1
|
Bashir A, Li S, Ye Y, Zheng Q, Knanghat R, Bashir F, Shah NN, Yang D, Xue M, Wang H, Zheng C. SARS-CoV-2 S protein harbors furin cleavage site located in a short loop between antiparallel β-strand. Int J Biol Macromol 2024; 281:136020. [PMID: 39368587 DOI: 10.1016/j.ijbiomac.2024.136020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Furin cleavage site (FCS) of the SARS-CoV-2 S protein, which connects the S1/S2 junction, is essential for facilitating fusion with the host cells. Wild-type (Wt) SARS-CoV-2 S protein, PDB ID: 6yvb, lacks a sequence of amino acid residues, including the FCS that links the S1/S2 junction. For the first time, we demonstrated that a stretch of 14 amino acid residues (677QTNSPRRARSVASQ689) forms an antiparallel β-sheet comprising of PRRAR sequence in the FCS within a short loop. Upon comparing the loop content of the S1/S2 junction with that of Wt SARS-CoV-2 containing PRRAR in the FCS, we observed a decrease in antiparallel β-sheet content and an increase in loop content in the B.1.1.7 variant with HRRAR in the FCS. This short loop within antiparallel β-sheet can serve as a docking site for various proteases, including TMPRSS2 and α1AT. We performed a 300-ns simulation of the SARS-CoV-2 receptor binding domain (RBD) using several antibacterial and antiviral ligands commonly used to treat various infections. Our findings indicate that the receptor binding domain (RBD) comprising the receptor binding motif (RBM) utilizes β6 and a significant portion of the loop to bind with ligands, suggesting its potential for treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Arif Bashir
- Department of Clinical Biochemistry & Biotechnology, Government College for Women, Nawa-Kadal, Srinagar 190002, India
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yu Ye
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Rajani Knanghat
- Department of Biotechnology, Indian Institute of Technology, Chennai 600036, India
| | - Fahim Bashir
- Department of Environmental Science, University of Kashmir, 190006, India
| | - Naveed Nazir Shah
- Department of Chest Medicine, Government Medical College, Srinagar, Jammu and Kashmir 190001, India
| | - Debin Yang
- Department of Pediatrics, Children's Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Class J, Simons LM, Lorenzo-Redondo R, Achi JG, Cooper L, Dangi T, Penaloza-MacMaster P, Ozer EA, Lutz SE, Rong L, Hultquist JF, Richner JM. Evolution of SARS-CoV-2 in the murine central nervous system drives viral diversification. Nat Microbiol 2024; 9:2383-2394. [PMID: 39179693 DOI: 10.1038/s41564-024-01786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
Severe coronavirus disease 2019 and post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are associated with neurological complications that may be linked to direct infection of the central nervous system (CNS), but the selective pressures ruling neuroinvasion are poorly defined. Here we assessed SARS-CoV-2 evolution in the lung versus CNS of infected mice. Higher levels of viral divergence were observed in the CNS than the lung after intranasal challenge with a high frequency of mutations in the spike furin cleavage site (FCS). Deletion of the FCS significantly attenuated virulence after intranasal challenge, with lower viral titres and decreased morbidity compared with the wild-type virus. Intracranial inoculation of the FCS-deleted virus, however, was sufficient to restore virulence. After intracranial inoculation, both viruses established infection in the lung, but dissemination from the CNS to the lung required the intact FCS. Cumulatively, these data suggest a critical role for the FCS in determining SARS-CoV-2 tropism and compartmentalization.
Collapse
Affiliation(s)
- Jacob Class
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Justin M Richner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Yu F, Liu X, Ou H, Li X, Liu R, Lv X, Xiao S, Hu M, Liang T, Chen T, Wei X, Zhang Z, Liu S, Liu H, Zhu Y, Liu G, Tu T, Li P, Zhang H, Pan T, Ma X. The histamine receptor H1 acts as an alternative receptor for SARS-CoV-2. mBio 2024; 15:e0108824. [PMID: 38953634 PMCID: PMC11324024 DOI: 10.1128/mbio.01088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Numerous host factors, in addition to human angiotensin-converting enzyme 2 (hACE2), have been identified as coreceptors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrating broad viral tropism and diversified druggable potential. We and others have found that antihistamine drugs, particularly histamine receptor H1 (HRH1) antagonists, potently inhibit SARS-CoV-2 infection. In this study, we provided compelling evidence that HRH1 acts as an alternative receptor for SARS-CoV-2 by directly binding to the viral spike protein. HRH1 also synergistically enhanced hACE2-dependent viral entry by interacting with hACE2. Antihistamine drugs effectively prevent viral infection by competitively binding to HRH1, thereby disrupting the interaction between the spike protein and its receptor. Multiple inhibition assays revealed that antihistamine drugs broadly inhibited the infection of various SARS-CoV-2 mutants with an average IC50 of 2.4 µM. The prophylactic function of these drugs was further confirmed by authentic SARS-CoV-2 infection assays and humanized mouse challenge experiments, demonstrating the therapeutic potential of antihistamine drugs for combating coronavirus disease 19.IMPORTANCEIn addition to human angiotensin-converting enzyme 2, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can utilize alternative cofactors to facilitate viral entry. In this study, we discovered that histamine receptor H1 (HRH1) not only functions as an independent receptor for SARS-CoV-2 but also synergistically enhances ACE2-dependent viral entry by directly interacting with ACE2. Further studies have demonstrated that HRH1 facilitates the entry of SARS-CoV-2 by directly binding to the N-terminal domain of the spike protein. Conversely, antihistamine drugs, primarily HRH1 antagonists, can competitively bind to HRH1 and thereby prevent viral entry. These findings revealed that the administration of repurposable antihistamine drugs could be a therapeutic intervention to combat coronavirus disease 19.
Collapse
Affiliation(s)
- Fei Yu
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
| | - Xiaoqing Liu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- Institute of Human
Virology, Zhongshan School of Medicine, Sun Yat-sen
University, Guangzhou,
Guangdong, China
| | - Hailan Ou
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
| | - Xinyu Li
- Shenzhen Key
Laboratory of Systems Medicine for Inflammatory Diseases, Shenzhen
Campus of Sun Yat-sen University,
Shenzhen, Guangdong,
China
| | - Ruxin Liu
- Shenzhen Key
Laboratory of Systems Medicine for Inflammatory Diseases, Shenzhen
Campus of Sun Yat-sen University,
Shenzhen, Guangdong,
China
| | - Xi Lv
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
- School of Medicine,
South China University of Technology,
Guangzhou, Guangdong,
China
| | - Shiqi Xiao
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Meilin Hu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- Department of Breast
Surgery, The Second Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| | - Taizhen Liang
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| | - Tao Chen
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| | - Xuepeng Wei
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Zhenglai Zhang
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Sen Liu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- School of Biology and
Biological Engineering, South China University of
Technology, Guangzhou,
Guangdong, China
| | - Han Liu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Yiqiang Zhu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Guangyan Liu
- Department of Pathogen
Biology, Shenyang Medical College,
Shenyang, Liaoning,
China
| | - Tianyong Tu
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Peiwen Li
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
| | - Hui Zhang
- Institute of Human
Virology, Zhongshan School of Medicine, Sun Yat-sen
University, Guangzhou,
Guangdong, China
| | - Ting Pan
- Shenzhen Key
Laboratory of Systems Medicine for Inflammatory Diseases, Shenzhen
Campus of Sun Yat-sen University,
Shenzhen, Guangdong,
China
| | - Xiancai Ma
- Medical Research
Institute, Guangdong Provincial People’s Hospital (Guangdong
Academy of Medical Sciences), Southern Medical
University, Guangzhou,
Guangdong, China
- Guangzhou National
Laboratory, Guangzhou International
Bio-Island, Guangzhou,
Guangdong, China
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
Guangdong, China
| |
Collapse
|
5
|
Dai B, Ji W, Zhu P, Han S, Chen Y, Jin Y. Update on Omicron variant and its threat to vulnerable populations. PUBLIC HEALTH IN PRACTICE 2024; 7:100494. [PMID: 38584806 PMCID: PMC10998192 DOI: 10.1016/j.puhip.2024.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To reduce the incidence of severe illness and fatalities, and promote the awareness of protection and precaution, increased vaccination, strengthen the physical fitness, frequent ventilation, and health education should be enhanced among vulnerable populations as essential measures for the future control of COVID-19. Study design Systematic review. Method The search was done using PubMed, EMBASE and Web of Science for studies without language restrictions, published up through March 2023, since their authoritative and comprehensive literature search database. Eighty articles were included. Extraction of articles and quality assessment of included reviews was performed independently by two authors using the AMSTAR 2 score. Results The articles in the final data set included research on epidemiological characteristics, pathogenicity, available vaccines, treatments and epidemiological features in special populations including the elders, pregnant women, kids, people with chronic diseases concerning Omicron. Conclusion Although less pathogenic potential is found in Omicron, highly mutated forms have enhanced the ability of immune evasion and resistance to existing vaccines compared with former variants. Severe complications and outcomes may occur in vulnerable populations. Infected pregnant women are more likely to give birth prematurely, and fatal implications in children infected with Omicron are hyperimmune response and severe neurological disorders. In immunocompromised patients, there is a greater reported mortality and complication compared to patients with normal immune systems. Therefore, maintain social distancing, wear masks, and receive vaccinations are effective long-term measures.
Collapse
Affiliation(s)
- Bowen Dai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiyu Zhu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Han
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Cao B, Wang X, Yin W, Gao Z, Xia B. The human microbiota is a beneficial reservoir for SARS-CoV-2 mutations. mBio 2024; 15:e0318723. [PMID: 38530031 PMCID: PMC11237538 DOI: 10.1128/mbio.03187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging. In particular, beneficial mutations in the spike (S) protein, which can either make a person more infectious or enable immunological escape, are providing a significant obstacle to the prevention and treatment of pandemics. However, how the virus acquires a high number of beneficial mutations in a short time remains a mystery. We demonstrate here that variations of concern may be mutated due in part to the influence of the human microbiome. We searched the National Center for Biotechnology Information database for homologous fragments (HFs) after finding a mutation and the six neighboring amino acids in a viral mutation fragment. Among the approximate 8,000 HFs obtained, 61 mutations in S and other outer membrane proteins were found in bacteria, accounting for 62% of all mutation sources, which is 12-fold higher than the natural variable proportion. A significant proportion of these bacterial species-roughly 70%-come from the human microbiota, are mainly found in the lung or gut, and share a composition pattern with COVID-19 patients. Importantly, SARS-CoV-2 RNA-dependent RNA polymerase replicates corresponding bacterial mRNAs harboring mutations, producing chimeric RNAs. SARS-CoV-2 may collectively pick up mutations from the human microbiota that change the original virus's binding sites or antigenic determinants. Our study clarifies the evolving mutational mechanisms of SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging, in particular advantageous mutations in the spike (S) protein, which either increase transmissibility or lead to immune escape and are posing a major challenge to pandemic prevention and treatment. However, how the virus acquires a high number of advantageous mutations in a short time remains a mystery. Here, we provide evidence that the human microbiota is a reservoir of advantageous mutations and aids mutational evolution and host adaptation of SARS-CoV-2. Our findings demonstrate a conceptual breakthrough on the mutational evolution mechanisms of SARS-CoV-2 for human adaptation. SARS-CoV-2 may grab advantageous mutations from the widely existing microorganisms in the host, which is undoubtedly an "efficient" manner. Our study might open a new perspective to understand the evolution of virus mutation, which has enormous implications for comprehending the trajectory of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Birong Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Guangya High School, Guangzhou, China
| | - Xiaoxi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Jorkesh A, Rothenberger S, Baldassar L, Grybaite B, Kavaliauskas P, Mickevicius V, Dettin M, Vascon F, Cendron L, Pasquato A. Screening of Small-Molecule Libraries Using SARS-CoV-2-Derived Sequences Identifies Novel Furin Inhibitors. Int J Mol Sci 2024; 25:5079. [PMID: 38791119 PMCID: PMC11121672 DOI: 10.3390/ijms25105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 μM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.
Collapse
Affiliation(s)
- Alireza Jorkesh
- Department of Pharmaceutical and Pharmacological Science, University of Padova, Via Marzolo, 5, 35131 Padova, Italy;
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy; (F.V.); (L.C.)
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland;
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
| | - Laura Baldassar
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.B.); (M.D.)
| | - Birute Grybaite
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (V.M.)
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (V.M.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Vytautas Mickevicius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (V.M.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.B.); (M.D.)
| | - Filippo Vascon
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy; (F.V.); (L.C.)
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy; (F.V.); (L.C.)
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.B.); (M.D.)
| |
Collapse
|
8
|
Jeong GU, Hwang I, Lee W, Choi JH, Yoon GY, Kim HS, Yang JS, Kim KC, Lee JY, Kim SJ, Kwon YC, Kim KD. Generation of a lethal mouse model expressing human ACE2 and TMPRSS2 for SARS-CoV-2 infection and pathogenesis. Exp Mol Med 2024; 56:1221-1229. [PMID: 38816566 PMCID: PMC11148094 DOI: 10.1038/s12276-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/01/2024] Open
Abstract
Mouse models expressing human ACE2 for coronavirus disease 2019 have been frequently used to understand its pathogenesis and develop therapeutic strategies against SARS-CoV-2. Given that human TMPRSS2 supports viral entry, replication, and pathogenesis, we established a double-transgenic mouse model expressing both human ACE2 and TMPRSS2 for SARS-CoV-2 infection. Co-overexpression of both genes increased viral infectivity in vitro and in vivo. Double-transgenic mice showed significant body weight loss, clinical disease symptoms, acute lung injury, lung inflammation, and lethality in response to viral infection, indicating that they were highly susceptible to SARS-CoV-2. Pretreatment with the TMPRSS2 inhibitor, nafamostat, effectively reduced virus-induced weight loss, viral replication, and mortality in the double-transgenic mice. Moreover, the susceptibility and differential pathogenesis of SARS-CoV-2 variants were demonstrated in this animal model. Together, our results demonstrate that double-transgenic mice could provide a highly susceptible mouse model for viral infection to understand SARS-CoV-2 pathogenesis and evaluate antiviral therapeutics against coronavirus disease 2019.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Insu Hwang
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Wooseong Lee
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ji Hyun Choi
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gun Young Yoon
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hae Soo Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyung-Chang Kim
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seong-Jun Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Young-Chan Kwon
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
- Medical Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyun-Do Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Pandey RK, Srivastava A, Mishra RK, Singh PP, Chaubey G. Novel genetic association of the Furin gene polymorphism rs1981458 with COVID-19 severity among Indian populations. Sci Rep 2024; 14:7822. [PMID: 38570613 PMCID: PMC10991378 DOI: 10.1038/s41598-024-54607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2024] [Indexed: 04/05/2024] Open
Abstract
SARS CoV-2, the causative agent for the ongoing COVID-19 pandemic, it enters the host cell by activating the ACE2 receptor with the help of two proteasesi.e., Furin and TMPRSS2. Therefore, variations in these genes may account for differential susceptibility and severity between populations. Previous studies have shown that the role of ACE2 and TMPRSS2 gene variants in understanding COVID-19 susceptibility among Indian populations. Nevertheless, a knowledge gap exists concerning the COVID-19 susceptibility of Furin gene variants among diverse South Asian ethnic groups. Investigating the role of Furin gene variants and their global phylogeographic structure is essential to comprehensively understanding COVID-19 susceptibility in these populations. We have used 450 samples from diverse Indian states and performed linear regression to analyse the Furin gene variant's with COVID-19 Case Fatality Rate (CFR) that could be epidemiologically associated with disease severity outcomes. Associated genetic variants were further evaluated for their expression and regulatory potential through various Insilco analyses. Additionally, we examined the Furin gene using next-generation sequencing (NGS) data from 393 diverse global samples, with a particular emphasis on South Asia, to investigate its Phylogeographic structure among diverse world populations. We found a significant positive association for the SNP rs1981458 with COVID-19 CFR (p < 0.05) among diverse Indian populations at different timelines of the first and second waves. Further, QTL and other regulatory analyses showed various significant associations for positive regulatory roles of rs1981458 and Furin gene, mainly in Immune cells and virus infection process, highlighting their role in host immunity and viral assembly and processing. The Furin protein-protein interaction suggested that COVID-19 may contribute to Pulmonary arterial hypertension via a typical inflammation mechanism. The phylogeographic architecture of the Furin gene demonstrated a closer genetic affinity of South Asia with West Eurasian populations. Therefore, it is worth proposing that for the Furin gene, the COVID-19 susceptibility of South Asians will be more similar to the West Eurasian population. Our previous studies on the ACE2 and TMPRSS2 genes showed genetic affinity of South Asian with East Eurasians and West Eurasians, respectively. Therefore, with the collective information from these three important genes (ACE2, TMPRSS2 and Furin) we modelled COVID-19 susceptibilityof South Asia in between these two major ancestries with an inclination towards West Eurasia. In conclusion, this study, for the first time, concluded the role of rs1981458 in COVID-19 severity among the Indian population and outlined its regulatory potential.This study also highlights that the genetic structure for COVID-19 susceptibilityof South Asia is distinct, however, inclined to the West Eurasian population. We believe this insight may be utilised as a genetic biomarker to identify vulnerable populations, which might be directly relevant for developing policies and allocating resources more effectively during an epidemic.
Collapse
Affiliation(s)
- Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| | - Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Rahul Kumar Mishra
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Yu F, Xu J, Chen H, Song S, Nie C, Hao K, Zhao Z. Proprotein convertase cleavage of Ictalurid herpesvirus 1 spike-like protein ORF46 is modulated by N-glycosylation. Virology 2024; 592:110008. [PMID: 38335866 DOI: 10.1016/j.virol.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Viral spike proteins undergo a special maturation process that enables host cell receptor recognition, membrane fusion, and viral entry, facilitating effective virus infection. Here, we investigated the protease cleavage features of ORF46, a spike-like protein in Ictalurid herpesvirus 1 (IcHV-1) sharing similarity with spikes of Nidovirales members. We noted that during cleavage, full-length ORF46 is cleaved into ∼55-kDa and ∼100-kDa subunits. Moreover, truncation or site-directed mutagenesis at the recognition sites of proprotein convertases (PCs) abolishes this spike cleavage, highlighting the crucial role of Arg506/Arg507 and Arg668/Arg671 for the cleavage modification. ORF46 cleavage was suppressed by specific N-glycosylation inhibitors or mutation of its specific N-glycosylation sites (N192, etc.), suggesting that glycoprotein ORF46 cleavage is modulated by N-glycosylation. Notably, PCs and N-glycosylation inhibitors exhibited potent antiviral effects in host cells. Our findings, therefore, suggested that PCs cleavage of ORF46, modulated by N-glycosylation, is a potent antiviral target for fish herpesviruses.
Collapse
Affiliation(s)
- Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Hongxun Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Chunlan Nie
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China.
| |
Collapse
|
11
|
Lv X, Chen R, Liang T, Peng H, Fang Q, Xiao S, Liu S, Hu M, Yu F, Cao L, Zhang Y, Pan T, Xi Z, Ding Y, Feng L, Zeng T, Huang W, Zhang H, Ma X. NSP6 inhibits the production of ACE2-containing exosomes to promote SARS-CoV-2 infectivity. mBio 2024; 15:e0335823. [PMID: 38303107 PMCID: PMC10936183 DOI: 10.1128/mbio.03358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global pandemic, which severely endangers public health. Our and others' works have shown that the angiotensin-converting enzyme 2 (ACE2)-containing exosomes (ACE2-exos) have superior antiviral efficacies, especially in response to emerging variants. However, the mechanisms of how the virus counteracts the host and regulates ACE2-exos remain unclear. Here, we identified that SARS-CoV-2 nonstructural protein 6 (NSP6) inhibits the production of ACE2-exos by affecting the protein level of ACE2 as well as tetraspanin-CD63 which is a key factor for exosome biogenesis. We further found that the protein stability of CD63 and ACE2 is maintained by the deubiquitination of proteasome 26S subunit, non-ATPase 12 (PSMD12). NSP6 interacts with PSMD12 and counteracts its function, consequently promoting the degradation of CD63 and ACE2. As a result, NSP6 diminishes the antiviral efficacy of ACE2-exos and facilitates the virus to infect healthy bystander cells. Overall, our study provides a valuable target for the discovery of promising drugs for the treatment of coronavirus disease 2019. IMPORTANCE The outbreak of coronavirus disease 2019 (COVID-19) severely endangers global public health. The efficacy of vaccines and antibodies declined with the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants. Angiotensin-converting enzyme 2-containing exosomes (ACE2-exos) therapy exhibits a broad neutralizing activity, which could be used against various viral mutations. Our study here revealed that SARS-CoV-2 nonstructural protein 6 inhibited the production of ACE2-exos, thereby promoting viral infection to the adjacent bystander cells. The identification of a new target for blocking SARS-CoV-2 depends on fully understanding the virus-host interaction networks. Our study sheds light on the mechanism by which the virus resists the host exosome defenses, which would facilitate the study and design of ACE2-exos-based therapeutics for COVID-19.
Collapse
Affiliation(s)
- Xi Lv
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Sen Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lixue Cao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhihui Xi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Ding
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Linyuan Feng
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Zeng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjing Huang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiancai Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Yu C, Wang G, Liu Q, Zhai J, Xue M, Li Q, Xian Y, Zheng C. Host antiviral factors hijack furin to block SARS-CoV-2, ebola virus, and HIV-1 glycoproteins cleavage. Emerg Microbes Infect 2023; 12:2164742. [PMID: 36591809 PMCID: PMC9897805 DOI: 10.1080/22221751.2022.2164742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viral envelope glycoproteins are crucial for viral infections. In the process of enveloped viruses budding and release from the producer cells, viral envelope glycoproteins are presented on the viral membrane surface as spikes, promoting the virus's next-round infection of target cells. However, the host cells evolve counteracting mechanisms in the long-term virus-host co-evolutionary processes. For instance, the host cell antiviral factors could potently suppress viral replication by targeting their envelope glycoproteins through multiple channels, including their intracellular synthesis, glycosylation modification, assembly into virions, and binding to target cell receptors. Recently, a group of studies discovered that some host antiviral proteins specifically recognized host proprotein convertase (PC) furin and blocked its cleavage of viral envelope glycoproteins, thus impairing viral infectivity. Here, in this review, we briefly summarize several such host antiviral factors and analyze their roles in reducing furin cleavage of viral envelope glycoproteins, aiming at providing insights for future antiviral studies.
Collapse
Affiliation(s)
- Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, People’s Republic of China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China,Mengzhou Xue
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China,Qiang Li
| | - Yuanhua Xian
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China,Yuanhua Xian
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China,Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada, Chunfu Zheng
| |
Collapse
|
13
|
Liang Z, Wu X, Wu J, Liu S, Tong J, Li T, Yu Y, Zhang L, Zhao C, Lu Q, Qin H, Nie J, Huang W, Wang Y. Development of an automated, high-throughput SARS-CoV-2 neutralization assay based on a pseudotyped virus using a vesicular stomatitis virus (VSV) vector. Emerg Microbes Infect 2023; 12:e2261566. [PMID: 37727107 PMCID: PMC10540657 DOI: 10.1080/22221751.2023.2261566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
ABSTRACTThe global outbreak of COVID-19 has caused a severe threat to human health; therefore, simple, high-throughput neutralization assays are desirable for developing vaccines and drugs against COVID-19. In this study, a high-titre SARS-CoV-2 pseudovirus was successfully packaged by truncating the C-terminus of the SARS-CoV-2 spike protein by 21 amino acids and infecting 293 T cells that had been stably transfected with the angiotensin-converting enzyme 2 (ACE2) receptor and furin (named AF cells), to establish a simple, high-throughput, and automated 384-well plate neutralization assay. The method was optimized for cell amount, virus inoculation, incubation time, and detection time. The automated assay showed good sensitivity, accuracy, reproducibility, Z' factor, and a good correlation with the live virus neutralization assay. The high-throughput approach would make it available for the SARS-CoV-2 neutralization test in large-scale clinical trials and seroepidemiological surveys which would aid the accelerated vaccine development and evaluation.
Collapse
Affiliation(s)
- Ziteng Liang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, People’s Republic of China
| | - Shuo Liu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Yuanling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People’s Republic of China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
15
|
Richner J, Class J, Simons L, Lorenzo-Redondo R, Cooper L, Dangi T, Penaloza-MacMaster P, Ozer E, Rong L, Hultquist J. SARS-CoV-2 Bottlenecks and Tissue-Specific Adaptation in the Central Nervous System. RESEARCH SQUARE 2023:rs.3.rs-3220157. [PMID: 37790412 PMCID: PMC10543031 DOI: 10.21203/rs.3.rs-3220157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection are associated with neurological complications that may be linked to direct infection of the central nervous system (CNS), but the selective pressures ruling neuroinvasion are poorly defined. Here, we assessed SARS-CoV-2 evolution in the lung versus CNS of infected mice. Higher levels of viral diversity were observed in the CNS than the lung after intranasal challenge with a high frequency of mutations in the Spike furin cleavage site (FCS). Deletion of the FCS significantly attenuated virulence after intranasal challenge, with lower viral titers and decreased morbidity compared to the wild-type virus. Intracranial inoculation of the FCS-deleted virus, however, was sufficient to restore virulence. After intracranial inoculation, both viruses established infection in the lung, but this required reversion of the FCS deletion. Cumulatively, these data suggest a critical role for the FCS in determining SARS-CoV-2 tropism and compartmentalization with possible implications for the treatment of neuroinvasive COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago
| | | |
Collapse
|
16
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
17
|
Fang L, Xu J, Zhao Y, Fan J, Shen J, Liu W, Cao G. The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Front Microbiol 2023; 14:1228128. [PMID: 37560529 PMCID: PMC10409611 DOI: 10.3389/fmicb.2023.1228128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Over three years' pandemic of 2019 novel coronavirus disease (COVID-19), multiple variants and novel subvariants have emerged successively, outcompeted earlier variants and become predominant. The sequential emergence of variants reflects the evolutionary process of mutation-selection-adaption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/insertion/deletion in the spike protein causes altered viral antigenicity, transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G mutation conferred virus with advantages over previous variants and increased transmissibility, and it also laid a conservative background for subsequent substantial mutations. The role of genomic recombination in the evolution of SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. Co-circulation of different variants and co-infection in immunocompromised patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 genomic variations, particularly spike protein mutation and recombination, is essential to identify ongoing changes in the viral genome and antigenic epitopes and thus leads to the development of new vaccine strategies and interventions.
Collapse
Affiliation(s)
- Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jie Xu
- Department of Foreign Languages, International Exchange Center for Military Medicine, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jiaying Shen
- School of Medicine, Tongji University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Shajahan A, Pepi LE, Kumar B, Murray NB, Azadi P. Site specific N- and O-glycosylation mapping of the spike proteins of SARS-CoV-2 variants of concern. Sci Rep 2023; 13:10053. [PMID: 37344512 PMCID: PMC10284906 DOI: 10.1038/s41598-023-33088-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/06/2023] [Indexed: 06/23/2023] Open
Abstract
The glycosylation on the spike (S) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, modulates the viral infection by altering conformational dynamics, receptor interaction and host immune responses. Several variants of concern (VOCs) of SARS-CoV-2 have evolved during the pandemic, and crucial mutations on the S protein of the virus have led to increased transmissibility and immune escape. In this study, we compare the site-specific glycosylation and overall glycomic profiles of the wild type Wuhan-Hu-1 strain (WT) S protein and five VOCs of SARS-CoV-2: Alpha, Beta, Gamma, Delta and Omicron. Interestingly, both N- and O-glycosylation sites on the S protein are highly conserved among the spike mutant variants, particularly at the sites on the receptor-binding domain (RBD). The conservation of glycosylation sites is noteworthy, as over 2 million SARS-CoV-2 S protein sequences have been reported with various amino acid mutations. Our detailed profiling of the glycosylation at each of the individual sites of the S protein across the variants revealed intriguing possible association of glycosylation pattern on the variants and their previously reported infectivity. While the sites are conserved, we observed changes in the N- and O-glycosylation profile across the variants. The newly emerged variants, which showed higher resistance to neutralizing antibodies and vaccines, displayed a decrease in the overall abundance of complex-type glycans with both fucosylation and sialylation and an increase in the oligomannose-type glycans across the sites. Among the variants, the glycosylation sites with significant changes in glycan profile were observed at both the N-terminal domain and RBD of S protein, with Omicron showing the highest deviation. The increase in oligomannose-type happens sequentially from Alpha through Delta. Interestingly, Omicron does not contain more oligomannose-type glycans compared to Delta but does contain more compared to the WT and other VOCs. O-glycosylation at the RBD showed lower occupancy in the VOCs in comparison to the WT. Our study on the sites and pattern of glycosylation on the SARS-CoV-2 S proteins across the VOCs may help to understand how the virus evolved to trick the host immune system. Our study also highlights how the SARS-CoV-2 virus has conserved both N- and O- glycosylation sites on the S protein of the most successful variants even after undergoing extensive mutations, suggesting a correlation between infectivity/ transmissibility and glycosylation.
Collapse
Affiliation(s)
- Asif Shajahan
- Vaccine Production Program, Vaccine Research Center, National Institutes of Health, 9 W Watkins Mill Rd, Gaithersburg, MD, 20877, USA.
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Nathan B Murray
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
20
|
Du W, Jiang P, Li Q, Wen H, Zheng M, Zhang J, Guo Y, Yang J, Feng W, Ye S, Kamara S, Jiang P, Chen J, Li W, Zhu S, Zhang L. Novel Affibody Molecules Specifically Bind to SARS-CoV-2 Spike Protein and Efficiently Neutralize Delta and Omicron Variants. Microbiol Spectr 2023; 11:e0356222. [PMID: 36511681 PMCID: PMC9927262 DOI: 10.1128/spectrum.03562-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented public health disaster in human history, and its spike (S) protein is the major target for vaccines and antiviral drug development. Although widespread vaccination has been well established, the viral gene is prone to rapid mutation, resulting in multiple global spread waves. Therefore, specific antivirals are needed urgently, especially those against variants. In this study, the domain of the receptor binding motif (RBM) and fusion peptide (FP) (amino acids [aa] 436 to 829; denoted RBMFP) of the SARS-CoV-2 S protein was expressed as a recombinant RBMFP protein in Escherichia coli and identified as being immunogenic and antigenically active. Then, the RBMFP proteins were used for phage display to screen the novel affibody. After prokaryotic expression and selection, four novel affibody molecules (Z14, Z149, Z171, and Z327) were obtained. Through surface plasmon resonance (SPR) and pseudovirus neutralization assay, we showed that affibody molecules specifically bind to the RBMFP protein with high affinity and neutralize against SARS-CoV-2 pseudovirus infection. Especially, Z14 and Z171 displayed strong neutralizing activities against Delta and Omicron variants. Molecular docking predicted that affibody molecule interaction sites with RBM overlapped with ACE2. Thus, the novel affibody molecules could be further developed as specific neutralization agents against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 and its variants are threatening the whole world. Although a full dose of vaccine injection showed great preventive effects and monoclonal antibody reagents have also been used for a specific treatment, the global pandemic persists. So, developing new vaccines and specific agents are needed urgently. In this work, we expressed the recombinant RBMFP protein as an antigen, identified its antigenicity, and used it as an antigen for affibody phage-display selection. After the prokaryotic expression, the specific affibody molecules were obtained and tested for pseudovirus neutralization. Results showed that the serum antibody induced by RBMFP neutralized Omicron variants. The screened affibody molecules specifically bound the RBMFP of SARS-CoV-2 with high affinity and neutralized the Delta and Omicron pseudovirus in vitro. So, the RBMFP induced serum provides neutralizing effects against pseudovirus in vitro, and the affibodies have the potential to be developed into specific prophylactic agents for SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Wangqi Du
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peipei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingfeng Li
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - He Wen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maolin Zheng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanru Guo
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Yang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixu Feng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenshu Li
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Wu C, Paradis NJ, Lakernick PM, Hryb M. L-shaped distribution of the relative substitution rate (c/μ) observed for SARS-COV-2's genome, inconsistent with the selectionist theory, the neutral theory and the nearly neutral theory but a near-neutral balanced selection theory: Implication on "neutralist-selectionist" debate. Comput Biol Med 2023; 153:106522. [PMID: 36638615 PMCID: PMC9814386 DOI: 10.1016/j.compbiomed.2022.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
The genomic substitution rate (GSR) of SARS-CoV-2 exhibits a molecular clock feature and does not change under fluctuating environmental factors such as the infected human population (10°-107), vaccination etc. The molecular clock feature is believed to be inconsistent with the selectionist theory (ST). The GSR shows lack of dependence on the effective population size, suggesting Ohta's nearly neutral theory (ONNT) is not applicable to this virus. Big variation of the substitution rate within its genome is also inconsistent with Kimura's neutral theory (KNT). Thus, all three existing evolution theories fail to explain the evolutionary nature of this virus. In this paper, we proposed a Segment Substitution Rate Model (SSRM) under non-neutral selections and pointed out that a balanced mechanism between negative and positive selection of some segments that could also lead to the molecular clock feature. We named this hybrid mechanism as near-neutral balanced selection theory (NNBST) and examined if it was followed by SARS-CoV-2 using the three independent sets of SARS-CoV-2 genomes selected by the Nextstrain team. Intriguingly, the relative substitution rate of this virus exhibited an L-shaped probability distribution consisting with NNBST rather than Poisson distribution predicted by KNT or an asymmetric distribution predicted by ONNT in which nearly neutral sites are believed to be slightly deleterious only, or the distribution that is lack of nearly neutral sites predicted by ST. The time-dependence of the substitution rates for some segments and their correlation with the vaccination were observed, supporting NNBST. Our relative substitution rate method provides a tool to resolve the long standing "neutralist-selectionist" controversy. Implications of NNBST in resolving Lewontin's Paradox is also discussed.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA; Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, 08028, USA.
| | - Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Phillip M Lakernick
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Mariya Hryb
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
22
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
23
|
Bordat J, Maury S, Leclerc M. Allogeneic hematopoietic stem cell transplantation in the COVID-19 era. Front Immunol 2023; 14:1100468. [PMID: 36911678 PMCID: PMC9993088 DOI: 10.3389/fimmu.2023.1100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) recipients are especially vulnerable to coronavirus disease 19 (COVID-19), because of their profound immunodeficiency. Indeed, the first pandemic wave was marked by a high mortality rate in this population. Factors increasing immunodepression such as older age, immunosuppressive treatments or a short delay between transplant and infection appear to worsen the prognosis. Many changes in clinical practice had to be implemented in order to limit this risk, including postponing of transplant for non-malignant diseases, preference for local rather than international donations and for peripheral blood as stem cell source, and the widespread use of cryopreservation. The great revolution in the COVID-19 pandemic came from the development of mRNA vaccines that have shown to be able to prevent severe forms of the disease. More than 75% of allo-HSCT recipients develop seroconversion after 2 doses of vaccine. Multiple studies have identified lymphopenia, exposure to immunosuppressive or anti-CD20 therapies, and a short post-transplant period as factors associated with a poor response to vaccination. The use of repeated injections of the vaccine, including a third dose, not only improves the seroconversion rate but also intensifies the immune response, both in B cells and T cells. Vaccines are an effective and well-tolerated method in this high-risk population. Some studies investigated the possibility of immune protection being transferred from a vaccinated donor to a recipient, with encouraging initial results. However, dynamic mutations and immune escape of the virus can lead to breakthrough infections with new variants in vaccinated individuals and still represent a threat of severe disease in allo-HSCT recipients. New challenges include the need to adapt vaccine protection to emerging variants.
Collapse
Affiliation(s)
- Jonathan Bordat
- Hematology Department, Henri Mondor Hospital, Assistance Publique/Hôpitaux de Paris, Créteil, France
| | - Sébastien Maury
- Hematology Department, Henri Mondor Hospital, Assistance Publique/Hôpitaux de Paris, Créteil, France.,Institut Mondor de Recherche Biomédicale, équipe Immunorégulation et Biothérapies, INSERM U955, Créteil, France.,Faculté de Médecine, Paris-Est Créteil University, Créteil, France
| | - Mathieu Leclerc
- Hematology Department, Henri Mondor Hospital, Assistance Publique/Hôpitaux de Paris, Créteil, France.,Institut Mondor de Recherche Biomédicale, équipe Immunorégulation et Biothérapies, INSERM U955, Créteil, France.,Faculté de Médecine, Paris-Est Créteil University, Créteil, France
| |
Collapse
|
24
|
Song S, Kim H, Jang EY, Jeon H, Diao H, Khan MRI, Lee M, Lee YJ, Nam J, Kim S, Kim Y, Sohn E, Hwang I, Choi J. SARS-CoV-2 spike trimer vaccine expressed in Nicotiana benthamiana adjuvanted with Alum elicits protective immune responses in mice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2298-2312. [PMID: 36062974 PMCID: PMC9538723 DOI: 10.1111/pbi.13908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.
Collapse
Affiliation(s)
- Shi‐Jian Song
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Heeyeon Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Eun Young Jang
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Hyungmin Jeon
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Hai‐Ping Diao
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Md Rezaul Islam Khan
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Mi‐Seon Lee
- Division of Infectious Diseases InspectionJeju Special Self‐Governing Province Institute of Environment ResearchJejuKorea
| | - Young Jae Lee
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Jeong‐hyun Nam
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Seong‐Ryeol Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Young‐Jin Kim
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Eun‐Ju Sohn
- BioApplications Inc.Pohang Technopark ComplexPohangSouth Korea
| | - Inhwan Hwang
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Jang‐Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| |
Collapse
|
25
|
Advances in Molecular Genetics Enabling Studies of Highly Pathogenic RNA Viruses. Viruses 2022; 14:v14122682. [PMID: 36560685 PMCID: PMC9784166 DOI: 10.3390/v14122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Experimental work with viruses that are highly pathogenic for humans and animals requires specialized Biosafety Level 3 or 4 facilities. Such pathogens include some spectacular but also rather seldomly studied examples such as Ebola virus (requiring BSL-4), more wide-spread and commonly studied viruses such as HIV, and the most recent example, SARS-CoV-2, which causes COVID-19. A common characteristic of these virus examples is that their genomes consist of single-stranded RNA, which requires the conversion of their genomes into a DNA copy for easy manipulation; this can be performed to study the viral life cycle in detail, develop novel therapies and vaccines, and monitor the disease course over time for chronic virus infections. We summarize the recent advances in such new genetic applications for RNA viruses in Switzerland over the last 25 years, from the early days of the HIV/AIDS epidemic to the most recent developments in research on the SARS-CoV-2 coronavirus. We highlight game-changing collaborative efforts between clinical and molecular disciplines in HIV research on the path to optimal clinical disease management. Moreover, we summarize how the modern technical evolution enabled the molecular studies of emerging RNA viruses, confirming that Switzerland is at the forefront of SARS-CoV-2 research and potentially other newly emerging viruses.
Collapse
|
26
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
27
|
Shajahan A, Pepi L, Kumar B, Murray N, Azadi P. Site Specific N- and O-glycosylation mapping of the Spike Proteins of SARS-CoV-2 Variants of Concern. RESEARCH SQUARE 2022:rs.3.rs-2188138. [PMID: 36415454 PMCID: PMC9681045 DOI: 10.21203/rs.3.rs-2188138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The glycosylation on the spike (S) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, modulates the viral infection by altering conformational dynamics, receptor interaction and host immune responses. Several variants of concern (VOCs) of SARS-CoV-2 have evolved during the pandemic, and crucial mutations on the S protein of the virus led to increased transmissibility and immune escape. In this study, we compare the site-specific glycosylation and overall glycomic profile of the wild type Wuhan-Hu-1 strain (WT) S protein and five VOCs of SARS-CoV-2: Alpha, Beta, Gamma, Delta and Omicron. Interestingly, both N- and O-glycosylation sites on the S protein are highly conserved among the spike mutant variants, particularly at the sites on the receptor-binding domain (RBD). The conservation of glycosylation sites is noteworthy, as over 2 million SARS-CoV-2 S protein sequences have been reported with various amino acid mutations. Our detailed profiling of the glycosylation at each of the individual sites of the S protein across the variants revealed intriguing possible association of glycosylation pattern on the variants and their previously reported infectivity. While the sites are conserved, we observed changes in the N- and O-glycosylation profile across the variants. The newly emerged variants, which showed higher resistance to neutralizing antibodies and vaccines, displayed a decrease in the overall abundance of complex-type glycans with both fucosylation and sialylation and an increase in the oligomannose-type glycans across the sites. Among the variants, the glycosylation sites with significant changes in glycan profile were observed at both the N-terminal domain (NTD) and RBD of S protein, with Omicron showing the highest deviation. The increase in oligomannose-type happens sequentially from Alpha through Delta. Interestingly, Omicron does not contain more oligomannose-type glycans compared to Delta but does contain more compared to the WT and other VOCs. O-glycosylation at the RBD showed lower occupancy in the VOCs in comparison to the WT. Our study on the sites and pattern of glycosylation on the SARS-CoV-2 S proteins across the VOCs may help to understand how the virus evolved to trick the host immune system. Our study also highlights how the SARS-CoV-2 virus has conserved both N- and O- glycosylation sites on the S protein of the most successful variants even after undergoing extensive mutations, suggesting a correlation between infectivity/ transmissibility and glycosylation.
Collapse
|
28
|
Tulimilli SV, Dallavalasa S, Basavaraju CG, Kumar Rao V, Chikkahonnaiah P, Madhunapantula SV, Veeranna RP. Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines (Basel) 2022; 10:1751. [PMID: 36298616 PMCID: PMC9607623 DOI: 10.3390/vaccines10101751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence and death toll due to SARS-CoV-2 infection varied time-to-time; and depended on several factors, including severity (viral load), immune status, age, gender, vaccination status, and presence of comorbidities. The RNA genome of SARS-CoV-2 has mutated and produced several variants, which were classified by the SARS-CoV-2 Interagency Group (SIG) into four major categories. The first category; “Variant Being Monitored (VBM)”, consists of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427, B.1.429), Eta (B.1.525), Iota (B.1.526), Kappa (B.1.617.1), Mu (B.1.621), and Zeta (P.2); the second category; “Variants of Concern” consists of Omicron (B.1.1.529). The third and fourth categories include “Variants of Interest (VOI)”, and “Variants of High Consequence (VOHC)”, respectively, and contain no variants classified currently under these categories. The surge in VBM and VOC poses a significant threat to public health globally as they exhibit altered virulence, transmissibility, diagnostic or therapeutic escape, and the ability to evade the host immune response. Studies have shown that certain mutations increase the infectivity and pathogenicity of the virus as demonstrated in the case of SARS-CoV-2, the Omicron variant. It is reported that the Omicron variant has >60 mutations with at least 30 mutations in the Spike protein (“S” protein) and 15 mutations in the receptor-binding domain (RBD), resulting in rapid attachment to target cells and immune evasion. The spread of VBM and VOCs has affected the actual protective efficacy of the first-generation vaccines (ChAdOx1, Ad26.COV2.S, NVX-CoV2373, BNT162b2). Currently, the data on the effectiveness of existing vaccines against newer variants of SARS-CoV-2 are very scanty; hence additional studies are immediately warranted. To this end, recent studies have initiated investigations to elucidate the structural features of crucial proteins of SARS-CoV-2 variants and their involvement in pathogenesis. In addition, intense research is in progress to develop better preventive and therapeutic strategies to halt the spread of COVID-19 caused by variants. This review summarizes the structure and life cycle of SARS-CoV-2, provides background information on several variants of SARS-CoV-2 and mutations associated with these variants, and reviews recent studies on the safety and efficacy of major vaccines/vaccine candidates approved against SARS-CoV-2, and its variants.
Collapse
Affiliation(s)
- SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Chaithanya G. Basavaraju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Vinay Kumar Rao
- Department of Medical Genetics, JSS Medical College & Hospital, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| | - Prashanth Chikkahonnaiah
- Department of Pulmonary Medicine, Mysore Medical College and Research Institute, Mysuru 570001, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
| |
Collapse
|
29
|
Dhawan M, Saied AA, Mitra S, Alhumaydhi FA, Emran TB, Wilairatana P. Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomed Pharmacother 2022; 154:113522. [PMID: 36030585 PMCID: PMC9376347 DOI: 10.1016/j.biopha.2022.113522] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Since the start of the COVID-19 pandemic, numerous variants of SARS-CoV-2 have been reported worldwide. The advent of variants of concern (VOCs) raises severe concerns amid the serious containment efforts against COVID-19 that include physical measures, pharmacological repurposing, immunization, and genomic/community surveillance. Omicron variant (B.1.1.529) has been identified as a highly modified, contagious, and crucial variant among the five VOCs of SARS-CoV-2. The increased affinity of the spike protein (S-protein), and host receptor, angiotensin converting enzyme-2 (ACE-2), due to a higher number of mutations in the receptor-binding domain (RBD) of the S-protein has been proposed as the primary reason for the decreased efficacy of majorly available vaccines against the Omicron variant and the increased transmissible nature of the Omicron variant. Because of its significant competitive advantage, the Omicron variant and its sublineages swiftly surpassed other variants to become the dominant circulating lineages in a number of nations. The Omicron variant has been identified as a prevalent strain in the United Kingdom and South Africa. Furthermore, the emergence of recombinant variants through the conjunction of the Omicron variant with other variants or by the mixing of the Omicron variant's sublineages/subvariants poses a major threat to humanity. This raises various issues and hazards regarding the Omicron variant and its sublineages, such as an Omicron variant breakout in susceptible populations among fully vaccinated persons. As a result, understanding the features and genetic implications of this variant is crucial. Hence, we explained in depth the evolution and features of the Omicron variant and analyzed the repercussions of spike mutations on infectiousness, dissemination ability, viral entry mechanism, and immune evasion. We also presented a viewpoint on feasible strategies for precluding and counteracting any future catastrophic emergence and spread of the omicron variant and its sublineages that could result in a detrimental wave of COVID-19 cases.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan 81511, Egypt; Ministry of Tourism and Antiquities, Aswan Office, Aswan 81511, Egypt
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
30
|
Neuropilin-1 Facilitates Pseudorabies Virus Replication and Viral Glycoprotein B Promotes Its Degradation in a Furin-Dependent Manner. J Virol 2022; 96:e0131822. [PMID: 36173190 PMCID: PMC9599266 DOI: 10.1128/jvi.01318-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.
Collapse
|
31
|
Beeraka NM, Sukocheva OA, Lukina E, Liu J, Fan R. Development of antibody resistance in emerging mutant strains of SARS CoV-2: Impediment for COVID-19 vaccines. Rev Med Virol 2022; 32:e2346. [PMID: 35416390 PMCID: PMC9111059 DOI: 10.1002/rmv.2346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/28/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a highly infectious agent associated with unprecedented morbidity and mortality. A failure to stop growth of COVID-19-linked morbidity rates is caused by SARS-CoV-2 mutations and the emergence of new highly virulent SARS-CoV-2 strains. Several acquired SARS-CoV-2 mutations reflect viral adaptations to host immune defence. Mutations in the virus Spike-protein were associated with the lowered effectiveness of current preventive therapies, including vaccines. Recent in vitro studies detected diminished neutralisation capacity of vaccine-induced antibodies, which are targeted to bind Spike receptor-binding and N-terminal domains in the emerging strains. Lower than expected inhibitory activity of antibodies was reported against viruses with E484K Spike mutation, including B.1.1.7 (UK), P.1 (Brazil), B.1.351 (South African), and new Omicron variant (B.1.1.529) with E484A mutation. The vaccine effectiveness is yet to be examined against new mutant strains of SARS-CoV-2 originating in Europe, Nigeria, Brazil, South Africa, and India. To prevent the loss of anti-viral protection in vivo, often defined as antibody resistance, it is required to target highly conserved viral sequences (including Spike protein) and enhance the potency of antibody cocktails. In this review, we assess the reported mutation-acquiring potential of coronaviruses and compare efficacies of current COVID-19 vaccines against 'parent' and 'mutant' strains of SARS-CoV-2 (Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529)).
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
- Department of Human AnatomyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussian Federation
| | - Olga A. Sukocheva
- Discipline of Health SciencesCollege of Nursing and Health SciencesFlinders University of South AustraliaBedford ParkAustralia
| | - Elena Lukina
- Discipline of BiologyCollege of SciencesFlinders University of South AustraliaBedford ParkAustralia
| | - Junqi Liu
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
| | - Ruitai Fan
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
| |
Collapse
|
32
|
The SARS-CoV-2 Variants and their Impacts. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the first detection of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus remains a public health concern. Several public health measures have been implemented in an effort to curb the infections. However, the effectiveness of these strategies was threatened with the emergence of numerous SARS-CoV-2 variants in all parts of the globe, due to the persistent mutations as part of the viral evolution. Mutations that usually occur in its spike glycoprotein, allow SARS-CoV-2 to possess advantageous characteristics for its survivability and persistence. This has led to poor performance of diagnostic kits which have caused non-specific and insensitive detection of these variants, resulting in undetermined infection. The variants also have caused the increased severity of COVID-19, involving hospitalisation rates, ICU admissions, and deaths. Many have reported the vaccine-breakthrough infections and reduced effectiveness of vaccination, which is supposed to provide an effective degree of protection against COVID-19 infections. Due to these issues, this review summarises the impacts related to SARS-CoV-2 variants emergence towards the performance of diagnostic kits, transmissibility of the virus, severity of disease, and effectiveness of COVID-19 vaccines.
Collapse
|
33
|
Beaudoin CA, Pandurangan AP, Kim SY, Hamaia SW, Huang CL, Blundell TL, Vedithi SC, Jackson AP. In silico analysis of mutations near S1/S2 cleavage site in SARS-CoV-2 spike protein reveals increased propensity of glycosylation in Omicron strain. J Med Virol 2022; 94:4181-4192. [PMID: 35575289 PMCID: PMC9348480 DOI: 10.1002/jmv.27845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/06/2022]
Abstract
Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.
Collapse
Affiliation(s)
| | - Arun P. Pandurangan
- Department of Biochemistry, Sanger BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | - So Yeon Kim
- Department of Biochemistry, Sanger BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | - Samir W. Hamaia
- Department of Biochemistry, Hopkins BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | - Christopher L.‐H. Huang
- Department of Biochemistry, Hopkins BuildingUniversity of CambridgeCambridgeUnited Kingdom
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, Sanger BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Antony P. Jackson
- Department of Biochemistry, Hopkins BuildingUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
34
|
Rajpal VR, Sharma S, Kumar A, Chand S, Joshi L, Chandra A, Babbar S, Goel S, Raina SN, Shiran B. "Is Omicron mild"? Testing this narrative with the mutational landscape of its three lineages and response to existing vaccines and therapeutic antibodies. J Med Virol 2022; 94:3521-3539. [PMID: 35355267 PMCID: PMC9088584 DOI: 10.1002/jmv.27749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
SARS-CoV-2 Omicron with its lineages BA.1, BA.2, and BA.3 has triggered a fresh wave of Covid-19 infections. Though, Omicron has, so far, produced mild symptoms, its genome contains 60 mutations including 37 in the spike protein and 15 in the receptor-binding domain. Thirteen sites conserved in previous SARS-CoV-2 variants carry mutations in Omicron. Many mutations have shown evolution under positive selection. Omicron's giant mutational leap has raised concerns as there are signs of higher virus infectivity rate, pathogenesis, reinfection, and immune evasion. Preliminary studies have reported waning of immunity after two-dose primary vaccine regime, need for the boosters, folds reduction in vaccine effectiveness and neutralizing antibodies even after boosting and significant neutralization resistance with the therapeutic monoclonal, polyclonal, and convalescent antibodies against Omicron. The narrative that "Omicron is mild," therefore, needs time to be tested with a deeper, scientific dwelling into the facts.
Collapse
Affiliation(s)
| | - Shashi Sharma
- Division of VirologyDefence Research and Development EstablishmentGwaliorMadhya PradeshIndia
| | - Avinash Kumar
- Department of BotanyVinoba Bhave UniversityHazaribagJharkhandIndia
| | - Shweta Chand
- Department of BotanyHansraj College, University of DelhiDelhiIndia
| | - Lata Joshi
- Department of BotanyHansraj College, University of DelhiDelhiIndia
| | - Atika Chandra
- Department of BotanyMaitreyi College, University of DelhiDelhiIndia
| | - Sadhna Babbar
- Department of BotanySwami Shraddhanand College, University of DelhiDelhiIndia
| | | | - Soom Nath Raina
- Department of BiotechnologyAmity Institute of Biotechnology, Amity University Uttar PradeshNoidaUttar PradeshIndia
| | - Behrouz Shiran
- Department of Plant Breeding and BiotechnologyShahrekord UniversityShahrekordIran
| |
Collapse
|
35
|
Yan K, Dumenil T, Tang B, Le TT, Bishop CR, Suhrbier A, Rawle DJ. Evolution of ACE2-independent SARS-CoV-2 infection and mouse adaption after passage in cells expressing human and mouse ACE2. Virus Evol 2022; 8:veac063. [PMID: 35919871 PMCID: PMC9338707 DOI: 10.1093/ve/veac063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Human ACE2 Human angiotensin converting enzyme 2 (hACE2) is the key cell attachment and entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the original SARS-CoV-2 isolates unable to use mouse ACE2 (mACE2). Herein we describe the emergence of a SARS-CoV-2 strain capable of ACE2-independent infection and the evolution of mouse-adapted (MA) SARS-CoV-2 by in vitro serial passaging of virus in co-cultures of cell lines expressing hACE2 and mACE2. MA viruses evolved with up to five amino acid changes in the spike protein, all of which have been seen in human isolates. MA viruses replicated to high titers in C57BL/6J mouse lungs and nasal turbinates and caused characteristic lung histopathology. One MA virus also evolved to replicate efficiently in several ACE2-negative cell lines across several species, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) ACE2 knockout cells. An E484D substitution is likely involved in ACE2-independent entry and has appeared in only ≈0.003 per cent of human isolates globally, suggesting that it provided no significant selection advantage in humans. ACE2-independent entry reveals a SARS-CoV-2 infection mechanism that has potential implications for disease pathogenesis, evolution, tropism, and perhaps also intervention development.
Collapse
Affiliation(s)
- Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Thuy T Le
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, 300 Herston Road, Herston, 4029 and The University of Queensland, St Lucia, 4072, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| |
Collapse
|
36
|
Liang W, Li X, Wang H, Nie K, Meng Q, He J, Zheng C. Puerarin: A Potential Therapeutic for SARS-CoV-2 and Hantavirus Co-Infection. Front Immunol 2022; 13:892350. [PMID: 35663983 PMCID: PMC9161725 DOI: 10.3389/fimmu.2022.892350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Hantavirus-caused epidemic hemorrhagic fever (EHF) are at risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is currently no validated EHF/SARS-CoV-2 strategy. Several studies have recently shown Puerarin, a natural product, has potent antiviral properties. The goal of present study was to determine the mechanism of puerarin in patients with EHF/COVID-19. We use network pharmacology and bioinformatics to investigate the possible pharmacological targets, bioactivities, and molecular mechanisms of puerarin in the treatment of patients with EHF/SARS-CoV-2. The study investigated the pathogenesis of COVID-19 and EHF and the signaling pathway impacted by puerarin. 68 common genes linked to puerarin and EHF/SARS-CoV-2 were discovered during the investigation. By using protein-protein interaction (PPI) network, we identified RELA, JUN, NF-B1, NF-B2, and FOS as potential therapeutic targets. The bioactivity and signaling pathways of puerarin have also been demonstrated in the treatment of EHF and COVID-19. According to present study, puerarin could reduce excessive immune responses and inflammation through the NF-B, TNF, and HIF-1 signaling pathways. This study explored the potential therapeutic targets and mechanisms of Puerarin in the treatment of EHF/COVID-19.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.,Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital Shenzhen, Guangdong, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Rajpal VR, Sharma S, Kumar A, Vaishnavi S, Singh A, Sehgal D, Tiwari M, Goel S, Raina SN. Mapping of SARS-CoV-2 spike protein evolution during first and second waves of COVID-19 infections in India. Future Virol 2022. [PMID: 35747327 PMCID: PMC9203035 DOI: 10.2217/fvl-2021-0267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
Aim: The aim of this study was to investigate the SARS-CoV-2 spike protein evolution during the first and second wave of COVID-19 infections in India. Materials & Methods: Detailed mutation analysis was done in 763 samples taken from GISAID for the ten most affected Indian states between March 2020 to August 2021. Results: The study revealed 242 mutations corresponding to 207 sites. Fifty one novel mutations emerged during the assessment period, including many with higher transmissibility and immune evasion functions. Highest number of mutations per spike protein also rose from 5 (first wave) to 13 (second wave). Conclusion: The study identified mutation-rich and no mutation regions in the spike protein. The conserved spike regions can be useful for designing future diagnostics, vaccines and therapeutics.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Shashi Sharma
- Virology Division, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, 474002, India
| | - Avinash Kumar
- Department of Botany, Vinoba Bhave University, Hazaribag, Jharkhand, 825319, India
| | - Samantha Vaishnavi
- Department of Botany, Central University of Jammu, Rahya Suchani (Bagla), Distt. Samba, Jammu and Kashmir, 181143, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Deepmala Sehgal
- International Maize & Wheat Improvement Center (CIMMYT) Carretera México-Veracruz Km. 45, El Batán, Texcoco, 56237, México
| | - Mughdha Tiwari
- ICMR-National Institute of Occupational Health (ICMR-NIOH), Meghaninagar, Ahmedabad, Gujarat, 380016, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
38
|
Araf Y, Akter F, Tang Y, Fatemi R, Parvez MSA, Zheng C, Hossain MG. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol 2022; 94:1825-1832. [PMID: 35023191 PMCID: PMC9015557 DOI: 10.1002/jmv.27588] [Citation(s) in RCA: 494] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 01/18/2023]
Abstract
Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as an Omicron variant. This variant is a heavily mutated virus and designated as a variant of concern by the World Health Organization (WHO). WHO cautioned that the Omicron variant of SARS-CoV-2 held a very high risk of infection, reigniting anxieties about the economy's recovery from the 2-year pandemic. The extensively mutated Omicron variant is likely to spread internationally, posing a high risk of infection surges with serious repercussions in some areas. According to preliminary data, the Omicron variant of SARS-CoV-2 has a higher risk of reinfection. On the other hand, whether the current COVID-19 vaccines could effectively resist the new strain is still under investigation. However, there is very limited information on the current situation of the Omicron variant, such as genomics, transmissibility, efficacy of vaccines, treatment, and management. This review focused on the genomics, transmission, and effectiveness of vaccines against the Omicron variant, which will be helpful for further investigation of a new variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Yusha Araf
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
- Department of Genetic Engineering and Biotechnology, School of Life SciencesShahjalal University of Science and TechnologySylhetBangladesh
| | - Fariya Akter
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data and SciencesBRAC UniversityDhakaBangladesh
| | - Yan‐dong Tang
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbinChina
| | - Rabeya Fatemi
- Department of Genetic Engineering and BiotechnologyEast‐West UniversityDhakaBangladesh
| | - Md. Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, School of Life SciencesShahjalal University of Science and TechnologySylhetBangladesh
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Md. Golzar Hossain
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| |
Collapse
|
39
|
Ballesteros-Sanabria L, Pelaez-Prestel HF, Ras-Carmona A, Reche PA. Resilience of Spike-Specific Immunity Induced by COVID-19 Vaccines against SARS-CoV-2 Variants. Biomedicines 2022; 10:biomedicines10050996. [PMID: 35625733 PMCID: PMC9138591 DOI: 10.3390/biomedicines10050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
The outbreak of SARS-CoV-2 leading to the declaration of the COVID-19 global pandemic has led to the urgent development and deployment of several COVID-19 vaccines. Many of these new vaccines, including those based on mRNA and adenoviruses, are aimed to generate neutralizing antibodies against the spike glycoprotein, which is known to bind to the receptor angiotensin converting enzyme 2 (ACE2) in host cells via the receptor-binding domain (RBD). Antibodies binding to this domain can block the interaction with the receptor and prevent viral entry into the cells. Additionally, these vaccines can also induce spike-specific T cells which could contribute to providing protection against the virus. However, the emergence of new SARS-CoV-2 variants can impair the immunity generated by COVID-19 vaccines if mutations occur in cognate epitopes, precluding immune recognition. Here, we evaluated the chance of five SARS-CoV-2 variants of concern (VOCs), Alpha, Beta, Gamma, Delta and Omicron, to escape spike-specific immunity induced by vaccines. To that end, we examined the impact of the SARS-CoV-2 variant mutations on residues located on experimentally verified spike-specific epitopes, deposited at the Immune Epitope Database, that are targeted by neutralizing antibodies or recognized by T cells. We found about 300 of such B cell epitopes, which were largely overlapping, and could be grouped into 54 B cell epitope clusters sharing ≥ 7 residues. Most of the B cell epitope clusters map in the RBD domain (39 out of 54) and 20%, 50%, 37%, 44% and 57% of the total are mutated in SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants, respectively. We also found 234 experimentally verified CD8 and CD4 T cell epitopes that were distributed evenly throughout the spike protein. Interestingly, in each SARS-CoV-2 VOC, over 87% and 79% of CD8 and CD4 T cell epitopes, respectively, are not mutated. These observations suggest that SARS-CoV-2 VOCs—particularly the Omicron variant—may be prone to escape spike-specific antibody immunity, but not cellular immunity, elicited by COVID-19 vaccines.
Collapse
|
40
|
Tang H, Gao L, Wu Z, Meng F, Zhao X, Shao Y, Hou G, Du X, Qin FXF. Multiple SARS-CoV-2 Variants Exhibit Variable Target Cell Infectivity and Ability to Evade Antibody Neutralization. Front Immunol 2022; 13:836232. [PMID: 35371108 PMCID: PMC8966392 DOI: 10.3389/fimmu.2022.836232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
The continuous emergence of SARS-coronavirus 2 (SARS-CoV-2) variants, especially the variants of concern (VOC), exacerbated the impact of the coronavirus disease 2019 (COVID-19) pandemic. As the key of viral entry into host cells, the spike (S) protein is the major target of therapeutic monoclonal antibodies (mAbs) and polyclonal antibodies elicited by infection or vaccination. However, the mutations of S protein in variants may change the infectivity and antigenicity of SARS-CoV-2, leading to the immune escape from those neutralizing antibodies. To characterize the mutations of S protein in newly emerging variants, the proteolytic property and binding affinity with receptor were assessed, and the vesicular stomatitis virus (VSV)-based pseudovirus system was used to assess the infectivity and immune escape. We found that some SARS-CoV-2 variants have changed significantly in viral infectivity; especially, B.1.617.2 is more likely to infect less susceptible cells than D614G, and the virus infection process can be completed in a shorter time. In addition, neutralizing mAbs and vaccinated sera partially or completely failed to inhibit host cell entry mediated by the S protein of certain SARS-CoV-2 variants. However, SARS-CoV-2 variant S protein-mediated viral infection can still be blocked by protease inhibitors and endocytosis inhibitors. This work provides a deeper understanding of the rise and evolution of SARS-CoV-2 variants and their immune evasion.
Collapse
Affiliation(s)
- Haijun Tang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Long Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Zhao Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Fang Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Xin Zhao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yun Shao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Guocun Hou
- Department of Nephrology, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|