1
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Origin of novel coronavirus causing COVID-19: A computational biology study using artificial intelligence. MACHINE LEARNING WITH APPLICATIONS 2022; 9:100328. [PMID: 35599960 PMCID: PMC9110011 DOI: 10.1016/j.mlwa.2022.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Origin of the COVID-19 virus (SARS-CoV-2) has been intensely debated in the scientific community since the first infected cases were detected in December 2019. The disease has caused a global pandemic, leading to deaths of thousands of people across the world and thus finding origin of this novel coronavirus is important in responding and controlling the pandemic. Recent research results suggest that bats or pangolins might be the hosts for SARS-CoV-2 based on comparative studies using its genomic sequences. This paper investigates the SARS-CoV-2 origin by using artificial intelligence (AI)-based unsupervised learning algorithms and raw genomic sequences of the virus. More than 300 genome sequences of COVID-19 infected cases collected from different countries are explored and analysed using unsupervised clustering methods. The results obtained from various AI-enabled experiments using clustering algorithms demonstrate that all examined SARS-CoV-2 genomes belong to a cluster that also contains bat and pangolin coronavirus genomes. This provides evidence strongly supporting scientific hypotheses that bats and pangolins are probable hosts for SARS-CoV-2. At the whole genome analysis level, our findings also indicate that bats are more likely the hosts for the COVID-19 virus than pangolins.
Collapse
|
3
|
Omotuyi O, Olubiyi O, Nash O, Afolabi E, Oyinloye B, Fatumo S, Femi-Oyewo M, Bogoro S. SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody. Comput Biol Med 2022; 142:105226. [PMID: 35066447 PMCID: PMC8739363 DOI: 10.1016/j.compbiomed.2022.105226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2, the causative virus for COVID-19 has now super-mutated into the Omicron (Om) variant. On its spike (S) glycoprotein alone, more than 30 substitutions have been characterized with 15 within the receptor binding domain (RBD); It therefore calls to question the transmissibility and antibody escapability of Omicron. This study was setup to investigate the Omicron RBD's interaction with ACE2 (host receptor) and a SARS-CoV-2 neutralizing monoclonal antibody (mAb). In-silico mutagenesis was used to generate the Om-RBD in complex with ACE2 or mAb from the wildtype. HDOCK server was used to redock and score the mAbs in Om-RBD bound state relative to the wildtype. Stability of interaction between all complexes were investigated using all-atom molecular dynamics (MD). Analyses of trajectories showed that Om-RBD has evolved into an efficient ACE2 binder, via pi-pi (Om-RBD-Y501/ACE2-Y41) and salt-bridge (Om-RBD-K493/ACE2-Y41) interactions. Conversely, in binding mAb, it has become less efficient (Center of mass distance of RBD from mAb complex, wildtype ≈ 30 Å, Omicron ≈ 41 Å). Disruption of Om-RBD/mAb complex resulted from loose interaction between Om-RBD and the light chain complementarity-determining region residues. Omicron is expected to be better transmissible and less efficiently interacting with neutralizing convalescent mAbs with consequences on transmissibility provided other mutations within the S protein similarly promote cell fusion and viral entry.
Collapse
Affiliation(s)
- Olaposi Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria; Molecular Biology and Molecular Simulation Center (Mols&Sims), Ado Ekiti, Nigeria.
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Agency, Nigeria
| | - Elizabeth Afolabi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Babatunji Oyinloye
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria
| | - Segun Fatumo
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mbang Femi-Oyewo
- Department of Pharmaceutical Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Suleiman Bogoro
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria
| |
Collapse
|
4
|
Chikhale RV, Sinha SK, Patil RB, Prasad SK, Shakya A, Gurav N, Prasad R, Dhaswadikar SR, Wanjari M, Gurav SS. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J Biomol Struct Dyn 2021; 39:5033-5047. [PMID: 32579064 PMCID: PMC7335809 DOI: 10.1080/07391102.2020.1784289] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
COVID-19 has ravaged the world and is the greatest of pandemics in human history, in the absence of treatment or vaccine the mortality and morbidity rates are very high. The present investigation was undertaken to screen and identify the potent leads from the Indian Ayurvedic herb, Asparagus racemosus (Willd.) against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. Asparoside-C, Asparoside-D and Asparoside -F were found to be most effective against both the proteins as confirmed through their docking score and affinity. Further, the 100 ns molecular dynamics study also confirmed the potential of these compounds from reasonably lower root mean square deviations and better stabilization of Asparoside-C and Asparoside-F in spike receptor-binding domain and NSP15 Endoribonuclease respectively. MM-GBSA based binding free energy calculations also suggest the most favourable binding affinities of Asparoside-C and Asparoside-F with binding energies of -62.61 and -55.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. HighlightsAsparagus racemosus have antiviral potentialPhytochemicals of Shatavari showed promising in-silico docking and MD resultsAsparaoside-C and Asparoside-F has good binding with target proteinsAsparagus racemosus holds promise as SARS-COV-2 (S) and (N) proteins inhibitor Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Saurabh K. Sinha
- Department of Pharmaceutical Sciences, Mohanlal Shukhadia University, Udaipur, India
| | - Rajesh B. Patil
- Sinhgad Technical Education Society’s, Smt. Kashibai Navale College of Pharmacy, Pune, India
| | | | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Nilambari Gurav
- PES’s Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, India
| | - Rupali Prasad
- Department of Pharmaceutical Sciences, R.T.M. University, Nagpur, India
| | | | - Manish Wanjari
- Regional Ayurveda Research Institute for Drug Development, Aamkho, Gwalior, India
| | - Shailendra S. Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa, India
| |
Collapse
|
5
|
Hakim A, Hasan MM, Hasan M, Lokman SM, Azim KF, Raihan T, Chowdhury PA, Azad AK. Major Insights in Dynamics of Host Response to SARS-CoV-2: Impacts and Challenges. Front Microbiol 2021; 12:637554. [PMID: 34512561 PMCID: PMC8424194 DOI: 10.3389/fmicb.2021.637554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), a pandemic declared by the World Health Organization on March 11, 2020, is caused by the infection of highly transmissible species of a novel coronavirus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As of July 25, 2021, there are 194,372,584 cases and 4,167,937 deaths with high variability in clinical manifestations, disease burden, and post-disease complications among different people around the globe. Overall, COVID-19 is manifested as mild to moderate in almost 90% of the cases and only the rest 10% of the cases need hospitalization. However, patients with older age and those having different comorbidities have made worst the pandemic scenario. The variability of pathological consequences and clinical manifestations of COVID-19 is associated with differential host-SARS-CoV-2 interactions, which are influenced by the factors that originated from the SARS-CoV-2 and the host. These factors usually include the genomic attributes and virulent factors of the SARS-CoV-2, the burden of coinfection with other viruses and bacteria, age and gender of the individuals, different comorbidities, immune suppressions/deficiency, genotypes of major histocompatibility complex, and blood group antigens and antibodies. We herein retrieved and reviewed literatures from PubMed, Scopus, and Google relevant to clinical complications and pathogenesis of COVID-19 among people of different age, sex, and geographical locations; genomic characteristics of SARS-CoV-2 including its variants, host response under different variables, and comorbidities to summarize the dynamics of the host response to SARS-CoV-2 infection; and host response toward approved vaccines and treatment strategies against COVID-19. After reviewing a large number of published articles covering different aspects of host response to SARS-CoV-2, it is clear that one aspect from one region is not working with the scenario same to others, as studies have been done separately with a very small number of cases from a particular area/region of a country. Importantly, to combat such a pandemic as COVID-19, a conclusive understanding of the disease dynamics is required. This review emphasizes on the identification of the factors influencing the dynamics of host responses to SARS-CoV-2 and offers a future perspective to explore the molecular insights of COVID-19.
Collapse
Affiliation(s)
- Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Mahbub Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, London, United Kingdom
| | - Mahmudul Hasan
- Department of Pharmaceutical and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Mohammad Lokman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
6
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Cantera J, Cate DM, Golden A, Peck RB, Lillis LL, Domingo GJ, Murphy E, Barnhart BC, Anderson CA, Alonzo LF, Glukhova V, Hermansky G, Barrios-Lopez B, Spencer E, Kuhn S, Islam Z, Grant BD, Kraft L, Herve K, de Puyraimond V, Hwang Y, Dewan PK, Weigl BH, Nichols KP, Boyle DS. Screening Antibodies Raised against the Spike Glycoprotein of SARS-CoV-2 to Support the Development of Rapid Antigen Assays. ACS OMEGA 2021; 6:20139-20148. [PMID: 34373846 PMCID: PMC8340086 DOI: 10.1021/acsomega.1c01321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Severe acute respiratory coronavirus-2 (SARS-CoV-2) is a novel viral pathogen and therefore a challenge to accurately diagnose infection. Asymptomatic cases are common and so it is difficult to accurately identify infected cases to support surveillance and case detection. Diagnostic test developers are working to meet the global demand for accurate and rapid diagnostic tests to support disease management. However, the focus of many of these has been on molecular diagnostic tests, and more recently serologic tests, for use in primarily high-income countries. Low- and middle-income countries typically have very limited access to molecular diagnostic testing due to fewer resources. Serologic testing is an inappropriate surrogate as the early stages of infection are not detected and misdiagnosis will promote continued transmission. Detection of infection via direct antigen testing may allow for earlier diagnosis provided such a method is sensitive. Leading SARS-CoV-2 biomarkers include spike protein, nucleocapsid protein, envelope protein, and membrane protein. This research focuses on antibodies to SARS-CoV-2 spike protein due to the number of monoclonal antibodies that have been developed for therapeutic research but also have potential diagnostic value. In this study, we assessed the performance of antibodies to the spike glycoprotein, acquired from both commercial and private groups in multiplexed liquid immunoassays, with concurrent testing via a half-strip lateral flow assays (LFA) to indicate antibodies with potential in LFA development. These processes allow for the selection of pairs of high-affinity antispike antibodies that are suitable for liquid immunoassays and LFA, some of which with sensitivity into the low picogram range with the liquid immunoassay formats with no cross-reactivity to other coronavirus S antigens. Discrepancies in optimal ranking were observed with the top pairs used in the liquid and LFA formats. These findings can support the development of SARS-CoV-2 LFAs and diagnostic tools.
Collapse
Affiliation(s)
- Jason
L. Cantera
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - David M. Cate
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Allison Golden
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Roger B. Peck
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Lorraine L. Lillis
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Gonzalo J. Domingo
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Eileen Murphy
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Bryan C. Barnhart
- AbCellera
Biologics Inc., 2215
Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | - Caitlin A. Anderson
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Luis F. Alonzo
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Veronika Glukhova
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Gleda Hermansky
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Brianda Barrios-Lopez
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Ethan Spencer
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Samantha Kuhn
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Zeba Islam
- Intellectual
Ventures Lab, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Benjamin D. Grant
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Lucas Kraft
- AbCellera
Biologics Inc., 2215
Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | - Karine Herve
- AbCellera
Biologics Inc., 2215
Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | | | - Yuri Hwang
- AbCellera
Biologics Inc., 2215
Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | - Puneet K. Dewan
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Bernhard H. Weigl
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Kevin P. Nichols
- Global
Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - David S. Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| |
Collapse
|
8
|
Cantera JL, Cate DM, Golden A, Peck RB, Lillis LL, Domingo GJ, Murphy E, Barnhart BC, Anderson CA, Alonzo LF, Glukhova V, Hermansky G, Barrios-Lopez B, Spencer E, Kuhn S, Islam Z, Grant BD, Kraft L, Herve K, de Puyraimond V, Hwang Y, Dewan PK, Weigl BH, Nichols KP, Boyle DS. Screening Antibodies Raised against the Spike Glycoprotein of SARS-CoV-2 to Support the Development of Rapid Antigen Assays. ACS OMEGA 2021; 6:20139-20148. [PMID: 34373846 DOI: 10.26434/chemrxiv.12899672.v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 05/20/2023]
Abstract
Severe acute respiratory coronavirus-2 (SARS-CoV-2) is a novel viral pathogen and therefore a challenge to accurately diagnose infection. Asymptomatic cases are common and so it is difficult to accurately identify infected cases to support surveillance and case detection. Diagnostic test developers are working to meet the global demand for accurate and rapid diagnostic tests to support disease management. However, the focus of many of these has been on molecular diagnostic tests, and more recently serologic tests, for use in primarily high-income countries. Low- and middle-income countries typically have very limited access to molecular diagnostic testing due to fewer resources. Serologic testing is an inappropriate surrogate as the early stages of infection are not detected and misdiagnosis will promote continued transmission. Detection of infection via direct antigen testing may allow for earlier diagnosis provided such a method is sensitive. Leading SARS-CoV-2 biomarkers include spike protein, nucleocapsid protein, envelope protein, and membrane protein. This research focuses on antibodies to SARS-CoV-2 spike protein due to the number of monoclonal antibodies that have been developed for therapeutic research but also have potential diagnostic value. In this study, we assessed the performance of antibodies to the spike glycoprotein, acquired from both commercial and private groups in multiplexed liquid immunoassays, with concurrent testing via a half-strip lateral flow assays (LFA) to indicate antibodies with potential in LFA development. These processes allow for the selection of pairs of high-affinity antispike antibodies that are suitable for liquid immunoassays and LFA, some of which with sensitivity into the low picogram range with the liquid immunoassay formats with no cross-reactivity to other coronavirus S antigens. Discrepancies in optimal ranking were observed with the top pairs used in the liquid and LFA formats. These findings can support the development of SARS-CoV-2 LFAs and diagnostic tools.
Collapse
Affiliation(s)
- Jason L Cantera
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - David M Cate
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Allison Golden
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Roger B Peck
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Lorraine L Lillis
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Gonzalo J Domingo
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Eileen Murphy
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| | - Bryan C Barnhart
- AbCellera Biologics Inc., 2215 Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | - Caitlin A Anderson
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Luis F Alonzo
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Veronika Glukhova
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Gleda Hermansky
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Brianda Barrios-Lopez
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Ethan Spencer
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Samantha Kuhn
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Zeba Islam
- Intellectual Ventures Lab, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Benjamin D Grant
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Lucas Kraft
- AbCellera Biologics Inc., 2215 Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | - Karine Herve
- AbCellera Biologics Inc., 2215 Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | | | - Yuri Hwang
- AbCellera Biologics Inc., 2215 Yukon Street, Vancouver, BC V5Y 0A1, Canada
| | - Puneet K Dewan
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Bernhard H Weigl
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - Kevin P Nichols
- Global Health Laboratories, 14360 SE Eastgate Way, Bellevue, Washington 98007, United States
| | - David S Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, Washington 98121, United States
| |
Collapse
|
9
|
Agrawal A, Kashikar S, Deo K, Gaidhane A, Bansod A, Jaiswal P, Khatib MN. Severe Acute Respiratory Coronavirus-2: A Critical Review of Virus Biology, Genome and Pathophysiology. Open Dent J 2021. [DOI: 10.2174/1874210602115010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Coronavirus-2 [SARS-CoV-2] emerged as a great threat to the world at the end of December 2019 in China. The SARS-CoV-2 evolved from a virus responsible for the SARS epidemic in 2002. The SARS-CoV-2 has a high rate of human-human transmission and originated from the bat. It has a close resemblance with bat-like-SARS-CoV compared to SARS-CoV; however, the Spike protein responsible for virus-host cell interaction possesses the least similarity with that of SARS-CoV. Cytokine Storm is associated with the severity of Covid-19 and leads to acute respiratory distress syndrome [ARDS] and/or multiple organ dysfunction syndromes [MODS]. In the current review article, the features of a novel coronavirus, including viral biology, genomic organisation, life cycle, pathophysiology and genetic diversity, have been discussed. The development of policies and plans which can prepare the world for future pandemics has also been proposed. In addition, the drug development pipelines, diagnostic facilities and management of such pandemics need an up-gradation to contain the current as well as future outbreaks.
Collapse
|
10
|
Redhead MA, Owen CD, Brewitz L, Collette AH, Lukacik P, Strain-Damerell C, Robinson SW, Collins PM, Schäfer P, Swindells M, Radoux CJ, Hopkins IN, Fearon D, Douangamath A, von Delft F, Malla TR, Vangeel L, Vercruysse T, Thibaut J, Leyssen P, Nguyen TT, Hull M, Tumber A, Hallett DJ, Schofield CJ, Stuart DI, Hopkins AL, Walsh MA. Bispecific repurposed medicines targeting the viral and immunological arms of COVID-19. Sci Rep 2021; 11:13208. [PMID: 34168183 PMCID: PMC8225628 DOI: 10.1038/s41598-021-92416-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Effective agents to treat coronavirus infection are urgently required, not only to treat COVID-19, but to prepare for future outbreaks. Repurposed anti-virals such as remdesivir and human anti-inflammatories such as barcitinib have received emergency approval but their overall benefits remain unclear. Vaccines are the most promising prospect for COVID-19, but will need to be redeveloped for any future coronavirus outbreak. Protecting against future outbreaks requires the identification of targets that are conserved between coronavirus strains and amenable to drug discovery. Two such targets are the main protease (Mpro) and the papain-like protease (PLpro) which are essential for the coronavirus replication cycle. We describe the discovery of two non-antiviral therapeutic agents, the caspase-1 inhibitor SDZ 224015 and Tarloxotinib that target Mpro and PLpro, respectively. These were identified through extensive experimental screens of the drug repurposing ReFRAME library of 12,000 therapeutic agents. The caspase-1 inhibitor SDZ 224015, was found to be a potent irreversible inhibitor of Mpro (IC50 30 nM) while Tarloxotinib, a clinical stage epidermal growth factor receptor inhibitor, is a sub micromolar inhibitor of PLpro (IC50 300 nM, Ki 200 nM) and is the first reported PLpro inhibitor with drug-like properties. SDZ 224015 and Tarloxotinib have both undergone safety evaluation in humans and hence are candidates for COVID-19 clinical evaluation.
Collapse
Affiliation(s)
- Martin A Redhead
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK.
| | - C David Owen
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Lennart Brewitz
- Department of Chemistry, Chemistry Research Laboratory,, The Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Amelia H Collette
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Sean W Robinson
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Patrick M Collins
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Philipp Schäfer
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Mark Swindells
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Chris J Radoux
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | | | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Tika R Malla
- Department of Chemistry, Chemistry Research Laboratory,, The Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Laura Vangeel
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Tu-Trinh Nguyen
- Calibr, Scripps Research, 11119 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Hull
- Calibr, Scripps Research, 11119 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anthony Tumber
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - David J Hallett
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory,, The Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - David I Stuart
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford, OX4 2JY, UK
| | - Andrew L Hopkins
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.
| |
Collapse
|
11
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Khan MT, Ali S, Khan AS, Muhammad N, Khalil F, Ishfaq M, Irfan M, Al-Sehemi AG, Muhammad S, Malik A, Khan TA, Wei DQ. SARS-CoV-2 Genome from the Khyber Pakhtunkhwa Province of Pakistan. ACS OMEGA 2021; 6:6588-6599. [PMID: 33748571 PMCID: PMC7944396 DOI: 10.1021/acsomega.0c05163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 05/08/2023]
Abstract
Among viral outbreaks, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest ones, and it has triggered the global COVID-19 pandemic. In Pakistan, until 5th September 2020, a total of 6342 deaths have been reported, of which 1255 were from the Khyber Pakhtunkhwa (KPK) province. To understand the disease progression and control and also to produce vaccines and therapeutic efforts, whole genome sequence analysis is important. In the current investigation, we sequenced a single sample of SARS-CoV-2 genomes (accession no. MT879619) from a male suspect from Peshawar, the KPK capital city, during the first wave of infection. The local SARS-CoV-2 strain shows some unique characteristics compared to neighboring Iranian and Chinese isolates in phylogenetic tree and mutations. The circulating strains of SARS-CoV-2 represent an intermediate evolution from China and Iran. Furthermore, eight complete whole genome sequences, including the current Pakistani isolates which have been submitted to Global Initiative on Sharing All Influenza Data (GSAID), were also investigated for specific mutations and characters. Some novel mutations [NSP2 (D268del), NSP5 (N228K), and NS3 (F105S)] and specific characters have been detected in the coding regions, which may affect viral transmission, epidemiology, and disease severity. The computational modeling revealed that a majority of these mutations may have a stabilizing effect on the viral protein structure. In conclusion, the genome sequencing of local strains is important for better understanding the pathogenicity, immunogenicity, and epidemiology of causative agents.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular
Biology and Biotechnology (IMBB), The University
of Lahore, KM Defence Road, Lahore 58810, Pakistan
- State Key Laboratory of Microbial Metabolism,
Shanghai−Islamabad−Belgrade Joint Innovation Center
on Antibacterial Resistances, Joint International Research Laboratory
of Metabolic & Developmental Sciences and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P. R. China
| | - Sajid Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan
| | - Anwar Sheed Khan
- Department of Microbiology, Kohat University of Science and Technology, Bannu Road, Near Jarma Bridge, Kohat 26000, Pakistan
| | - Noor Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Bannu Road, Near Jarma Bridge, Kohat 26000, Pakistan
| | - Faiza Khalil
- Department of Biochemistry, Khyber Medical
College, Peshawar 25160, Pakistan
- University
of Peshawar, Road No.
2, Rahat Abad, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ishfaq
- Centre for Omic Sciences, Islamia
College Peshawar. Grand Trunk Road, Rahat Abad, Peshawar 25120, Pakistan
| | - Muhammad Irfan
- Department
of Oral Biology, College of Dentistry, University
of Florida, Gainesville, Florida 32611, United States
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials
Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Shabbir Muhammad
- Research Center for Advanced Materials
Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- State Key Laboratory of Microbial Metabolism,
Shanghai−Islamabad−Belgrade Joint Innovation Center
on Antibacterial Resistances, Joint International Research Laboratory
of Metabolic & Developmental Sciences and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P. R. China
| | - Arif Malik
- Institute of Molecular
Biology and Biotechnology (IMBB), The University
of Lahore, KM Defence Road, Lahore 58810, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Hayatabad, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Dong Qing Wei
- State Key Laboratory of Microbial Metabolism,
Shanghai−Islamabad−Belgrade Joint Innovation Center
on Antibacterial Resistances, Joint International Research Laboratory
of Metabolic & Developmental Sciences and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
13
|
Zhang XN, Wu LJ, Kong X, Zheng BY, Zhang Z, He ZW. Regulation of the expression of proinflammatory cytokines induced by SARS-CoV-2. World J Clin Cases 2021; 9:1513-1523. [PMID: 33728295 PMCID: PMC7942047 DOI: 10.12998/wjcc.v9.i7.1513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
An outbreak of a novel coronavirus was reported in Wuhan, China, in late 2019. It has spread rapidly through China and many other countries, causing a global pandemic. Since February 2020, over 28 countries/regions have reported confirmed cases. Individuals with the infection known as coronavirus disease-19 (COVID-19) have similar clinical features as severe acute respiratory syndrome first encountered 17 years ago, with fever, cough, and upper airway congestion, along with high production of proinflammatory cytokines (PICs), which form a cytokine storm. PICs induced by COVID-19 include interleukin (IL)-6, IL-17, and monocyte chemoattractant protein-1. The production of cytokines is regulated by activated nuclear factor-kB and involves downstream pathways such as Janus kinase/signal transducers and activators transcription. Protein expression is also regulated by post-translational modification of chromosomal markers. Lysine residues in the peptide tails stretching out from the core of histones bind the sequence upstream of the coding portion of genomic DNA. Covalent modification, particularly methylation, activates or represses gene transcription. PICs have been reported to be induced by histone modification and stimulate exudation of hyaluronic acid, which is implicated in the occurrence of COVID-19. These findings indicate the impact of the expression of PICs on the pathogenesis and therapeutic targeting of COVID-19.
Collapse
Affiliation(s)
- Xiang-Ning Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Long-Ji Wu
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Xia Kong
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Bi-Ying Zheng
- Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Zhe Zhang
- Department of ENT and Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 531000, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Wei He
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| |
Collapse
|
14
|
Parvez MK, Padhan K. Current Advances in Novel SARS-CoV-2 Disease (COVID-19) Treatment and Intervention Strategies. CORONAVIRUSES 2021; 2:353-358. [DOI: 10.2174/2666796701999201116125249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/19/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2024]
Abstract
Background:
During the eleven months of the novel SARS-CoV-2 disease (COVID-19) outbreak
in China and its global spread, there is a remarkable understanding of its epidemiology, pathobiology,
and clinical management strategies. While countering a heavy toll on health and the economy,
world’s regional authorities are enforcing safety guidelines and providing patient care. Currently, there
is no globally approved treatment or intervention for COVID-19.
Methods:
A structured online literature search for peer-reviewed articles was conducted on PubMed,
Europe PMC, Google, WHO, CDC, FDA, and ClinicalTrials portals, using phrases such as COVID-19
treatment and intervention, COVID-19 drugs and COVID-19 vaccines.
Results:
Analysis of the retrieved data showed that as a part of ‘Solidarity Clinical Trials’, hundreds of
treatment and intervention strategies, including antiviral drugs, cytokine antagonists, convalescent
plasma therapy, and vaccine candidates, have been registered worldwide. While remdesivir, the anti-
Ebola virus drug, has been approved as an ‘emergency use’ drug in the USA, favipiravir, the anti-flu
drug, has been recently approved in Russia. Tocilizumab and sarilumab, the cytokine (IL-6) antagonists,
have entered Phase-II/III clinical trials in hospitalized COVID-19 patients. Among the leading vaccine
candidates, Phase-III clinical trial results of Moderna, Pfizer and Oxford vaccines seem to be game
changers for COVID19.
Conclusion:
The world health authorities have strongly and quickly responded to the COVID-19 pandemic.
Nonetheless, world bodies must unite in combating this health crisis by developing cost-effective
drugs and vaccines and making them accessible to resource-poor countries.
Collapse
Affiliation(s)
- Mohammad Khalid Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh,Saudi Arabia
| | - Kartika Padhan
- Center for Advanced Tissue Imaging, NIAID, National Institutes of Health, Bethesda, MD,United States
| |
Collapse
|
15
|
Rohani N, Ahmadi Moughari F, Eslahchi C. DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods. PeerJ 2021; 9:e10505. [PMID: 33680575 PMCID: PMC7919535 DOI: 10.7717/peerj.10505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023] Open
Abstract
The ongoing pandemic of a novel coronavirus (SARS-CoV-2) leads to international concern; thus, emergency interventions need to be taken. Due to the time-consuming experimental methods for proposing useful treatments, computational approaches facilitate investigating thousands of alternatives simultaneously and narrow down the cases for experimental validation. Herein, we conducted four independent analyses for RNA interference (RNAi)-based therapy with computational and bioinformatic methods. The aim is to target the evolutionarily conserved regions in the SARS-CoV-2 genome in order to down-regulate or silence its RNA. miRNAs are denoted to play an important role in the resistance of some species to viral infections. A comprehensive analysis of the miRNAs available in the body of humans, as well as the miRNAs in bats and many other species, were done to find efficient candidates with low side effects in the human body. Moreover, the evolutionarily conserved regions in the SARS-CoV-2 genome were considered for designing novel significant siRNA that are target-specific. A small set of miRNAs and five siRNAs were suggested as the possible efficient candidates with a high affinity to the SARS-CoV-2 genome and low side effects. The suggested candidates are promising therapeutics for the experimental evaluations and may speed up the procedure of treatment design. Materials and implementations are available at: https://github.com/nrohani/SARS-CoV-2.
Collapse
Affiliation(s)
- Narjes Rohani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Ahmadi Moughari
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
16
|
Raj V, Park JG, Cho KH, Choi P, Kim T, Ham J, Lee J. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int J Biol Macromol 2021; 168:474-485. [PMID: 33290767 PMCID: PMC7836687 DOI: 10.1016/j.ijbiomac.2020.12.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Effective treatment choices to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited because of the absence of effective target-based therapeutics. The main object of the current research was to estimate the antiviral activity of cannabinoids (CBDs) against the human coronavirus SARS-CoV-2. In the presented research work, we performed in silico and in vitro experiments to aid the sighting of lead CBDs for treating the viral infections of SARS-CoV-2. Virtual screening was carried out for interactions between 32 CBDs and the SARS-CoV-2 Mpro enzyme. Afterward, in vitro antiviral activity was carried out of five CBDs molecules against SARS-CoV-2. Interestingly, among them, two CBDs molecules namely Δ9 -tetrahydrocannabinol (IC50 = 10.25 μM) and cannabidiol (IC50 = 7.91 μM) were observed to be more potent antiviral molecules against SARS-CoV-2 compared to the reference drugs lopinavir, chloroquine, and remdesivir (IC50 ranges of 8.16-13.15 μM). These molecules were found to have stable conformations with the active binding pocket of the SARS-CoV-2 Mpro by molecular dynamic simulation and density functional theory. Our findings suggest cannabidiol and Δ9 -tetrahydrocannabinol are possible drugs against human coronavirus that might be used in combination or with other drug molecules to treat COVID-19 patients.
Collapse
Affiliation(s)
- Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, Republic of Korea
| | - Kiu-Hyung Cho
- Gyeongbuk Institute for Bio industry, Andong, Republic of Korea
| | - Pilju Choi
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Taejung Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Jungyeob Ham
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
17
|
O’Leary VB, Dolly OJ, Höschl C, Černa M, Ovsepian SV. Unpacking Pandora From Its Box: Deciphering the Molecular Basis of the SARS-CoV-2 Coronavirus. Int J Mol Sci 2020; 22:ijms22010386. [PMID: 33396557 PMCID: PMC7795774 DOI: 10.3390/ijms22010386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
An enigmatic localized pneumonia escalated into a worldwide COVID-19 pandemic from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This review aims to consolidate the extensive biological minutiae of SARS-CoV-2 which requires decipherment. Having one of the largest RNA viral genomes, the single strand contains the genes ORF1ab, S, E, M, N and ten open reading frames. Highlighting unique features such as stem-loop formation, slippery frameshifting sequences and ribosomal mimicry, SARS-CoV-2 represents a formidable cellular invader. Hijacking the hosts translational engine, it produces two polyprotein repositories (pp1a and pp1ab), armed with self-cleavage capacity for production of sixteen non-structural proteins. Novel glycosylation sites on the spike trimer reveal unique SARS-CoV-2 features for shielding and cellular internalization. Affording complexity for superior fitness and camouflage, SARS-CoV-2 challenges diagnosis and vaccine vigilance. This review serves the scientific community seeking in-depth molecular details when designing drugs to curb transmission of this biological armament.
Collapse
Affiliation(s)
- Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 87, Vinohrady, 10000 Prague, Czech Republic;
- Department of Experimental Neurobiology, National Institute of Mental Health, Research Programme 1, Topolova 748, 25067 Klecany, Czech Republic; (C.H.); (S.V.O.)
- Correspondence:
| | - Oliver James Dolly
- International Centre for Neurotherapeutics, Dublin City University, Collins Avenue, Dublin 9, Ireland;
| | - Cyril Höschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Research Programme 1, Topolova 748, 25067 Klecany, Czech Republic; (C.H.); (S.V.O.)
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruska 87, Vinohrady, 10000 Prague, Czech Republic
| | - Marie Černa
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 87, Vinohrady, 10000 Prague, Czech Republic;
| | - Saak Victor Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Research Programme 1, Topolova 748, 25067 Klecany, Czech Republic; (C.H.); (S.V.O.)
- International Centre for Neurotherapeutics, Dublin City University, Collins Avenue, Dublin 9, Ireland;
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruska 87, Vinohrady, 10000 Prague, Czech Republic
| |
Collapse
|
18
|
Quagliariello V, Bonelli A, Caronna A, Conforti G, Iovine M, Carbone A, Berretta M, Botti G, Maurea N. SARS-CoV-2 Infection and Cardioncology: From Cardiometabolic Risk Factors to Outcomes in Cancer Patients. Cancers (Basel) 2020; 12:E3316. [PMID: 33182653 PMCID: PMC7697868 DOI: 10.3390/cancers12113316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) is a highly transmissible viral illness caused by SARS-CoV-2, which has been defined by the World Health Organization as a pandemic, considering its remarkable transmission speed worldwide. SARS-CoV-2 interacts with angiotensin-converting enzyme 2 and TMPRSS2, which is a serine protease both expressed in lungs, the gastro-intestinal tract, and cardiac myocytes. Patients with COVID-19 experienced adverse cardiac events (hypertension, venous thromboembolism, arrhythmia, myocardial injury, fulminant myocarditis), and patients with previous cardiovascular disease have a higher risk of death. Cancer patients are extremely vulnerable with a high risk of viral infection and more negative prognosis than healthy people, and the magnitude of effects depends on the type of cancer, recent chemotherapy, radiotherapy, or surgery and other concomitant comorbidities (diabetes, cardiovascular diseases, metabolic syndrome). Patients with active cancer or those treated with cardiotoxic therapies may have heart damages exacerbated by SARS-CoV-2 infection than non-cancer patients. We highlight the cardiovascular side effects of COVID-19 focusing on the main outcomes in cancer patients in updated perspective and retrospective studies. We focus on the main cardio-metabolic risk factors in non-cancer and cancer patients and provide recommendations aimed to reduce cardiovascular events, morbidity, and mortality.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Annamaria Bonelli
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Antonietta Caronna
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Gabriele Conforti
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Andreina Carbone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Massimiliano Berretta
- Department of Medical Oncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| |
Collapse
|
19
|
Khan S, Tombuloglu H, Hassanein SE, Rehman S, Bozkurt A, Cevik E, Abdel-Ghany S, Nabi G, Ali A, Sabit H. Coronavirus diseases 2019: Current biological situation and potential therapeutic perspective. Eur J Pharmacol 2020; 886:173447. [PMID: 32763302 PMCID: PMC7403098 DOI: 10.1016/j.ejphar.2020.173447] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/19/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) caused by a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first reported in Wuhan, China at the end of December 2019. SARS-CoV-2 is a highly pathogenic zoonotic virus and closely related to the Severe Acute Respiratory Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The COVID-19 was declared as a global pandemic due to its high infectiousness, and worldwide morbidities and mortalities. The Chinese scientists at the start of the outbreak reported genome sequences, which made the characterization of glycoproteins and other structural proteins possible. Moreover, researchers across the world have widely focused on understanding basic biology, developing vaccines, and therapeutic drugs against the COVID-19. However, until now, no promising treatment options, as well as vaccines, are available. In this review, we have described SARS-CoV-2's genome, transmission, and pathogenicity. We also discussed novel potential therapeutic agents that can help to treat the COVID-19 patients.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sameh E. Hassanein
- Bioinformatics Dept., Agricultural Genetic Engineering Research Institute (AGERI), Bioinformatics and Functional Genomics Dept., College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ayhan Bozkurt
- Department of Physics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, 31441, Dammam, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Ashaq Ali
- Wuhan Institute of Virology, Chinese Academy of Sciences Xiao Hong Shan No.44, Wuhan, PR China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia,Corresponding author
| |
Collapse
|
20
|
Lokman SM, Rasheduzzaman M, Salauddin A, Barua R, Tanzina AY, Rumi MH, Hossain MI, Siddiki AMAMZ, Mannan A, Hasan MM. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104389. [PMID: 32502733 PMCID: PMC7266584 DOI: 10.1016/j.meegid.2020.104389] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
The newly identified SARS-CoV-2 has now been reported from around 185 countries with more than a million confirmed human cases including more than 120,000 deaths. The genomes of SARS-COV-2 strains isolated from different parts of the world are now available and the unique features of constituent genes and proteins need to be explored to understand the biology of the virus. Spike glycoprotein is one of the major targets to be explored because of its role during the entry of coronaviruses into host cells. We analyzed 320 whole-genome sequences and 320 spike protein sequences of SARS-CoV-2 using multiple sequence alignment. In this study, 483 unique variations have been identified among the genomes of SARS-CoV-2 including 25 nonsynonymous mutations and one deletion in the spike (S) protein. Among the 26 variations detected in S, 12 variations were located at the N-terminal domain (NTD) and 6 variations at the receptor-binding domain (RBD) which might alter the interaction of S protein with the host receptor angiotensin-converting enzyme 2 (ACE2). Besides, 22 amino acid insertions were identified in the spike protein of SARS-CoV-2 in comparison with that of SARS-CoV. Phylogenetic analyses of spike protein revealed that Bat coronavirus have a close evolutionary relationship with circulating SARS-CoV-2. The genetic variation analysis data presented in this study can help a better understanding of SARS-CoV-2 pathogenesis. Based on results reported herein, potential inhibitors against S protein can be designed by considering these variations and their impact on protein structure.
Collapse
Affiliation(s)
- Syed Mohammad Lokman
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Rasheduzzaman
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Asma Salauddin
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Rocktim Barua
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Afsana Yeasmin Tanzina
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Meheadi Hasan Rumi
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Imran Hossain
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - A M A M Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Chattogram 4202, Bangladesh
| | - Adnan Mannan
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh.
| | - Md Mahbub Hasan
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh; Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
21
|
Rehman S, Majeed T, Ansari MA, Ali U, Sabit H, Al-Suhaimi EA. Current scenario of COVID-19 in pediatric age group and physiology of immune and thymus response. Saudi J Biol Sci 2020; 27:2567-2573. [PMID: 32425651 PMCID: PMC7227606 DOI: 10.1016/j.sjbs.2020.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2, continues to manifest with severe acute respiratory syndrome among the adults, however, it offers a convincing indication of less severity and fatality in pediatric age group (0-18 years). The current trend suggests that children may get infected but are less symptomatic with less fatality, which is concordant to earlier epidemic outbreaks of SARS-CoV and MERS-CoV, in 2002 and 2012, respectively. According to the available data, children appear to be at lower risk for COVID-19, as adults constitute for maximum number of the confirmed cases (308,592) and deaths (13,069) as on 22nd March (https://www.worldometers.info/coronavirus). However, rapid publications and information of the adult patients with COVID-19 is in progress and published, on the contrary, almost no comprehensive data or discussion about the COVID-19 in children is available. Therefore, in this review, we outline the epidemiology, clinical symptoms, diagnosis, treatment, prevention, possible immune response and role of thymus in children to combat the COVID-19 outbreak.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Tariq Majeed
- Department of General Pediatric, Pediatrics and Children Hospital, Dammam, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Uzma Ali
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Hussein Sabit
- Department of Genetic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Ebtesam A. Al-Suhaimi
- Department of Biology, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| |
Collapse
|
22
|
Xia Y, Zhong L, Tan J, Zhang Z, Lyu J, Chen Y, Zhao A, Huang L, Long Z, Liu NN, Wang H, Li S. How to Understand "Herd Immunity" in COVID-19 Pandemic. Front Cell Dev Biol 2020. [PMID: 33072741 DOI: 10.3389/fcell.2020.547314/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic has been a global threat. Through rapid and effective surveillance and control, the newly confirmed patients have been fluctuated at a very low level and imported case explained most of them through March, 2020 to the present, indicating China's response has achieved a stage victory. By contrast, the epidemic of COVID-19 in other countries out of China is bursting. Different countries are adopting varied response strategy in terms of their public health system to prevent the spread. Herd immunity has been a hot topic since the outbreak of COVID-19 pandemic. Can it be a possible strategy to combat COVID-19? To fully interpret the knowledge regarding the term upon the background of COVID-19-related health crisis, we aim to systematically review the definition, describe the effective measures of acquiring herd immunity, and discuss its feasibility in COVID-19 prevention. Findings from this review would promote and strengthen the international cooperation and joint efforts when confronting with COVID-19.
Collapse
Affiliation(s)
- Yuanqing Xia
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lumin Zhong
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Jingcong Tan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Lyu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichong Long
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning-Ning Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Ministry of Education of the People's Republic of China (MOE)-Shanghai Key Laboratory of Childre's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Xia Y, Zhong L, Tan J, Zhang Z, Lyu J, Chen Y, Zhao A, Huang L, Long Z, Liu NN, Wang H, Li S. How to Understand "Herd Immunity" in COVID-19 Pandemic. Front Cell Dev Biol 2020; 8:547314. [PMID: 33072741 PMCID: PMC7543944 DOI: 10.3389/fcell.2020.547314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic has been a global threat. Through rapid and effective surveillance and control, the newly confirmed patients have been fluctuated at a very low level and imported case explained most of them through March, 2020 to the present, indicating China’s response has achieved a stage victory. By contrast, the epidemic of COVID-19 in other countries out of China is bursting. Different countries are adopting varied response strategy in terms of their public health system to prevent the spread. Herd immunity has been a hot topic since the outbreak of COVID-19 pandemic. Can it be a possible strategy to combat COVID-19? To fully interpret the knowledge regarding the term upon the background of COVID-19-related health crisis, we aim to systematically review the definition, describe the effective measures of acquiring herd immunity, and discuss its feasibility in COVID-19 prevention. Findings from this review would promote and strengthen the international cooperation and joint efforts when confronting with COVID-19.
Collapse
Affiliation(s)
- Yuanqing Xia
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lumin Zhong
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Jingcong Tan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Lyu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichong Long
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning-Ning Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Ministry of Education of the People's Republic of China (MOE)-Shanghai Key Laboratory of Childre's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Joshi S, Joshi M, Degani MS. Tackling SARS-CoV-2: proposed targets and repurposed drugs. Future Med Chem 2020; 12:1579-1601. [PMID: 32564623 PMCID: PMC7307730 DOI: 10.4155/fmc-2020-0147] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic, declared as a global health emergency by the WHO in February 2020, has currently infected more than 6 million people with fatalities near 371,000 and increasing exponentially, in absence of vaccines and drugs. The pathogenesis of SARS-CoV-2 is still being elucidated. Identifying potential targets and repurposing drugs as therapeutic options is the need of the hour. In this review, we focus on potential druggable targets and suitable therapeutics, currently being explored in clinical trials, to treat SARS-CoV-2 infection. A brief understanding of the complex interactions of both viral as well as host targets, and the possible repurposed drug candidates are described with an emphasis on understanding the mechanisms at the molecular level.
Collapse
Affiliation(s)
- Siddhi Joshi
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Maithili Joshi
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
25
|
Chikhale RV, Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J Biomol Struct Dyn 2020; 39:1-16. [PMID: 32741259 DOI: 10.1080/07391102.2020.1798813] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Recent outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a pandemic of COVID-19. The absence of a therapeutic drug and vaccine is causing severe loss of life and economy worldwide. SARS-CoV and SARS-CoV-2 employ the host cellular serine protease TMPRSS2 for spike (S) protein priming for viral entry into host cells. A potential way to reduce the initial site of SARS-CoV-2 infection may be to inhibit the activity of TMPRSS2. In the current study, the three-dimensional structure of TMPRSS2 was generated by homology modelling and subsequently validated with a number of parameters. The structure-based virtual screening of Selleckchem database was performed through 'Virtual Work Flow' (VSW) to find out potential lead-like TMPRSS2 inhibitors. Camostat and bromhexine are known TMPRSS2 inhibitor drugs, hence these were used as control molecules throughout the study. Based on better dock score, binding-free energy and binding interactions compared to the control molecules, six molecules (Neohesperidin, Myricitrin, Quercitrin, Naringin, Icariin, and Ambroxol) were found to be promising against the TMPRSS2. Binding interactions analysis revealed a number of significant binding interactions with binding site amino residues of TMPRSS2. The all-atoms molecular dynamics (MD) simulation study indicated that all proposed molecules retain inside the receptor in dynamic states. The binding energy calculated from the MD simulation trajectories also favour the strong affinity of the molecules towards the TMPRSS2. Proposed molecules belong to the bioflavonoid class of phytochemicals and are reported to possess antiviral activity, our study indicates their possible potential for application in COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vivek K Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saikh M Wabaidur
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shripad A Patil
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Parvez M, Jagirdar R, Purty R, Venkata S, Agrawal V, Kumar J, Tiwari N. COVID‑19 pandemic: Understanding the emergence, pathogenesis and containment (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2020. [DOI: 10.3892/wasj.2020.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohammad Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh 11451, Kingdom of Saudi Arabia
| | - Rajesh Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Ram Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Suresh Venkata
- Navipointgenomics India Private Limited, Mysore, Karnataka 570006, India
| | - Vishal Agrawal
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Jitendra Kumar
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Neeraj Tiwari
- Pfizer Clinical Research Unit, New Haven, CT 06511, USA
| |
Collapse
|
27
|
García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol 2020; 11:1441. [PMID: 32612615 PMCID: PMC7308593 DOI: 10.3389/fimmu.2020.01441] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic began in December 2019 in Wuhan (China) and rapidly extended to become a global sanitary and economic emergency. Its etiological agent is the coronavirus SARS-CoV-2. COVID-19 presents a wide spectrum of clinical manifestations, which ranges from an asymptomatic infection to a severe pneumonia accompanied by multisystemic failure that can lead to a patient's death. The immune response to SARS-CoV-2 is known to involve all the components of the immune system that together appear responsible for viral elimination and recovery from the infection. Nonetheless, such immune responses are implicated in the disease's progression to a more severe and lethal process. This review describes the general aspects of both COVID-19 and its etiological agent SARS-CoV-2, stressing the similarities with other severe coronavirus infections, such as SARS and MERS, but more importantly, pointing toward the evidence supporting the hypothesis that the clinical spectrum of COVID-19 is a consequence of the corresponding variable spectrum of the immune responses to the virus. The critical point where progression of the disease ensues appears to center on loss of the immune regulation between protective and altered responses due to exacerbation of the inflammatory components. Finally, it appears possible to delineate certain major challenges deserving of exhaustive investigation to further understand COVID-19 immunopathogenesis, thus helping to design more effective diagnostic, therapeutic, and prophylactic strategies.
Collapse
Affiliation(s)
- Luis F. García
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
28
|
Fiesco-Sepúlveda KY, Serrano-Bermúdez LM. Contributions of Latin American researchers in the understanding of the novel coronavirus outbreak: a literature review. PeerJ 2020; 8:e9332. [PMID: 32547890 PMCID: PMC7276147 DOI: 10.7717/peerj.9332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
This article aimed to give the visibility of Latin American researchers' contributions to the comprehension of COVID-19; our method was a literature review. Currently, the world is facing a health and socioeconomic crisis caused by the novel coronavirus, SARS-CoV-2, and its disease COVID-19. Therefore, in less than 4 months, researchers have published a significant number of articles related to this novel virus. For instance, a search focused on the Scopus database on 10 April 2020, showed 1,224 documents published by authors with 1,797 affiliations from 80 countries. A total of 25.4%, 24.0% and 12.6% of these national affiliations were from China, Europe and the USA, respectively, making these regions leaders in COVID-19 research. In the case of Latin America, on 10 April 2020, we searched different databases, such as Scopus, PubMed and Web of Science, finding that the contribution of this region was 2.7 ± 0.6% of the total publications found. In other words, we found 153 publications related to COVID-19 with at least one Latin American researcher. We summarized and processed the information from these 153 publications, finding active participation in topics like medical, social and environmental considerations, bioinformatics and epidemiology.
Collapse
|
29
|
Li H, Liu Z, Ge J. Scientific research progress of COVID-19/SARS-CoV-2 in the first five months. J Cell Mol Med 2020; 24:6558-6570. [PMID: 32320516 PMCID: PMC7264656 DOI: 10.1111/jcmm.15364] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
A cluster of pneumonia (COVID-19) cases have been found in Wuhan China in late December, 2019, and subsequently, a novel coronavirus with a positive stranded RNA was identified to be the aetiological virus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2), which has a phylogenetic similarity to severe acute respiratory syndrome coronavirus (SARS-CoV). SARS-CoV-2 transmits mainly through droplets and close contact and the elder or people with chronic diseases are high-risk population. People affected by SARS-CoV-2 can be asymptomatic, which brings about more difficulties to control the transmission. COVID-19 has become pandemic rapidly after onset, and so far the infected people have been above 2 000 000 and more than 130 000 died worldwide according to COVID-19 situation dashboard of World Health Organization (https://covid19.who.int). Here, we summarized the current known knowledge regarding epidemiological, pathogenesis, pathology, clinical features, comorbidities and treatment of COVID-19/ SARS-CoV-2 as reference for the prevention and control COVID-19.
Collapse
Affiliation(s)
- Hua Li
- Department of CardiologyShanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital and Zhongshan‐Xuhui HospitalZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe Liu
- Department of MedicineBestNovo (Beijing) Medical Technology Co., LtdBeijingChina
| | - Junbo Ge
- Department of CardiologyShanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital and Zhongshan‐Xuhui HospitalZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
30
|
Cárdenas-Conejo Y, Liñan-Rico A, García-Rodríguez DA, Centeno-Leija S, Serrano-Posada H. An exclusive 42 amino acid signature in pp1ab protein provides insights into the evolutive history of the 2019 novel human-pathogenic coronavirus (SARS-CoV-2). J Med Virol 2020; 92:688-692. [PMID: 32167166 PMCID: PMC7228214 DOI: 10.1002/jmv.25758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
The city of Wuhan, Hubei province, China, was the origin of a severe pneumonia outbreak in December 2019, attributed to a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]), causing a total of 2761 deaths and 81109 cases (25 February 2020). SARS-CoV-2 belongs to genus Betacoronavirus, subgenus Sarbecovirus. The polyprotein 1ab (pp1ab) remains unstudied thoroughly since it is similar to other sarbecoviruses. In this short communication, we performed phylogenetic-structural sequence analysis of pp1ab protein of SARS-CoV-2. The analysis showed that the viral pp1ab has not changed in most isolates throughout the outbreak time, but interestingly a deletion of 8 aa in the virulence factor nonstructural protein 1 was found in a virus isolated from a Japanese patient that did not display critical symptoms. While comparing pp1ab protein with other betacoronaviruses, we found a 42 amino acid signature that is only present in SARS-CoV-2 (AS-SCoV2). Members from clade 2 of sarbecoviruses have traces of this signature. The AS-SCoV2 located in the acidic-domain of papain-like protein of SARS-CoV-2 and bat-SL-CoV-RatG13 guided us to suggest that the novel 2019 coronavirus probably emerged by genetic drift from bat-SL-CoV-RaTG13. The implication of this amino acid signature in papain-like protein structure arrangement and function is something worth to be explored.
Collapse
Affiliation(s)
- Yair Cárdenas-Conejo
- Laboratory of Agrobiotechnology, National Council of Science and Technology (CONACYT)-University of Colima, Colima, Colima, Mexico
| | - Andrómeda Liñan-Rico
- University Center for Biomedical Research, National Council of Science and Technology (CONACYT)-University of Colima, Colima, Colima, Mexico
| | | | - Sara Centeno-Leija
- Laboratory of Agrobiotechnology, National Council of Science and Technology (CONACYT)-University of Colima, Colima, Colima, Mexico
| | - Hugo Serrano-Posada
- Laboratory of Agrobiotechnology, National Council of Science and Technology (CONACYT)-University of Colima, Colima, Colima, Mexico
| |
Collapse
|
31
|
Azeez SA, Alhashim ZG, Al Otaibi WM, Alsuwat HS, Ibrahim AM, Almandil NB, Borgio JF. State-of-the-art tools to identify druggable protein ligand of SARS-CoV-2. Arch Med Sci 2020; 16:497-507. [PMID: 32399095 PMCID: PMC7212236 DOI: 10.5114/aoms.2020.94046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The SARS-CoV-2 (previously 2019-nCoV) outbreak in Wuhan, China and other parts of the world affects people and spreads coronavirus disease 2019 (COVID-19) through human-to-human contact, with a mortality rate of > 2%. There are no approved drugs or vaccines yet available against SARS-CoV-2. MATERIAL AND METHODS State-of-the-art tools based on in-silico methods are a cost-effective initial approach for identifying appropriate ligands against SARS-CoV-2. The present study developed the 3D structure of the envelope and nucleocapsid phosphoprotein of SARS-CoV-2, and molecular docking analysis was done against various ligands. RESULTS The highest log octanol/water partition coefficient, high number of hydrogen bond donors and acceptors, lowest non-bonded interaction energy between the receptor and the ligand, and high binding affinity were considered for the best ligand for the envelope (mycophenolic acid: log P = 3.00; DG = -10.2567 kcal/mol; pKi = 7.713 µM) and nucleocapsid phosphoprotein (1-[(2,4-dichlorophenyl)methyl]pyrazole-3,5-dicarboxylic acid: log P = 2.901; DG = -12.2112 kcal/mol; pKi = 7.885 µM) of SARS-CoV-2. CONCLUSIONS The study identifies the most potent compounds against the SARS-CoV-2 envelope and nucleocapsid phosphoprotein through state-of-the-art tools based on an in-silico approach. A combination of these two ligands could be the best option to consider for further detailed studies to develop a drug for treating patients infected with SARS-CoV-2, COVID-19.
Collapse
Affiliation(s)
- Sayed Abdul Azeez
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zahra Ghalib Alhashim
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Waad Mohammed Al Otaibi
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hind Saleh Alsuwat
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdallah M. Ibrahim
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Fundamentals of Nursing, College of Nursing, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|