1
|
Harada S, Takano K, Fukasawa M, Shirakawa S, Yamada M. Manganese-enhanced magnetic resonance imaging detects activation of limbic structures in response to auditory stimuli of different frequencies. Magn Reson Imaging 2022; 94:89-97. [PMID: 36089180 DOI: 10.1016/j.mri.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE As we are exposed to stress on a daily basis, it is important to detect and treat stress during the subclinical period. However, methods to quantify and confirm stress are currently unavailable, and the detection of subclinical stressors is difficult. This study aimed to determine whether manganese-enhanced magnetic resonance imaging (MEMRI) could be used to assess stress in rat brains. METHODS We exposed male Wistar/ST rats bred in a specific pathogen-free environment to ultrasound stimuli (22 kHz and 55 kHz) for 10 days and then assessed brain activities using MEMRI, the light/dark box test, and ΔFosB immunohistochemical staining. RESULTS In the MEMRI assessments, exposure at 22 kHz activated the periaqueductal gray, while exposure at 55 kHz specifically enhanced activity in the nucleus accumbens core and the orbitofrontal cortex. The exploratory behavior of the 55-kHz group increased sharply, while that of the 22-kHz group showed a lower exploratory value. ΔFosB expression increased in the orbitofrontal cortex, nucleus accumbens, periaqueductal gray, and amygdaloid nucleus in the 22-kHz group. CONCLUSION Ultrasound stimuli at 22 kHz suppressed weight gain in rats and excessive ΔFosB induction in the nucleus accumbens caused excessive sensitization of the neural circuit, thereby contributing to pathological behavior. We thus demonstrated that MEMRI can be useful to objectively assess the pathophysiology of stress-related disorders.
Collapse
Affiliation(s)
- Shohei Harada
- Department of Radiology, Fujita Health University Hospital, Japan
| | - Kazuki Takano
- Department of Molecular Imaging, School of Medical Sciences, Fujita Health University, Japan.
| | - Motoaki Fukasawa
- Department of Anatomy II, School of Medicine, Fujita Health University, Japan
| | - Seiji Shirakawa
- Department of Molecular Imaging, School of Medical Sciences, Fujita Health University, Japan
| | - Masayuki Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Japan
| |
Collapse
|
2
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
3
|
Komatsu C, van der Merwe Y, He L, Kasi A, Sims JR, Miller MR, Rosner IA, Khatter NJ, Su AJA, Schuman JS, Washington KM, Chan KC. In vivo MRI evaluation of anterograde manganese transport along the visual pathway following whole eye transplantation. J Neurosci Methods 2022; 372:109534. [PMID: 35202613 PMCID: PMC8940646 DOI: 10.1016/j.jneumeth.2022.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since adult mammalian retinal ganglion cells cannot regenerate after injury, we have recently established a whole-eye transplantation (WET) rat model that provides an intact optical system to investigate potential surgical restoration of irreversible vision loss. However, it remains to be elucidated whether physiological axoplasmic transport exists in the transplanted visual pathway. New Method: We developed an in vivo imaging model system to assess WET integration using manganese-enhanced magnetic resonance imaging (MEMRI) in rats. Since Mn2+ is a calcium analogue and an active T1-positive contrast agent, the levels of anterograde manganese transport can be evaluated in the visual pathways upon intravitreal Mn2+ administration into both native and transplanted eyes. RESULTS No significant intraocular pressure difference was found between native and transplanted eyes, whereas comparable manganese enhancement was observed between native and transplanted intraorbital optic nerves, suggesting the presence of anterograde manganese transport after WET. No enhancement was detected across the coaptation site in the higher visual areas of the recipient brain. Comparison with Existing Methods: Existing imaging methods to assess WET focus on either the eye or local optic nerve segments without direct visualization and longitudinal quantification of physiological transport along the transplanted visual pathway, hence the development of in vivo MEMRI. CONCLUSION Our established imaging platform indicated that essential physiological transport exists in the transplanted optic nerve after WET. As neuroregenerative approaches are being developed to connect the transplanted eye to the recipient's brain, in vivo MEMRI is well-suited to guide strategies for successful WET integration for vision restoration. Keywords (Max 6): Anterograde transport, magnetic resonance imaging, manganese, neuroregeneration, optic nerve, whole-eye transplantation.
Collapse
Affiliation(s)
- Chiaki Komatsu
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lin He
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Plastic, Aesthetic & Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Maxine R Miller
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ian A Rosner
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Neil J Khatter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - An-Jey A Su
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Kia M Washington
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Kevin C Chan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States; Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States.
| |
Collapse
|
4
|
Ma S, Zhang K, Zhu Y, Cao X, Wang L. Effect of papaverine on axonal outgrowth of primary retinal ganglion cells of Sprague Dawley rats. Exp Eye Res 2021; 212:108797. [PMID: 34687724 DOI: 10.1016/j.exer.2021.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Increasing the level of cyclic adenosine 3, 5'-monophosphate is an important mechanism for axon outgrowth and recovery of central nervous system function. This study aimed to investigate the effects of papaverine, a non-specific phosphodiesterase inhibitor, on axon outgrowth of primary retinal ganglion cells from Sprague Dawley rats. Experiments were performed on primary retinal ganglion cells extracted from Sprague Dawley rat pups within 48-72 h of birth. At 24 h after seeding, immunofluorescence was used to identify and calculate the purity of retinal ganglion cells isolated by an improved two-step immunopanning method developed by author Sujia Ma. The effects of a range of papaverine concentrations on axon outgrowth of primary retinal ganglion cells cultures were observed by immunofluorescence and measured by ImageJ software at three different time points: 24, 48, and 72 h. The ability of papaverine to enable retinal ganglion cells to overcome the inhibitory effects of glial scar component chondroitin sulfate proteoglycans was examined using chondroitin sulfate proteoglycans-coated culture plates. Rp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt, a blocking agent of cyclic adenosine 3, 5'-monophosphate, and dibutyryl cyclic adenosine 3, 5'-monophosphate, an analogue of cyclic adenosine 3, 5'-monophosphate, were used to explore the mechanism of papaverine in promoting retinal ganglion cells axon outgrowth. Our study shows 2 μg/mL papaverine concentration significantly promoted axon outgrowth in primary retinal ganglion cells and restored axon outgrowth of these cells on chondroitin sulfate proteoglycans. Axon outgrowth was blocked by Rp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt and obviously promoted by dibutyryl cyclic adenosine 3, 5'-monophosphate. Our study is the first to describe the use of papaverine to promote axon outgrowth of retinal ganglion cells. These results may help to expand the application of papaverine, and they provide a cytological basis for papaverine in the treatment of optic nerve injury caused by glaucoma and other diseases.
Collapse
Affiliation(s)
- Sujia Ma
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, East Jianshe Road, Zhengzhou, 450001, PR China
| | - Ke Zhang
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, East Jianshe Road, Zhengzhou, 450001, PR China
| | - Yu Zhu
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, East Jianshe Road, Zhengzhou, 450001, PR China.
| | - Xuexia Cao
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, East Jianshe Road, Zhengzhou, 450001, PR China
| | - Lili Wang
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, East Jianshe Road, Zhengzhou, 450001, PR China
| |
Collapse
|
5
|
van der Merwe Y, Murphy MC, Sims JR, Faiq MA, Yang XL, Ho LC, Conner IP, Yu Y, Leung CK, Wollstein G, Schuman JS, Chan KC. Citicoline Modulates Glaucomatous Neurodegeneration Through Intraocular Pressure-Independent Control. Neurotherapeutics 2021; 18:1339-1359. [PMID: 33846961 PMCID: PMC8423893 DOI: 10.1007/s13311-021-01033-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is a neurodegenerative disease that causes progressive, irreversible vision loss. Currently, intraocular pressure (IOP) is the only modifiable risk factor for glaucoma. However, glaucomatous degeneration may continue despite adequate IOP control. Therefore, there exists a need for treatment that protects the visual system, independent of IOP. This study sought, first, to longitudinally examine the neurobehavioral effects of different magnitudes and durations of IOP elevation using multi-parametric magnetic resonance imaging (MRI), optokinetics and histology; and, second, to evaluate the effects of oral citicoline treatment as a neurotherapeutic in experimental glaucoma. Eighty-two adult Long Evans rats were divided into six groups: acute (mild or severe) IOP elevation, chronic (citicoline-treated or untreated) IOP elevation, and sham (acute or chronic) controls. We found that increasing magnitudes and durations of IOP elevation differentially altered structural and functional brain connectivity and visuomotor behavior, as indicated by decreases in fractional anisotropy in diffusion tensor MRI, magnetization transfer ratios in magnetization transfer MRI, T1-weighted MRI enhancement of anterograde manganese transport, resting-state functional connectivity, visual acuity, and neurofilament and myelin staining along the visual pathway. Furthermore, 3 weeks of oral citicoline treatment in the setting of chronic IOP elevation significantly reduced visual brain integrity loss and visual acuity decline without altering IOP. Such effects sustained after treatment was discontinued for another 3 weeks. These results not only illuminate the close interplay between eye, brain, and behavior in glaucomatous neurodegeneration, but also support a role for citicoline in protecting neural tissues and visual function in glaucoma beyond IOP control.
Collapse
Affiliation(s)
- Yolandi van der Merwe
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew C Murphy
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Xiao-Ling Yang
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leon C Ho
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian P Conner
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Yu
- Pleryon Therapeutics Limited, Shenzhen, China
| | - Christopher K Leung
- University Eye Center, Hong Kong Eye Hospital, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA.
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Kim K, Choi HY, Pak K, Jeon H. Changes in brain glucose metabolism following traumatic optic neuropathy in rats. ALL LIFE 2021. [DOI: 10.1080/26895293.2020.1861110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Keunyoung Kim
- Department of Nuclear Medicine, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hee-young Choi
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Ophthalmology, Pusan National University Hospital, Busan, South Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hyeshin Jeon
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Ophthalmology, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
7
|
Yang J, Li Q, Han D, Liao C, Wang P, Gao J, Xu Z, Liu Y. Radiation-induced impairment of optic nerve axonal transport in tree shrews and rats monitored by longitudinal manganese-enhanced MRI. Neurotoxicology 2020; 77:145-154. [PMID: 31987859 DOI: 10.1016/j.neuro.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Radiation-induced optic neuropathy (RION) is a serious complication that occurs after radiation therapy of tumors in the vicinity of the optic nerve, yet its mechanism and imaging features are poorly understood. In this study, we employed manganese-enhanced MRI (MEMRI) to assess optic nerve axonal transport in tree shrews and rats after irradiation. MATERIALS AND METHODS A comparison of normal visual projections in tree shrews and rats was conducted by intravitreal MnCl2 injection followed by MRI. Adult male tree shrews and rats received a total dose of 20 Gy delivered in two fractions (10 Gy per fraction) within 5 days. Longitudinal MEMRI was conducted 5, 10, 20 and 30 weeks after radiation. At the end of observation, motor proteins involved in axonal transport were detected by western blotting, and the axon cytoskeleton was assessed by immunofluorescence. RESULTS The eyeballs, lens sizes, vitreous volumes, optic nerves and superior colliculi of tree shrews were significantly larger than those of rats on MEMRI (P < 0.05). The Mn2+-enhancement of the optic nerve showed no significant changes at 5 and 10 weeks (P > 0.05) but decreased gradually from 20 to 30 weeks postirradiation (P < 0.05). The enhancement of the superior colliculus gradually decreased from 5 weeks to 30 weeks, and the decrease was most significant at 30 weeks (P < 0.05). The levels of the motor proteins cytoplasmic dynein-1, kinesin-1 and kinesin-2 in the experimental group were significantly decreased (P < 0.05). The immunofluorescence results showed that the α-tubulin, β-tubulin and SMI 31 levels in the experimental groups and control groups were not significantly different (P > 0.05). CONCLUSION Tree shrews show great advantages in visual neuroscience research involving MEMRI. The main cause of the decline in axonal transport in RION is an insufficient level of motor protein rather than damage to the axonal cytoskeletal structure. Longitudinal MEMRI can be used to detect changes in axonal transport function and to observe the relatively intact axon structure from the early to late stages after radiation administration.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China.
| | - Qinqing Li
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Dan Han
- Department of Medical Imaging. The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, PR China
| | - Chengde Liao
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Pengfei Wang
- Department of Key Laboratory. The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Road, Kunming, 650101, Yunnan, PR China
| | - Jingyan Gao
- Department of Radiation Oncology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Zeyan Xu
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| | - Yifan Liu
- Department of Radiology. The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, PR China
| |
Collapse
|
8
|
Xiao Z, Tang Z, Wu L, Feng X, Sun X, Tang W, Wang J, Jin L, Wang R. Manganese-enhanced magnetic resonance imaging in the whole visual pathway: chemical identification and neurotoxic changes. Acta Radiol 2019; 60:1653-1662. [PMID: 30922072 DOI: 10.1177/0284185119840227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lingjie Wu
- Department of Otolaryngology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, PR China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lixin Jin
- Siemens Ltd., Healthcare Sector, Shanghai, PR China
| | - Rong Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| |
Collapse
|
9
|
Deng W, Faiq MA, Liu C, Adi V, Chan KC. Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience. Front Neural Circuits 2019; 13:35. [PMID: 31156399 PMCID: PMC6530364 DOI: 10.3389/fncir.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of vision in health and disease requires knowledge of the anatomy and physiology of the eye and the neural pathways relevant to visual perception. As such, development of imaging techniques for the visual system is crucial for unveiling the neural basis of visual function or impairment. Magnetic resonance imaging (MRI) offers non-invasive probing of the structure and function of the neural circuits without depth limitation, and can help identify abnormalities in brain tissues in vivo. Among the advanced MRI techniques, manganese-enhanced MRI (MEMRI) involves the use of active manganese contrast agents that positively enhance brain tissue signals in T1-weighted imaging with respect to the levels of connectivity and activity. Depending on the routes of administration, accumulation of manganese ions in the eye and the visual pathways can be attributed to systemic distribution or their local transport across axons in an anterograde fashion, entering the neurons through voltage-gated calcium channels. The use of the paramagnetic manganese contrast in MRI has a wide range of applications in the visual system from imaging neurodevelopment to assessing and monitoring neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this review, we present four major domains of scientific inquiry where MEMRI can be put to imperative use — deciphering neuroarchitecture, tracing neuronal tracts, detecting neuronal activity, and identifying or differentiating glial activity. We deliberate upon each category studies that have successfully employed MEMRI to examine the visual system, including the delivery protocols, spatiotemporal characteristics, and biophysical interpretation. Based on this literature, we have identified some critical challenges in the field in terms of toxicity, and sensitivity and specificity of manganese enhancement. We also discuss the pitfalls and alternatives of MEMRI which will provide new avenues to explore in the future.
Collapse
Affiliation(s)
- Wenyu Deng
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Muneeb A Faiq
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Crystal Liu
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Kevin C Chan
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Department of Radiology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
10
|
Cloyd RA, Koren SA, Abisambra JF. Manganese-Enhanced Magnetic Resonance Imaging: Overview and Central Nervous System Applications With a Focus on Neurodegeneration. Front Aging Neurosci 2018; 10:403. [PMID: 30618710 PMCID: PMC6300587 DOI: 10.3389/fnagi.2018.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and the brief but decorated clinical usage of chelated manganese compound mangafodipir in humans.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,College of Medicine, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Shon A Koren
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Schaeffer DJ, Johnston KD, Gilbert KM, Gati JS, Menon RS, Everling S. In vivo manganese tract tracing of frontal eye fields in rhesus macaques with ultra-high field MRI: Comparison with DWI tractography. Neuroimage 2018; 181:211-218. [DOI: 10.1016/j.neuroimage.2018.06.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022] Open
|
12
|
Fiedorowicz M, Orzel J, Kossowski B, Welniak-Kaminska M, Choragiewicz T, Swiatkiewicz M, Rejdak R, Bogorodzki P, Grieb P. Anterograde Transport in Axons of the Retinal Ganglion Cells and its Relationship to the Intraocular Pressure during Aging in Mice with Hereditary Pigmentary Glaucoma. Curr Eye Res 2017; 43:539-546. [PMID: 29283693 DOI: 10.1080/02713683.2017.1416147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To establish a relationship between impairment of the anterograde axonal transport (AAT) in the axons of the retinal ganglion cells and the intraocular pressure (IOP) during aging in mice with hereditary glaucoma. METHODS Quantitative in vivo approach based on manganese enhanced magnetic resonance imaging was developed in order to evaluate AAT in 3-, 6-, and 14-month old DBA/2J mice that develop age-dependent pigmentary glaucoma or age-matched C57Bl/6 mice that do not develop any retinal disease. Unilateral intravitreous administration of MnCl2 solution was followed 24 h later by MRI performed to obtain spin-lattice relaxation times (T1) for regions of interest encompassing the superior colliculi (SC) and the lateral geniculate nuclei (LGN). From the MRI scans, the estimates of Mn2+ concentrations in SC and LGN contralateral to the injection site, hence the efficiency of AAT in ON, were obtained. IOP and eye morphology was also monitored. RESULTS In C57Bl/6 mice, AAT to SC was decreasing with age, 30% decrease was noted between 3 and 14 months. The decrease in axonal transport to LGN was less pronounced in this strain. In 3-month-old DBA/2J mice, axonal transport to SC was 30% lower than in 3-month-old C57Bl/6 mice but no significant decrease was noted in 6-month-old animals. However, a decrease of over 95% in axonal transport both to SC and LGN was noted in 14-month-old DBA/2J mice. DBA/2J mice exhibited a sharp increase in IOP at 6 months, which reversed at 14 months but displayed age-dependent elongation of the eyeball and deepening of the anterior chamber. CONCLUSION Failure of AAT to SC of DBA/2J mice during development of pigmentary glaucoma does not follow closely changes in IOP and eye morphology. The relationship between IOP and AAT in optic nerve and tract is complex and may reflect preconditioning mechanism.
Collapse
Affiliation(s)
- Michal Fiedorowicz
- a Mossakowski Medical Research Centre , Polish Academy of Sciences , Warsaw , Poland
| | - Jaroslaw Orzel
- a Mossakowski Medical Research Centre , Polish Academy of Sciences , Warsaw , Poland.,b Faculty of Electronics and Information Technology , Warsaw University of Technology , Warsaw , Poland
| | - Bartosz Kossowski
- a Mossakowski Medical Research Centre , Polish Academy of Sciences , Warsaw , Poland.,b Faculty of Electronics and Information Technology , Warsaw University of Technology , Warsaw , Poland.,c Nencki Institute of Experimental Biology , Polish Academy of Sciences , Warsaw , Poland
| | | | | | - Maciej Swiatkiewicz
- a Mossakowski Medical Research Centre , Polish Academy of Sciences , Warsaw , Poland
| | - Robert Rejdak
- a Mossakowski Medical Research Centre , Polish Academy of Sciences , Warsaw , Poland.,d 1st Eye Hospital, Medical University of Lublin , Lublin , Poland
| | - Piotr Bogorodzki
- a Mossakowski Medical Research Centre , Polish Academy of Sciences , Warsaw , Poland.,b Faculty of Electronics and Information Technology , Warsaw University of Technology , Warsaw , Poland
| | - Pawel Grieb
- a Mossakowski Medical Research Centre , Polish Academy of Sciences , Warsaw , Poland
| |
Collapse
|
13
|
Bollaerts I, Veys L, Geeraerts E, Andries L, De Groef L, Buyens T, Salinas-Navarro M, Moons L, Van Hove I. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Struct Funct 2017; 223:545-567. [DOI: 10.1007/s00429-017-1571-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
|
14
|
Tang Z, Wang J, Xiao Z, Sun X, Feng X, Tang W, Chen Q, Wu L, Wang R, Zhong Y, Wang W, Luo J. Manganese-enhanced magnetic resonance imaging combined with electrophysiology in the evaluation of visual pathway in experimental rat models with monocular blindness. Brain Behav 2017; 7:e00731. [PMID: 28729937 PMCID: PMC5516605 DOI: 10.1002/brb3.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Our study aimed to explore the feasibility of manganese-enhanced magnetic resonance imaging (MEMRI) combined with visual evoked potentials (VEP) and auditory evoked visual cortex responses (AVR) in evaluating for the establishment of visual/auditory compensatory pathways after monocular blindness. MATERIALS AND METHODS A total of 14 healthy neonatal male Sprague-Dawley rats were randomly divided into two groups (n = 7 for Groups A and B). Right optic nerve (ON) transection was performed on the 7 rats of Group A to obtain a monocularly blind model, and the 7 rats of Group B were chosen as the control group. Four months later, 400 mmol MnCl2 was injected into the left eye in both groups via intravitreal injection. The changes in the visual pathways projected from the blind eye and the remaining eye in Group A and the normal eyes in Group B were compared to determine if new visual compensatory pathways were established. Additionally, VEP tests were performed to determine complete blindness, and AVR examinations were performed to help identify the generation of auditory compensatory function. RESULTS The VEP test indicated complete visual loss after ON transection. In the monocularly blind rats, the contrast-to-noise ratio (CNR) of ON, optic tract (OT), lateral geniculate nucleus (LGN), superior colliculus (SC), optic radiation (OR) and visual cortex (VC) of visual pathway projected from the left eye was significantly higher than that of the right pathway (p < .001). Moreover, the CNR of ON, OT, LGN, SC, OR and VC in the visual pathway projected from the left eye of monocularly blind rats was significantly lower than those of normal rats (p < .05). The AVR results revealed that the corresponding bilateral visual cortex in monocularly blind rats did not respond to the auditory stimulus or showed dissimilation with the low frequency. CONCLUSION MEMRI combined with electrophysiology, including VEP and AVR, may be potentially helpful in the evaluation of the possible generation of new visual/auditory compensatory pathways after monocular blindness.
Collapse
Affiliation(s)
- Zuohua Tang
- Department of Radiology Eye and ENT Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Jie Wang
- Department of Radiotherapy Eye and ENT Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Zebin Xiao
- Department of Radiology Eye and ENT Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Xinghuai Sun
- State Key Laboratory of Medical Neurobiology Department of Ophthalmology Eye and ENT Hospital of Shanghai Medical School Institutes of Brain Science Fudan University Shanghai China
| | - Xiaoyuan Feng
- Department of Radiology Huashan Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Weijun Tang
- Department of Radiology Huashan Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Qian Chen
- State Key Laboratory of Medical Neurobiology Department of Ophthalmology Eye and ENT Hospital of Shanghai Medical School Institutes of Brain Science Fudan University Shanghai China
| | - Lingjie Wu
- Department of Otolaryngology Eye and ENT Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Rong Wang
- Department of Radiology Eye and ENT Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Yufeng Zhong
- Department of Radiology Eye and ENT Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Wentao Wang
- Central Laboratory Eye and ENT Hospital of Shanghai Medical School Fudan University Shanghai China
| | - Jianfeng Luo
- Health Statistics Shanghai Medical School Fudan University Shanghai China
| |
Collapse
|
15
|
Tang Z, Wu L, Xiao Z, Sun X, Feng X, Chen Q, Fan J, Wang J, Wang W, Luo J, Jin L. Manganese-enhanced MR imaging (MEMRI) combined with electrophysiology in the study of cross-modal plasticity in binocularly blind rats. Int J Dev Neurosci 2017; 61:12-20. [PMID: 28539242 DOI: 10.1016/j.ijdevneu.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022] Open
Abstract
Our study aimed to determine and verify the establishment of visual to auditory cross-modal plasticity using manganese-enhanced MR imaging (MEMRI) combined with examinations of the visual evoked potential (VEP), auditory brainstem response (ABR) and bilateral visual cortex response to a bilateral auditory stimulus (AVR). Fourteen healthy male Sprague-Dawley newborn rats were randomly divided into 2 groups (n=7 per group). Optic nerve transection was performed in the 7 rats of Group A three weeks after birth to obtain binocularly blind models, and the 7 rats of Group B were maintained as the control group. The VEP was measured to ensure complete binocular blindness. Four months after the operation, MnCl2 was injected into the left inner ear perilymph of all rats, and an MRI examination was performed 24h after injection. Then, ABR and AVR were measured to detect the generation of auditory compensatory function. The results of the VEP have confirmed complete binocular blindness. The normalized signal intensity of the bilateral medial geniculate nucleus, auditory cortex, visual center (including the lateral geniculate nucleus, superior colliculus and visual cortex) and right hippocampus in binocularly blind rats was significantly increased compared with that in normal rats (P≤0.005), which was confirmed by measurement of the ABR and AVR. Our results suggested that MEMRI combined with electrophysiology can show changes in the auditory and visual pathways of binocularly blind rats and demonstrate the generation of an auditory compensatory pathway.
Collapse
Affiliation(s)
- Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China.
| | - Lingjie Wu
- Department of Otolaryngology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, 200040, China
| | - Qian Chen
- Department of Ophthalmology, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Jiawen Fan
- Department of Ophthalmology, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Wentao Wang
- Central Laboratory, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Jianfeng Luo
- Health Statistics, Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Lixin Jin
- Siemens Ltd. Healthcare sector, Shanghai, 201318, China
| |
Collapse
|
16
|
Atanasijevic T, Bouraoud N, McGavern DB, Koretsky AP. Transcranial manganese delivery for neuronal tract tracing using MEMRI. Neuroimage 2017; 156:146-154. [PMID: 28506873 DOI: 10.1016/j.neuroimage.2017.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 11/17/2022] Open
Abstract
There has been a growing interest in the use of manganese-enhanced MRI (MEMRI) for neuronal tract tracing in mammals, especially in rodents. For this MEMRI application, manganese solutions are usually directly injected into specific brain regions. Recently it was reported that manganese ions can diffuse through intact rat skull. Here the local manganese concentrations in the brain tissue after transcranial manganese application were quantified and the effectiveness of tracing from the area under the skull where delivery occurred was determined. It was established that transcranially applied manganese yields brain tissue enhancement dependent on the location of application on the skull and that manganese that enters the brain transcranially can trace to deeper brain areas.
Collapse
Affiliation(s)
- Tatjana Atanasijevic
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Dorian B McGavern
- Laboratory of Viral Immunology and Intravital Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Tang Z, Wu L, Xiao Z, Feng X, Sun X, Tang W, Wang J, Jin L. Manganese-enhanced MRI (ME MRI) in evaluation of the auditory pathway in an experimental rat model. NMR IN BIOMEDICINE 2017; 30:e3677. [PMID: 27976435 DOI: 10.1002/nbm.3677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to explore the optimal dose and manner of administration for visualization of the auditory pathway on manganese-enhanced MRI (ME MRI). Twenty-four healthy male Sprague-Dawley rats were randomly divided into three experimental groups (n = 8 for Groups A, B and C). The rats in Groups A, B and C were subjected to MnCl2 injection through the tympanum, inner ear endolymph and perilymph, respectively (0.2 M for four rats and 0.4 M for the others in each group) and observed at 1, 2, 3, 4, 7 and 10 days after the operation with 3.0 T MRI. The signal intensity (SI) and dynamic changes of the auditory pathways at various times, and at two doses through three injection routes, were compared by statistical analysis. Administration of MnCl2 through the perilymph best showed the complete auditory pathway (P < 0.01), whereas administration though the tympanum only demonstrated part of the pathway. The SI was highest at 24 h after administration of the tracer and began to decline at 48 h. The SI of the auditory cortex was higher after the injection of 0.4 M MnCl2 than that of 0.2 M MnCl2 . ME MRI best demonstrated the whole auditory pathway at 24 h after the injection of 0.4 M MnCl2 through the perilymph in the rat, which provided an optimal method for the study of ME MRI of the auditory pathway in the animal model.
Collapse
Affiliation(s)
- Zuohua Tang
- Department of Radiology, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Lingjie Wu
- Department of Otolaryngology, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zebin Xiao
- Department of Radiology, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye and ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Radiotherapy, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Lixin Jin
- Siemens Ltd. Healthcare Sector, Shanghai, China
| |
Collapse
|
18
|
Wang WL, Xu H, Li Y, Ma ZZ, Sun XD, Hu YT. Dose response and time course of manganese-enhanced magnetic resonance imaging for visual pathway tracing in vivo. Neural Regen Res 2016; 11:1185-90. [PMID: 27630707 PMCID: PMC4994466 DOI: 10.4103/1673-5374.187065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Axonal tracing is useful for detecting optic nerve injury and regeneration, but many commonly used methods cannot be used to observe axoplasmic flow and synaptic transmission in vivo. Manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) can be used for in vivo longitudinal tracing of the visual pathway. Here, we explored the dose response and time course of an intravitreal injection of MnCl2 for tracing the visual pathway in rabbits in vivo using MEMRI. We found that 2 mM MnCl2 enhanced images of the optic nerve but not the lateral geniculate body or superior colliculus, whereas at all other doses tested (5-40 mM), images of the visual pathway from the retina to the contralateral superior colliculus were significantly enhanced. The images were brightest at 24 hours, and then decreased in brightness until the end of the experiment (7 days). No signal enhancement was observed in the visual cortex at any concentration of MnCl2. These results suggest that MEMRI is a viable method for temporospatial tracing of the visual pathway in vivo. Signal enhancement in MEMRI depends on the dose of MnCl2, and the strongest signals appear 24 hours after intravitreal injection.
Collapse
Affiliation(s)
- Wei-Ling Wang
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, Tsinghua University Medical Center, Beijing, China; Department of Ophthalmology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Hui Xu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ying Li
- Peking University Eye Center, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Zhi-Zhong Ma
- Peking University Eye Center, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Yun-Tao Hu
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, Tsinghua University Medical Center, Beijing, China; Peking University Eye Center, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res 2016; 151:96-106. [PMID: 27523467 DOI: 10.1016/j.exer.2016.08.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cells (RGC) bear the sole responsibility of propagating visual stimuli to the brain. Their axons, which make up the optic nerve, project from the retina to the brain through the lamina cribrosa and in rodents, decussate almost entirely at the optic chiasm before synapsing at the superior colliculus. For many traumatic and degenerative ocular conditions, the dysfunction and/or loss of RGC is the primary determinant of visual loss and are the measurable endpoints in current research into experimental therapies. To actually measure these endpoints in rodent models, techniques must ascertain both the quantity of surviving RGC and their functional capacity. Quantification techniques include phenotypic markers of RGC, retrogradely transported fluorophores and morphological measurements of retinal thickness whereas functional assessments include electroretinography (flash and pattern) and visual evoked potential. The importance of the accuracy and reliability of these techniques cannot be understated, nor can the relationship between RGC death and dysfunction. The existence of up to 30 types of RGC complicates the measuring process, particularly as these may respond differently to disease and treatment. Since the above techniques may selectively identify and ignore particular subpopulations, their appropriateness as measures of RGC survival and function may be further limited. This review discusses the above techniques in the context of their subtype specificity.
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Semiquantitative assessment of optic nerve injury using manganese-enhanced MRI. Jpn J Radiol 2016; 34:356-65. [PMID: 26943911 DOI: 10.1007/s11604-016-0533-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the capability of manganese (Mn(2+))-enhanced MRI (MEMRI) in a continuously semiquantitative assessment of rat optic nerve (ON) injury. METHODS Forty rats were divided into three groups: (I) a control group that was submitted to MEMRI or to fluorescent labeling of retinal ganglion cells (RGCs) (n = 10); (II) an ON injury group that was submitted to MEMRI (n = 15); (III) an ON injury group that was submitted to fluorescent labeling of RGCs (n = 15). Groups II and III were examined at 3, 7, and 14 days post-lesion (dpl), when the contrast-to-noise ratio (CNR) of the retina and ON was measured on MEMRI images and the RGCs were counted by fluorescence microscopy and compared between the groups. RESULTS In the control group, the intact visual pathway from the retina to the contralateral superior colliculus was visualized by MEMRI. In group II, continuous Mn(2+) enhancement was seen from the retina to the lesion site of the optic nerves at 3, 7, and 14 dpl. However, no Mn(2+) enhancement was observed distal to the lesion site at those time points. The observed Mn(2+) enhancement proximal to the ON lesion site declined between 7 and 14 dpl. The decrease in Mn(2+)-enhanced signal intensity at these sites at 7 and 14 dpl when compared to that at 3 dpl was significant (P < 0.05). The RGC density dropped by 6.84, 45.31, and 72.36 % at 3, 7, and 14 dpl, respectively. CONCLUSION MEMRI can be used to evaluate the structural changes after optic nerve injury.
Collapse
|
21
|
McDonagh BH, Singh G, Hak S, Bandyopadhyay S, Augestad IL, Peddis D, Sandvig I, Sandvig A, Glomm WR. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:301-306. [PMID: 26619158 DOI: 10.1002/smll.201502545] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.
Collapse
Affiliation(s)
- Birgitte Hjelmeland McDonagh
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Gurvinder Singh
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sulalit Bandyopadhyay
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ingrid Lovise Augestad
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Davide Peddis
- Institute of Structure and Matter, National Research Council, 00015, Monterotondo, Scalo, Italy
| | - Ioanna Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 OPY, Cambridge, UK
| | - Axel Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery, Umeå University, 901 87, Umeå, Sweden
| | - Wilhelm Robert Glomm
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Sector for Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| |
Collapse
|
22
|
Demain B, Davoust C, Plas B, Bolan F, Boulanouar K, Renaud L, Darmana R, Vaysse L, Vieu C, Loubinoux I. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI. PLoS One 2015; 10:e0138308. [PMID: 26398500 PMCID: PMC4580626 DOI: 10.1371/journal.pone.0138308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8 nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner.
Collapse
Affiliation(s)
- Boris Demain
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
- CNRS-LAAS, 7 avenue du colonel Roche, F-31077, Toulouse, France
| | - Carole Davoust
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Benjamin Plas
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
- Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Faye Bolan
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Kader Boulanouar
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Luc Renaud
- CNRS, Centre de Recherche Cerveau & Cognition, UMR 5549, F-31024, Toulouse, France
| | - Robert Darmana
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Laurence Vaysse
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Christophe Vieu
- CNRS-LAAS, 7 avenue du colonel Roche, F-31077, Toulouse, France
| | - Isabelle Loubinoux
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
- * E-mail:
| |
Collapse
|
23
|
Ho LC, Wang B, Conner IP, van der Merwe Y, Bilonick RA, Kim SG, Wu EX, Sigal IA, Wollstein G, Schuman JS, Chan KC. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT. Invest Ophthalmol Vis Sci 2015; 56:3788-800. [PMID: 26066747 DOI: 10.1167/iovs.14-15552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). METHODS Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. RESULTS In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. CONCLUSIONS Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye-brain relationships and structural-physiological relationships in the visual system after ERI.
Collapse
Affiliation(s)
- Leon C Ho
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Bo Wang
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Ian P Conner
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Richard A Bilonick
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 6McGowan Institute for Regenerative
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ian A Sigal
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 5Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pi
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| |
Collapse
|
24
|
Hernandez CM, Beck WD, Naughton SX, Poddar I, Adam BL, Yanasak N, Middleton C, Terry AV. Repeated exposure to chlorpyrifos leads to prolonged impairments of axonal transport in the living rodent brain. Neurotoxicology 2015; 47:17-26. [PMID: 25614231 DOI: 10.1016/j.neuro.2015.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/06/2015] [Accepted: 01/11/2015] [Indexed: 01/07/2023]
Abstract
The toxicity of the class of chemicals known as the organophosphates (OP) is most commonly attributed to the inhibition of the enzyme acetylcholinesterase. However, there is significant evidence that this mechanism may not account for all of the deleterious neurologic and neurobehavioral symptoms of OP exposure, especially those associated with levels that produce no overt signs of acute toxicity. In the study described here we evaluated the effects of the commonly used OP-pesticide, chlorpyrifos (CPF) on axonal transport in the brains of living rats using manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) of the optic nerve (ON) projections from the retina to the superior colliculus (SC). T1-weighted MEMRI scans were evaluated at 6 and 24h after intravitreal injection of Mn(2+). As a positive control for axonal transport deficits, initial studies were conducted with the tropolone alkaloid colchicine administered by intravitreal injection. In subsequent studies both single and repeated exposures to CPF were evaluated for effects on axonal transport using MEMRI. As expected, intravitreal injection of colchicine (2.5μg) produced a robust decrease in transport of Mn(2+) along the optic nerve (ON) and to the superior colliculus (SC) (as indicated by the reduced MEMRI contrast). A single subcutaneous (s.c.) injection of CPF (18.0mg/kg) was not associated with significant alterations in the transport of Mn(2+). Conversely, 14-days of repeated s.c. exposure to CPF (18.0mg/kg/day) was associated with decreased transport of Mn(2+) along the ONs and to the SC, an effect that was also present after a 30-day (CPF-free) washout period. These results indicate that repeated exposures to a commonly used pesticide, CPF can result in persistent alterations in axonal transport in the living mammalian brain. Given the fundamental importance of axonal transport to neuronal function, these observations may (at least in part) explain some of the long term neurological deficits that have been observed in humans who have been repeatedly exposed to doses of OPs not associated with acute toxicity.
Collapse
Affiliation(s)
- Caterina M Hernandez
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Indrani Poddar
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Bao-Ling Adam
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Nathan Yanasak
- Core Imaging Facility for Small Animals (CIFSA), Georgia Regents University, Augusta, GA 30912, United States
| | - Chris Middleton
- Core Imaging Facility for Small Animals (CIFSA), Georgia Regents University, Augusta, GA 30912, United States
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
25
|
Chan KC, Kancherla S, Fan SJ, Wu EX. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI. Invest Ophthalmol Vis Sci 2014; 56:1-9. [PMID: 25491295 DOI: 10.1167/iovs.14-14287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. METHODS Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. RESULTS Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. CONCLUSIONS High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury.
Collapse
Affiliation(s)
- Kevin C Chan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Swarupa Kancherla
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
26
|
Lin TH, Chiang CW, Trinkaus K, Spees WM, Sun P, Song SK. Manganese-enhanced MRI (MEMRI) via topical loading of Mn(2+) significantly impairs mouse visual acuity: a comparison with intravitreal injection. NMR IN BIOMEDICINE 2014; 27:390-398. [PMID: 24436112 PMCID: PMC3994194 DOI: 10.1002/nbm.3073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Manganese-enhanced MRI (MEMRI) with topical loading of MnCl2 provides optic nerve enhancement comparable to that seen by intravitreal injection. However, the impact of this novel and non-invasive Mn(2+) loading method on visual function requires further assessments. The objective of this study is to determine the optimal topical Mn(2+) loading dosage for MEMRI and to assess visual function after MnCl2 loading. Intravitreal administration was performed to compare the two approaches of MnCl2 loading. Twenty-four hours after topical loading of 0, 0.5, 0.75, and 1 M MnCl2 , T1 -weighted, T2-weighted, diffusion tensor imaging and visual acuity (VA) assessments were performed to determine the best topical loading dosage for MEMRI measurements and to assess the integrity of retinas and optic nerves. Mice were perfusion fixed immediately after in vivo experiments for hematoxylin and eosin and immunohistochemistry staining. Topical loading of 1 M MnCl2 damaged the retinal photoreceptor layer with no detectable damage to retina ganglion cell layers or prechiasmatic optic nerves. For the topical loading, 0.75 M MnCl2 was required to see sufficient enhancement of the optic nerve. At this concentration the visual function was significantly affected, followed by a slow recovery. Intravitreal injection (0.25 μL of 0.2 M MnCl2 ) slightly affected VA, with full recovery a day later. To conclude, intravitreal MnCl2 injection provides more reproducible results with less adverse side-effects than topical loading.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Experimental visual pathway lesion in the form of optic nerve (ON) crush or transection injury results in massive death of retinal ganglion cells (RGCs) and permanent loss of synaptic connections (Berkelaar et al., J Neurosci 14:4368-4374, 1994). Despite the fact that RGC axon regeneration is inhibited in a manner typical of other CNS lesions, the rodent ON injury model is one of the few models where robust axon regeneration has been achieved after therapeutic intervention (Berry et al., Restor Neurol Neurosci 26:147-174, 2008). However, assessment of the efficacy of therapeutic approaches in promoting ON regeneration has traditionally relied on histological methods, which necessitate the sacrifice of experimental animals and thus preclude longitudinal in vivo monitoring of individual subjects. Manganese-enhanced MRI (MEMRI) utilizes the paramagnetic properties and uptake and transport mechanisms of manganese ions (Mn(2+)) by neurons, thus enabling serial in vivo monitoring of the entire axonal projections (Sandvig et al., J Magn Reson Imaging 34:670-675, 2011; Thuen et al., J Magn Reson Imaging 4:492-500, 2005; Pautler et al., Magn Res Med 50:33-39, 2003; Saleem et al., Neurotechnique 34:685-700, 2000). The above properties of Mn(2+) render MEMRI a highly suitable technique for assessment of ON regeneration after injury, especially with a view to in vivo monitoring of neuronal connectivity and axon-regenerative responses to treatment. In this chapter, we provide a generic protocol for ON lesioning and MEMRI application for assessment of ON regeneration in rodents.
Collapse
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, 7489, Trondheim, Norway,
| | | |
Collapse
|
28
|
Luo L, Xu H, Li Y, Du Z, Sun X, Ma Z, Hu Y. Manganese-enhanced MRI optic nerve tracking: effect of intravitreal manganese dose on retinal toxicity. NMR IN BIOMEDICINE 2012; 25:1360-1368. [PMID: 22573611 DOI: 10.1002/nbm.2808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/20/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to provide data on the dose dependence of manganese-enhanced MRI (MEMRI) in the visual pathway of experimental rats and to study the toxicity of MnCl₂ to the retina. Sprague-Dawley rats were intravitreally injected with 2 μL of 0, 10, 25, 50, 75, 100, 150 and 300 mM MnCl₂, respectively. The contrast-to-noise ratio (CNR) of MEMRI for optic nerve enhancement was measured at different concentrations of MnCl₂. Simultaneously, the toxicity of manganese was evaluated by counting retinal ganglion cells and by retinal histological examination using light microscopy and transmission electron microscopy. The CNR increased with increasing concentration of MnCl₂ up to 75 mM. Retinal ganglion cell densities were reduced significantly when the concentration of MnCl₂ in the intravitreal injection was equal to or greater than 75 mM. Increasing numbers of ribosomes in retinal ganglion cells were first detected at 25 mM of MnCl₂. The retinal toxicity of MnCl₂ at higher concentration also included mitochondrial pathology and cell disruption of retinal ganglion cells, as well as abnormalities of photoreceptor and retinal pigment epithelium cells. It can be concluded that intravitreal injection of MnCl₂ induces retinal cell damage that appears to start from 25 mM. The concentration of MnCl₂ should not exceed 25 mm through intravitreal injection for visual pathway MEMRI in the rat.
Collapse
Affiliation(s)
- Lisha Luo
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Mørch YA, Sandvig I, Olsen O, Donati I, Thuen M, Skjåk-Braek G, Haraldseth O, Brekken C. Mn-alginate gels as a novel system for controlled release of Mn2+ in manganese-enhanced MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:265-75. [PMID: 22434640 DOI: 10.1002/cmmi.493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to test alginate gels of different compositions as a system for controlled release of manganese ions (Mn(2+)) for application in manganese-enhanced MRI (MEMRI), in order to circumvent the challenge of achieving optimal MRI resolution without resorting to high, potentially cytotoxic doses of Mn(2+). Elemental analysis and stability studies of Mn-alginate revealed marked differences in ion binding capacity, rendering Mn/Ba-alginate gels with high guluronic acid content most stable. The findings were corroborated by corresponding differences in the release rate of Mn(2+) from alginate beads in vitro using T(1)-weighted MRI. Furthermore, intravitreal (ivit) injection of Mn-alginate beads yielded significant enhancement of the rat retina and retinal ganglion cell (RGC) axons 24 h post-injection. Subsequent compartmental modelling and simulation of ivit Mn(2+) transport and concentration revealed that application of slow release contrast agents can achieve a significant reduction of ivit Mn(2+) concentration compared with bolus injection. This is followed by a concomitant increase in the availability of ivit Mn(2+) for uptake by RGC, corresponding to significantly increased time constants. Our results provide proof-of-concept for the applicability of Mn-alginate gels as a system for controlled release of Mn(2+) for optimized MEMRI application.
Collapse
Affiliation(s)
- Yrr A Mørch
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun SW, Thiel T, Liang HF. Impact of repeated topical-loaded manganese-enhanced MRI on the mouse visual system. Invest Ophthalmol Vis Sci 2012; 53:4699-709. [PMID: 22700708 DOI: 10.1167/iovs.12-9715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Optic nerve degeneration in diseases such as glaucoma and multiple sclerosis evolves in months to years. The use of Mn(2+)-Enhanced Magnetic Resonance Imaging (MEMRI) in a time-course study may provide new insights into the disease progression. Previously, we demonstrated the feasibility of using a topical administration for Mn(2+) delivery to the visual system. This study is to evaluate the impact of biweekly or monthly repeated Mn(2+) topical administration and the pH levels of the Mn(2+) solutions for MEMRI on the mouse visual pathway. METHODS Using groups of mice, the MEMRI with an acidic or pH neutralized 1 M MnCl(2) solution was performed. To evaluate the feasibility of repeated MEMRIs, topical-loaded MEMRI was conducted biweekly seven times or monthly three times. The enhancement of MEMRI in the visual system was quantified. After repeated MEMRIs, the corneas were examined by optical coherence tomography. The retinal ganglion cells (RGCs) and optic nerves were examined by histology. RESULTS All mice exhibited consistent enhancements along the visual system following repeated MEMRIs. The acidic Mn(2+) solution induced a greater MEMRI enhancement as compared with a neutral pH Mn(2+) solution. Significant 20% RGC loss was found after three biweekly Mn(2+) inductions, but no RGC loss was found after three monthly Mn(2+) treatments. The corneal thickness was found increased after seven biweekly topical-loaded MEMRI. CONCLUSIONS Acidic Mn(2+) solutions enhanced the uptake of Mn(2+) observed on the MEMRI. Increasing the time intervals of repeated Mn(2+) topical administration reduced the adverse effects caused by MEMRI.
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
31
|
Gutman DA, Magnuson M, Majeed W, Keifer OP, Davis M, Ressler KJ, Keilholz S. Mapping of the mouse olfactory system with manganese-enhanced magnetic resonance imaging and diffusion tensor imaging. Brain Struct Funct 2012; 218:527-37. [PMID: 22527121 DOI: 10.1007/s00429-012-0413-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
As the power of studying mouse genetics and behavior advances, research tools to examine systems level connectivity in the mouse are critically needed. In this study, we compared statistical mapping of the olfactory system in adult mice using manganese-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) with probabilistic tractography. The primary goal was to determine whether these complementary techniques can determine mouse olfactory bulb (OB) connectivity consistent with known anatomical connections. For MEMRI, 3D T1-weighted images were acquired before and after bilateral nasal administration of MnCl(2) solution. Concomitantly, high-resolution diffusion-tensor images were obtained ex vivo from a second group of mice and processed with a probabilistic tractography algorithm originating in the OB. Incidence maps were created by co-registering and overlaying data from the two scan modalities. The resulting maps clearly show pathways between the OB and amygdala, piriform cortex, caudate putamen, and olfactory cortex in both the DTI and MEMRI techniques that are consistent with the known anatomical connections. These data demonstrate that MEMRI and DTI are complementary, high-resolution neuroimaging tools that can be applied to mouse genetic models of olfactory and limbic system connectivity.
Collapse
Affiliation(s)
- David A Gutman
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Sandvig I, Thuen M, Hoang L, Olsen Ø, Sardella TCP, Brekken C, Tvedt KE, Barnett SC, Haraldseth O, Berry M, Sandvig A. In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve. NMR IN BIOMEDICINE 2012; 25:620-631. [PMID: 22447732 DOI: 10.1002/nbm.1778] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/23/2011] [Accepted: 07/09/2011] [Indexed: 05/31/2023]
Abstract
The purpose of the present study was to use magnetic resonance imaging (MRI) as a tool for monitoring transplant-mediated repair of the adult rat visual pathway. We labelled rat olfactory ensheathing cells (OECs) using micron-sized particles of iron oxide (MPIO) and transplanted them by: i) intravitreal injection (ivit) and ii) intra-optic nerve (ON) injection (iON) in adult rats with ON crush (ONC) injury. We applied T(2)-weighted MRI and manganese-enhanced MRI (MEMRI) to visualise transplanted cells and ON axons at specific times after injury and cell engraftment. Our findings demonstrate that ivit MPIO-labelled OECs are unequivocally detected by T(2)-weighted MRI in vivo and that the T(1)-weighted 3D FLASH sequence applied for MEMRI facilitates simultaneous visualisation of Mn(2+-) enhanced regenerating retinal ganglion cell (RGC) axons and MPIO-labelled OEC grafts. Furthermore, analysis of MRI data and ultrastructural findings supports the hypothesis that iON OEC transplants mediate regeneration and remyelination of RGC axons post injury.
Collapse
Affiliation(s)
- Ioanna Sandvig
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Passi N, Degnan AJ, Levy LM. MR imaging of papilledema and visual pathways: effects of increased intracranial pressure and pathophysiologic mechanisms. AJNR Am J Neuroradiol 2012; 34:919-24. [PMID: 22422187 DOI: 10.3174/ajnr.a3022] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Papilledema, defined as swelling of the optic disc, frequently occurs in the setting of increased ICP and in a variety of medical conditions, including pseudotumor cerebri, sinus thrombosis, intracerebral hemorrhage, frontal lobe neoplasms, and Chiari malformation. Noninvasive imaging of the ON is possible by using MR imaging, with a variety of findings occurring in the setting of papilledema, including flattening of the posterior sclera, protrusion of the optic disc, widening of the ONS, and tortuosity of the ON. Early recognition of papilledema and elevated ICP is of paramount importance for ensuring restoration of vision. Newer advanced MR imaging techniques such as fMRI and DTI may prove useful in the future to assess the potential effects of papilledema on retinal and visual pathway integrity.
Collapse
Affiliation(s)
- N Passi
- Department of Radiology, George Washington University Hospital, Washington, DC 20037, USA
| | | | | |
Collapse
|
34
|
Lehallier B, Coureaud G, Maurin Y, Bonny JM. Effects of manganese injected into rat nostrils: implications for in vivo functional study of olfaction using MEMRI. Magn Reson Imaging 2012; 30:62-9. [DOI: 10.1016/j.mri.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/05/2011] [Accepted: 08/13/2011] [Indexed: 10/15/2022]
|
35
|
Haenold R, Herrmann KH, Schmidt S, Reichenbach JR, Schmidt KF, Löwel S, Witte OW, Weih F, Kretz A. Magnetic resonance imaging of the mouse visual pathway for in vivo studies of degeneration and regeneration in the CNS. Neuroimage 2012; 59:363-76. [DOI: 10.1016/j.neuroimage.2011.07.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/24/2011] [Accepted: 07/22/2011] [Indexed: 12/22/2022] Open
|
36
|
Chan KC, Fan SJ, Zhou IY, Wu EX. In vivo chromium-enhanced MRI of the retina. Magn Reson Med 2011; 68:1202-10. [PMID: 22213133 DOI: 10.1002/mrm.24123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 11/07/2022]
Abstract
Chromium (Cr) has been used histologically to stabilize lipid fractions in the retina and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity, and specificity of in vivo chromium-enhanced MRI of retinal lipids by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal adult rats. One day after 3 μL Cr(VI) administration at 1-100 mM, the retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50 mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10 mM Cr(VI) administration. Three-dimensional chromium-enhanced MRI of ex vivo normal eyes at isotropic 50-μm resolution showed at least five alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. Although Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after chromium-enhanced MRI showed a dose-dependent effect of Cr toxicity on manganese uptake and axonal transport along the visual pathway. These results potentiated future longitudinal chromium-enhanced MRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
37
|
Possibilities and limitations for high resolution small animal MRI on a clinical whole-body 3T scanner. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 25:233-44. [PMID: 22042538 DOI: 10.1007/s10334-011-0284-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023]
Abstract
OBJECT To investigate the potential of a clinical 3 T scanner to perform MRI of small rodents. MATERIALS AND METHODS Different dedicated small animal coils and several imaging sequences were evaluated to optimize image quality with respect to SNR, contrast and spatial resolution. As an application, optimal grey-white-matter contrast and resolution were investigated for rats. Furthermore, manganese-enhanced MRI was applied in mice with unilateral crush injury of the optic nerve to investigate coil performance on topographic mapping of the visual projection. RESULTS Differences in SNR and CNR up to factor 3 and more were observed between the investigated coils. The best grey-white matter contrast was achieved with a high resolution 3D T (2)-weighted TSE (SPACE) sequence. Delineation of the retino-tectal projection and detection of defined visual pathway damage on the level of the optic nerve could be achieved by using a T (1)-weighted, 3D gradient echo sequence with isotropic resolution of (0.2 mm)(3). CONCLUSIONS Experimental studies in small rodents requiring high spatial resolution can be performed by using a clinical 3 T scanner with appropriate dedicated coils.
Collapse
|
38
|
Chan KC, Cheng JS, Fan S, Zhou IY, Yang J, Wu EX. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging. Neuroimage 2011; 59:2274-83. [PMID: 21985904 DOI: 10.1016/j.neuroimage.2011.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022] Open
Abstract
The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60. The reorganization of retinocollicular projections was also detected by significant Mn2+ enhancement by 2%-10% in the ipsilateral superior colliculus (SC) of normal neonatal rats, normal adult mice and adult rats after neonatal monocular enucleation (ME) but not in normal adult rats or adult rats after monocular deprivation (MD). DTI showed a significantly higher fractional anisotropy (FA) by 21% in the optic nerve projected from the remaining eye of ME rats compared to normal rats at 6 weeks old, likely as a result of the retention of axons from the ipsilaterally uncrossed retinal ganglion cells, whereas the anterior and posterior retinal pathways projected from the enucleated or deprived eyes possessed lower FA after neonatal binocular enucleation (BE), ME and MD by 22%-56%, 18%-46% and 11%-15% respectively compared to normal rats, indicative of neurodegeneration or immaturity of white matter tracts. Along the visual callosal pathways, intracortical Mn2+ injection to the visual cortex of BE rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, without apparent DTI parametric changes in the splenium of corpus callosum. This suggested an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness. The results of this study may help determine the mechanisms of axonal uptake and transport, microstructural reorganization and functional activities in the living visual brains during development, diseases, plasticity and early interventions in a global and longitudinal setting.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
39
|
Nair G, Pardue MT, Kim M, Duong TQ. Manganese-enhanced MRI reveals multiple cellular and vascular layers in normal and degenerated retinas. J Magn Reson Imaging 2011; 34:1422-9. [PMID: 21964629 DOI: 10.1002/jmri.22719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/21/2011] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To use manganese-enhanced magnetic resonance imaging (MEMRI) at 25 × 25 × 800 μm(3) to image different retinal and vascular layers in the rat retinas. MATERIALS AND METHODS Manganese-chloride was injected intraocularly in normal (n = 5) and Royal College of Surgeons (RCS, an model of photoreceptor degeneration) (n = 5) rats at postnatal day 90. MEMRI at 4.7 T was performed 24 hours later. MRI was repeated following intravenous Gd-DTPA in the same animals to highlight the vasculatures. Layer assignment and thickness were compared to histology. RESULTS MEMRI 24 hours after intravitreal manganese-chloride injection revealed seven bands of alternating hyper- and hypointensities, corresponding histologically to the ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, photoreceptor-segment layer, and choroidal vascular layer. Intravenous Gd-DTPA-which does not cross the blood-retinal barrier and the retinal pigment epithelium-further enhanced the two layers bounding the retina, corresponding to the retinal and choroidal vascular layers, but not the avascular outer nuclear layer and the photoreceptor-segment layer. MEMRI of the RCS retinas revealed the loss of the outer plexiform layer, outer nuclear layer, and photoreceptor-segment layer. Histological analysis corroborated the MRI laminar assignments and thicknesses. CONCLUSION Lamina-specific retinal structures neurodegenerative changes to structure in retinal diseases can be detected using MEMRI.
Collapse
Affiliation(s)
- Govind Nair
- Graduate School of Biomedical Science, University of Massachusetts Medical School and Worcester Polytechnic Institute, Worcester, Massachusetts, USA; Yerkes Imaging Center, Neuroscience Division, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
40
|
Moroni R, Zucca I, Inverardi F, Mastropietro A, Regondi M, Spreafico R, Frassoni C. In vivo detection of cortical abnormalities in BCNU-treated rats, model of cortical dysplasia, using manganese-enhanced magnetic resonance imaging. Neuroscience 2011; 192:564-71. [DOI: 10.1016/j.neuroscience.2011.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
|
41
|
Sandvig A, Sandvig I, Berry M, Olsen Ø, Pedersen TB, Brekken C, Thuen M. Axonal tracing of the normal and regenerating visual pathway of mouse, rat, frog, and fish using manganese-enhanced MRI (MEMRI). J Magn Reson Imaging 2011; 34:670-5. [DOI: 10.1002/jmri.22631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 04/05/2011] [Indexed: 11/07/2022] Open
|
42
|
Bouilleret V, Cardamone L, Liu C, Koe AS, Fang K, Williams JP, Myers DE, O'Brien TJ, Jones NC. Confounding neurodegenerative effects of manganese for in vivo MR imaging in rat models of brain insults. J Magn Reson Imaging 2011; 34:774-84. [DOI: 10.1002/jmri.22669] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 05/05/2011] [Indexed: 11/11/2022] Open
|
43
|
Sun SW, Campbell B, Lunderville C, Won E, Liang HF. Noninvasive topical loading for manganese-enhanced MRI of the mouse visual system. Invest Ophthalmol Vis Sci 2011; 52:3914-20. [PMID: 21421878 DOI: 10.1167/iovs.10-6363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate topical loading as an alternative to intravitreal injection for Mn(2+)-enhanced magnetic resonance imaging (MEMRI) of the visual system. METHODS Topical administration of 0.5 to 1.5 M MnCl(2) and intravitreal injections with 0.5 μL 100 mM and 2 μL 1 M MnCl(2) for mouse MEMRI were conducted, followed by immunohistochemistry. In another mouse group, two topical administrations of 1 M Mn(2+) were applied to the same animals 7 days apart, to evaluate the use of MEMRI in a time course study. Dynamic imaging was also conducted to reveal how Mn(2+) travels to the retina. MEMRI with topically loaded MnCl(2) was also conducted in eyes with retinal ischemia, to evaluate whether the enhancements required healthy neurons. RESULTS After 1 day, topical administration of 1 M and 1.5 M MnCl(2) rendered significant signal enhancement (up to 20%) in the superior colliculus (P < 0.05) that was equivalent to that of the 2-μL 1 M injection. Repeated exposure to Mn(2+) showed reproduced enhancement. Dynamic imaging showed significant enhancement in the iris, retina, and lens boundary, but not in the vitreous space. In retinal ischemic eyes, no enhancement of MEMRI was detected in the optic nerves. The immunohistochemistry of the optic nerve (1.5 mm anterior to the chiasm) and retina showed no injury 1 week after Mn(2+) topical administrations to each mouse. CONCLUSIONS The results demonstrated the feasibility of using topical administration of Mn(2+) for MEMRI. Topically loaded Mn(2+) did not diffuse into the vitreous space, but was it may have been absorbed into the iris to diffuse or travel via the capillary circulation to reach the retina.
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Radiology, Washington University, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
45
|
CNS regeneration after chronic injury using a self-assembled nanomaterial and MEMRI for real-time in vivo monitoring. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 7:351-9. [PMID: 21185404 DOI: 10.1016/j.nano.2010.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/27/2010] [Accepted: 12/07/2010] [Indexed: 11/20/2022]
Abstract
UNLABELLED To speed up the process of central nervous system (CNS) recovery after injury, the need for real-time measurement of axon regeneration in vivo is essential to assess the extent of injury, as well as the optimal timing and delivery of therapeutics and rehabilitation. It was necessary to develop a chronic animal model with an in vivo measurement technique to provide a real-time monitoring and feedback system. Using the framework of the 4 P's of CNS regeneration (Preserve, Permit, Promote and Plasticity) as a guide, combined with noninvasive manganese-enhanced magnetic resonance imaging (MEMRI), we show a successful chronic injury model to measure CNS regeneration, combined with an in vivo measurement system to provide real-time feedback during every stage of the regeneration process. We also show that a chronic optic tract (OT) lesion is able to heal, and axons are able to regenerate, when treated with a self-assembling nanofiber peptide scaffold (SAPNS). FROM THE CLINICAL EDITOR The authors of this study demonstrate the development of a chronic injury model to measure CNS regeneration, combined with an in vivo measurement system to provide real-time feedback during every stage of the regeneration process. In addition, they determined that chronic optic tract lesions are able to heal with axonal regeneration when treated with a self-assembling nanofiber peptide scaffold (SAPNS).
Collapse
|
46
|
CHAN KEVINC, CHEUNG MATTHEWM, WU EDX. IN VIVOMULTIPARAMETRIC MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY OF RODENT VISUAL SYSTEM. J Integr Neurosci 2010; 9:477-508. [DOI: 10.1142/s0219635210002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/04/2010] [Indexed: 01/27/2023] Open
|
47
|
Chan KC, Cheung MM, Xing KK, Zhou IY, Chow AM, Lau C, So KF, Wu EX. In vivo MRI study of the visual system in normal, developing and injured rodent brains. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:5689-92. [PMID: 21097319 DOI: 10.1109/iembs.2010.5627884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper demonstrated our recent use of contrast-enhanced MRI, diffusion tensor/kurtosis imaging, proton magnetic resonance spectroscopy, and functional MRI techniques, for in vivo and global assessments of the structure, metabolism and function of the visual system in rodent studies of ocular diseases, optic neuropathies, developmental plasticity and neonatal hypoxic-ischemic brain injury at 7T. Results suggested the significant values of high-field multiparametric MRI for uncovering the processes and mechanisms of developmental and pathophysiological changes systematically along both anterior and posterior visual pathways, and may provide early diagnoses and therapeutic strategies for promoting functional recovery upon partial vision loss.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing and the Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Olsen Ø, Kristoffersen A, Thuen M, Sandvig A, Brekken C, Haraldseth O, Goa PE. Manganese transport in the rat optic nerve evaluated with spatial- and time-resolved magnetic resonance imaging. J Magn Reson Imaging 2010; 32:551-60. [DOI: 10.1002/jmri.22284] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
49
|
In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging. Neuroimage 2010; 54:389-95. [PMID: 20633657 DOI: 10.1016/j.neuroimage.2010.07.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/27/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022] Open
Abstract
The superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200 μm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn(2+) injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn(2+) ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting.
Collapse
|
50
|
Kivity S, Tsarfaty G, Agmon-Levin N, Blank M, Manor D, Konen E, Chapman J, Reichlin M, Wasson C, Shoenfeld Y, Kushnir T. Abnormal olfactory function demonstrated by manganese-enhanced MRI in mice with experimental neuropsychiatric lupus. Ann N Y Acad Sci 2010; 1193:70-7. [PMID: 20398010 DOI: 10.1111/j.1749-6632.2009.05302.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mice with experimental neuropsychiatric lupus (NPSLE), induced by anti-ribosomal-P antibodies, developed depression-like behavior and a diminished sense of smell. Manganese-enhanced MRI (MEMRI) allows in vivo mapping of functional neuronal connections in the brain, including the olfactory tract. The aim of this study was to analyze and describe, via the MEMRI technique, the effect of the anti-ribosomal-P injection on the olfactory pathway. Twenty mice were intra-cerebra-ventricular injected to the right hemisphere: 10 with human anti-ribosomal-P antibodies and 10 with human IgG antibodies (control). Depression was addressed by forced swimming test and smell function was evaluated by smelling different concentrations of menthol. MEMRI was used to investigate the olfactory system in these mice. Passive transfer of anti-ribosomal-P to mice resulted in a depression-like behavior, accompanied with a significant deficit in olfactory function. MEMRI of these mice demonstrated significant reduction (P < 0.001) in normalized manganese enhancement ratios of olfactory structures, compared to control mice. We concluded that an impaired olfactory neuronal function in mice with experimental depression, mediated by passive transfer of human-anti-ribosomal-P, can be demonstrated by MEMRI.
Collapse
Affiliation(s)
- Shaye Kivity
- Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|