1
|
Liu Y, Zhang H, Zhao Z, Wang X, Kai Y, Huang D, Liu SQ, Lu Y. Germination Increases the Glucomoringin Content in Moringa Sprouts via Transforming Tyrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11278-11291. [PMID: 38708781 DOI: 10.1021/acs.jafc.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Moringa seeds are an excellent dietary source of phytochemicals (i.e., glucosinolates, GSLs; isothiocyanates, ITCs) with health-beneficial effects. Although numerous studies have been conducted on moringa seeds, the effect of germination on the regulation of GSLs remains scarcely explored. The present study investigated the dynamic changes of GSLs in moringa seeds during germination (at 25, 30, and 35 °C for 6 days in the dark) through an untargeted metabolomics approach and compared the antioxidant capacity of ungerminated and germinated moringa seeds. Our results showed that germination significantly increased the total GSL content from 150 (day 0) to 323 μmol/g (35 °C, day 6) on a dry weight (DW) basis, especially glucomoringin (GMG), the unique glucosinolate in moringa seeds, which was significantly upregulated from 61 (day 0) to 149 μmol/g DW (35 °C, day 4). The upregulation of GMG corresponded to the metabolism of tyrosine, which might be the initial precursor for the formation of GMG. In addition, germination enhanced the total ITC content from 85 (day 0) to 239 μmol SE/g DW (35 °C, day 6), indicating that germination may have also increased the activity of myrosinase. Furthermore, germination remarkably increased the total phenolic content (109-507 mg GAE/100 g DW) and antioxidant capacity of moringa seeds. Our findings suggest that moringa sprouts could be promoted as a novel food and/or ingredient rich in GMG.
Collapse
Affiliation(s)
- Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Haijuan Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Zhuoyang Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Xingwei Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
2
|
Raffaelli A, Saba A. Ion scanning or ion trapping: Why not both? MASS SPECTROMETRY REVIEWS 2023; 42:1152-1173. [PMID: 34726287 DOI: 10.1002/mas.21746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 06/07/2023]
Abstract
The present contribution describes analogies and differences between the quadrupolar ion trap (QIT) and the quadrupole mass analyzers, shows the potentialities of their combination in a single instrument and presents a review of applications of such a technology in different fields. The first section describes the quadrupole mass filter (QMF), outlining its principles of operation and the ion sorting procedure according to the use of oscillating electric fields inducing stable trajectories to the ions allowing them to reach the detector. Multiple quadrupole systems (normally triple quadrupoles) are then explained, showing their use in tandem mass spectrometry in space experiments (MS/MS-in-space). QIT principles of operation are then examined, pointing out that in this case the use of the same combination of oscillating electric fields takes advantage of unstable ion trajectories for their sorting. Substantially, analogies and differences between QMF and QIT come out, which consist in the fact that QMF is a scanning mass analyzer, whereas QIT is a sequential mass analyzer. In addition, the section underlines that QIT is capable to perform tandem mass spectrometry in time experiments (MS/MS-in-time). Later, the possibility to use a quadrupole as a trapping system with a prevailing dimension (linear ion trap [LIT]) is taken into consideration, and the possibility to combine both QMF and LIT in a single instrument, a QTrap mass spectrometer, is illustrated. In this frame, a lot more experiment types are possible with respect to both standalone triple quadrupoles and LIT, and they are described as well. Several combinations of these QTrap features can be used in information dependent acquisition (IDA) mode, allowing the high versatility of this instrumental configuration. The second section deals with a review of applications in different fields. These are organized by kind of QTrap and IDA features and cover different topics in biological, medical, agrochemical, nutritional and environmental fields.
Collapse
Affiliation(s)
- Andrea Raffaelli
- Institute of Life Sciences-S. Anna School of Advanced Studies, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Laboratory of Clinical Pathology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Al-Rahbi BAA, Al-Sadi AM, Al-Harrasi MMA, Al-Sabahi JN, Al-Mahmooli IH, Blackburn D, Velazhahan R. Effectiveness of Endophytic and Rhizospheric Bacteria from Moringa spp. in Controlling Pythium aphanidermatum Damping-Off of Cabbage. PLANTS (BASEL, SWITZERLAND) 2023; 12:668. [PMID: 36771752 PMCID: PMC9919774 DOI: 10.3390/plants12030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In this study, endophytic and rhizospheric bacteria were isolated from Moringa olifera and M. perigreina from Oman, and their in vitro antagonistic activity against Pythium aphanidermatum was tested using a dual culture assay. The promising strains were tested further for their compatibility and potential for plant growth promotion, biofilm formation, antifungal volatile organic compound (VOC) production, and the biological control of P. aphanidermatum damping-off of cabbage (Brassica oleracea L.) under greenhouse conditions. A total of 12 endophytic and 27 rhizospheric bacteria were isolated from Moringa spp. Among them, Bacillus pumilus MPE1 showed the maximum antagonistic activity against P. aphanidermatum in the dual culture assay, followed by Paenibacillus glucanolyticus MPE3 and Pseudomonas indica MOR3 and MOR8. These bacterial isolates induced abundant morphological abnormalities in the hyphae of P. aphanidermatum, as observed via scanning electron microscopy. The in vitro cross-streak assay showed that these bacterial isolates were compatible among themselves, except for P. indica MOR8 × P. glucanolyticus MPE3. These antagonists released VOCs that restricted the growth of P. aphanidermatum in an in vitro assay. These antagonistic bacteria released 2,4-dimethylheptane and 4-methyloctane as the predominant volatile compounds. Of the four antagonistic bacterial strains, P. indica MOR8 was capable of forming biofilm, which is considered a trait that improves the efficacy of rhizosphere inoculants. The results of the greenhouse experiments showed that the soil treatment with B. pumilus MPE1 showed the highest reduction (59%) in the incidence of P. aphanidermatum damping-off in cabbage, evidencing its potential as a biological control agent for the management of this disease. Further research is needed to characterize the antifungal traits and activities of B. pumilus MPE1 and to assert its potential use against other soil-borne plant pathogens.
Collapse
Affiliation(s)
- Buthaina Aamir Ali Al-Rahbi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Majida Mohammed Ali Al-Harrasi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Jamal Nasser Al-Sabahi
- Central Instrumentation Laboratory, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Issa Hashil Al-Mahmooli
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Daniel Blackburn
- Department of Soil, Water and Agricultural Engineering, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
5
|
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, Yanagisawa D, Tooyama I, Wan Ngah WZ, Jantan I, Hamezah HS. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 2023; 13:1035220. [PMID: 36686668 PMCID: PMC9849397 DOI: 10.3389/fphar.2022.1035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
Collapse
Affiliation(s)
- Ummi Kalthum Azlan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Ahmed Mediani
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Xiaohui Tong
- 3School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Daijiro Yanagisawa
- 4Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Wan Zurinah Wan Ngah
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ibrahim Jantan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,*Correspondence: Hamizah Shahirah Hamezah,
| |
Collapse
|
6
|
Preliminary Phytochemical Screening and Antioxidant Activity of Commercial Moringa oleifera Food Supplements. Antioxidants (Basel) 2023; 12:antiox12010110. [PMID: 36670972 PMCID: PMC9855063 DOI: 10.3390/antiox12010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Moringa oleifera has been reported to possess a high number of bioactive compounds; hence, several food supplements are commercially available based on it. This work aimed to analyze the phytochemical composition and antioxidant activity of commercial food supplements. The phenolic composition of methanolic extracts was determined by using high-performance liquid chromatography with diode-array and electrospray ionization mass spectrometric detection (HPLC-DAD-ESI-MSn), and the antioxidant activity was assessed by ABTS·+ and DPPH assays. Thirty-three compounds were identified, and all the main compounds were quantified, observing that the main contribution to the phenolic profile was due to kaempferol and quercetin glucosides. The antioxidant activity in both assays agreed with the phenolic content: the higher the phenolic levels, the higher the antioxidant activity. The obtained results were compared with those previously published regarding Moringa oleifera leaves to establish the potential benefits of food supplement consumption in the diet.
Collapse
|
7
|
Ding Y, Morozova K, Imperiale S, Angeli L, Asma U, Ferrentino G, Scampicchio M. HPLC-Triple detector (Coulometric array, diode array and mass spectrometer) for the analysis of antioxidants in officinal plants. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Xu Y, Chen G, Guo M. Potential Anti-aging Components From Moringa oleifera Leaves Explored by Affinity Ultrafiltration With Multiple Drug Targets. Front Nutr 2022; 9:854882. [PMID: 35619958 PMCID: PMC9127542 DOI: 10.3389/fnut.2022.854882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Moringa oleifera (M. oleifera), widely used in tropical and subtropical regions, has been reported to possess good anti-aging benefits on skincare. However, the potential bioactive components responsible for its anti-aging effects, including anti-collagenase, anti-elastase, and anti-hyaluronidase activities, have not been clarified so far. In this study, M. oleifera leaf extracts were first conducted for anti-elastase and anti-collagenase activities in vitro by spectrophotometric and fluorometric assays, and the results revealed that they possessed good activities against skin aging-related enzymes. Then, multi-target bio-affinity ultrafiltration coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS) was applied to quickly screen anti-elastase, anti-collagenase, and anti-hyaluronidase ligands in M. oleifera leaf extracts. Meanwhile, 10, 8, and 14 phytochemicals were screened out as the potential anti-elastase, anti-collagenase, and anti-hyaluronidase ligands, respectively. Further confirmation of these potential bioactive components with anti-aging target enzymes was also implemented by molecule docking analysis. In conclusion, these results suggest that the M. oleifera leaves might be a very promising natural source of anti-aging agent for skincare, which can be further explored in the cosmetics and cosmeceutical industries combating aging and skin wrinkling.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Gao Q, Wei Z, Liu Y, Wang F, Zhang S, Serrano C, Li L, Sun B. Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030678. [PMID: 35163945 PMCID: PMC8840448 DOI: 10.3390/molecules27030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves.
Collapse
Affiliation(s)
- Qian Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Zongmin Wei
- School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang 110016, China;
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222069, China
| | - Yun Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Carmo Serrano
- Unidade de Tecnologia e Inovação, Instituto National de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal;
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| |
Collapse
|
10
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Velasco P, Peñas E. Manufacture of healthy snack bars supplemented with moringa sprout powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Wu YY, Xu YM, Lau ATY. Anti-Cancer and Medicinal Potentials of Moringa Isothiocyanate. Molecules 2021; 26:molecules26247512. [PMID: 34946594 PMCID: PMC8708952 DOI: 10.3390/molecules26247512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Moringa oleifera (M. oleifera), which belongs to the Moringaceae family, is a common herb, rich in plant compounds. It has a variety of bioactive compounds that can act as antioxidants, antibiotics, anti-inflammatory and anti-cancer agents, etc., which can be obtained in different body parts of M. oleifera. Isothiocyanates (ITCs) from M. oleifera are one class of these active substances that can inhibit cancer proliferation and promote cancer cell apoptosis through multiple signaling pathways, thus curbing cancer migration and metastasis, at the same time they have little adverse effect on normal cells. There are multiple variants of ITCs in M. oleifera, but the predominant phytochemical is 4-(α-L-rhamnosyloxy)benzyl isothiocyanate, also known as moringa isothiocyanate (MIC-1). Studies have shown that MIC-1 has the possibility to be used clinically for the treatment of diabetes, neurologic diseases, obesity, ulcerative colitis, and several cancer types. In this review, we focus on the molecular mechanisms underlying the anti-cancer and anti-chronic disease effects of MIC-1, current trends, and future direction of MIC-1 based treatment strategies. This review combines the relevant literature of the past 10 years, in order to provide more comprehensive information of MIC-1 and to fully exploit its potentiality in the clinical settings.
Collapse
|
12
|
Abstract
Summary
Introduction:
Moringa oleifera (moringa) is a fast-growing tree from north India and Himalayan foothills considered to be one of the most nutritious species. Especially it’s leaves contain proteins in a high concentration, all essential amino acids, nutrients like calcium, iron, potassium and cooper, vitamin A, E and group B, and also antioxidants and polyphenols. Many studies have demonstrated the medicinal properties of moringa leaves consumption thanks to its antioxidant, anti-inflammatory, prevention of diabetes or antitumor and anticancer properties. The amount and number of essential nutrients and phytochemical constituents may vary depending on the plant tissue and age and especially on the climatic and edaphological conditions.
Methods: We pointed to demonstrate moringa plants grown on proper conditions display a better production of its desired compounds. In this work, the mineral, amino acids, antioxidant activity and various bioactive compounds were analysed in moringa leaves extract from plants grown on Tenerife Island under organic production and similar climatic and edaphological conditions as the place of origin.
Results: Our results revealed a high concentration of several nutrients as calcium, potassium and iron, as comparison to other moringa plants; β-carotene (pro-vitamin A), ascorbate (vitamin C) and glutathione, whose function is mainly antioxidant; chlorogenic acid with anticancer function; quercetin with antioxidant, anticancer and antidiabetic functions, among others; glucomoringin-isothiocyanate with anti-micro-biological and neuroprotective function.
Conclusion: The results obtained in this study placed on Tenerife Island as one of the best suitable places for moringa good quality production and highlight the potential use of moringa novel food for humans and as a biostimulant for plants.
Collapse
|
13
|
Liu R, Liu J, Huang Q, Liu S, Jiang Y. Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol 2021; 74:296-320. [PMID: 34718669 DOI: 10.1093/jpp/rgab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Moringa oleifera (M. oleifera) Lam (Moringaceae) is a perennial plant broadly used in South Asia and Africa as a traditional folk medicine to treat many ailments such as paralysis, helminthiasis, sores and skin infections. The review provides a critical and comprehensive evaluation of the botany, traditional uses, phytochemistry, pharmacology, toxicity, agricultural economy and dietary benefit of M. oleifera and its future perspectives. KEY FINDINGS In this review, the entire plant of M. oleifera, containing diverse phytochemicals, is summarized. The 163 chemical components, included flavonoids, carbamates, glucosinolates, phenols, and so on with various bioactivities, such as anti-tumour, antioxidant, anti-inflammatory, and so on. Additionally, M. oleifera is toxic at certain doses; and overuse can cause genotoxicity. SUMMARY Although M. oleifera has been widely used in traditional medicine, the pharmacological studies that have been conducted so far are not sufficient for its use in the setting of evidence-based medicine. Little relevant data from clinical trials of M. oleifera have been reported. The majority of studies of its constituents, such as carbamates and glucosinolates, have been conducted only in vitro. Owing to a lack of available data, the pharmacology, toxicity, agricultural economy and dietary benefit of its constituents and extracts require further evaluation.
Collapse
Affiliation(s)
- Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: antimicrobial activity and their phytoconstituents profile using HPLC. Sci Rep 2021; 11:19027. [PMID: 34561493 PMCID: PMC8463546 DOI: 10.1038/s41598-021-98415-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
In the present study, and for the waste valorization, Moringa oleifera seeds-removed ripened pods (SRRP) were used for papersheet production and for the extraction of bioactive compounds. Fibers were characterized by SEM–EDX patterns, while the phytoconstituents in ethanol extract was analyzed by HPLC. The inhibition percentage of fungal mycelial growth (IFMG) of the treated Melia azedarach wood with M. oleifera SRRP extract at the concentrations of 10,000, 20,000, and 30,000 µg/mL against the growth of Rhizoctonia solani and Fusarium culmorum was calculated and compared with fluconazole (25 µg). The produced papersheet was treated with the ethanol extract (4000, 2000, and 1000 µg/mL) and assayed for its antibacterial activity against Agrobacterium tumefaciens, Erwinia amylovora, and Pectobacterium atrosepticum by measuring the inhibition zones and minimum inhibitory concentrations (MICs). According to chemical analysis of M. oleifera SRRP, benzene:alcohol extractives, holocellulose, lignin, and ash contents were 7.56, 64.94, 25.66 and 1.53%, respectively, while for the produced unbleached pulp, the screen pulp yield and the Kappa number were 39% and 25, respectively. The produced papersheet showed tensile index, tear index, burst index, and double fold number values of 58.8 N m/g, 3.38 mN m2/g, 3.86 kPa m2/g, and 10.66, respectively. SEM examination showed that the average fiber diameter was 16.39 µm, and the mass average of for elemental composition of C and O by EDX were, 44.21%, and 55.79%, respectively. The main phytoconstituents in the extract (mg/100 g extract) by HPLC were vanillic acid (5053.49), benzoic acid (262.98), naringenin (133.02), chlorogenic acid (66.16), and myricetin (56.27). After 14 days of incubation, M. oleifera SRRP extract-wood treated showed good IFMG against R. solani (36.88%) and F. culmorum (51.66%) compared to fluconazole, where it observed 42.96% and 53.70%, respectively. Moderate to significant antibacterial activity was found, where the minimum inhibitory concentration (MIC) values were 500, 650, and 250 µg/mL against the growth of A. tumefaciens, E. amylovora, and P. atrosepticum respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). In conclusion, M. oleifera SRRP showed promising properties as a raw material for pulp and paper production as well as for the extraction of bioactive compounds.
Collapse
|
15
|
Xu Y, Chen G, Guo M. Correlations between phytochemical fingerprints of Moringa oleifera leaf extracts and their antioxidant activities revealed by chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:698-709. [PMID: 33319431 DOI: 10.1002/pca.3016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Moringa oleifera Lam. is widely cultivated and applied in tropical and subtropical areas. Numerous studies have been focused on the antioxidant capacity of M. oleifera leaves, but its correlated bioactive phytochemicals remain elusive. OBJECTIVE In order to search for the corresponding chemical compounds from M. oleifera leaves responsible for their antioxidant activity, the correlations between phytochemical fingerprints of 15 batches of M. oleifera leaves and their antioxidant activities were investigated by using chemometric analysis. MATERIAL AND METHODS Fifteen batches of M. oleifera leaves were extracted with 90% ethanol solution, and their phytochemical fingerprints and antioxidant activities were estimated by using high-performance liquid chromatography-ultraviolet-electrospray ionisation tandem mass spectrometry (HPLC-UV/ESI-MS/MS), and three detected methods, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay and ferric-reducing antioxidant power (FRAP) assay, respectively. Chemometric analysis was then applied to reveal the correlations between their phytochemical fingerprints and corresponding antioxidant capacity. RESULTS Fifteen M. oleifera leaf extracts exhibited strong antioxidant activities, in which 24 common compounds were identified by LC-MS. Furthermore, the partial least squares (PLS) analysis indicated that compounds 14, 16, 18 and 23 were the main potential effective components in at least two antioxidant tests. They were identified as kaempferol 3-O-rutinoside, quercetin 3-O-(6″-malonyl-glucoside), kaempferol 3-O-glucoside, and quercetin derivative, respectively. CONCLUSION The correlations between phytochemical fingerprints of M. oleifera leaf extracts and their corresponding antioxidant capacities were revealed by chemometric analysis, which provides an alternative method for screening for potential bioactive compounds with antioxidant capacity from M. oleifera leaves.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Agerbirk N, Hansen CC, Kiefer C, Hauser TP, Ørgaard M, Asmussen Lange CB, Cipollini D, Koch MA. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. PHYTOCHEMISTRY 2021; 185:112668. [PMID: 33743499 DOI: 10.1016/j.phytochem.2021.112668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the β-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Almushayti AY, Brandt K, Carroll MA, Scotter MJ. Current analytical methods for determination of glucosinolates in vegetables and human tissues. J Chromatogr A 2021; 1643:462060. [PMID: 33770631 DOI: 10.1016/j.chroma.2021.462060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Numerous epidemiological studies have indicated the potential effects of glucosinolates and their metabolites against cancer as well as other non-communicable diseases, such as cardiovascular disease and neurodegenerative disorders. However, information on the presence and quantity of glucosinolates in commonly consumed vegetables and in human fluids is sparse, largely because well-standardised methods for glucosinolate determination are not available, resulting in published data being inconsistent and conflicting. Thus, studies published since 2002 on the most recent developments of glucosinolate extraction and identification have been collected and reviewed with emphasis on determination of the intact glucosinolates by LC-MS and LC-MS/MS. This overview highlights the glucosinolate extraction methods used, the stability of glucosinolates during extraction, the availability of stable isotope labelled internal standards and the use of NMR for purity analysis, as well as the current analytical techniques that have been applied for glucosinolate analysis, e.g. liquid chromatography with mass spectrometric detection (LC-MS). It aims to interpret the findings with a focus on the development of a validated method, which will help to determine the glucosinolate content of vegetative plants and human tissues, and the identification and determination of selected glucosinolate metabolites.
Collapse
Affiliation(s)
- Albatul Y Almushayti
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; College of Agriculture and Veterinary Medicine, Department of Food Science and Human Nutrition, Qassim University, Qassim, KSA.
| | - Kirsten Brandt
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Michael A Carroll
- School of Natural & Environmental Sciences-Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
18
|
Wang F, Bao Y, Zhang C, Zhan L, Khan W, Siddiqua S, Ahmad S, Capanoglu E, Skalicka-Woźniak K, Zou L, Simal-Gandara J, Cao H, Weng Z, Shen X, Xiao J. Bioactive components and anti-diabetic properties of Moringa oleifera Lam. Crit Rev Food Sci Nutr 2021; 62:3873-3897. [PMID: 33401950 DOI: 10.1080/10408398.2020.1870099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Moringa oleifera Lam. is a perennial tropical deciduous tree with high economic and pharmaceutical value. As an edible plant, M. oleifera Lam. is rich in nutrients, such as proteins, amino acids, mineral elements and vitamins. Besides, it also contains an important number of bioactive phytochemicals, such as polysaccharides, flavonoids, alkaloids, glucosinolates and isothiocyanates. M. oleifera for long has been used as a natural anti-diabetic herb in India and other Asian countries. Thus, the anti-diabetic properties of Moringa plant have evolved highly attention to the researchers. In the last twenty years, a huge number of new chemical structures and their pharmacological activities have been reported in particularly the anti-diabetic properties. The current review highlighted the bioactive phytochemicals from M. Oleifera. Moreover, evidence regarding the therapeutic potential of M. oleifera for diabetes including experimental and clinical data was presented and the underlying mechanisms were revealed in order to provide insights for the development of novel drugs.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Chen Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Washim Khan
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Sahifa Siddiqua
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zebin Weng
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Lopez-Rodriguez NA, Gaytán-Martínez M, de la Luz Reyes-Vega M, Loarca-Piña G. Glucosinolates and Isothiocyanates from Moringa oleifera: Chemical and Biological Approaches. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:447-457. [PMID: 32909179 DOI: 10.1007/s11130-020-00851-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Alternative therapies, such as phytotherapy, are considered to improve the health status of people with chronic non-communicable diseases (CNCDs). In this regard, Moringa oleifera is currently being studied for its nutritional value and its total phenolic content. Besides phenolic compounds, the phytochemical composition is also of great interest. This composition is characterized by the presence of glucosinolates and isothiocyanates. Isothiocyanates formed by the biotransformation of Moringa glucosinolates contain an additional sugar in their chemical structure, which provides stability to these bioactive compounds over other isothiocyanates found in other crops. Both glucosinolates and isothiocyanates have been described as beneficial for the prevention and improvement of some chronic diseases. The content of glucosinolates in Moringa tissues can be enhanced by certain harvesting methods which in turn alters their final yield after extraction. This review aims to highlight certain features of glucosinolates and isothiocyanates from M. oleifera, such as their chemical structure, functionality, and main extraction and harvesting methods. Some of their health-promoting effects will also be addressed.
Collapse
Affiliation(s)
- Norma A Lopez-Rodriguez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - María de la Luz Reyes-Vega
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|
20
|
Moichela FT, Adefolaju GA, Henkel RR, Opuwari CS. Aqueous leaf extract of Moringa oleifera reduced intracellular ROS production, DNA fragmentation and acrosome reaction in Human spermatozoa in vitro. Andrologia 2020; 53:e13903. [PMID: 33225471 DOI: 10.1111/and.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of aqueous leaf extract of Moringa oleifera (MO) on human sperm functions and integrity was studied in vitro. Semen was obtained by masturbation after 3-5 days' abstinence from 34 healthy donors in Western Cape, South Africa. Liquefied semen was washed in human tubular fluid supplemented with 1% bovine serum albumin (HTF-BSA;1:5) with 10 min centrifugation at 300 g. Sperm suspensions were subsequently incubated with MO extract (0.625, 6.25, 62.5 and 625 µg/ml) for 1 hr, where HTF-BSA served as control. Sperm motility, vitality, DNA fragmentation, reactive oxygen species production, mitochondrial membrane potential, capacitation and acrosome reaction were assessed. Sperm motility, vitality, mitochondrial membrane potential and capacitation remained unchanged (p > .05). A dose-dependent decrease in sperm reactive oxygen species production (p < .0001), DNA fragmentation (p < .0001) and acrosome reaction (p < .001) was observed. An increase in the percentage of non-capacitated sperm (p < .01) was noted at 625 µg/ml. The antioxidant properties of MO actively maintained basic sperm functions, inhibited excess sperm free superoxide production and preserved acrosome reaction and DNA integrity. Further studies are needed to confirm the effect of aqueous MO leaf extract on fertility potential.
Collapse
Affiliation(s)
- Faith T Moichela
- Department of Medical Sciences, University of Limpopo, Sovenga, South Africa
| | - Gbenga A Adefolaju
- Department of Pre-Clinical Sciences, University of Limpopo, Sovenga, South Africa
| | - Ralf R Henkel
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa.,American Centre for Reproductive Medicine, Cleveland, OH, USA
| | - Chinyerum S Opuwari
- Department of Pre-Clinical Sciences, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
21
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa ( Moringa oleifera L.). Foods 2020; 9:E1639. [PMID: 33182814 PMCID: PMC7696275 DOI: 10.3390/foods9111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.
Collapse
Affiliation(s)
- Karín E. Coello
- Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador;
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| |
Collapse
|
22
|
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020; 25:molecules25194537. [PMID: 33022970 PMCID: PMC7582585 DOI: 10.3390/molecules25194537] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.
Collapse
|
23
|
Popoola JO, Aworunse OS, Oyesola OL, Akinnola OO, Obembe OO. A systematic review of pharmacological activities and safety of Moringa oleifera. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, Moringa oleifera, a multipurpose medicinal plant (MMP) has received increased research attention and commercial interest for its nutritional, therapeutic and pharmacological properties. Rigorous approaches including biological assays, animal and clinical trials are required towards safe usage as herbal therapy. We conducted a systematic review of the known pharmacological activities, toxicity, and safety of M. oleifera, usually used locally in the treatment and prevention of myriads of illnesses. Five major bibliographic databases (SCOPUS, Web of Science, Science Direct, PubMed, and Mendeley) were searched for studies reported on pharmacological activities, toxicity, and safety assessment of M. oleifera in the last 29 years (1990 – 2019). Studies on animals and humans involving aqueous leaf extracts and different preparations from M. oleifera seed and bark were also considered. All articles retained, and data collected were evaluated based on the period of the article, country where such studies were conducted and the document type. Our search results identified and analyzed 165 articles while 63 studies were eventually retained. Diverse pharmacological activities including neuroprotective, antimicrobial, antiasthmatic, anti-malaria, cardioprotective, antidiabetic, antiobesity, hepatoprotective and cytotoxic effects, amongst others, were recorded. Toxicity studies in animal models and few human studies showed that M. oleifera is safe with no adverse effect reported. The importance of the plant is highlighted in the search for new bioactive compounds to explore its therapeutic potentials towards drug discovery and development in the pharmaceutical and allied industries.
Collapse
Affiliation(s)
- Jacob O. Popoola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | | | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olayemi O. Akinnola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
24
|
Emerging Insights into Anticancer Chemopreventive Activities of Nutraceutical Moringa oleifera: Molecular Mechanisms, Signal Transduction and In Vivo Efficacy. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00210-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Zhang X, Sun Z, Cai J, Wang G, Wang J, Zhu Z, Cao F. Dietary supplementation with fermented moringa oleifera leaves inhibits the lipogenesis in the liver of meat ducks. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
27
|
Duhan S, Sahoo K, Singh SK, Kumar M. Development of ultrasensitive and As( iii)-selective upconverting (NaYF 4:Yb 3+,Er 3+) platform. Analyst 2020; 145:6378-6387. [PMID: 32729595 DOI: 10.1039/d0an00717j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Solid-phase, LRET-based NaYF4:Yb3+,Er3+ platform for the ultrasensitive (1 nM) detection of arsenic.
Collapse
Affiliation(s)
- Suman Duhan
- Department of Chemical Engineering
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Kedar Sahoo
- Department of Chemical Engineering and Technology
- IIT (BHU)
- Varanasi-221005
- India
| | - Sudhir Kumar Singh
- Department of Chemical Engineering
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Manoj Kumar
- Department of Chemical Engineering and Technology
- IIT (BHU)
- Varanasi-221005
- India
| |
Collapse
|
28
|
Tshabalala T, Ncube B, Madala NE, Nyakudya TT, Moyo HP, Sibanda M, Ndhlala AR. Scribbling the Cat: A Case of the "Miracle" Plant, Moringa oleifera. PLANTS (BASEL, SWITZERLAND) 2019; 8:E510. [PMID: 31731759 PMCID: PMC6918402 DOI: 10.3390/plants8110510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
This paper reviews the properties of the most cultivated species of the Moringaceae family, Moringa oleifera Lam. The paper takes a critical look at the positive and the associated negative properties of the plant, with particular emphasis on its chemistry, selected medicinal and nutritional properties, as well as some ecological implications of the plant. The review highlights the importance of glucosinolates (GS) compounds which are relatively unique to the Moringa species family, with glucomoriginin and its acylated derivative being the most abundant. We highlight some new research findings revealing that not all M. oleifera cultivars contain an important flavonoid, rutin. The review also focuses on phenolic acids, tannin, minerals and vitamins, which are in high amounts when compared to most vegetables and fruits. Although there are numerous benefits of using M. oleifera for medicinal purposes, there are reports of contraindications. Nonetheless, we note that there are no major harmful effects of M. oleifera that have been reported by the scientific community. M. oleifera is suspected to be potentially invasive and moderately invasive in some regions of the world because of its ability to grow in a wide range of environmental conditions. However, the plant is currently classified as a low potential invasive species and thus there is a need to constantly monitor the species. Despite the numerous benefits associated with the plant, there is still a paucity of data on clinical trials proving both the positive and negative effects of the plant. We recommend further clinical trials to ascertain the properties associated with the plant, especially regarding long term use.
Collapse
Affiliation(s)
- Thulani Tshabalala
- Agricultural Research Council (ARC), Vegetable and Ornamental Plants (VOP), Private Bag X923, Pretoria 0001, South Africa; (T.T.); (B.N.)
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa;
| | - Bhekumthetho Ncube
- Agricultural Research Council (ARC), Vegetable and Ornamental Plants (VOP), Private Bag X923, Pretoria 0001, South Africa; (T.T.); (B.N.)
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa;
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa;
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg 2002, South Africa
| | | | - Mbulisi Sibanda
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa;
| | - Ashwell Rungano Ndhlala
- Agricultural Research Council (ARC), Vegetable and Ornamental Plants (VOP), Private Bag X923, Pretoria 0001, South Africa; (T.T.); (B.N.)
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1710, South Africa
| |
Collapse
|
29
|
Nitrogenous phytoconstituents of genus Moringa: spectrophotometrical and pharmacological characteristics. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Dhakad AK, Ikram M, Sharma S, Khan S, Pandey VV, Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother Res 2019; 33:2870-2903. [PMID: 31453658 DOI: 10.1002/ptr.6475] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
The genus Moringa Adans. comprises 13 species, of which Moringa oleifera Lam. native to India and cultivated across the world owing to its drought and frost resistance habit is widely used in traditional phytomedicine and as rich source of essential nutrients. Wide spectrum of phytochemical ingredients among leaf, flower, fruit, seed, seed oil, bark, and root depend on cultivar, season, and locality. The scientific studies provide insights on the use of M. oleifera with different aqueous, hydroalcoholic, alcoholic, and other organic solvent preparations of different parts for therapeutic activities, that is, antibiocidal, antitumor, antioxidant, anti-inflammatory, cardio-protective, hepato-protective, neuro-protective, tissue-protective, and other biological activities with a high degree of safety. A wide variety of alkaloid and sterol, polyphenols and phenolic acids, fatty acids, flavanoids and flavanol glycosides, glucosinolate and isothiocyanate, terpene, anthocyanins etc. are believed to be responsible for the pragmatic effects. Seeds are used with a view of low-cost biosorbent and coagulant agent for the removal of metals and microbial contamination from waste water. Thus, the present review explores the use of M. oleifera across disciplines for its prominent bioactive ingredients, nutraceutical, therapeutic uses and deals with agricultural, veterinarian, biosorbent, coagulation, biodiesel, and other industrial properties of this "Miracle Tree."
Collapse
Affiliation(s)
- Ashok K Dhakad
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| | - Mohsin Ikram
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Salman Khan
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Vijay V Pandey
- Forest Pathology Division, Forest Research Institute, Dehradun, India
| | - Avtar Singh
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
31
|
Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Moringa oleifera from Kenya and Their Correlations with Flavonoids. Antioxidants (Basel) 2019; 8:antiox8080296. [PMID: 31404978 PMCID: PMC6721178 DOI: 10.3390/antiox8080296] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Moringa oleifera Lam. (M. oleifera) is commonly distributed and utilized in tropical and sub-tropical areas. There has been a large number of reports on the antioxidant and anti-inflammatory activity of its leaves, but only a few about its seeds and roots. Hence, in this work we aimed to systematically compare the antioxidant and anti-inflammatory activities of the ethanol crude extracts of leaves, seeds, and roots of M. oleifera from Kenya, and further correlate the differential activities with the chemical constituents from these three parts. The antioxidant activities were measured by using three different assays (DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) and FRAP (Ferric-Reducing Antioxidant Power), respectively). Results showed that the leaf extracts displayed the highest DPPH radical scavenging and FRAP total reducing power activities with IC50 values of 1.02 ± 0.13 mg/mL and 0.99 ± 0.06 mM Fe2+/g, respectively; the leaf and root extracts exhibited potential ABTS radical scavenging activities with the IC50 values of 1.36 ± 0.02 and 1.24 ± 0.03 mg/mL. Meanwhile, the leaf and seed extracts (11.1-100 µg/mL) also exerted obvious anti-inflammatory activities, as indicated by the inhibition of NO production. To further reveal correlations between these differential activities with the chemical constituents in the three organs, the total flavonoids content (TFC) of the three different extracts were evaluated, and the TFC of leaves, seeds and roots were found to be 192.36 ± 2.96, 5.89 ± 0.65 and 106.79 ± 2.12 mg rutin equivalent (RE)/g, respectively. These findings indicated the important impacts of the total flavonoid contents on antioxidant and anti-inflammatory activities. Additionally, we further determined the phytochemical profiles of M. oleifera by HPLC-UV/ESI-MS/MS, and identified most of the chemical constituents of leaves as flavonoids. In summary, the leaves of M. oleifera are a better potential natural source of antioxidants and anti-inflammatory agents, and very promising for development into the health promoting dietary supplements.
Collapse
|
32
|
Zeng K, Li Y, Yang W, Ge Y, Xu L, Ren T, Zhang H, Zhuo R, Peng L, Chen C, Zhou Y, Zhao Y, Li WJ, Jin X, Yang L. Moringa oleifera seed extract protects against brain damage in both the acute and delayed stages of ischemic stroke. Exp Gerontol 2019; 122:99-108. [DOI: 10.1016/j.exger.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
33
|
Mathiron D, Iori R, Pilard S, Soundara Rajan T, Landy D, Mazzon E, Rollin P, Djedaïni-Pilard F. A Combined Approach of NMR and Mass Spectrometry Techniques Applied to the α-Cyclodextrin/Moringin Complex for a Novel Bioactive Formulation †. Molecules 2018; 23:E1714. [PMID: 30011859 PMCID: PMC6099948 DOI: 10.3390/molecules23071714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Moringin, obtained via enzymatic conversion of the glucosinolate precursor glucomoringin, is an uncommon member of the isothiocyanate class, and has been proven to possess a broad range of biological activities such as antitumor activity, protection against neurodegenerative disorders and bactericidal effects. Since moringin is weakly soluble in water and unstable in aqueous medium, cyclodextrins (CDs) were considered for the development of a new moringin formulation, with a view to improving its solubility and stability in aqueous solution for use as an anti-inflammatory. A combined structural study using proton nuclear magnetic resonance (¹H-NMR), diffusion-ordered spectroscopy (DOSY) and ion mobility mass spectrometry (IM-MS) is reported, highlighting the formation of a 1:1 α-CD/moringin inclusion complex. The association constant K was determined (1300 M-1 at 300 K). Completion of the structural characterization was performed by T-ROESY and MS/MS experiments, which evidenced the mode of penetration of moringin into α-CD. Finally, the "chaperone-like" properties of α-CD with respect to the stability of moringin have been highlighted.
Collapse
Affiliation(s)
- David Mathiron
- Plateforme Analytique, Institut de Chimie de Picardie FR 3085 CNRS, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France.
| | - Renato Iori
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Serge Pilard
- Plateforme Analytique, Institut de Chimie de Picardie FR 3085 CNRS, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France.
| | - Thangavelu Soundara Rajan
- Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO, F-59140 Dunkerque, France.
| | - Emanuela Mazzon
- Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067 Orléans, France.
| | - Florence Djedaïni-Pilard
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources UMR 7378, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France.
| |
Collapse
|
34
|
Effects of the inclusion of Moringa oleifera seed on rumen fermentation and methane production in a beef cattle diet using the rumen simulation technique (Rusitec). Animal 2018; 13:283-291. [PMID: 29954468 DOI: 10.1017/s1751731118001428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Moringa oleifera seeds are currently being used as a livestock feed across tropical regions of the world due to its availability and palatability. However, limited knowledge exists on the effects of the raw seeds on ruminant metabolism. As such, the rumen stimulation technique was used to evaluate the effects of substituting increasing concentrations of ground Moringa seeds (0, 100, 200 and 400 g/kg concentrate dry matter (DM)) in the diet on rumen fermentation and methane production. Two identical, Rusitec apparatuses, each with eight fermenters were used with the first 8 days used for adaptation and days 9 to 16 used for measurements. Fermenters were fed a total mixed ration with Urochloa brizantha as the forage. Disappearance of DM, CP, NDF and ADF linearly decreased (P<0.01) with increasing concentrations of Moringa seeds in the diet. Total volatile fatty acid production and the acetate to propionate ratio were also linearly decreased (P<0.01). However, only the 400 g/kg (concentrate DM basis) treatment differed (P<0.01) from the control. Methane production (%), total microbial incorporation of 15N and total production of microbial N linearly decreased (P<0.01) as the inclusion of Moringa seeds increased. Though the inclusion of Moringa seeds in the diet decreased CH4 production, this arose from an unfavourable decrease in diet digestibility and rumen fermentation parameters.
Collapse
|
35
|
Fahey JW, Olson ME, Stephenson KK, Wade KL, Chodur GM, Odee D, Nouman W, Massiah M, Alt J, Egner PA, Hubbard WC. The Diversity of Chemoprotective Glucosinolates in Moringaceae (Moringa spp.). Sci Rep 2018; 8:7994. [PMID: 29789618 PMCID: PMC5964242 DOI: 10.1038/s41598-018-26058-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023] Open
Abstract
Glucosinolates (GS) are metabolized to isothiocyanates that may enhance human healthspan by protecting against a variety of chronic diseases. Moringa oleifera, the drumstick tree, produces unique GS but little is known about GS variation within M. oleifera, and even less in the 12 other Moringa species, some of which are very rare. We assess leaf, seed, stem, and leaf gland exudate GS content of 12 of the 13 known Moringa species. We describe 2 previously unidentified GS as major components of 6 species, reporting on the presence of simple alkyl GS in 4 species, which are dominant in M. longituba. We document potent chemoprotective potential in 11 of 12 species, and measure the cytoprotective activity of 6 purified GS in several cell lines. Some of the unique GS rank with the most powerful known inducers of the phase 2 cytoprotective response. Although extracts of most species induced a robust phase 2 cytoprotective response in cultured cells, one was very low (M. longituba), and by far the highest was M. arborea, a very rare and poorly known species. Our results underscore the importance of Moringa as a chemoprotective resource and the need to survey and conserve its interspecific diversity.
Collapse
Affiliation(s)
- Jed W Fahey
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA. .,Johns Hopkins University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Baltimore, Maryland, USA. .,Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland, USA. .,Johns Hopkins University Bloomberg School of Public Health, Department of International Health, Center for Human Nutrition, Baltimore, Maryland, USA.
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de Ciudad Universitaria, Ciudad de México, 04510, Mexico.,The International Moringa Germplasm Collection, Ejido de la Reforma Agraria, Jalisco, Mexico
| | - Katherine K Stephenson
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland, USA
| | - Kristina L Wade
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland, USA
| | - Gwen M Chodur
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins University Bloomberg School of Public Health, Department of International Health, Center for Human Nutrition, Baltimore, Maryland, USA.,Graduate Group in Nutritional Biology, UC Davis, Davis, California, USA
| | - David Odee
- Biotechnology Laboratory, Kenya Forestry Research Institute, Nairobi, Kenya
| | - Wasif Nouman
- Department of Forestry, Range, and Wildlife Management, Bahauddin Zakariya University, Multan, Pakistan
| | - Michael Massiah
- George Washington University, Department of Chemistry, Columbian College of Arts and Sciences, Washington DC, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Patricia A Egner
- Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, Maryland, USA
| | - Walter C Hubbard
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Hafizur RM, Maryam K, Hameed A, zaheer L, Bano S, Sumbul S, Sana A, Saleem R, Naz S, Waraich RS, Ul-Haq Z, Faizi S. Insulin releasing effect of some pure compounds from Moringa oleifera on mice islets. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2157-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Gupta S, Jain R, Kachhwaha S, Kothari S. Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. J Herb Med 2018. [DOI: 10.1016/j.hermed.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Jaja-Chimedza A, Graf BL, Simmler C, Kim Y, Kuhn P, Pauli GF, Raskin I. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One 2017; 12:e0182658. [PMID: 28792522 PMCID: PMC5549737 DOI: 10.1371/journal.pone.0182658] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Moringa oleifera Lam. is a tropical plant, used for centuries as food and traditional medicine. The aim of this study was to develop, validate and biochemically characterize an isothiocyanate-enriched moringa seed extract (MSE), and to compare the anti-inflammatory effects of MSE-containing moringa isothiocyanate-1 (MIC-1) with a curcuminoid-enriched turmeric extract (CTE), and a material further enriched in its primary phytochemical, curcumin (curcumin-enriched material; CEM). MSE was prepared by incubating ground moringa seeds with water to allow myrosinase-catalyzed enzymatic formation of bioactive MIC-1, the predominant isothiocyanate in moringa seeds. Optimization of the extraction process yielded an extract of 38.9% MIC-1. Phytochemical analysis of MSE revealed the presence of acetylated isothiocyanates, phenolic glycosides unique to moringa, flavonoids, fats and fatty acids, proteins and carbohydrates. MSE showed a reduction in the carrageenan-induced rat paw edema (33% at 500 mg/kg MIC-1) comparable to aspirin (27% at 300 mg/kg), whereas CTE did not have any significant effect. In vitro, MIC-1 at 1 μM significantly reduced the production of nitric oxide (NO) and at 5 μM, the gene expression of LPS-inducible nitric oxide synthase (iNOS) and interleukins 1β and 6 (IL-1β and IL-6), whereas CEM did not show any significant activity at all concentrations tested. MIC-1 (10μM) was also more effective at upregulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase pi 1 (GSTP1), and heme oxygenase 1 (HO1) than the CEM. Thus, in contrast to CTE and CEM, MSE and its major isothiocyanate MIC-1 displayed strong anti-inflammatory and antioxidant properties in vivo and in vitro, making them promising botanical leads for the mitigation of inflammatory-mediated chronic disorders.
Collapse
Affiliation(s)
- Asha Jaja-Chimedza
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Brittany L. Graf
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Charlotte Simmler
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Youjin Kim
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
- Nutrasorb, LLC, Freehold, New Jersey, United States of America
| | - Peter Kuhn
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Guido F. Pauli
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
39
|
Maldini M, Foddai M, Natella F, Petretto GL, Rourke JP, Chessa M, Pintore G. Identification and quantification of glucosinolates in different tissues of Raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Foddai M, Maldini M, Addis R, Petretto GL, Chessa M, Pintore G. Profiling of the Bioactive Compounds in Flowers, Leaves and Roots of Vinca sardoa. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vinca sardoa (Stern) Pignatti (Apocynaceae) is largely distributed in Sardinia where it is considered a typical endemism. Since the plant is used in traditional folk medicine, the aim of the present work was to identify and quantify the polyphenolic metabolites, due to the well-known importance of polyphenolic compounds, as well as to evaluate antioxidant activity in different parts of the plant. The compounds were identified and determined in the methanol extracts of leaves, flowers, and roots by developing different LC-MS/MS methods. The obtained data show that leaves possess the highest amount of polyphenols, in particular quinic acid (3401 mg/100 g), chlorogenic acid (1082 mg/100 g), caffeoylquinic acid isomer 1 (190 mg/100 g), and robinin (633 mg/100 g). Likewise, antioxidant tests showed that leaves possess the main radical scavenging activities in both ABTS (49.19 ± 3.41 μg/mL, 30.88 ± 3.04 μg/mL at time zero and after 50 min, respectively) and DPPH assays (223.97 ± 30.81 μg/mL, 109.52 ± 12.89 μg/mL at time zero and after 30 min, respectively). Taking into account that leaves differed most from flowers and roots in the content of caffeoylquinic acid and chlorogenic acid, of which antioxidant properties are widely recognized, it is reasonable to assume that these two compounds are involved in the differences described. The relationship between the high polyphenolic content and interesting antioxidant activities, justifies its use in ethnobotany and may be suggest a use of this specie, after removal of the alkaloid fraction, in the pharmaceutical, phytotherapy, and cosmetic industries.
Collapse
Affiliation(s)
- Marzia Foddai
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Mariateresa Maldini
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Roberta Addis
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Giacomo Luigi Petretto
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Mario Chessa
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy
| |
Collapse
|
41
|
|
42
|
Glucosinolates: Novel Sources and Biological Potential. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F. Glucosinolates in Food. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
44
|
Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. Int J Mol Sci 2016; 17:ijms17122141. [PMID: 27999405 PMCID: PMC5187941 DOI: 10.3390/ijms17122141] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil.
Collapse
|
45
|
Giacoppo S, Soundara Rajan T, De Nicola GR, Iori R, Bramanti P, Mazzon E. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis. Drug Des Devel Ther 2016; 10:3291-3304. [PMID: 27784989 PMCID: PMC5063603 DOI: 10.2147/dddt.s110514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aberrant canonical Wnt-β-catenin signaling has been reported in multiple sclerosis (MS), although the results are controversial. The present study aimed to examine the role of the Wnt-β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate), resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy)-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin-PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35-55. Released moringin (10 mg/kg glucomoringin +5 μL myrosinase/mouse) was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt-β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt-β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2), through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt-β-catenin signaling cascade and as a new potential therapeutic target for MS treatment.
Collapse
Affiliation(s)
| | | | - Gina Rosalinda De Nicola
- Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN), Bologna, Italy
| | - Renato Iori
- Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN), Bologna, Italy
| | | | | |
Collapse
|
46
|
Maldini M, Foddai M, Natella F, Addis R, Chessa M, Petretto GL, Tuberoso CIG, Pintore G. Metabolomic study of wild and cultivated caper (Capparis spinosa L.) from different areas of Sardinia and their comparative evaluation. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:716-728. [PMID: 27489055 DOI: 10.1002/jms.3830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Capparis spinosa L. (Capparidaceae), also known as caper, is widely known for its very aromatic flower buds (capers),that are largely employed as a flavouring in cooking. Capparis species are regarded as a potential source of important bioactive compounds, in fact, due to their botanical relationship with Brassica species; they contain glucosinolates, secondary plant metabolites, that have been studied for their potential anticarcinogenic properties. In addition, the presence of other numerous beneficial compounds such as polyphenols, alkaloids, lipids, vitamins and minerals have been reported. The aim of this study was to individuate and determinate the principal bioactive compounds occurring in different part (leaves, buds and flowers) of wild and cultivated C. spinosa collected from different area of Sardinia (Italy). Ultra-high performance liquid chromatography-triple quadrupole/linear ion trap tandem mass spectrometry methods were used for identification and simultaneous determination of 27 bioactive molecules. Analysis of different samples revealed qualitative and quantitative differences in the content of flavonoids, glucosinolates, anthocyanins and phenolic acids. In particular, glucocapparin resulted the most abundant with values ranging from 112 to 364 mg/100 g Fresh Weight (FW); followed by rutin with highest value of 126 mg/100 g FW, 4-hydroxyglucobrassicin with highest value of 42 mg/100 g FW and isorhamnetin 3-O-rutinoside with highest value of 24 mg/100 g FW. Based on this metabolomic targeted approach, quantitative results were treated by principal component analysis to explore and visualise correlation and discrimination among collections of C. spinosa samples. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mariateresa Maldini
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| | - Marzia Foddai
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| | - Fausta Natella
- Council for Agricultural Research and Agricultural Economy Analysis, Food and Nutrition Research Centre (CREA-NUT), Via Ardeatina 546, 00178, Roma, Italy
| | - Roberta Addis
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| | - Mario Chessa
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| | - Giacomo Luigi Petretto
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| | - Carlo I G Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| |
Collapse
|
47
|
Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease. Rejuvenation Res 2016; 20:50-63. [PMID: 27245199 DOI: 10.1089/rej.2016.1828] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present study was aimed at estimating a possible neuroprotective effect of glucomoringin (GMG) [4-(α-L-rhamnopyranosyloxy)benzyl glucosinolate] bioactivated with the enzyme myrosinase to form the corresponding isothiocyanate [4-(α-L-rhamnopyranosyloxy)benzyl C; moringin] in the treatment or prevention of Parkinson's disease (PD). In this study, the beneficial effects of moringin were compared with those of pure GMG, not enzymatically activated, in an in vivo experimental mouse model of subacute PD. Subacute PD was induced in C57BL/6 mice by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice were pretreated daily for 1 week with moringin (10 mg/kg +5 μL myrosinase/mouse) and with GMG (10 mg/kg). Behavioral evaluations were also performed to assess motor deficits and bradykinesia in MPTP mice. Besides, assuming that pretreatment with moringin could modulate the triggering of inflammatory cascade with a correlated response, we tested its in vitro anti-inflammatory activity by using a model of RAW 264.7 macrophages stimulated with lipopolysaccharide. Achieved results in vivo showed a higher efficacy of moringin compared with GMG not only to modulate the inflammatory pathway but also oxidative stress and apoptotic pathways. In addition, the greater effectiveness of moringin in countering mainly the inflammatory pathway has been corroborated by the results obtained in vitro. The relevance and innovation of the present study lie in the possible use of a safe formulation of a bioactive compound, resulting from exogenous myrosinase hydrolysis of the natural phytochemical GMG, which can be used in clinical practice as a useful drug for the treatment or prevention of PD.
Collapse
Affiliation(s)
| | | | - Gina Rosalinda De Nicola
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Renato Iori
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Patrick Rollin
- 3 Université d'Orléans et CNRS , ICOA, UMR 7311, Orléans, France
| | | | | |
Collapse
|
48
|
Administration of 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate delays disease phenotype in SOD1(G93A) rats: a transgenic model of amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:259417. [PMID: 26075221 PMCID: PMC4436451 DOI: 10.1155/2015/259417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
4-(α-L-Rhamnosyloxy)-benzyl glucosinolate (glucomoringin, GMG) is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate (GMG-ITC). The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS) using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg) bioactivated with myrosinase (20 µL/rat) via intraperitoneal (i.p.) injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.
Collapse
|