0 in naives (P < 0.001/P < 0.01, respectively). CD4 subsets significantly decreased following Copaxone administration as compared to naive mice (P = 0.05). Although Copaxone-treated mice manifested a block of both serum TH1/TH2 responses, only interferon gamma secreting CD4 cells significantly decreased. NK cells tend to increase following colitis induction (P = 0.08), however, they significantly decreased in Copaxone-treated animals (P = 0.006). NK-T followed NK pattern. Using in vitro studies, Copaxone showed amelioration of T-cell proliferation that was significantly blocked when cells were pre-incubated with anti-MHC class II but not class I antibodies. CONCLUSIONS Copaxone had class-II-restricted anti-inflammatory effect in our animal colitis model associated with CD4/NK/NKT/TH1/TH2 suppression.
Collapse
Affiliation(s)
- Chamutal Gur
- Liver Unit, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|