1
|
Klider LM, Marques AAM, Moreno KGT, da Silva GP, Mizuno GA, Farias KDS, Monteiro LM, de Almeida VP, Monchak IT, da Silva DB, Manfron J, Gasparotto Junior A. Pharmacological mechanisms involved in the diuretic activity of the ethanol-soluble fraction of Baccharis milleflora (Less.) DC. - An ethnopharmacological investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118629. [PMID: 39059687 DOI: 10.1016/j.jep.2024.118629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baccharis milleflora (Less.) DC. is a plant native to Brazil that is frequently used in traditional medicine as a diuretic and antihypertensive. However, even though it is traditionally used for these purposes, its diuretic and hypotensive effects have not been fully elucidated. AIM Investigate the cardiorenal effects of the ethanol-soluble fraction (ESBM) of Baccharis milleflora in normotensive rats. MATERIALS AND METHODS Cladodes of B. milleflora were analyzed using light and scanning electron microscopy to provide anatomical data to support quality control. Subsequently, the ESBM was obtained and analyzed using LC-DAD-MS, and its components were annotated. The acute toxicity of ESBM was assessed in female Wistar rats. The acute and prolonged diuretic and hypotensive effects were then studied in Wistar rats. Finally, we assessed the mechanisms responsible for the diuretic effects of ESBM, including the activity of renal Na+/K+/ATPase, angiotensin-converting enzyme, and erythrocyte carbonic anhydrase. Additionally, we also investigated the involvement of bradykinin, prostaglandins, and nitric oxide. RESULTS From LC-DAD-MS data, thirty-three metabolites were identified from ESBM, including chlorogenic acids, glycosylated phenolic derivatives, C-glycosylated flavones, and O-glycosylated flavonols. No signs of acute toxicity were observed in female rats. The findings showed that ESBM had significant diuretic and natriuretic effects, as well as a potassium-sparing effect. The treatment with ESBM was able to significantly decrease serum levels of creatinine and malondialdehyde, and also significantly increase levels of nitrite, an indirect marker of nitric oxide bioavailability. Furthermore, pre-treatment with L-NAME abolished all diuretic effects induced by ESBM. CONCLUSION This study presented important morpho-anatomical and phytochemical data that support the quality control of Baccharis milleflora. The ESBM exhibited a significant diuretic and natriuretic effect following acute and seven-days repeated treatment in Wistar rats, without affecting renal potassium elimination. These effects appear to be dependent on the activation of the nitric oxide-cyclic GMP pathway. This study suggests the potential use of B. milleflora preparations in clinical situations where a diuretic effect is needed.
Collapse
Affiliation(s)
- Lislaine Maria Klider
- Postgraduate Program in Pharmacology (UFPR), Federal University of Paraná, Curitiba, PR, Brazil; Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil; Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Aline Aparecida Macedo Marques
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Karyne Garcia Tafarelo Moreno
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Gabriela Pereira da Silva
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Gabriela Albertinazi Mizuno
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Katyuce de Souza Farias
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Luciane Mendes Monteiro
- Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Valter Paes de Almeida
- Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Irailson Thierry Monchak
- Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Jane Manfron
- Department of Pharmaceutical Sciences, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Arquimedes Gasparotto Junior
- Postgraduate Program in Pharmacology (UFPR), Federal University of Paraná, Curitiba, PR, Brazil; Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil.
| |
Collapse
|
2
|
Dall'Acqua S, Yagi S, Sut S, Uba AI, Ponniya SKM, Koyuncu I, Toprak K, Balos MM, Kaplan A, Çakılcıoğlu U, Zengin G. Combining chemical profiles and biological abilities of different extracts from Tanacetum nitens (Boiss. & Noë) Grierson using network pharmacology. Arch Pharm (Weinheim) 2024; 357:e2400194. [PMID: 38877616 DOI: 10.1002/ardp.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Tanacetum nitens (Boiss. & Noë) Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, β-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Le Laboratoire Agronomie et Environnement, Université de Lorraine, INRAE, LAE, Nancy, France
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kenan Toprak
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mehmet Maruf Balos
- Sanlıurfa Provincial Directorate of National Education, Sanlıurfa, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, Batman, Turkey
| | - Uğur Çakılcıoğlu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | - Gokhan Zengin
- Department of Faculty, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Alberti Á, Riethmüller E, Felegyi-Tóth CA, Czigle S, Czégényi D, Filep R, Papp N. Phytochemical Investigation of Polyphenols from the Aerial Parts of Tanacetum balsamita Used in Transylvanian Ethnobotany and Parallel Artificial Membrane Permeability Assay. PLANTS (BASEL, SWITZERLAND) 2024; 13:1652. [PMID: 38931084 PMCID: PMC11207953 DOI: 10.3390/plants13121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
In this study, based on ethnobotanical data recorded in Transylvania, the polyphenolic compounds and the permeability of the aerial part's extract of Tanacetum balsamita were investigated. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was applied for the analysis of the extracts. Parallel artificial membrane permeability assay (PAMPA) for the gastrointestinal tract and the blood-brain barrier was conducted. In the ethanolic and aqueous extracts of the species traditionally used for wound, furuncle, and liver disorders, 92 polyphenols were characterized (e.g., flavonoid, hydroxycinnamic acid, catechin, dihydroxybenzoyl, lignan derivatives, and a monoterpene) including 54 compounds identified for the first time in the plant. In the PAMPA tests, eight components were shown to be capable of passive diffusion across the studied membranes. These include apigenin and seven methoxylated flavonoid derivatives. Based on these results, methoxylated flavonoids might promote the pharmacological potential of T. balsamita to be applied in the enhancement of novel remedies.
Collapse
Affiliation(s)
- Ágnes Alberti
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (E.R.); (C.A.F.-T.)
| | - Eszter Riethmüller
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (E.R.); (C.A.F.-T.)
| | - Csenge Anna Felegyi-Tóth
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (E.R.); (C.A.F.-T.)
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Dóra Czégényi
- Department of Hungarian Ethnography and Anthropology, University of Babeş-Bolyai of Cluj-Napoca, Horea 31, RO-400202 Cluj-Napoca, Romania;
| | - Rita Filep
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., HU-7624 Pécs, Hungary;
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., HU-7624 Pécs, Hungary;
| |
Collapse
|
4
|
Karakousi CV, Xanthippi B, Theano S, Eugene K. Phytochemical analysis, antioxidant and ALR2 inhibitory activity of Sorbus torminalis (L.) fruits at different maturity stages. Fitoterapia 2024; 175:105863. [PMID: 38373500 DOI: 10.1016/j.fitote.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Thirty four compounds were identified in Sorbus torminalis (L.) fruit extracts of different maturity types by means of LC-DAD-MS (ESI+) fragmentation analysis. Both immature and mature fruits were rich in flavonoid glycosides esterified with hydroxycinnamic, phenolic and dicarboxylic acids along with benzoic, phenylpropanoic and cinnamoyl quinic acid derivatives with many of them being detected for the first time in Sorbus species and in literature. Extracts and fractions were tested for their antioxidant activity (DPPH, chemiluminescence, Rancimat assays) and the estimation of the phenolic content was carried out through Folin-Ciocalteu reagent. Ethyl acetate fraction exhibited the highest scavenging activity determined as EC50 = 1.58 ± 0.22 μg/mL and EC50 = 1.64 ± 0.24 μg/mL for immature and mature fruits respectively with the DPPH test. Chemiluminescence test indicated the same fraction having the strongest antioxidant activity with an IC50 0.41 ± 0.06 μg/mL and IC50 0.50 ± 0.02 μg/mL in both maturity types. The ethyl acetate fraction of the mature fruits is considered the most potent Aldose Reductase 2 (ALR2) inhibitor with 79% demonstrating the high nutritional value of Sorbus torminalis (L.) mature fruits as a defense mechanism against the onset of diabetes mellitus secondary complications leading to the utilization of the plant for nutritional and pharmaceutical purposes.
Collapse
Affiliation(s)
- Christina-Vasiliki Karakousi
- Department of Pharmacognosy and Phytochemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Beilektsidou Xanthippi
- Department of Pharmacognosy and Phytochemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Samara Theano
- Forest Research Institute of Thessaloniki, ELGO-DEMETER, Vassilika, Thessaloniki 57006, Greece
| | - Kokkalou Eugene
- Department of Pharmacognosy and Phytochemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
5
|
Myoli A, Choene M, Kappo AP, Madala NE, van der Hooft JJJ, Tugizimana F. Charting the Cannabis plant chemical space with computational metabolomics. Metabolomics 2024; 20:62. [PMID: 38796627 PMCID: PMC11127828 DOI: 10.1007/s11306-024-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant. OBJECTIVES Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids. METHODS Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC). RESULTS The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles. CONCLUSION These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.
Collapse
Affiliation(s)
- Akhona Myoli
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Mpho Choene
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Abidemi Paul Kappo
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | | | - Justin J J van der Hooft
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.
- Bioinformatics Group, Wageningen University, Wageningen, 6708 PB, the Netherlands.
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.
- International Research and Development Division, Omnia Group, Ltd., Bryanston, Johannesburg, 2021, South Africa.
- National Institute for Theoretical and Computational Sciences, Johannesburg, South Africa.
| |
Collapse
|
6
|
Alves MF, Katchborian-Neto A, Bueno PCP, Carnevale-Neto F, Casoti R, Ferreira MS, Murgu M, de Paula ACC, Dias DF, Soares MG, Chagas-Paula DA. LC-MS/DIA-based strategy for comprehensive flavonoid profiling: an Ocotea spp. applicability case. RSC Adv 2024; 14:10481-10498. [PMID: 38567345 PMCID: PMC10985591 DOI: 10.1039/d4ra01384k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
We introduce a liquid chromatography - mass spectrometry with data-independent acquisition (LC-MS/DIA)-based strategy, specifically tailored to achieve comprehensive and reliable glycosylated flavonoid profiling. This approach facilitates in-depth and simultaneous exploration of all detected precursors and fragments during data processing, employing the widely-used open-source MZmine 3 software. It was applied to a dataset of six Ocotea plant species. This framework suggested 49 flavonoids potentially newly described for these plant species, alongside 45 known features within the genus. Flavonols kaempferol and quercetin, both exhibiting O-glycosylation patterns, were particularly prevalent. Gas-phase fragmentation reactions further supported these findings. For the first time, the apigenin flavone backbone was also annotated in most of the examined Ocotea species. Apigenin derivatives were found mainly in the C-glycoside form, with O. porosa displaying the highest flavone : flavonol ratio. The approach also allowed an unprecedented detection of kaempferol and quercetin in O. porosa species, and it has underscored the untapped potential of LC-MS/DIA data for broad and reliable flavonoid profiling. Our study annotated more than 50 flavonoid backbones in each species, surpassing the current literature.
Collapse
Affiliation(s)
- Matheus Fernandes Alves
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Albert Katchborian-Neto
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Paula Carolina Pires Bueno
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) Theodor-Echtermeyer-Weg 1 14979 Großbeeren Germany
| | - Fausto Carnevale-Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington 850 Republican Street Seattle Washington 98109 USA
| | - Rosana Casoti
- Antibiotics Department, Federal University of Pernambuco 50670-901 Recife Pernambuco Brazil
| | - Miller Santos Ferreira
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Michael Murgu
- Waters Corporation Alameda Tocantins 125, Alphaville 06455-020 São Paulo Brazil
| | | | - Danielle Ferreira Dias
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisi Gomes Soares
- Institute of Chemistry, Federal University of Alfenas-MG 37130-001 Alfenas Minas Gerais Brazil
| | | |
Collapse
|
7
|
Siniawska M, Wojdyło A. Polyphenol Profiling by LC QTOF/ESI-MS and Biological Activity of Purple Passion Fruit Epicarp Extract. Molecules 2023; 28:6711. [PMID: 37764487 PMCID: PMC10535944 DOI: 10.3390/molecules28186711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), anti-inflammatory activity (COX-1, COX-2, 15-LOX) and antioxidant activity based on ORAC and ABTS. The polyphenolic preparation of the passion fruit epicarp extract contained 51 polyphenolic compounds representing five groups-flavones (25 compounds; 52% of total polyphenolic), flavonols (8; 16%), flavan-3-ols (6; 7%), phenolic acids (4; 3%), and anthocyanins (7; 21%), with derivatives of luteolin (13 derivatives) and apigenin (8 derivatives) as dominant compounds. The preparation was characterized by an antioxidant activity of 160.7 (ORAC) and 1004.4 mmol Trolox/100 mL (ABTS+o). The inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase reached IC50 of 7.99, 12.80, and 0.42, respectively. The inhibition of cholinesterases (IC50) was 18.29 for AChE and 14.22 for BuChE. Anti-inflammatory activity as IC50 was 6.0 for COX-1, 0.9 for COX-2, and 4.9 for 15-LOX. Food enriched with passion fruit epicarp extract has a potentially therapeutic effect.
Collapse
Affiliation(s)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
8
|
Xia C, Deng J, Tong W, Chen J, Xiang Z, Yang X, Zhu B, Sun P, Li J, Pan Y, Zhu Y. Evaluation of the Antioxidant Potential of Citrus medica from Different Geographical Regions and Characterization of Phenolic Constituents by LC-MS. ACS OMEGA 2023; 8:32526-32535. [PMID: 37720798 PMCID: PMC10500571 DOI: 10.1021/acsomega.3c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
The varying antioxidant potential of Citrus medica associated with different geographical regions makes the evaluation of C. medica for natural antioxidants essential. This work aimed to compare the antioxidant potential of the phenolic constituents from different geographical regions. The chemical compositions were characterized by ultra-high-performance liquid chromatography (UPLC) coupled with mass spectrometry (MS). A total of 67 compounds including 29 coumarin derivatives and 38 flavonoids were tentatively identified by UPLC-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). To evaluate the quality of C. medica from seven different geographical regions, water and 80% methanol fractions were subjected to quantitative analysis. Antioxidant potentials were determined by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), iron chelation, and reduction methods. The samples collected from Sichuan province showed the highest content of total phenolic compounds. Combined with antioxidant results, the sample from Sichuan province presented good antioxidant activity. This study also showed that total phenolic compounds significantly contributed to the antioxidant activities (2,2-azinobis(3-ethyl-benzothiazoline-6-sulphonic acid) and radical scavenging activity) of C. medica samples (p < 0.01). These results provided chemical information and potential antioxidant value for further research, providing ideal evidence for the quality evaluation and exploitation of the source.
Collapse
Affiliation(s)
- Chen Xia
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Junlin Deng
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Wen Tong
- Industrial
Crop Research Institute, Sichuan Academy
of Agriculture Sciences, Chengdu 610300, Sichuan, China
| | - Jian Chen
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Zhuoya Xiang
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Xing Yang
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Boyu Zhu
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Pei Sun
- Industrial
Crop Research Institute, Sichuan Academy
of Agriculture Sciences, Chengdu 610300, Sichuan, China
| | - Juan Li
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| | - Yu Pan
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau
University of Science and Technology, Macau 999078, China
| | - Yongqing Zhu
- Institute
of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu, Sichuan 610066, China
| |
Collapse
|
9
|
Kim CK, Yu S, Lee M. Molecular networking-guided isolation strategy of a new C-glycosyl flavone rotamer from Stellaria alsine and evaluation of anti-inflammatory and antioxidant activities. Metabolomics 2023; 19:79. [PMID: 37670170 DOI: 10.1007/s11306-023-02042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
INTRODUCTION Stellaria alsine has traditionally been used as both a famine relief food and an alternative medicine in East Asia. Modern pharmacological studies have revealed that S. alsine has various biological effects such as anticancer, anti-hepatoma, anti-inflammatory, and antioxidative effects. However, the anti-inflammatory properties of chemical constituents derived from this plant have not been studied well. OBJECTIVES To identify potential therapeutic candidate for treating inflammatory diseases such as inflammatory bowel disease (IBD). METHODS The distribution of chemical compounds was investigated by Global Natural Product Social (GNPS)-based molecular networking (MN) analysis using UPLC-Orbitrap tandem mass spectrometry. The anti-inflammatory and antioxidative effects of S. alsine extracts and fractions were evaluated by measuring interleukin (IL)-8 and reactive oxygen species (ROS) productions. RESULTS The active EA layer of S. alsine showed the highest percentage of major compounds by feature-based molecular networking. The top candidate structures of EA fraction were rapidly annotated as flavone C- or O-glycosides via an advanced analysis tool, Network Annotation Propagation (NAP). With the GNPS molecular networking-guided isolation strategy, a new C-glycosyl flavone rotamer (1) was isolated. The structures of the major (1a) and minor (1b) rotational isomers were determined by extensive NMR analysis and MS/MS fragmentation. Finally, the anti-inflammatory activity of 1 was predicted by molecular docking simulations with IL-8 protein. CONCLUSION These results suggested that the compound 1 is a potential therapeutic candidate for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Chang-Kwon Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Korea
| | - Soojung Yu
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Korea.
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon, 57922, Jeonnam, Korea.
| |
Collapse
|
10
|
Romero AK, Portillo DJ, Beltrán SB, Sierra LJ, Álvarez CA, Ramírez KJ, Martínez JR, Stashenko EE. Enhanced Two-Step Extraction from Biomass of Two Cymbopogon Species Cultivated in Santander, Colombia. Molecules 2023; 28:6315. [PMID: 37687142 PMCID: PMC10488661 DOI: 10.3390/molecules28176315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The insertion of circular economy principles into the essential oil (EO) production chain aims to reduce waste generation and make integral use of harvested plant material. Higher profits from integral use with reduced waste generation contribute to the eventual use of the EO value chain as an alternative to illicit crops in Colombia (mostly coca). In this study, Java-type citronella (Cymbopogon winterianus) and palmarosa (C. martinii) plant materials were used in two consecutive processes to obtain EOs and extracts. The residual biomass after EO distillation was subjected to ultrasound-assisted hydroethanolic extraction to afford extracts that contained bioactive compounds. Citronella and palmarosa were distilled with typical EO yields (1.0 ± 0.1% for citronella; 0.41 ± 0.06% for palmarosa; n = 5) either through hydrodistillation assisted by microwave radiation or through steam distillation, and their composition (determined via GC/FID/MS analysis) and physicochemical parameters fell within their ISO standard specifications. The concentration of citronellal, the major compound of citronella oil, was 500 ± 152 mg/g. Geraniol, the main component of palmarosa oil, was found at 900 ± 55 mg/g. The citronella and palmarosa hydroalcoholic extracts (4-11% yield) were analyzed with UHPLC-ESI-Orbitrap-MS, which permitted the identification of 30 compounds, mainly C-glycosylated flavones and hydroxycinnamic acids. Both extracts had similar antioxidant activity values, evaluated using the ABTS+● and ORAC assays (110 ± 44 µmol Trolox®/g extract and 1300 ± 141 µmol Trolox®/g extract, respectively).
Collapse
Affiliation(s)
- Angie K. Romero
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Daysy J. Portillo
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Sheila B. Beltrán
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Lady J. Sierra
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Camilo A. Álvarez
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| | - Karen J. Ramírez
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| | - Jairo R. Martínez
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| | - Elena E. Stashenko
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| |
Collapse
|
11
|
Rodríguez EP, Li Y, Vaniya A, Shih PM, Fiehn O. Alternative Identification of Glycosides Using MS/MS Matching with an In Silico-Modified Aglycone Mass Spectra Library. Anal Chem 2023; 95:10618-10624. [PMID: 37390485 PMCID: PMC11493435 DOI: 10.1021/acs.analchem.3c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Glycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed. Classically, glycosylated metabolites were identified by mass spectrometry (MS/MS) using [M-sugar] neutral losses. Herein, we studied 71 pairs of glycosides with their respective aglycones, including hexose, pentose, and glucuronide moieties. Using liquid chromatography (LC) coupled to electrospray ionization high-resolution mass spectrometry, we detected the classic [M-sugar] product ions for only 68% of glycosides. Instead, we found that most aglycone MS/MS product ions were conserved in the MS/MS spectra of their corresponding glycosides, even when no [M-sugar] neutral losses were observed. We added pentose and hexose units to the precursor masses of an MS/MS library of 3057 aglycones to enable rapid identification of glycosylated natural products with standard MS/MS search algorithms. When searching unknown compounds in untargeted LC-MS/MS metabolomics data of chocolate and tea, we structurally annotated 108 novel glycosides in standard MS-DIAL data processing. We uploaded this new in silico-glycosylated product MS/MS library to GitHub to enable users to detect natural product glycosides without authentic chemical standards.
Collapse
Affiliation(s)
- Elys P Rodríguez
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Yuanyue Li
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Arpana Vaniya
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 97420, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Pecio Ł, Kozachok S, Saber FR, Garcia-Marti M, El-Amier Y, Mahrous EA, Świątek Ł, Boguszewska A, Skiba A, Elosaily AH, Skalicka-Woźniak K, Simal-Gandara J. Metabolic profiling of Ochradenus baccatus Delile. utilizing UHPLC-HRESIMS in relation to the in vitro biological investigations. Food Chem 2023; 412:135587. [PMID: 36739726 DOI: 10.1016/j.foodchem.2023.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Ochradenus baccatus Delile (Resedaceae) is a desert plant with edible fruits native to the Middle East. Few investigators have reported antibacterial, antiparasitic and anti-cancer activities of the plant. Herein we evaluated the cytotoxic activity of O. baccatus using four cell lines and a zebrafish embryo model. Additionally, liquid chromatography coupled with mass spectroscopy was performed to characterize the extract's main constituents. The highest cytotoxicity was observed against human cervical adenocarcinoma (HeLa), with CC50 of 39.1 µg/mL and a selectivity index (SI) of 7.23 (p < 0.01). Metabolic analysis of the extract resulted in the annotation of 57 metabolites, including fatty acids, flavonoids, glucosinolates, nitrile glycosides, in addition to organic acids. The extract showed an abundance of hydroxylated fatty acids (16 peaks). Further, 3 nitrile glycosides have been identified for the first time in Ochradenus sp., in addition to 2 glucosinolates. These identified phytochemicals may partially explain the cytotoxic activity of the extract. We propose O. baccatus as a possible safe food source for further utilization to partially contribute to the increasing food demand specially in Saharan countries.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; Department of Natural Products Chemistry, Medical University of Lublin, Lublin 20-093, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Maria Garcia-Marti
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| | - Yasser El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Engy A Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, Poland.
| | | | - Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin 20-093, Poland.
| | - Ahmed H Elosaily
- Department of Pharmacognosy, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt
| | | | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
13
|
Frański R, Beszterda-Buszczak M. Comment on Villalva et al. Antioxidant, Anti-Inflammatory, and Antibacterial Properties of an Achillea millefolium L. Extract and Its Fractions Obtained by Supercritical Anti-Solvent Fractionation against Helicobacter pylori. Antioxidants 2022, 11, 1849. Antioxidants (Basel) 2023; 12:1226. [PMID: 37371956 DOI: 10.3390/antiox12061226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Villalva et al. evaluated the potential utility of an Achillea millefolium (yarrow) extract in the control of H. pylori infection. The agar-well diffusions bioassay was applied to determine the antimicrobial activity of yarrow extracts. The supercritical anti-solvent fractionation process of yarrow extract was made to give two different fractions with polar phenolic compounds and monoterpenes and sesquiterpenes, respectively. Phenolic compounds were identified by HPLC-ESIMS by using the accurate masses of [M-H]- ions and the characteristic product ions. However, some of the reported product ions seem to be disputable, as described below.
Collapse
Affiliation(s)
- Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Monika Beszterda-Buszczak
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Mazowiecka 48, 60-623 Poznań, Poland
| |
Collapse
|
14
|
Berikashvili V, Khardziani T, Kobakhidze A, Kulp M, Kuhtinskaja M, Lukk T, Gargano ML, Venturella G, Kachlishvili E, Metreveli E, Elisashvili VI, Asatiani M. Antifungal Activity of Medicinal Mushrooms and Optimization of Submerged Culture Conditions for Schizophyllum commune (Agaricomycetes). Int J Med Mushrooms 2023; 25:1-21. [PMID: 37830193 DOI: 10.1615/intjmedmushrooms.2023049836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The main goal of the present study was the exploration of the antifungal properties of Agaricomycetes mushrooms. Among twenty-three tested mushrooms against A. niger, B. cinerea, F. oxysporum, and G. bidwellii, Schizophyllum commune demonstrated highest inhibition rates and showed 35.7%, 6.5%, 50.4%, and 66.0% of growth inhibition, respectively. To reveal culture conditions enhancing the antifungal potential of Sch. commune, several carbon (lignocellulosic substrates among them) and nitrogen sources and their optimal concentrations were investigated. Presence of 6% mandarin juice production waste (MJPW) and 6% of peptone in nutrient medium promoted antifungal activity of selected mushroom. It was determined that, extracts obtained in the presence of MJPW effectively inhibited the grow of pathogenic fungi. Moreover, the content of phenolic compounds in the extracts obtained from Sch. commune grown on MJPW was several times higher (0.87 ± 0.05 GAE/g to 2.38 ± 0.08 GAE/g) than the extracts obtained from the mushroom grown on the synthetic (glycerol contained) nutrient medium (0.21 ± 0.03 GAE/g to 0.88 ± 0.05 GAE/g). Flavonoid contents in the extracts from Sch. commune varied from 0.58 ± 0.03 to 27.2 ± 0.8 mg QE/g. Identification of phenolic compounds composition in water and ethanol extracts were provided by mass spectrometry analysis. Extracts demonstrate considerable free radical scavenging activities and the IC50 values were generally low for the extracts, ranging from 1.9 mg/ml to 6.7 mg/ml. All the samples displayed a positive correlation between their concentration (0.05-15.0 mg/ml) and DPPH radical scavenging activity. This investigation revealed that Sch. commune mushroom has great potential to be used as a source of antifungal and antioxidant substances.
Collapse
Affiliation(s)
- Violeta Berikashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Tamar Khardziani
- Durmishidze Institute of Biochemistry and Biotechnology, Academy of Science of Georgia, 10 km Agmashenebeli kheivani, 0159 Tbilisi, Georgia; Institute of Microbial Biotechnology, Agricultural University of Georgia, Tbilisi, Georgia
| | - Aza Kobakhidze
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Maria Kulp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Letizia Gargano
- Departament of Schol, Plant, and Food Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Giuseppe Venturella
- Italian Society of Medicinal Mushrooms, Pisa, Italy; Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Eva Kachlishvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Eka Metreveli
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Vladimir I Elisashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Mikheil Asatiani
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| |
Collapse
|
15
|
Cavichi LV, Liberal Â, Dias MI, Mandim F, Pinela J, Kostić M, Soković M, Kalschne DL, Fernandes Â, Canan C, Barros L, Amaral JS. Chemical Composition and Biological Activity of Commelina erecta: An Edible Wild Plant Consumed in Brazil. Foods 2023; 12:192. [PMID: 36613411 PMCID: PMC9818490 DOI: 10.3390/foods12010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
In recent years, the interest in products of natural origin has boosted the exploitation and use of plants as food and sources of bioactive compounds, especially wild plants widely used in different cultures for several purposes. Commelina erecta is a wild edible plant (WEP) traditionally used as food and medicine, about which few studies exist. Thus, this study aimed at enhancing the knowledge about its nutritional, chemical and bioactive profile, considering different plant parts and development stages, in order to increase its inclusion in the diet of South American communities. The nutritional profile was found to be similar to other WEP frequently consumed in Brazil. Thirteen phenolic compounds (HPLC-DAD-ESI/MS) were tentatively identified, with apigenin, luteolin and quercetin derivatives being the most abundant. Fructose and oxalic acid were the major sugar and organic acid, respectively, in the aerial parts of C. erecta, and four isoforms of tocopherols were also identified. Regarding the plant's antioxidant activity, the EC50 values varied between 18.4 and 1060 µg/mL in the inhibition of lipid peroxidation assay (TBARS) and between 53 and 115 µg/mL in the oxidative haemolysis inhibition (OxHLIA) assay. The hydroethanolic extract obtained from stems at the flowering stage also presented anti-inflammatory activity. In general, all the extracts evidenced promising antimicrobial activity. Altogether, these results reinforce the traditional use of this plant species as food and medicine to support the diet of needier populations and also promote food sovereignty and sustainability.
Collapse
Affiliation(s)
- Lucas Vinicius Cavichi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Department of Food Sciences, Federal Technological University of Paraná, Medianeira 85884-000, Brazil
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Marina Kostić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Daneysa Lahis Kalschne
- Department of Food Sciences, Federal Technological University of Paraná, Medianeira 85884-000, Brazil
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Cristiane Canan
- Department of Food Sciences, Federal Technological University of Paraná, Medianeira 85884-000, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
16
|
Sun Y, Fu Y, Chen R, Zhang Y, Liao T, Xi H, Sun S, Cheng Z. Profiling of volatile and non-volatile compounds in Dianhong by a combined approach of static headspace GC-MS and UPLC-MS. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2136761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Yanzhi Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Yingjie Fu
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou, China
| | - Rirong Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yipeng Zhang
- Technology Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Tougen Liao
- Technology Center, China Tobacco Yunnan Industrial Company, Kunming, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou, China
| | - Shihao Sun
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou, China
| | - Zhihong Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Metabolite Profiling, Antioxidant and Key Enzymes Linked to Hyperglycemia Inhibitory Activities of Satureja hispidula: An Underexplored Species from Algeria. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248657. [PMID: 36557791 PMCID: PMC9785979 DOI: 10.3390/molecules27248657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
In the present study, two extracts from the aerial parts of the endemic species Satureja hispidula were analyzed for the first time by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS) method in order to identify and quantify their phenolic compounds. These extracts' antioxidant, α-glucosidase and α-amylase inhibitory activities were also evaluated. UHPLC-DAD-ESI/MS allowed the identification of 28 and 20 compounds in the ethanolic and aqueous extracts, respectively; among them, 5-O-caffeoylquinic acid was the most abundant in both extracts. The biological assay results indicate that the species S. hispidula, besides its high antioxidant power, is also potentially useful for inhibiting the α-glucosidase enzyme. In both antioxidant and α-glucosidase inhibitory assays, the aqueous extract exhibited the most promising results, significantly better than the standards used as positive controls.
Collapse
|
18
|
Okasha H, Aboushousha T, Coimbra MA, Cardoso SM, Ghareeb MA. Metabolite Profiling of Alocasia gigantea Leaf Extract and Its Potential Anticancer Effect through Autophagy in Hepatocellular Carcinoma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238504. [PMID: 36500595 PMCID: PMC9740247 DOI: 10.3390/molecules27238504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a poor-prognosis type of cancer with high resistance to chemotherapy, making the search for safe drugs a mandatory issue. Plant-derived products have potential to reduce negative side effects of cancer treatments. In this work, ability of a defatted methanolic extract of Alocasia gigantea leaves to fight HCC was evaluated in an animal model. Overall, treatment of HCC-induced mice with the methanolic extract at 150 mg/kg body weight for four consecutive weeks caused induction of autophagy through silencing of the relative expression of autophagy suppressor (mTOR) and inducement of autophagy markers (AMPK, Beclin-1, and LC-3). Moreover, it improved preservation of the hepatic histological architecture of the animals, with minor hepatocytic changes but scattered foci of hepatocytic apoptosis. Chemical profiling of the methanolic extract via ultra-high-performance liquid chromatography coupled to a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI-MS/MS) allowed identification of di-C-glycosyl flavones, mostly represented by 6-C-hexosyl-8-C-pentosyl apigenin isomers, which may possibly be associated with inducement of the autophagy pathway in HCC. Overall, these outcomes gave an initial visualization of the operative effect of some compounds in A. gigantea leaves that are potential treatment for HCC.
Collapse
Affiliation(s)
- Hend Okasha
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (S.M.C.); (M.A.G.); Tel.: +351-234-370-360 (S.M.C.); +20-(02)-01012346834 (M.A.G.); Fax: +351-234-370-084 (S.M.C.); +20-(02)-35408125 (M.A.G.)
| | - Mosad A. Ghareeb
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
- Correspondence: (S.M.C.); (M.A.G.); Tel.: +351-234-370-360 (S.M.C.); +20-(02)-01012346834 (M.A.G.); Fax: +351-234-370-084 (S.M.C.); +20-(02)-35408125 (M.A.G.)
| |
Collapse
|
19
|
Isolation of Mirificin and Other Bioactive Isoflavone Glycosides from the Kudzu Root Lyophilisate Using Centrifugal Partition and Flash Chromatographic Techniques. Molecules 2022; 27:molecules27196227. [PMID: 36234764 PMCID: PMC9570587 DOI: 10.3390/molecules27196227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pueraria lobata (Willd.) Ohwi is a legume taxon native to Southeast Asia and widely used in traditional medicine systems of that region. The therapeutic applications of the underground parts of this species (known as kudzu root) are related to its high content of isoflavones, mainly the characteristic C-glycoside derivatives. Within this group, the most explored compound both phytochemically and pharmacologically is puerarin. However, current scientific findings document important anti-biodegenerative effects for some of the minor isoflavones from kudzu roots. Therefore, the main objective of the study was to develop an original preparative method that allowed the efficient isolation of closely related hydrophilic daidzein C-glycosides, including mirificin, from vacuum-dried aqueous-ethanolic extracts of kudzu roots. For this purpose, the combined centrifugal partition (CPC) and flash chromatographic (FC) techniques were elaborated and used. The optimized biphasic solvent system in CPC, with ethyl acetate, ethanol, water, and 0.5% (V/V) acetic acid as a mobile phase modifier, enabled the purification and separation of the polar fraction containing bioactive isoflavones and ultimately the isolation of mirificin, 3′-hydroxy- and 3′-methoxypuerarin, puerarin, and daidzin using FC. The identity of isoflavones was confirmed using spectroscopic (UV absorption and nuclear magnetic resonance) and mass spectrometric methods. The determined purity of isolated mirificin was 63%.
Collapse
|
20
|
Sut S, Tahmasebi A, Ferri N, Ferrarese I, Rossi I, Panighel G, Lupo MG, Maggi F, Karami A, Dall’Acqua S. NMR, LC-MS Characterization of Rydingia michauxii Extracts, Identification of Natural Products Acting as Modulators of LDLR and PCSK9. Molecules 2022; 27:2256. [PMID: 35408655 PMCID: PMC9000307 DOI: 10.3390/molecules27072256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Rydingia michauxii (Briq.) Scheen and V.A.Albert (Lamiaceae) is used in Iranian traditional medicine to treat malaria, diabetes, hyperlipidemia, rheumatism and cardiovascular diseases. NMR and LC-DAD-MSn analyses were used to establish extract composition and phenylethanoid, flavonoid glycosides, lignans, labdane diterpenes and iridoids were identified and quantified. The main constituents were isolated, and structures were elucidated based on NMR, polarimetric and MS measurements. A new natural compound, ent-labda-8(17),13-dien-18-glucopyranosyl ester-15,16-olide is described here. The effects of ent-labda-8(17),13-dien-18-oic acid-15,16-olide (1), ent-labda-8(17),13-dien-18-glucopyranosyl es-ter-15,16-olide (2), antirrhinoside (3), echinacoside (4), verbascoside (5), and apigenin 6,8-di-C-glucoside (6), on the low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), were studied in the human hepatocarcinoma cell line Huh7. Among the six constituents, (3) showed the strongest induction of the LDLR (3.7 ± 2.2 fold vs. control) and PCSK9 (3.2 ± 1.5 fold vs. control) at a concentration of 50 µM. The in vitro observations indicated a potential lipid lowering activity of (3) with a statin-like mechanism of action.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 79177, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 79177, Iran
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35122 Padova, Italy;
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Giovanni Panighel
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 7134754331, Iran
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| |
Collapse
|
21
|
Goh RMV, Ee KH, Pua A, Huang Y, Liu SQ, Lassabliere B, Yu B. Neutral loss scan in complement with high-resolution MS/MS: Combination of detection methods for flavonoid and limonoid glycosides analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4810. [PMID: 35088488 DOI: 10.1002/jms.4810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
In this study, neutral loss scan and high-resolution MS/MS were used in combination to detect and tentatively identify various flavonoid and limonoid glycosides in navel orange albedo, juice, peel and pulp. These compound classes are of research interest due to their flavour and bioactive properties, and although flavonoid glycosides have been previously studied in other food matrices, to the best of our knowledge, neutral loss scans have not been used for the elucidation of limonoid glycosides. Neutral loss masses of 120, 162 and 308 Da were selected for the detection of hexose, rutinose and neohesperidose-substituted flavonoids, whereas 197 Da was explored for limonoid glycosides due to their tendency to form ammonium adducts. Fragmentation patterns obtained from targeted MS/MS were then used to differentiate rutinose and neohesperidose substituents as well as flavonoid subclasses of flavones, flavanones and flavonols. Additionally, high-resolution MS/MS was also used for the identification of aglycones by accurate mass (to four decimal places), allowing for the differentiation of aglycones with similar unit masses but different chemical formulas. In total, 19 flavonoid glycosides and six limonoid glycosides were detected. This workflow allows for a rapid screening of flavonoid and limonoid glycosides in citrus, which can be further extended to other food products such as tea.
Collapse
Affiliation(s)
- Rui Min Vivian Goh
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | - Aileen Pua
- Department of Food Science and Technology, National University of Singapore, Singapore
- Mane SEA PTE LTD, Singapore
| | - Yunle Huang
- Department of Food Science and Technology, National University of Singapore, Singapore
- Mane SEA PTE LTD, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Singapore
| |
Collapse
|
22
|
Carotenoid and phenolic compound profiles of cooked pulps of orange and yellow peach palm fruits (Bactris gasipaes) from the Brazilian Amazonia. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Chu H, Wang J, Wang Q, Chen J, Li J, Li H, Zhang L. Protective Effect of n-Butanol Extract from Viola yedoensis on Immunological Liver Injury. Chem Biodivers 2021; 18:e2001043. [PMID: 33929783 DOI: 10.1002/cbdv.202001043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/29/2021] [Indexed: 01/17/2023]
Abstract
Viola yedoensis Makino was used to treat inflammation, viral hepatitis, acute pyogenic infection, and ulcerative carbuncles. However, the protective effect on immunological liver injury (ILI) of V. yedoensis had been rarely reported. This study aimed to explore the protective effect of n-butanol extract (BE) from V. yedoensis on ILI in vitro and in vivo. In vitro, the BE significantly inhibited the secretions of Hepatitis B surface antigen (HBsAg) and Hepatitis B e antigen (HBeAg) in the HepG2.2.15 cells and the replication of HBV DNA. The research data in vivo revealed that the BE reduced the levels of alanine transaminase (ALT), aspartate transaminase (AST), and methane dicarboxylic aldehyde (MDA) in liver tissues of the ConA-induced mice, while increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and the effective contents of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and the BE could ameliorate liver histological lesions. These results motivated a further investigation into the chemical constituents of BE. Four coumarins (esculetin, prionanthoside, cichoriin, and esculin) and one flavonoid (quercetin-3-O-galactoside) were isolated from the BE by silica gel column chromatography and recrystallization, of which structures were eventually confirmed by 1 H-NMR, 13 C-NMR, and MS.
Collapse
Affiliation(s)
- Haiqing Chu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Jiexin Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Qian Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Jie Chen
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Jiaoning Li
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Hangying Li
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China.,Ningxia Engineering and Technology Research Center for Modernization of Chinese Medicine, Yinchuan, 750004, P. R. China
| | - Liming Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China.,Ningxia Engineering and Technology Research Center for Modernization of Chinese Medicine, Yinchuan, 750004, P. R. China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, 750004, P. R. China
| |
Collapse
|
24
|
Wang ZY, Chu FH, Gu NN, Wang Y, Feng D, Zhao X, Meng XD, Zhang WT, Li CF, Chen Y, Wei SS, Ma ZQ, Lin RC, Zhao CJ, Zou DX. Integrated strategy of LC-MS and network pharmacology for predicting active constituents and pharmacological mechanisms of Ranunculus japonicus Thunb. for treating rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113818. [PMID: 33465444 DOI: 10.1016/j.jep.2021.113818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ranunculus japonicus Thunb. (short for R. japonicus) is a topically applied herb with the activities of removing jaundice, nebula and edema, preventing malaria, stopping asthma, promoting diuresis and relieving pain. It was firstly recorded in Zhouhou Beiji Fang and has been used for the treatment of malaria, ulcers, carbuncle, jaundice, migraine, stomachache, toothache and arthritis for over 1800 years. AIM OF THE STUDY This study aimed to uncover the potentially effective components of R. japonicus and the pharmacological mechanisms against rheumatoid arthritis (RA) by combing LC-MS and network pharmacology. MATERIALS AND METHODS Firstly, the chemical constituents of R. japonicus were qualitatively identified by UPLC-ESI-LTQ-Orbitrap MS. Then we performed target prediction by PharmMapper, protein-protein interaction (PPI) analysis via String, GO and KEGG pathway enrichment analysis by DAVID and constructed the compound-target-pathway network using Cytoscape. Thirdly, crucial compounds in the network were quantitatively analyzed to achieve quality control of R. japonicus. Finally, the pharmacological activities of R. japonicus and two potentially bioactive ingredients were validated in RA-FLSs (Rheumatoid Arthritis Fibroblast-like Synoviocytes) in vitro. RESULTS Overall fifty-four ingredients of R. japonicus were identified and forty-five components were firstly discovered in R. japonicus. Among them, twenty-seven validated compounds were predicted to act on twenty-five RA-related targets and they might exhibit therapeutic effects against RA via positive regulation of cell migration, etc. Nine potentially bioactive components of R. japonicus which played important roles in the compound-target-pathway network were simultaneously quantified by an optimized UPLC-ESI-Triple Quad method. In vitro, compared to control group, R. japonicus extract, berberine and yangonin significantly inhibited the migration capacity of RA-FLSs after 24 h treatment. CONCLUSION This study clarified that R. japonicus and the bioactive ingredients berberine and yangonin might exert therapeutic actions for RA via suppressing the aggressive phenotypes of RA-FLSs through combined LC-MS technology and network pharmacology tools for the first time. The present research provided deeper understanding into the chemical profiling, pharmacological activities and quality control of R. japonicus and offered reference for further scientific research and clinical use of R. japonicus in treating RA.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fu-Hao Chu
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Nian-Nian Gu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Wang
- Xi' an Manareco New Materials Co. Ltd., Xi' An, 710077, China
| | - Dan Feng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xia Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xue-Dan Meng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wen-Ting Zhang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chao-Feng Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yang Chen
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuang-Shuang Wei
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhi-Qiang Ma
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Rui-Chao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chong-Jun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Di-Xin Zou
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
25
|
Walters NA, de Beer D, de Villiers A, Danton O, Hamburger M, Joubert E. Comprehensive off-line CCC × LC-DAD-MS separation of Cyclopia pubescens Eckl. & Zeyh. phenolic compounds and structural elucidation of isolated compounds. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:347-361. [PMID: 32803806 DOI: 10.1002/pca.2981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The minor phenolic constituents of Cyclopia pubescens Eckl. & Zeyh. are unknown and one dimensional (1D) liquid chromatography (LC) is unable to provide sufficient separation. METHODOLOGY A two-dimensional (2D) LC method incorporating normal-phasehigh performance countercurrent chromatography (NP-HPCCC) in the first dimension (1 D) and reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) as the second dimension (2 D) was developed. The analytical HPCCC method was subsequently scaled up to semi-preparative mode and fractions pooled based on phenolic sub-groups. The phenolic compounds in selected fractions were subsequently isolated using RP-HPLC on a C18 column. Isolated compounds were identified by nuclear magnetic resonance (NMR) spectroscopy. The absolute configurations of compounds were determined by optical rotation and electronic circular dichroism spectra. Sugars were identified by gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS The comprehensive off-line 2D CCC × LC method gave a good spread of the phenolic compounds. Orthogonality calculated using both the convex hull and conditional entropy methods were 81%. High-resolution mass spectrometric fragmentation spectra obtained from a quadrupole-time-of-flight instrument and ultraviolet-visible (UV-vis) spectral data were used to (tentatively) identify 32 phenolic compounds from the analytical CCC fractions. Of the seven isolated compounds, (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl]eriodictyol (3) and (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl]-5,7,3',4'-tetrahydroxyflavan (4) were newly identified in all plants. The other isolated compounds were identified as (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl]naringenin (1), R-neo-eriocitrin (2), 3-O-α-l-arabinopyranosyl-3,4-dihydroxybenzoic acid (5), 4-O-β-d-glucopyranosyl-Z-4-hydroxycinnamic acid (6) and 4-(4'-O-β-d-glucopyranosyl-4'-hydroxy-3'-methoxyphenyl)-2-butanone (7). CONCLUSIONS Among the 32 compounds (tentatively) identified, only six were previously identified in Cyclopia pubescens using 1D LC. Most of the isolated compounds were also identified for the first time in Cyclopia spp., improving the knowledge of the minor phenolic compounds of this genus.
Collapse
Affiliation(s)
- Nico A Walters
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Dalene de Beer
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ombeline Danton
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
26
|
Zheng W, Sun G, Chen J, Li Z, Zhang T, Wei G, Wang H, Sun X, Zhang Z, Zhao W, Ma P, Zhang Y, Zhang C. Inhibitory effects of Coptidis Rhizoma on the intestinal absorption and metabolism of Scutellariae Radix. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113785. [PMID: 33422653 DOI: 10.1016/j.jep.2021.113785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Scutellariae Radix (SR) and Coptidis Rhizoma (CR) herb couple is widely used in traditional Chinese medicine prescriptions for the treatment of diabetes mellitus due to its interaction and synergistic effect compared to either herb alone, but the underlying mechanism of interaction between these herbs is unclear. This study aimed to investigate the effects of CR on the metabolism and absorption of SR. MATERIALS AND METHODS After rats were treated with normal saline (NS group) or the CR extract (CR-treated group) for seven consecutive days, the intestinal flora was extracted from rat faeces for a co-incubation with the SR extract to investigate the metabolism of SR flavonoids, and a non-everted gut sac was prepared in vitro to evaluate the intestinal absorption of the SR extract. The components of the SR extract, the metabolites of the SR extract that was co-incubated with intestinal flora, and the dialysate acquired from non-everted gut sacs were identified and determined by an HPLC-MS/MS method. The absorption rate constant (Ka) and the apparent permeability (Papp) of each compound were calculated, and the effects of CR on the metabolism and absorption of flavonoids in SR were evaluated, by comparison the Ka and Papp between two groups using Student's t-test. RESULTS Twenty-nine flavonoids were detected and identified in the SR extract, including 16 glycosides and 13 aglycones. In the co-incubation with the intestinal flora, differences in metabolite classes were not observed between the NS group and CR-treated group; however, the metabolic rates of 17 flavonoids in the CR-treated group were significantly higher than the NS group. The Papp of 11 compounds (4 glycosides and 7 aglycones) across the gut sac were greater than 2 × 10-5 cm/s in both groups, while the Papp values of 7 compounds including wogonoside (WG) and other aglycones were significantly decreased in the CR-treated group. CONCLUSION Based on these results, CR decreased the metabolism and absorption of SR flavonoids, and exerted much greater inhibitory effects on aglycones than glycosides, which may be one of the potential mechanisms underlying the therapeutic effects of the combination of SR and CR on diabetes mellitus.
Collapse
Affiliation(s)
- Wei Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Guixia Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jianhua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhihui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Ting Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Guijie Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Hongya Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiurui Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhe Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Wenwen Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Pengkai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yujie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chunyue Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
27
|
Dai Y, Dou Z, Zhou R, Luo L, Bian L, Chen Y, Tao J, Chen Z. Quality Evaluation of Artemisia capillaris Thunb. Based on Qualitative Analysis of the HPLC Fingerprint and UFLC-Q-TOF-MS/MS Combined with Quantitative Analysis of Multicomponents. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:5546446. [PMID: 33968459 PMCID: PMC8081635 DOI: 10.1155/2021/5546446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/17/2021] [Indexed: 05/27/2023]
Abstract
In this study, a new method was developed for the comprehensive quality evaluation (QE) of Artemisia capillaris Thunb. (A. capillaris, named Yinchenhao in Chinese), which is one of the most commonly used herbal medicines (HMs). First, fingerprints of 31 batch samples of A. capillaris were determined by HPLC, the reference fingerprint was established, and the common peaks were assigned. Second, the components of common peaks in the HPLC fingerprints were identified by ultrafast liquid chromatography- (UFLC-) Q-TOF-MS/MS. Finally, the contents of the components unambiguously confirmed by reference substances were determined, and the correlation between the contents of chlorogenic acid and the contents of others was analyzed. The results showed that there were 20 common peaks in the HPLC fingerprints of 31 batch samples. The components of these 20 common peaks were identified as ten organic acids, eight flavonoids, and two others. Among nine organic acids such as 1-caffeoylquinic acid, neochlorogenic acid, chlorogenic acid, caffeic acid, cryptochlorogenic acid, 1,3-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid, three flavonoids such as rutin, hyperoside, and isoquercetin, and one other p-hydroxyacetophenone, a total of 13 ones were unambiguously identified by comparison with reference substances; one caffeoylquinic acid glucoside and one flavone di-C-glucoside were detected in A. capillaris for the first time. There were some differences in the contents of 13 components in different samples; chlorogenic acid could be regarded as the quality marker of A. capillaris. The current established method in this study can be used for the comprehensive QE of A. capillaris and can also provide reference for the QE of the other HMs.
Collapse
Affiliation(s)
- Ying Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhihua Dou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Rongrong Zhou
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Li Bian
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
| | - Yufeng Chen
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
| | - Jinhua Tao
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Zhixian Chen
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong 226010, Jiangsu, China
| |
Collapse
|
28
|
Wang Y, Liao X, Zhou C, Hu L, Wei G, Huang Y, Lei Z, Ren Z, Liu Z, Liu Z. Identification of C-glycosyl flavones and quality assessment in Dendrobium nobile. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9012. [PMID: 33238063 DOI: 10.1002/rcm.9012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Flavones are significant indicators of quality in traditional Chinese medicines (TCMs) and thus play a significant role in the quality control of TCMs in the pharmaceutical industry. Most flavones in Dendrobium nobile Lindl, a TCM with a long cultivation history and rich sources, have not been identified. This study was aimed at identifying the flavones in D. nobile from various habitats. METHODS High-performance liquid chromatography (HPLC) coupled with diode-array detection and HPLC multiple-stage tandem mass spectrometry was used to identify the chemical constituents of D. nobile from various habitats, and a method was established to determine the content of vicenin II, violanthin and isoviolanthin. Hierarchical cluster analysis, principal component analysis and orthogonal partial least-squares discriminant analysis were used to analyze the variations among 26 batches from different habitats. RESULTS A total of 33 flavones were tentatively identified. Twenty-five flavones, previously undescribed in D. nobile, were acylated by p-coumaroyl, feruloyl, sinapoyl or 3-hydroxy-3-methylglutaryl. The D. nobile habitats were distinguished by significant differences in their flavone content. The C-glycosyl flavones were demonstrated to be characteristic compounds for evaluating D. nobile from various habitats. In particular, flavones acylated with 3-hydroxy-3-methylglutaryl were specific compounds that were only detected in samples from Yunnan. CONCLUSIONS The results of this study could be used to improve the quality control of D. nobile and could provide references for the identification of acylated C-glycosyl flavones in other natural products.
Collapse
Affiliation(s)
- Yawen Wang
- College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Xian Liao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Chujuan Zhou
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, 510260, China
| | - Li Hu
- College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuechun Huang
- College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Zhouxi Lei
- Guangzhou Baiyunshan Chenliji Pharmaceutical Co. Ltd, Guangzhou, Guangdong, 510220, China
| | - Zhiyao Ren
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhixia Liu
- Chishui Zhilv Dendrobium Ecological Park Development Co. Ltd, Zunyi, Guizhou, 564700, China
| | - Zhihua Liu
- Chishui Zhilv Dendrobium Ecological Park Development Co. Ltd, Zunyi, Guizhou, 564700, China
| |
Collapse
|
29
|
Beszterda M, Frański R. Detection of flavone C-glycosides in the extracts from the bark of Prunus avium L. and Prunus cerasus L. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:369-375. [PMID: 32996331 DOI: 10.1177/1469066720963003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The extracts from the bark of Prunus avium and Prunus cerasus have been analyzed by using high pressure liquid chromatography/electrospray ionization mass spectrometry. For the first time in the bark of Prunus species flavonoid C-glycosides have been detected. On the basis of the characteristic fragmentation patterns of their [M-H]- and [M + H]+ ions, three flavonoid C-glycosides have been identified, namely apigenin-6,8-di-C-glucoside (vicenin-2), apigenin-6-C-glucoside (isovitexin) and chrysin-8-C-glucoside. Taking into account the widely studied biological activities of flavonoid C-glycosides, the barks of these common fruit trees seem to be interesting materials of potential medical or cosmetic application.
Collapse
Affiliation(s)
- Monika Beszterda
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Poznań, Poland
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
30
|
Farooq MU, Mumtaz MW, Mukhtar H, Rashid U, Akhtar MT, Raza SA, Nadeem M. UHPLC-QTOF-MS/MS based phytochemical characterization and anti-hyperglycemic prospective of hydro-ethanolic leaf extract of Butea monosperma. Sci Rep 2020; 10:3530. [PMID: 32103043 PMCID: PMC7044436 DOI: 10.1038/s41598-020-60076-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
Butea monosperma is one of the extensively used plants in traditional system of medicines for many therapeutic purposes. In this study, the antioxidant activity, α-glucosidase and α-amylase inhibition properties of freeze drying assisted ultrasonicated leaf extracts (hydro-ethanolic) of B. monosperma have been investigated. The findings revealed that 60% ethanolic fraction exhibited high phenolic contents, total flavonoid contents, highest antioxidant activity, and promising α-glucosidase and α-amylase inhibitions. The UHPLC-QTOF-MS/MS analysis indicated the presence of notable metabolites of significant medicinal potential including apigenin, apigenin C-hexoside C-pentoside, apigenin C-hexoside C-hexoside, apigenin-6,8-di-C-pentoside and genistin etc., in B. monosperma leave extract. Docking studies were carried out to determine the possible role of each phytochemical present in leaf extract. Binding affinity data and interaction pattern of all the possible phytochemicals in leaf extract of B. monosperma revealed that they can inhibit α-amylase and α-glucosidase synergistically to prevent hyperglycemia.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, 50700, Gujrat, Pakistan
| | - Muhammad Waseem Mumtaz
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, 50700, Gujrat, Pakistan.
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University Lahore, 54000, Lahore, Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Tayyab Akhtar
- Institute of Industrial Biotechnology, Government College University Lahore, 54000, Lahore, Pakistan
| | - Syed Ali Raza
- Department of Chemistry, GC University, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, 50700, Gujrat, Pakistan
| |
Collapse
|
31
|
Liu M, Jiang Y, Liu R, Liu M, Yi L, Liao N, Liu S. Structural features guided “fishing” strategy to identification of flavonoids from lotus plumule in a self-built data “pool” by ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:122-134. [DOI: 10.1016/j.jchromb.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022]
|
32
|
Wang Y, Liang Z, Liao X, Zhou C, Xie Z, Zhu S, Wei G, Huang Y. Identification of C-glycosyl flavones by high performance liquid chromatography electrospray ionization mass spectrometry and quantification of five main C-glycosyl flavones in Flickingeria fimbriata. BMC Chem 2019; 13:94. [PMID: 31384841 PMCID: PMC6661840 DOI: 10.1186/s13065-019-0616-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Flickingeria fimbriata is commonly applied in China as a traditional Chinese medicine (TCM), however the quality control of it is incomplete. In this work, we aim to identify and quantify the structures of C-glycosyl flavones in F. fimbriata. High performance liquid chromatography-diode array detector (HPLC-DAD) and High performance liquid chromatography–electrospray ionization–multiple stage tandem mass spectrometry (HPLC–ESI–MSn) methods were combined to identify C-glycosyl flavones and determine their contents. Twenty acylated C-glycosyl flavones and ten non-acylated C-glycosyl flavones were identified for the first time in F. fimbriata on systematic MSn analysis via HPLC–ESI–MSn. The aglycones of all of these compounds were apigenin or chrysoeriol and were acylated with p-coumaric, ferulic, 3,4-dimethoxycinnamic or 3,4,5-trimethoxycinnamic acids. Furthermore, the quantification result suggest that two C-glycosyl flavones (vicenin-I and vicenin-III) with relative high contents were revealed to be more strongly acylated in F. fimbriata. The method is sufficiently precise, accurate, and sensitive for the qualitative and quantitative analysis of C-glycosyl flavones, which is expected to establish a standard for quality control and identification in this plant.
Collapse
Affiliation(s)
- Yawen Wang
- 1College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Zhiyun Liang
- 1College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Xian Liao
- 2The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Chujuan Zhou
- 1College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Zhenshan Xie
- 1College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Sha Zhu
- 1College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Gang Wei
- 3School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China.,Shaoguan Institute of Danxia Dendrobium Officinale (SIDDO), Shaoguan, 512005 China
| | - Yuechun Huang
- 1College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China.,2The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| |
Collapse
|
33
|
Liu X, Fan X, Wang X, Liu R, Meng C, Wang C. Structural characterization and screening of chemical markers of flavonoids in Lysimachiae Herba and Desmodii Styracifolii Herba by ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry based metabolomics approach. J Pharm Biomed Anal 2019; 171:52-64. [PMID: 30965221 DOI: 10.1016/j.jpba.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
Abstract
In traditional Chinese medicine, Lysimachiae Herba (LH) and Desmodii Styracifolii Herba (DSH) have been widely used for the treatment of calculi, but there is a certain focus in clinical application. Flavonoids as their pharmacologically active substances were focusly studied to make clear of their chemical compositions and reveal the similarities and differences between LH and DHS by analysis of characteristic marker components at the molecular level. An ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) approach based on metabolite profiling was established. The high-resolution data was acquired through data dependent acquisition (DDA) mode. Based on the targeted and untargeted analytical strategies, a total of 113 compounds were identified, of which 80 compounds existed in LH and 61 in DSH. Then multivariate statistical analysis was applied to further find the characteristic marker components, and a total number of 21 variables were screened as the valuable variables for discrimination. By matching with identified flavonoids, these 21 variables were corresponding to 15 flavonoids (including 6 from LH and 9 from DSH) which were firstly identified as the marker compounds. These results indicated that the UPLC-QTOF-MS/MS method with analysis strategy was a powerful tool for rapidly identification and screening of marker compounds of flavonoids between LH and DSH, and the 15 screened marker compounds provide a chemical basis for the further researches on the mechanisms of LH and DSH in the treatment of cholelithiasis and nephrolithiasis respectively.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xueyan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xin Wang
- Pharmacy Department, Affiliated Hospital of Hebei University, 212 East Yuhua Road, Baoding, Hebei 071000, PR China
| | - Ruina Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Caifeng Meng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Chunying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
34
|
Hassan WH, Abdelaziz S, Al Yousef HM. Chemical Composition and Biological Activities of the Aqueous Fraction of Parkinsonea aculeata L. Growing in Saudi Arabia. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Qiao LM, Lou D, Liu HW, Zhang YT. Monitoring the ingredient change during the production of Tan Re Qing capsules from Scutellariae Radix by HPLC-MS/MS. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1565831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li-Man Qiao
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Lou
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong-Wei Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - You-Ting Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Estrella-Parra EA, Espinosa-González AM, García-Bores AM, Zamora-Salas SX, Benítez-Flores JC, González-Valle MR, Hernández-Delgado CT, Peñalosa-Castro I, Avila-Acevedo JG. Flavonol glycosides in Dyssodia tagetiflora and its temporal variation, chemoprotective and ameliorating activities. Food Chem Toxicol 2018; 124:411-422. [PMID: 30576709 DOI: 10.1016/j.fct.2018.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
Dyssodia tagetiflora is known as 'Tzaracata' and 'flor de muerto'. Recently, D. tagetiflora has been reported to have antioxidant activities in its polar extracts as well as insecticidal activities. Hyperoside (1), avicularin (2) and avicularin acetate (3) have been isolated previously. However, the temporary variation in glycoside flavonoids biosynthesis, as well as antibacterial and chemoprotective activities, have not been reported. The amount of 1, 2 and 3 in the different collections was characterized by HPLC-MS. Two new C-glycosides were characterized, quercetin-4'-methyl ether 6-C glucoside (A1) and quercetin-4'-methyl ether 8-C glucoside (A2), as well as [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxochromen-3-yl]3,4,5-trihydroxyoxane-2,6-dicarboxylate (A3). This is the first report of the presence of C-C flavonoid glycosides compounds in the genus Dyssodia. Hyperoside was the majority compound at all collections. The methanolic extracts of August 2016 and October 2017 were active against Micrococcus luteus and Bacillus subtillis. The methanolic extract has chemoprotective effects because, when applied topically in SKH-1 mice, it decreases the severity of epidermal damage induced by acute exposure to ultraviolet radiation. In addition, cutaneous photocarcinogenesis was decreased in mice treated with the extract. The methanolic extract of D. tagetiflora has chemoprotective properties by decreasing the damage caused by acute and chronic exposure to UV in mice.
Collapse
Affiliation(s)
- E A Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - A M Espinosa-González
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - A M García-Bores
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - S X Zamora-Salas
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - J C Benítez-Flores
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Edo. de México, México
| | - M R González-Valle
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Edo. de México, México
| | - C T Hernández-Delgado
- Laboratorio de Farmacognosia, UBIPRO, Universidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - I Peñalosa-Castro
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - J G Avila-Acevedo
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| |
Collapse
|
37
|
Structural profile of soluble and bound phenolic compounds in teff (Eragrostis tef) reveals abundance of distinctly different flavones in white and brown varieties. Food Chem 2018; 263:265-274. [DOI: 10.1016/j.foodchem.2018.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/18/2023]
|
38
|
Zhong L, Wu G, Fang Z, Wahlqvist ML, Hodgson JM, Clarke MW, Junaldi E, Johnson SK. Characterization of polyphenols in Australian sweet lupin (Lupinus angustifolius) seed coat by HPLC-DAD-ESI-MS/MS. Food Res Int 2018; 116:1153-1162. [PMID: 30716901 DOI: 10.1016/j.foodres.2018.09.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Seeds of the legume lupin (Lupinus spp.) are becoming increasingly important as human food. The seed coat, at ~25% of the whole seed of Lupinus angustifolius (Australian sweet lupin, ASL), is the main by-product of lupin kernel flour production. The primary market for lupin seed coat is low value feed with very limited use in foods. In this study, seed coats of six ASL commercial varieties from two growing sites were sampled for identification and quantification of polyphenols using a high-performance liquid chromatography (HPLC) with diode array detector (DAD) and coupled with a triple quadrupole mass spectrometer which equipped with electrospray ionization source (ESI-MS/MS). Three flavones (apigenin-7-O-β-apiofuranosyl-6,8-di-C-β-glucopyranoside, vicenin 2, and apigenin-7-O-β-glucopyranoside), one isoflavone (genistein) and one dihydroflavonol derivative (aromadendrin-6-C-β-d-glucopyranosyl-7-O-[β-D-apiofuranosyl-(1 → 2)]-O-β-D-glucopyranoside), and several hydroxybenzoic and hydroxycinnamic acid derivatives were identified. Considerable variations in levels of individual polyphenols were found but apigenin-7-O-β-apiofuranosyl-6,8-di-C-β-glucopyranoside was the predominant polyphenol in all samples accounting for 73.08-82.89% of the total free polyphenols. These results suggest that ASL seed coat could be valuable dietary source of polyphenols.
Collapse
Affiliation(s)
- Liezhou Zhong
- School of Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongxiang Fang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark L Wahlqvist
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Monash Asia Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; Medical School, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia 6000, Australia
| | - Michael W Clarke
- Metabolomics Australia, Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Edwin Junaldi
- School of Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Stuart K Johnson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
39
|
Kang KB, Gao M, Kim GJ, Choi H, Sung SH. Rhamnellosides A and B, ω-Phenylpentaene Fatty Acid Amide Diglycosides from the Fruits of Rhamnella franguloides. Molecules 2018; 23:molecules23040752. [PMID: 29587348 PMCID: PMC6017831 DOI: 10.3390/molecules23040752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022] Open
Abstract
Two new ω-phenylpentaene fatty acid amide diglycosides, rhamnellosides A (1) and B (2), were isolated from the fruits of Rhamnella franguloides (Rhamnaceae). These compounds were prioritized using LC-MS/MS molecular networking dereplication based on our previous discovery of 2-acetoxy-ω-phenylpentaene fatty acid triglycosides berchemiosides A−C from a phylogenetically related species, Berchemia berchemiifolia. The structures of the isolated compounds were elucidated by spectroscopic analyses in combination with chemical derivatization. The pentaene groups of 1 and 2 were found to have (6E, 8E, 10Z, 12Z, 14E)-geometry, which is the same as that found in berchemioside A.
Collapse
Affiliation(s)
- Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Ming Gao
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea.
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea.
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea.
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
40
|
Wang YL, Zhang L, Li MY, Wang LW, Ma CM. Lignans, flavonoids and coumarins from Viola philippica and their α-glucosidase and HCV protease inhibitory activities. Nat Prod Res 2018; 33:1550-1555. [PMID: 29334261 DOI: 10.1080/14786419.2017.1423305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two lignans including a new one, five flavonoids and five coumarins were isolated from the whole plant of Viola philippica (synonymised as Viola yedoensis Makino). The new compound was structurally determined as (7R,8S,8'S) -3,3'-dimethoxy- 4,4',9-trihydroxy- 7,9'-epoxy-8,8'-lignan 9-O-rutinoside by analysis of its NMR, MS and CD spectroscopic data. The known compounds were characterised by comparing their NMR and MS data with those reported. Among the known compounds, 5-hydroxy-4'-methoxyflavone-7-O- rutinoside, 6,7-di-O-β-D- glucopyranosylesculetin, and 7R,8S-dihydrodehydrodiconiferyl alcohol 4-O-β-D- glucopyranoside were isolated and identified from this genus for the first time. Of these compounds, 5-hydroxy-4'-methoxyflavone-7-O-rutinoside and (7R,8S,8'S) -3,3'-dimethoxy- 4,4',9-trihydroxy- 7,9'-epoxy-8,8'-lignan 9-O-rutinoside were potently active against α-glucosidase, while the two dimeric coumarins, 5, 5'-bi (6, 7-dihydroxycoumarin) and 6,6',7,7'-tetrahydroxy-5,8'-bicoumarin potently inhibited HCV protease.
Collapse
Affiliation(s)
- Ya-Li Wang
- a College of Life Sciences , Inner Mongolia University , Huhhot , China
| | - Lin Zhang
- a College of Life Sciences , Inner Mongolia University , Huhhot , China.,b MOE Key Laboratory of Bioinformatics, School of Life Science , Tsinghua University , Beijing , China
| | - Meng-Yan Li
- a College of Life Sciences , Inner Mongolia University , Huhhot , China
| | - Li-Wei Wang
- a College of Life Sciences , Inner Mongolia University , Huhhot , China
| | - Chao-Mei Ma
- a College of Life Sciences , Inner Mongolia University , Huhhot , China
| |
Collapse
|
41
|
Huang SF, Chu SC, Hsieh YH, Chen PN, Hsieh YS. Viola Yedoensis Suppresses Cell Invasion by Targeting the Protease and NF-κB Activities in A549 and Lewis Lung Carcinoma Cells. Int J Med Sci 2018; 15:280-290. [PMID: 29511364 PMCID: PMC5835699 DOI: 10.7150/ijms.22793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer metastasis is a vital trait in malignancies with complicated early diagnosis and therapeutic management. Therefore, the development of new remedies and the utilization of natural medicines that target metastasis are of great interest and have been studied extensively. Chinese medicinal herbs have various anti-carcinogenesis properties; however, the in vitro effect and mechanism of Viola yedoensis on cancer cell metastasis remains poorly understood. V. yedoensis extracts (VYE) can suppress the invasion of a highly metastatic human lung cancer cell line, A549 cells. According to gelatin zymography and casein zymography assays, VYE inhibited the activities of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (u-PA). The results of reverse transcription-polymerase chain reaction and Western blotting revealed that VYE can alter the expression of proteinase inhibitor. VYE also suppressed the DNA binding activity of nuclear factor-kappa B. We concluded that VYE may inhibit tumor invasion by suppressing the activities of MMP and u-PA in lung cancer cells.
Collapse
Affiliation(s)
- She-Fang Huang
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan, ROC
| | - Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University, Taichung City, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University, Taichung City, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shang Medical University, Taichung City, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
42
|
Cisilotto J, Sandjo LP, Faqueti LG, Fernandes H, Joppi D, Biavatti MW, Creczynski-Pasa TB. Cytotoxicity mechanisms in melanoma cells and UPLC-QTOF/MS 2 chemical characterization of two Brazilian stingless bee propolis: Uncommon presence of piperidinic alkaloids. J Pharm Biomed Anal 2017; 149:502-511. [PMID: 29197804 DOI: 10.1016/j.jpba.2017.11.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022]
Abstract
The present study characterized propolis extracts produced by Scaptotrigona bipunctata (Tubuna) and Melipona quadrifasciata (Mandaçaia) by LC-MS/MS; their cytotoxicity as well as the mechanism of action in a melanoma cellular model were also assessed. The chemical characterization performed by UPLC-ESI-QTOF/MS2 analysis revealed uncommon presence of piperidinic alkaloids in Tubuna's propolis extract together with C-glycopyranoside flavonoids. Mandaçaia's propolis collected in the same area rather presented terpenoids and flavonoids. Regarding the mechanism of cytotoxicity, propolis extracts increased the accumulation of reactive oxygen species (ROS), reduced the potential of mitochondrial membrane, induced a decrease in the proteins Bcl-2 and AKT-3 levels, and decreased melanoma cells' migration and invasion. Both propolis extracts induced apoptosis while only Mandaçaia's propolis extract induced cell cycle arrest in G2/M.
Collapse
Affiliation(s)
- Júlia Cisilotto
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Louis P Sandjo
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Larissa G Faqueti
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Heloísa Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Débora Joppi
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | |
Collapse
|
43
|
Picariello G, Sciammaro L, Siano F, Volpe MG, Puppo MC, Mamone G. Comparative analysis of C -glycosidic flavonoids from Prosopis spp. and Ceratonia siliqua seed germ flour. Food Res Int 2017; 99:730-738. [DOI: 10.1016/j.foodres.2017.06.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 11/29/2022]
|
44
|
Qin Y, Gao B, Shi H, Cao J, Yin C, Lu W, Yu L, Cheng Z. Characterization of flavonol mono-, di-, tri- and tetra- O -glycosides by ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and its application for identification of flavonol glycosides in Viola tianschanica. J Pharm Biomed Anal 2017; 142:113-124. [DOI: 10.1016/j.jpba.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/26/2023]
|
45
|
Llorent-Martínez EJ, Ortega-Barrales P, Zengin G, Mocan A, Simirgiotis MJ, Ceylan R, Uysal S, Aktumsek A. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food Chem Toxicol 2017; 107:609-619. [PMID: 28263865 DOI: 10.1016/j.fct.2017.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
Abstract
The genus Lathyrus has great importance in terms of food and agricultural areas. In this study, the in vitro antioxidant activity (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC and metal chelating) and enzyme inhibitory activity evaluation (acetylcholinesterase, butyrylcholinesterase, α-amylase and α-glucosidase) of L. cicera and L. digitatus were investigated, as well as their phytochemical profiles. The screening of the main phytochemical compounds in aerial parts of L. cicera and L. digitatus was carried out by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn), observing that flavonoids represent the highest percentage of identified compounds, with abundance of tri- and tetra-glycosilated flavonoids, including acylated ones, especially in L. cicera. Generally, L. digitatus exhibited stronger antioxidant and enzyme inhibitory activities in correlation with its higher level of phenolics. The high number of phenolic compounds and the results of the antioxidant and enzyme assays suggest that these plants may be further used as sources of bioactive compounds, and for the preparation of new nutraceuticals.
Collapse
Affiliation(s)
- E J Llorent-Martínez
- Regional Institute for Applied Chemistry Research (IRICA), University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - P Ortega-Barrales
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, Jaén E-23071, Spain
| | - G Zengin
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey.
| | - A Mocan
- Department of Pharmaceutical Botany, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8, V. Babes Street, Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.
| | - M J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - R Ceylan
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey
| | - S Uysal
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey
| | - A Aktumsek
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey
| |
Collapse
|
46
|
Walters NA, de Villiers A, Joubert E, de Beer D. Phenolic profiling of rooibos using off-line comprehensive normal phase countercurrent chromatography × reversed phase liquid chromatography. J Chromatogr A 2017; 1490:102-114. [DOI: 10.1016/j.chroma.2017.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 01/17/2023]
|
47
|
Geng P, Sun J, Zhang M, Li X, Harnly JM, Chen P. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMS n and mass defect filtering. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:914-930. [PMID: 27373213 PMCID: PMC5067219 DOI: 10.1002/jms.3803] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/25/2023]
Abstract
A comprehensive characterization of C-glycosyl flavones in wheat germ has been conducted using multi-stage high resolution mass spectrometry (HRMSn ) in combination with a mass defect filtering (MDF) technique. MDF performed the initial search of raw data with defined C-glycosyl flavone mass windows and mass defect windows to generate the noise-reduced data focusing on targeted flavonoids. The high specificity of the exact mass measurement permits the unambiguous discrimination of acyl groups (nominal masses of 146, 162 and 176.) from sugar moieties (rhamnose, glucose or galactose and glucuronic acid). A total of 72 flavone C-glycosyl derivatives, including 2 mono-C-glycosides, 34 di-C-glycosides, 15 tri-glycosides, 14 acyl di-C-glycosides and 7 acyl tri-glycosides, were characterized in wheat germ, some of which were considered to be important marker compounds for differentiation of whole grain and refined wheat products. The 7 acylated mono-O-glycosyl-di-C-glycosyl flavones and some acylated di-C-glycosyl flavones are reported in wheat for the first time. The frequent occurrence of numerous isomers is a remarkable feature of wheat germ flavones. Both UV and mass spectra are needed to maximize the structure information obtained for data interpretation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ping Geng
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Jianghao Sun
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Mengliang Zhang
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Xingnuo Li
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - James M Harnly
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Pei Chen
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
48
|
Qin Y, Wen Q, Cao J, Yin C, Chen D, Cheng Z. Flavonol glycosides and other phenolic compounds from Viola tianshanica and their anti-complement activities. PHARMACEUTICAL BIOLOGY 2016; 54:1140-1147. [PMID: 26083100 DOI: 10.3109/13880209.2015.1055635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Viola tianshanica Maxim. (Violaceae) is a perennial herb distributed in Central Asia, especially in the Xinjiang Uygur Autonomous Region (XUAR) of China. Preliminary study showed that the ethanol extract of the herb exhibited the anti-complement activity against the classical pathway, but the active components responsible for this capacity remain unknown and are yet to be studied. OBJECTIVE The objective of this study was the isolation and identification of the anti-complement constituents of V. tianshanica. MATERIALS AND METHODS The ethyl acetate and n-butanol fractions from the ethanol extract of V. tianshanica were purified. The structures of the isolates were identified by spectroscopic methods, and comparing their spectral data with those reported in the literature. All the isolates (0.02-2.50 mg/mL) were evaluated for their anti-complement activity against the classical and alternative pathways. RESULTS Twenty-one phenolic compounds including 15 flavonol O-glycosides (1-15), one flavone 6,8-di-C-glycoside (16), one flavone aglycone (17), and four phenolic acid derivatives (18-21) were isolated and identified. Bioassay showed that 11 compounds inhibited the classical pathway and the alternative pathway with CH50 and AP50 values of 0.113-1.210 mM and 0.120-1.579 mM, respectively. Preliminary mechanistic study using complement-depleted sera demonstrated that 1 acted on C1q, C2, C4, and C9 components, 16 on C1q, C4, and C5, and 21 on C1q, C3, C4, and C9. CONCLUSION All isolated compounds except 1 and 10 were reported for the first time from V. tianshanica. Compound 16 is the first flavone C-glycoside isolated from the herb. Flavonol O-glycosides and phenolic acids contributed the anti-complement activity of the herb.
Collapse
Affiliation(s)
- Yan Qin
- a Department of Pharmacognosy , School of Pharmacy, Fudan University , Shanghai , China and
- b Zhongshan Hospital, Fudan University , Shanghai , China
| | - Quan Wen
- a Department of Pharmacognosy , School of Pharmacy, Fudan University , Shanghai , China and
| | - Jie Cao
- a Department of Pharmacognosy , School of Pharmacy, Fudan University , Shanghai , China and
| | - Chengle Yin
- a Department of Pharmacognosy , School of Pharmacy, Fudan University , Shanghai , China and
| | - Daofeng Chen
- a Department of Pharmacognosy , School of Pharmacy, Fudan University , Shanghai , China and
| | - Zhihong Cheng
- a Department of Pharmacognosy , School of Pharmacy, Fudan University , Shanghai , China and
| |
Collapse
|
49
|
Xu H, Ma Q, Ma J, Wu Z, Wang Y, Ma C. Hepato-protective effects and chemical constituents of a bioactive fraction of the traditional compound medicine-Gurigumu-7. Altern Ther Health Med 2016; 16:179. [PMID: 27296281 PMCID: PMC4906903 DOI: 10.1186/s12906-016-1156-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gurigumu-7 is an important traditional Mongolian medicine frequently used for liver diseases. However, the pharmacological effects and the bioactive constituents are not well understood. METHOD This research was to use CCl4-induced liver damage in mice to investigate the hepatoprotective effects of Gurigumu-7 and the methanol eluted fraction from a DIAION column of an extract of Gurigumu-7 (MF). The chemical constituents of MF were analyzed by UPLC-MS. RESULTS Pretreated orally with MF (66, 132 and 264 mg/kg) once a day for 4 days dose-dependently suppressed CCl4-induced mice liver histopathological changes and serum aminotransferase activities (alanine transaminase: 1144.0 ± 787.2 v.s. 2461.8 ± 1072.7 U/L, p < 0.05; aspartate transaminase: 1173 ± 785.3 v.s. 2506.6 ± 1140.7 U/L, p < 0.01). MF treated group demonstrated increased levels of SOD (108.19 ± 30.32 v.s. 75.75 ± 5.37 U/mg protein, p < 0.01) but decreased levels of malonyldialdehyde (7.68 ± 1.95 v.s. 44.32 ± 16.68 nmol/mg protein, p < 0.01) compared to the CCl4 control group. More than 30 chemical constituents were quantified, and MF was found to be rich in ellagic acid (297.97 mg/g), luteolin and its glucosides (35.10 mg/g), apigenin and its glucosides (>30 mg/g), ursolic acid (14.91 mg/g), bidenoside C (8.75 mg/g), and proanthocyanidins (15.64 mg/g in proanthocyanidin A2 equivalent). CONCLUSION The methanol eluted fraction (MF) from a DIAION column of an extract of the Mongolian medicine-Gurigumu-7 was found to be more hepatoprotective than Gurigumu-7. The results suggested that MF is a promising bioactive fraction for the development of new hepatoprotective medicine with better formulation and quality control properties.
Collapse
|
50
|
de Villiers A, Venter P, Pasch H. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J Chromatogr A 2016; 1430:16-78. [DOI: 10.1016/j.chroma.2015.11.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
|