1
|
Miranda S, Tonin FS, Pinto-Sousa C, Fortes-Gabriel E, Brito M. Genetic Profile of Rotavirus Type A in Children under 5 Years Old in Africa: A Systematic Review of Prevalence. Viruses 2024; 16:243. [PMID: 38400019 PMCID: PMC10893345 DOI: 10.3390/v16020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 02/25/2024] Open
Abstract
Human type A rotavirus (RV-A) is world-recognized as the major pathogen causing viral gastroenteritis in children under 5 years of age. The literature indicates a substantial increase in the diversity of rotavirus strains across continents, especially in Africa, which can pose significant challenges including an increase of disease burden and a reduction of vaccines' effectiveness. However, few studies have mapped the variety of circulating virus strains in different regions, which may hamper decisions on epidemiological surveillance and preventive public health measures. Thus, our aim was to compile the most updated available evidence on the genetic profile of RV-A among children in Africa and determine the prevalence of different genotypes according to the geographical regions by means of a broad systematic review. Systematic searches were performed in PubMed, Scopus, Web of Science, and Scielo without language, time limits, or geographical restrictions within the African continent. We selected full-text peer-reviewed articles assessing the genetic profile (i.e., genotyping) of RV-A in children up to 5 years old in Africa. Overall, 682 records were retrieved, resulting in 75 studies included for evidence synthesis. These studies were published between 1999 and 2022, were conducted in 28 countries from the five African regions, and 48% of the studies were carried out for 24 months or more. Most studies (n = 55; 73.3%) evaluated RV-A cases before the introduction of the vaccines, while around 20% of studies (n = 13) presented data after the vaccine approval in each country. Only seven (9.3%) studies compared evidence from both periods (pre- and post-vaccine introduction). Genotyping methods to assess RV-A varied between RT-PCR, nested or multiplex RT-PCR, testing only the most common P and G-types. We observed G1 and P[8] to be the most prevalent strains in Africa, with values around 31% and 43%, respectively. Yet if all the genotypes with the following highest prevalence were added ((G1 + G2, G3, G9) and (P[8] + P[6], P[4])), these figures would represent 80% and 99% of the total prevalence. The combination G1P[8] was the most reported in the studies (around 22%). This review study demonstrated an increased strain diversity in the past two decades, which could represent a challenge to the efficacy of the current vaccine.
Collapse
Affiliation(s)
- Sandra Miranda
- Faculdade de Medicine, Universidade Agostinho Neto, Luanda, Angola; (S.M.); (C.P.-S.)
- CISA-Centro de Investigação em Saúde de Angola, Caxito, Bengo, Angola;
- Clínica Girassol, Luanda, Angola
| | - Fernanda S. Tonin
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal;
- Pharmaceutical Sciences Postgraduate Program, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Carlos Pinto-Sousa
- Faculdade de Medicine, Universidade Agostinho Neto, Luanda, Angola; (S.M.); (C.P.-S.)
- UPRA-Universidade Privada de Angola, Luanda, Angola
| | - Elsa Fortes-Gabriel
- CISA-Centro de Investigação em Saúde de Angola, Caxito, Bengo, Angola;
- ISTM- Instituto Superior Técnico Militar, Luanda, Angola
| | - Miguel Brito
- CISA-Centro de Investigação em Saúde de Angola, Caxito, Bengo, Angola;
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal;
| |
Collapse
|
2
|
Omotade TI, Babalola TE, Anyabolu CH, Japhet MO. Rotavirus and bacterial diarrhoea among children in Ile-Ife, Nigeria: Burden, risk factors and seasonality. PLoS One 2023; 18:e0291123. [PMID: 37699036 PMCID: PMC10497142 DOI: 10.1371/journal.pone.0291123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Diarrhoea is a leading cause of death among under-five children globally, with sub-Saharan Africa alone accounting for 1/3 episodes yearly. Viruses, bacteria and parasites may cause diarrhoea. Rotavirus is the most common viral aetiology of diarrhoea in children less than five years globally. In Nigeria, there is scarce data on the prevalence/importance, burden, clinical/risk factors and seasonality of rotavirus and bacteria and this study aims to determine the role of rotavirus and bacteria on diarrhoea cases in children less than five years in Ile-Ife, Nigeria. METHODS Socio-demographic data, environmental/risk factors and diarrhoiec stool samples were collected from children less than five years presenting with acute diarrhoea. Rotavirus was identified using ELISA. Bacteria pathogens were detected using cultural technique and typed using PCR. Diarrhoeagenic E. coli (DEC) isolates were subjected to antimicrobial susceptibility testing. Pathogen positive and negative samples were compared in terms of gender, age-group, seasonal distribution, and clinical/risk factors using chi-square with two-tailed significance. SPSS version 20.0.1 for Windows was used for statistical analysis. RESULTS At least one pathogen was detected from 63 (60.6%) children having gastroenteritis while 28 (44.4%) had multiple infections. Rotavirus was the most detected pathogen. Prevalence of rotavirus mono-infection was 22%, multiple infection with bacteria was 45%. Mono-infection prevalence of DEC, Shigella spp., and Salmonella spp. were 5.8% (6/104), 5.8% (6/104), and 2.9% (3/104) and co-infection with RVA were 23.1% (24/104), 21.2% (22/104) and 10.6% (11/104) respectively. All rotaviral infections were observed in the dry season. The pathotypes of DEC detected were STEC and EAEC. Parent earnings and mid-upper arm circumference measurement have statistical correlation with diarrhoea (p = 0.034; 0.035 respectively). CONCLUSION In this study, rotavirus was more prevalent than bacteria and occurred only in the dry season. Among bacteria aetiologies, DEC was the most common detected. Differences in seasonal peaks of rotavirus and DEC could be employed in diarrhoea management in Nigeria and other tropical countries to ensure optimal limited resources usage in preventing diarrhoea transmission and reducing indiscriminate use of antibiotics.
Collapse
Affiliation(s)
| | - Toluwani Ebun Babalola
- Department of Paediatrics, Obafemi Awolowo University Teaching Hospital (OAUTHC), Ile-Ife, Osun State, Nigeria
| | - Chineme Henry Anyabolu
- Department of Paediatrics, Obafemi Awolowo University Teaching Hospital (OAUTHC), Ile-Ife, Osun State, Nigeria
| | - Margaret Oluwatoyin Japhet
- Faculty of Science, Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
3
|
Eugenia Afocha E, Abiodun Iwalokun B, Deji-Agboola MA, Ayorinde James B, Abayomi Banjo T, Adu F, Chukwujekwu Ezechi O, Adegbola R, Lawal Salako B. Prevalence and spatiotemporal distribution of rotavirus diarrhea among children younger than five years old in Lagos, Nigeria. J Immunoassay Immunochem 2023; 44:117-132. [PMID: 36576163 DOI: 10.1080/15321819.2022.2159430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Data on spatiotemporal distribution of rotavirus diarrhea are limited in many endemic settings. This study determined the prevalence and seasonal distribution of rotavirus among Nigerian children with diarrhea. Here, a total of 406 fecal samples were collected from patients attending six health facilities in Lagos between January - December 2019. Socio-demographic data of each enrolled child were collected. Rotavirus VP6 antigen was detected by enzyme-linked immunoassay (ELISA) and confirmation by VP7 gene detection by reverse transcription polymerase-chain reaction. The overall rotavirus diarrhea prevalence was 16.3% by ELISA with children above 2 years having 29.2% of this prevalence and higher occurrence in females (59.1%) than males (40.9%) (P < .05). Rotavirus diarrhea diagnosis using RT-PCR showed 100% concordance with ELISA. Cases of rotavirus diarrhea were detected from March to July and from September to November with the highest number of cases detected in May and June (22.7% each), followed by July (21.2%). The prevalence of rotavirus diarrhea remains high in Lagos with an emerging higher disease activity in children above 2. A different rotavirus transmission dynamics compared to previous studies from Nigeria and other African countries was found. VP6 ELISA may reliably be used for continuous rotavirus surveillance in Nigeria.
Collapse
Affiliation(s)
- Ebelechukwu Eugenia Afocha
- Medical Microbiology & Parasitology Department, Olabisi Onabanjo University, Nigeria.,Centre for Infectious Disease Research, Microbiology Department, Nigerian Institute of Medical Research, Nigeria
| | - Bamidele Abiodun Iwalokun
- Medical Microbiology & Parasitology Department, Olabisi Onabanjo University, Nigeria.,Molecular Biology & Biotechnology Department, Nigerian Institute of Medical Research, Nigeria.,Central Research Laboratory Department, Nigerian Institute of Medical Research, Nigeria
| | | | | | - Taiwo Abayomi Banjo
- Medical Microbiology & Parasitology Department, Olabisi Onabanjo University, Nigeria
| | - Festus Adu
- All Saints University Medical School, Cnr Hillborough and Great George Street, Common Wealth of Dominica, West Indies
| | | | - Richard Adegbola
- Centre for Infectious Disease Research, Microbiology Department, Nigerian Institute of Medical Research, Nigeria
| | | |
Collapse
|
4
|
Manouana GP, Nguema-Moure PA, Tomazatos A, Maloum MN, Bock CT, Kremsner PG, Velavan TP, Adegnika AA, Niendorf S. RT-PCR-based assessment of the SD Bioline Rota/Adeno Antigen-based test in infants with and without diarrhea. Virol J 2023; 20:40. [PMID: 36864463 PMCID: PMC9981446 DOI: 10.1186/s12985-023-01999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Rotavirus A (RVA) infections remain a major cause of severe acute diarrhea affecting children worldwide. To date, rapid diagnostic tests (RDT) are widely used to detect RVA. However, paediatricians question whether the RDT can still detect the virus accurately. Therefore, this study aimed to evaluate the performance of the rapid rotavirus test in comparison to the one-step RT-qPCR method. METHODS A cross-sectional study was conducted in Lambaréné, Gabon, from April 2018 to November 2019. Stool samples were collected from children under 5 years of age with diarrhoea or a history of diarrhoea within the last 24 h, and from asymptomatic children from the same communities. All stool samples were processed and analysed using the SD BIOLINE Rota/Adeno Ag RDT against a quantitative reverse transcription PCR (RT-qPCR), which is considered the gold standard. RESULTS For a total of 218 collected stool samples, the overall sensitivity of the RDT was 46.46% (confidence interval (CI) 36.38-56.77), with a specificity of 96.64% (CI 91.62-99.08) compared to one-step RT-qPCR. After confirming the presence or absence of RVA gastroenteritis, the RDT showed suitable results in detecting rotavirus A-associated disease, with a 91% concordance with the RT-qPCR. Furthermore, the performance of this test varied when correlated with seasonality, symptoms, and rotavirus genotype. CONCLUSION This RDT showed high sensitivity and was suitable for the detection of RVA in patients with RVA gastroenteritis, although some asymptomatic RVA shedding was missed by RT-qPCR. It could be a useful diagnostic tool, especially in low-income countries.
Collapse
Affiliation(s)
- Gédéon Prince Manouana
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| | | | - Alexandru Tomazatos
- Department Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - C-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Akim Ayola Adegnika
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
- Fondation Pour La Recherche Scientifique, Cotonou, Bénin
| | - Sandra Niendorf
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
5
|
Yamani LN, Utsumi T, Doan YH, Fujii Y, Dinana Z, Wahyuni RM, Gunawan E, Soegijanto S, Athiyyah AF, Sudarmo SM, Ranuh RG, Darma A, Soetjipto, Juniastuti, Bawono RG, Matsui C, Deng L, Abe T, Shimizu H, Ishii K, Katayama K, Lusida MI, Shoji I. Complete genome analyses of G12P[8] rotavirus strains from hospitalized children in Surabaya, Indonesia, 2017-2018. J Med Virol 2023; 95:e28485. [PMID: 36625390 DOI: 10.1002/jmv.28485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Rotavirus A (RVA) is a major viral cause of acute gastroenteritis (AGE) worldwide. G12 RVA strains have emerged globally since 2007. There has been no report of the whole genome sequences of G12 RVAs in Indonesia. We performed the complete genome analysis by the next-generation sequencing of five G12 strains from hospitalized children with AGE in Surabaya from 2017 to 2018. All five G12 strains were Wa-like strains (G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1) and were clustered into lineage-III of VP7 gene phylogenetic tree. STM430 sample was observed as a mixed-infection between G12 and G1 strains: G12/G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. A phylogenetic tree analysis revealed that all five Indonesian G12 strains (SOEP379, STM371, STM413, STM430, and STM433) were genetically close to each other in all 11 genome segments with 98.0%-100% nucleotide identities, except VP3 and NSP4 of STM430, suggesting that these strains have originated from a similar ancestral G12 RVA. The VP3 and NSP4 genome segments of STM430-G12P[8] were separated phylogenetically from those of the other four G12 strains, probably due to intra-genotype reassortment between the G12 and G1 Wa-like strains. The change from G12P[6] lineage-II in 2007 to G12P[8] lineage-III 2017-2018 suggests the evolution and diversity of G12 RVAs in Indonesia over the past approximately 10 years.
Collapse
Affiliation(s)
- Laura Navika Yamani
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Epidemiology, Biostatistics, Population Studies and Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Takako Utsumi
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yen Hai Doan
- Laboratory VIII, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Zayyin Dinana
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Rury Mega Wahyuni
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Emily Gunawan
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Soegeng Soegijanto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Alpha Fardah Athiyyah
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Subijanto Marto Sudarmo
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Reza Gunadi Ranuh
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Andy Darma
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Soetjipto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Juniastuti
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Rheza Gandi Bawono
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Maria Inge Lusida
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
6
|
Digwo D, Chidebelu P, Ugwu K, Adediji A, Farkas K, Chigor V. Prevalence and relative risk of Rotavirus Gastroenteritis in children under five years in Nigeria: a systematic review and meta-analysis. Pathog Glob Health 2023; 117:24-35. [PMID: 35249468 PMCID: PMC9848363 DOI: 10.1080/20477724.2022.2043223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rotavirus is responsible for most cases of gastroenteritis and mortality in children below 5 years of age, especially in developing countries, including Nigeria. Nonetheless, there is limited data on the nationwide estimate for the prevalence of rotavirus. This systematic review and meta-analysis sought to determine the pooled prevalence of rotavirus infections and its relative risk among children below 5 years of age in Nigeria. Eligible published studies between 1982 and 2021 were accessed from 'PubMed', 'Science Direct', 'Google Scholar' and 'African Journal Online', 'Web of Science', 'Springer', 'Wiley' were systematically reviewed. The pooled prevalence, relative risk and regional subgroup analyses were calculated using the random effects model at 95% confidence interval (CI). A total of 62 selected studies, including 15 studies case-control studies, were processed in this review from a pooled population of 18,849 children. The nationwide pooled prevalence of rotavirus among children below 5 years of age in Nigeria was 23% (CI 95%; 19-27). Regional subgroup analysis showed that the Southern region had a prevalence of 27% (CI 95%; 21-32) while the Northern region had a 20% (CI 95%; 16-25%) prevalence, although the difference was not significant (P = 0.527). Rotavirus was implicated in most cases of acute gastroenteritis with a relative risk of 5.7 (95% CI: 2.9-11.2). The high prevalence and relative risk of rotavirus infections among children in Nigeria shows that rotavirus is an important cause of acute gastroenteritis in Nigeria. Thus, there is a need for further surveillance, especially at community levels together with the introduction of rotavirus vaccines into the national immunization program.
Collapse
Affiliation(s)
- Daniel Digwo
- Water and Public Health Research Group (Wphrg), Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Paul Chidebelu
- Water and Public Health Research Group (Wphrg), Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Kenneth Ugwu
- Water and Public Health Research Group (Wphrg), Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Adedapo Adediji
- Water and Public Health Research Group (Wphrg), Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Kata Farkas
- School of Ocean Sciences, Bangor University, Anglesey, UK
| | - Vincent Chigor
- Water and Public Health Research Group (Wphrg), Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
7
|
Gutierrez MB, de Assis RMS, Arantes I, Fumian TM. Full genotype constellations analysis of unusual DS-1-like G12P[6] and G6P[8] rotavirus strains detected in Brazil, 2019. Virology 2022; 577:74-83. [PMID: 36323046 DOI: 10.1016/j.virol.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Rotavirus A (RVA) is a major cause of acute gastroenteritis (AGE) in children worldwide. We report unusual RVA G12P[6] and G6P[8] strains isolated from fecal samples from Brazilian children hospitalized for AGE. The characterized RVA have genome segments backbone: G12-P[6]/ G6-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of DS-1-like genogroup. Our study describes the first identification of G6P[8], a DS-1-like genogroup strain. Nucleotide analysis of VP7 and VP4 genes revealed that all G12 Brazilian strains clustered into the sub-lineages IIIB, mostly associated with P[6] lineage I. Additionally, our G6 lineage I strains were closely related to German G6 genotypes, bound with P[8] lineage III, differing from both vaccine strains. The comparative sequence analysis of our strains with vaccine strains revealed amino acid substitutions located in immunodominant regions of VP7 and VP4 proteins. Continuous monitoring of RVA genotypes is essential to evaluate the impact of vaccination on the dynamic nature of RVA evolution.
Collapse
Affiliation(s)
- Meylin Bautista Gutierrez
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Ighor Arantes
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil.
| |
Collapse
|
8
|
Mijatovic-Rustempasic S, Jaimes J, Perkins C, Ward ML, Esona MD, Gautam R, Lewis J, Sturgeon M, Panjwani J, Bloom GA, Miller S, Reisdorf E, Riley AM, Pence MA, Dunn J, Selvarangan R, Jerris RC, DeGroat D, Parashar UD, Cortese MM, Bowen MD. Rotavirus Strain Trends in United States, 2009-2016: Results from the National Rotavirus Strain Surveillance System (NRSSS). Viruses 2022; 14:1775. [PMID: 36016397 PMCID: PMC9414880 DOI: 10.3390/v14081775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Before the introduction of vaccines, group A rotaviruses (RVA) were the leading cause of acute gastroenteritis in children worldwide. The National Rotavirus Strain Surveillance System (NRSSS) was established in 1996 by the Centers for Disease Control and Prevention (CDC) to perform passive RVA surveillance in the USA. We report the distribution of RVA genotypes collected through NRSSS during the 2009-2016 RVA seasons and retrospectively examine the genotypes detected through the NRSSS since 1996. During the 2009-2016 RVA seasons, 2134 RVA-positive fecal specimens were sent to the CDC for analysis of the VP7 and VP4 genes by RT-PCR genotyping assays and sequencing. During 2009-2011, RVA genotype G3P[8] dominated, while G12P[8] was the dominant genotype during 2012-2016. Vaccine strains were detected in 1.7% of specimens and uncommon/unusual strains, including equine-like G3P[8] strains, were found in 1.9%. Phylogenetic analyses showed limited VP7 and VP4 sequence variation within the common genotypes with 1-3 alleles/lineages identified per genotype. A review of 20 years of NRSSS surveillance showed two changes in genotype dominance, from G1P[8] to G3P[8] and then G3P[8] to G12P[8]. A better understanding of the long-term effects of vaccine use on epidemiological and evolutionary dynamics of circulating RVA strains requires continued surveillance.
Collapse
Affiliation(s)
- Slavica Mijatovic-Rustempasic
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Jose Jaimes
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Charity Perkins
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - M. Leanne Ward
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Mathew D. Esona
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Rashi Gautam
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Jamie Lewis
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Michele Sturgeon
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Junaid Panjwani
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Gail A. Bloom
- Indiana University Health Pathology Laboratory, Indiana University, 350 West 11th Street, Indianapolis, IN 46202, USA
| | - Steve Miller
- UCSF Clinical Microbiology Laboratory, 185 Berry St, Suite 290, San Francisco, CA 94107, USA
| | - Erik Reisdorf
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718, USA
| | - Ann Marie Riley
- Infectious Disease Diagnostic Laboratory, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Morgan A. Pence
- Cook Children’s Medical Center, 801 Seventh Ave., Fort Worth, TX 76104, USA
| | - James Dunn
- Medical Microbiology and Virology, Department of Pathology, Texas Children’s Hospital, 6621 Fannin Street, Suite AB1195, Houston, TX 77030, USA
| | | | - Robert C. Jerris
- Children’s Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA 30329, USA
| | - Dona DeGroat
- Seattle Children’s Hospital, 5801 Sand Point Way NE, Seattle, WA 98105, USA
| | - Umesh D. Parashar
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Margaret M. Cortese
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| |
Collapse
|
9
|
Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination. Viruses 2022; 14:v14081670. [PMID: 36016292 PMCID: PMC9416126 DOI: 10.3390/v14081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Human group A rotaviruses (RVA) are important enteric pathogens, as they are a leading cause of acute gastroenteritis (AGE) in children worldwide. Since 2013, the German Standing Committee on vaccination recommended the routine rotavirus vaccination for infants in Germany. While vaccination has significantly decreased RVA cases and worldwide mortality, in some cases, infants can develop acute gastroenteritis as an adverse reaction after immunization with an attenuated live vaccine. Pediatricians, as well as clinicians and diagnostic laboratories, contacted the Consultant Laboratory for Rotaviruses and inquired whether cases of RVA-positive AGE after vaccination were associated with vaccine or with wild-type RVA strains. A testing algorithm based on distinguishing PCRs and confirmative sequencing was designed, tested, and applied. Diagnostic samples from 68 vaccinated children and six cases where horizontal transmission was suspected were investigated in this study. Using a combination of real-time PCR, fragment-length analysis of amplicons from multiplex PCRs and confirmative sequencing, vaccine-like virus was detected in 46 samples and wild-type RVA was detected in 6 samples. Three mixed infections of vaccine and wild-type RVA were detectable, no RVA genome was found in 19 samples. High viral loads (>1.0 × 107 copies/g stool) were measured in most RVA-positive samples. Furthermore, information on co-infections with other AGE pathogens in the vaccinated study population was of interest. A commercial multiplex PCR and in-house PCRs revealed three co-infections of vaccinated infants with bacteria (two samples with Clostridioides difficile and one sample with enteropathogenic E. coli) and six co-infections with norovirus in a subset of the samples. Human astrovirus was detected in one sample, with suspected horizontal transmission. The cases of suspected horizontal transmission of vaccine RVA strains could not be confirmed, as they either involved wild-type RVA or were RVA negative. This study shows that RVA-positive AGE after vaccination is not necessarily associated with the vaccine strain and provides a reliable workflow to distinguish RVA vaccine strains from wild-type strains.
Collapse
|
10
|
Motayo BO, Faneye AO, Adeniji JA. VP7, VP4, and NSP4 genes of species a rotaviruses isolated from sewage in Nigeria, 2014/2015: partial sequence characterization and biophysical analysis of NSP4 (enterotoxin). Virus Genes 2022; 58:180-187. [PMID: 35303217 DOI: 10.1007/s11262-022-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Species A rotavirus are an important cause of childhood gastroenteritis, and the main contributor to its pathogenicity is the enterotoxin (NSP4) protein. Some biophysical properties of partial NSP4 genes of RVAs isolated from sewage in Nigeria during 2014/2015 were investigated. Samples were typed by RT-PCR and Sanger sequencing of partial VP4, VP7 and NSP4 genes. Phylogeny identified lineages within genotypes, predicted glycosylation sites; hydrophobicity profiles and amino acid alignments were employed to determine some biophysical properties of the NSP4 protein. The VP7 sequences of our isolates were the most diversified, the majority of the isolates carried NSP4 genes of the E1 genotype. Genotype specific variations both in hydrophobicity and potential glycosylation were identified, mutations were highest within the H3 hydrophobic domain and VP4 binding domain. The study of RVA NSP4 genes from non-clinical samples revealed that there were structural consistencies with those of reference genes.
Collapse
Affiliation(s)
- Babatunde O Motayo
- Department of Medical Microbiology, Federal Medical Center, Abeokuta, Nigeria.
| | | | | |
Collapse
|
11
|
Manouana GP, Niendorf S, Tomazatos A, Mbong Ngwese M, Nzamba Maloum M, Nguema Moure PA, Bingoulou Matsougou G, Ategbo S, Rossatanga EG, Bock CT, Borrmann S, Mordmüller B, Eibach D, Kremsner PG, Velavan TP, Adegnika AA. Molecular surveillance and genetic divergence of rotavirus A antigenic epitopes in Gabonese children with acute gastroenteritis. EBioMedicine 2021; 73:103648. [PMID: 34706308 PMCID: PMC8551588 DOI: 10.1016/j.ebiom.2021.103648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023] Open
Abstract
Background Rotavirus A (RVA) causes acute gastroenteritis in children <5 years of age in sub-Saharan Africa. In this study, we described the epidemiology and genetic diversity of RVA infecting Gabonese children and examined the antigenic variability of circulating strains in relation to available vaccine strains to maximize the public health benefits of introducing rotavirus vaccine through the Expanded Programme on Immunization (EPI) in Gabon. Methods Stool samples were collected consecutively between April 2018 and November 2019 from all hospitalized children <5 years with gastroenteritis and community controls without gastroenteritis. Children were tested for rotavirus A by quantitative RT-PCR and subsequently sequenced to identify circulating rotavirus A genotypes in the most vulnerable population. The VP7 and VP4 (VP8*) antigenic epitopes were mapped to homologs of vaccine strains to assess structural variability and potential impact on antigenicity. Findings Infections were mostly acquired during the dry season. Rotavirus A was detected in 98/177 (55%) hospitalized children with gastroenteritis and 14/67 (21%) of the control children. The most common RVA genotypes were G1 (18%), G3 (12%), G8 (18%), G9 (2%), G12 (25%), with G8 and G9 reported for the first time in Gabon. All were associated either with P[6] (31%) or P[8] (38%) genotypes. Several non-synonymous substitutions were observed in the antigenic epitopes of VP7 (positions 94 and 147) and VP8* (positions 89, 116, 146 and 150), which may modulate the elicited immune responses. Interpretation This study contributes to the epidemiological surveillance of rotavirus A required before the introduction of rotavirus vaccination in the EPI for Gabonese children.
Collapse
Affiliation(s)
- Gédéon Prince Manouana
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon
| | - Sandra Niendorf
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Alexandru Tomazatos
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | - Gedeon Bingoulou Matsougou
- Département de Pédiatrie, Faculté de Médecine, Université des Sciences de la Santé (USS), BP 4009, Libreville, Gabon
| | - Simon Ategbo
- Département de Pédiatrie, Faculté de Médecine, Université des Sciences de la Santé (USS), BP 4009, Libreville, Gabon
| | | | - C Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Steffen Borrmann
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherland
| | - Daniel Eibach
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Viet Nam.
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon; Centre Hospitalier Régional Georges Rawiri de Lambaréné, Lambaréné, Gabon; Fondation pour la Recherche Scientifique, Cotonou, Bénin.
| |
Collapse
|
12
|
Presence and Diversity of Different Enteric Viruses in Wild Norway Rats ( Rattus norvegicus). Viruses 2021; 13:v13060992. [PMID: 34073462 PMCID: PMC8227696 DOI: 10.3390/v13060992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023] Open
Abstract
Rodents are common reservoirs for numerous zoonotic pathogens, but knowledge about diversity of pathogens in rodents is still limited. Here, we investigated the occurrence and genetic diversity of enteric viruses in 51 Norway rats collected in three different countries in Europe. RNA of at least one virus was detected in the intestine of 49 of 51 animals. Astrovirus RNA was detected in 46 animals, mostly of rat astroviruses. Human astrovirus (HAstV-8) RNA was detected in one, rotavirus group A (RVA) RNA was identified in eleven animals. One RVA RNA could be typed as rat G3 type. Rat hepatitis E virus (HEV) RNA was detected in five animals. Two entire genome sequences of ratHEV were determined. Human norovirus RNA was detected in four animals with the genotypes GI.P4-GI.4, GII.P33-GII.1, and GII.P21. In one animal, a replication competent coxsackievirus A20 strain was detected. Additionally, RNA of an enterovirus species A strain was detected in the same animal, albeit in a different tissue. The results show a high detection rate and diversity of enteric viruses in Norway rats in Europe and indicate their significance as vectors for zoonotic transmission of enteric viruses. The detailed role of Norway rats and transmission pathways of enteric viruses needs to be investigated in further studies.
Collapse
|
13
|
Mokoena F, Esona MD, Seheri LM, Nyaga MM, Magagula NB, Mukaratirwa A, Mulindwa A, Abebe A, Boula A, Tsolenyanu E, Simwaka J, Rakau KG, Peenze I, Mwenda JM, Mphahlele MJ, Steele AD. Whole Genome Analysis of African G12P[6] and G12P[8] Rotaviruses Provides Evidence of Porcine-Human Reassortment at NSP2, NSP3, and NSP4. Front Microbiol 2021; 11:604444. [PMID: 33510725 PMCID: PMC7835662 DOI: 10.3389/fmicb.2020.604444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023] Open
Abstract
Group A rotaviruses (RVA) represent the most common cause of pediatric gastroenteritis in children <5 years, worldwide. There has been an increase in global detection and reported cases of acute gastroenteritis caused by RVA genotype G12 strains, particularly in Africa. This study sought to characterize the genomic relationship between African G12 strains and determine the possible origin of these strains. Whole genome sequencing of 34 RVA G12P[6] and G12P[8] strains detected from the continent including southern (South Africa, Zambia, Zimbabwe), eastern (Ethiopia, Uganda), central (Cameroon), and western (Togo) African regions, were sequenced using the Ion Torrent PGM method. The majority of the strains possessed a Wa-like backbone with consensus genotype constellation of G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while a single strain from Ethiopia displayed a DS-1-like genetic constellation of G12-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. In addition, three Ethiopian and one South African strains exhibited a genotype 2 reassortment of the NSP3 gene, with genetic constellation of G12-P[8]-I1-R1-C1-M1-A1-N1-T2-E1-H1. Overall, 10 gene segments (VP1–VP4, VP6, and NSP1–NSP5) of African G12 strains were determined to be genetically related to cognate gene sequences from globally circulating human Wa-like G12, G9, and G1 strains with nucleotide (amino acid) identities in the range of 94.1–99.9% (96.5–100%), 88.5–98.5% (93–99.1%), and 89.8–99.0% (88.7–100%), respectively. Phylogenetic analysis showed that the Ethiopian G12P[6] possessing a DS-1-like backbone consistently clustered with G2P[4] strains from Senegal and G3P[6] from Ethiopia with the VP1, VP2, VP6, and NSP1–NSP4 genes. Notably, the NSP2, NSP3, and NSP4 of most of the study strains exhibited the closest relationship with porcine strains suggesting the occurrence of reassortment between human and porcine strains. Our results add to the understanding of potential roles that interspecies transmission play in generating human rotavirus diversity through reassortment events and provide insights into the evolutionary dynamics of G12 strains spreading across selected sub-Saharan Africa regions.
Collapse
Affiliation(s)
- Fortunate Mokoena
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mmabatho, South Africa.,Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Mathew Dioh Esona
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Luyanda Mapaseka Seheri
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Nonkululelo Bonakele Magagula
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Arnold Mukaratirwa
- Department of Medical Microbiology, University of Zimbabwe-College of Health Sciences, Harare, Zimbabwe
| | | | - Almaz Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Angeline Boula
- Mother and Child Center, Chantal Biya Foundation, Yaoundé, Cameroon
| | - Enyonam Tsolenyanu
- Department of Paediatrics, Sylvanus Olympio Teaching Hospital of Lome, Lome, Togo
| | - Julia Simwaka
- Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Kebareng Giliking Rakau
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Ina Peenze
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jason Mathiu Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Cluster, WHO African Regional Office, Brazzaville, Congo
| | - Maphahlaganye Jeffrey Mphahlele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Andrew Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, United States
| | | |
Collapse
|
14
|
Agbla JM, Esona MD, Agbankpe AJ, Capo-Chichi A, Gautam R, Dougnon TV, Razack O, Bowen MD, Bankole HS. Molecular characteristics of rotavirus genotypes circulating in the south of Benin, 2016-2018. BMC Res Notes 2020; 13:485. [PMID: 33076976 PMCID: PMC7574571 DOI: 10.1186/s13104-020-05332-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Rotavirus remains the main causative agent of gastroenteritis in young children in countries that have not yet introduced the vaccine. In Benin, rotavirus vaccine was introduced late December 2019 into the EPI. This study aims to provide pre-vaccination era rotavirus genotyping data in Benin. These data can supplement data from the surveillance system of Ministry of Health of Benin which is supported by the World Health Organization (WHO). RESULTS Of the 420 diarrheal stool samples, actively collected in southern Benin from July 2016 through November 2018 from children under 5 years old and suffering from gastroenteritis, 167 (39.8%) samples were rotavirus EIA positive. 186 (44.3%) samples contained amplifiable rotavirus RNA detected by qRT-PCR method and were genotyped using one-step RT-PCR multiplex genotyping method. G1P[8] represents the predominant genotype (32%) followed by the G2P[4] (26%), G3P[6] (16%), G12P[8] (13%) and mixed G and P types (1%). Four samples (2%) could not be assigned both G and P type specificity.
Collapse
Affiliation(s)
- Jijoho Michel Agbla
- Ministry of Public Health, National Health Laboratory, 01 P.O. Box 418, Cotonou, Benin
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Mathew D. Esona
- Viral Gastroenteritis Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control CDC, 1600 Clifton Road, NE, Atlanta, GA 30329 USA
| | - Alidehou Jerrold Agbankpe
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Annick Capo-Chichi
- Epidemiological Surveillance Service, Ministry of Public Health, 01 P.O. Box 418, Cotonou, Benin
| | - Rashi Gautam
- Viral Gastroenteritis Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control CDC, 1600 Clifton Road, NE, Atlanta, GA 30329 USA
| | - Tamegnon Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Osseni Razack
- Central Clinic of Abomey Calavi, 01 P.O. Box 418, Cotonou, Benin
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control CDC, 1600 Clifton Road, NE, Atlanta, GA 30329 USA
| | - Honore Sourou Bankole
- Ministry of Public Health, National Health Laboratory, 01 P.O. Box 418, Cotonou, Benin
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| |
Collapse
|
15
|
Zhou X, Wang YH, Pang BB, Chen N, Kobayashi N. Surveillance of Human Rotavirus in Wuhan, China (2011-2019): Predominance of G9P[8] and Emergence of G12. Pathogens 2020; 9:pathogens9100810. [PMID: 33023203 PMCID: PMC7600066 DOI: 10.3390/pathogens9100810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses are a major etiologic agent of gastroenteritis in infants and young children worldwide. To learn the shift of genotypes and genetic characteristics of Rotavirus A (RVA) causing diarrhea in children and adults, a hospital-based surveillance of rotavirus was conducted in Wuhan, China from June 2011 through May 2019, and representative virus strains were phylogenetically analyzed. Among a total of 6733 stool specimens collected from both children and adults with acute gastroenteritis, RVA was detected in 25.5% (1125/4409) and 12.3% (285/2324) of specimens, respectively. G9P[8] was the most common genotype (74.5%), followed by G1P[8] (8.7%), G2P[4] (8.4%), and G3P[8] (7.3%), with G9P[8] increasing rapidly during the study period. The predominant genotype shifted from G1P[8] to G9P[8] in 2012-2013 epidemic season. G12P[6] strain RVA/Human-wt/CHN/Z2761/2019/G12P[6] was detected in April 2019 and assigned to G12-P[6]-I1-R1-C1-M1-A1-N1-T2-E1-H1 genotypes. Phylogenetic analysis revealed that VP7, VP4, VP6, VP3, NSP1, NSP2, and NSP5 genes of Z2761 clustered closely with those of Korean G12P[6] strain CAU_214, showing high nucleotide identities (98.0-98.8%). The NSP3 gene of Z2761 was closely related to those of G2P[4] and G12P[6] rotaviruses in Asia. All the eleven gene segments of Z2761 kept distance from those of cocirculating G9P[8], G1P[8], and G3P[8] strains detected in Wuhan during this study period. This is the first identification of G12 rotavirus in China. It is deduced that Z2761 is a reassortant having DS-1-like NSP3 gene in the background of G12P[6] rotavirus genetically close to CAU_214.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
| | - Yuan-Hong Wang
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
- Correspondence: ; Tel.: + 86-27-85801763
| | - Bei-Bei Pang
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
16
|
Rotavirus outbreak among adults in a university hospital in Germany. J Clin Virol 2020; 129:104532. [PMID: 32650277 DOI: 10.1016/j.jcv.2020.104532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Rotaviruses are the main cause of acute viral gastroenteritis in children under five years of age. Adults seem to be less frequently affected by rotaviruses most likely due to partial immunity resulting from prior infections. OBJECTIVES To describe a hospital-associated outbreak of rotavirus infections among adults. STUDY DESIGN Routine diagnostics and contact screening of symptomatic patients hospitalized at the university hospital of Freiburg. For rotavirus-positive patients, we performed rotavirus genotyping of all rotavirus RT-PCR positive samples and phylogenetic analysis. RESULTS Between December 2016 and April 2017 routine diagnostics showed an unexpectedly high number of rotavirus infections among adults with the exception of one pediatric case. In total, 32 temporal-associated cases were identified. Among these, two asymptomatic cases were detected. Genotyping showed that all isolates belonged to rotavirus G2P[4]. Phylogenetic analysis confirmed an outbreak. Infection prevention and control successfully contained further spread. CONCLUSIONS Infections with rotavirus are rare among adults but may spread between patients making timely recognition of rotavirus infections important for infection control. Rapid phylogenetic analysis is crucial for proactive infection control.
Collapse
|
17
|
Motayo BO, Oluwasemowo OO, Olusola BA, Opayele AV, Faneye AO. Phylogeography and evolutionary analysis of African Rotavirus a genotype G12 reveals district genetic diversification within lineage III. Heliyon 2019; 5:e02680. [PMID: 31687512 PMCID: PMC6820252 DOI: 10.1016/j.heliyon.2019.e02680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Group A rotavirus (RVA) genotype G12 has spread globally and has become one of the most prevalent genotypes of rotavirus in Africa. To understand the drivers for its genetic diversity and rapid spread we investigated the Bayesian phylogeography, viral evolution and population demography of Rotavirus G12 in Africa. We downloaded and aligned VP7 gene sequences of Rotavirus genotype G12, from thirteen African countries (n = 96). Phylogenetic analysis, Evolutionary analysis and Bayesian Phylogeography was carried out, using MEGA Vs 6, BEAST, and SPREAD3. Phylogenetic analysis revealed that all the African sequences fell into lineage III diversifying into two major clades. The evolutionary rate of the African rotavirus G12 sequences was 1.678×10-3, (95% HPD, 1.201×10-3 - 2.198×10-3) substitutions/site/year, with TMRC of 16.8 years. The Maximum clade credibility (MCC) tree clustered into three lineages (II, III, IV), African strains fell within lineage III, and diversified into three clusters. Phylogeography suggested that South Africa seemed to be the epicentre of dispersal of the genotype. The demographic history of the G12 viruses revealed a steady increase between the years1998-2007, followed by a sharp decrease in effective population size between the years 2008-2011. We have shown the potential for genetic diversification of Rotavirus genotype G12 in Africa. We recommend the adoption of Molecular surveillance across Africa to further control spread and diversification of Rotavirus.
Collapse
Affiliation(s)
- Babatunde Olanrewaju Motayo
- Department of Virology, College of Medicine, University of Ibadan, Nigeria.,Department of Medical Microbiology, Federal Medical Center, Abeokuta, Nigeria
| | | | | | | | | |
Collapse
|
18
|
Japhet MO, Famurewa O, Adesina OA, Opaleye OO, Wang B, Höhne M, Bock CT, Mas Marques A, Niendorf S. Viral gastroenteritis among children of 0-5 years in Nigeria: Characterization of the first Nigerian aichivirus, recombinant noroviruses and detection of a zoonotic astrovirus. J Clin Virol 2018; 111:4-11. [PMID: 30580015 DOI: 10.1016/j.jcv.2018.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Viruses are the leading cause of acute gastroenteritis in children worldwide. Understanding of the occurrence and genetic diversity of these viruses can help to prevent infections. OBJECTIVES The present study describes the presence, genetic diversity and possible recombination of five enteric viruses in children with gastroenteritis in Southwestern Nigeria. STUDY DESIGN From August 2012 to December 2013, stool samples and sociodemographic data of 103 diarrheic children <5 years were collected to detect and characterize rotavirus A, norovirus, human astrovirus, aichivirus and sapovirus using PCR techniques followed by sequencing and phylogenetic analyses. RESULTS At least one virus was identified in 58.3% (60/103) of the stool samples. Rotavirus, norovirus and astrovirus were detected in 39.8% (41/103), 10.7% (11/103), and 6.8% (7/103) respectively. Notably, aichivirus was detected for the first time in Nigeria (1/103; 0.97%). Sapovirus was not detected in the study. Co-infections with rotavirus were observed in eight samples either with norovirus or astrovirus or aichivirus. Phylogenetic analyses of different genome regions of norovirus positive samples provided indication for recombinant norovirus strains. A novel astrovirus strain closely related to canine astrovirus was identified and further characterized for the first time. CONCLUSIONS Viruses are the common cause of acute gastroenteritis in Nigerian infants with rotavirus as most frequently detected pathogen. New norovirus recombinants and a not yet detected zoonotic astrovirus were circulating in Southwestern Nigeria, providing new information about emerging and unusual strains of viruses causing diarrhea.
Collapse
Affiliation(s)
- M O Japhet
- Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; Department of Microbiology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria; Department of Infectious Diseases, Unit of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - O Famurewa
- Department of Microbiology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria; Department of Biological Sciences, Microbiology Unit, Kings University, Odeomu, Osun State, Nigeria
| | - O A Adesina
- Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - O O Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University, Osogbo, Osun state, Nigeria
| | - B Wang
- Department of Infectious Diseases, Unit of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - M Höhne
- Department of Infectious Diseases, Unit of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - C T Bock
- Department of Infectious Diseases, Unit of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andreas Mas Marques
- Department of Infectious Diseases, Unit of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - S Niendorf
- Department of Infectious Diseases, Unit of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
19
|
Motayo BO, Faneye AO, Adeniji JA. Epidemiology of Rotavirus A in Nigeria: Molecular Diversity and Current Insights. J Pathog 2018; 2018:6513682. [PMID: 30364038 PMCID: PMC6188771 DOI: 10.1155/2018/6513682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/29/2018] [Indexed: 11/19/2022] Open
Abstract
Rotavirus induced acute gastroenteritis AGE has been a major disease burden in Nigeria, since it was first reported in 1985. Prevalence rates have increased with severe public health consequences particularly among children. The vaccine Rotarix® has been introduced and is commercially available in Nigeria. However routine rotavirus vaccination is yet to be introduced into the National Immunization Program. Molecular epidemiology of rotavirus in Nigeria has shown the presence of various genotypes, with genotype G12P[8] being the most recent introduction. There are however gaps in molecular data on rotavirus in Nigeria. We therefore reviewed molecular data on rotavirus isolated in Nigeria and also analyzed VP4 and VP7 genes of Nigerian rotavirus strains in Genbank. We have shown that there is a distinct trend in rotavirus molecular epidemiology in Nigeria, with new genotype introductions occurring after the year 2010. We also observed from our analysis the emergence of genotype G12 Lineage III as a dominant genotype. This information elucidates rotavirus molecular epidemiology in Nigeria and gives insight to the expanding landscape of rotavirus genotypes. We recommend the institution of molecular surveillance country wide, before considering the inclusion of rotavirus vaccination into the National Immunization Program in Nigeria, in other to monitor evolution of divergent or recombinant strains.
Collapse
Affiliation(s)
- Babatunde Olanrewaju Motayo
- Department of Virology, University of Ibadan, Nigeria
- Pathology Department, Federal Medical Centre, Idi-Aba, Abeokuta, Nigeria
| | | | | |
Collapse
|