1
|
Sak M, Chariker JH, Park JW, Rouchka EC. Gene expression and alternative splicing analysis in a large-scale Multiple Sclerosis study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.16.24312099. [PMID: 39185521 PMCID: PMC11343266 DOI: 10.1101/2024.08.16.24312099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease affecting approximately 3 million people globally. Despite rigorous research on MS, aspects of its development and progression remain unclear. Understanding molecular mechanisms underlying MS is crucial to providing insights into disease pathways, identifying potential biomarkers for early diagnosis, and revealing novel therapeutic targets for improved patient outcomes. Methods We utilized publicly available RNA-seq data (GSE138614) from post-mortem white matter tissues of five donors without any neurological disorder and ten MS patient donors. This data was interrogated for differential gene expression, alternative splicing and single nucleotide variants as well as for functional enrichments in the resulting datasets. Results A comparison of non-MS white matter (WM) to MS samples yielded differentially expressed genes involved in adaptive immune response, cell communication, and developmental processes. Genes with expression changes positively correlated with tissue inflammation were enriched in the immune system and receptor interaction pathways. Negatively correlated genes were enriched in neurogenesis, nervous system development, and metabolic pathways. Alternatively spliced transcripts between WM and MS lesions included genes that play roles in neurogenesis, myelination, and oligodendrocyte differentiation, such as brain enriched myelin associated protein (BCAS1), discs large MAGUK scaffold protein 1 (DLG1), KH domain containing RNA binding (QKI), and myelin basic protein (MBP). Our approach to comparing normal appearing WM (NAWM) and active lesion (AL) from one donor and NAWM and chronic active (CA) tissues from two donors, showed that different IgH and IgK gene subfamilies were differentially expressed. We also identified pathways involved in white matter injury repair and remyelination in these tissues. Differentially spliced genes between these lesions were involved in axon and dendrite structure stability. We also identified exon skipping events and spontaneous single nucleotide polymorphisms in membrane associated ring-CH-type finger 1 (MARCHF1), UDP glycosyltransferase 8 (UGT8), and other genes important in autoimmunity and neurodegeneration. Conclusion Overall, we identified unique genes, pathways, and novel splicing events affecting disease progression that can be further investigated as potential novel drug targets for MS treatment.
Collapse
Affiliation(s)
- Müge Sak
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Julia H. Chariker
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Juw Won Park
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States of America
- Brown Cancer Center Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Center for Integrative Environmental Health Sciences Biostatistics and Informatics Facility Core, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Eric C. Rouchka
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky 40202, United States of America
| |
Collapse
|
2
|
Govender D, Moloko L, Papathanasopoulos M, Tumba N, Owen G, Calvey T. Ibogaine administration following repeated morphine administration upregulates myelination markers 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP) mRNA and protein expression in the internal capsule of Sprague Dawley rats. Front Neurosci 2024; 18:1378841. [PMID: 39114487 PMCID: PMC11303312 DOI: 10.3389/fnins.2024.1378841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Ibogaine is a psychedelic alkaloid being investigated as a possible treatment for opioid use disorder. Ibogaine has a multi-receptor profile with affinities for mu and kappa opioid as well as NMDA receptors amongst others. Due to the sparsity of research into ibogaine's effects on white matter integrity and given the growing evidence that opioid use disorder is characterized by white matter pathology, we set out to investigate ibogaine's effects on two markers of myelination, 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP). Fifty Sprague Dawley rats were randomly assigned to five experimental groups of n = 10; (1) a saline control group received daily saline injections for 10 days, (2) a morphine control group received escalating morphine doses from 5 to 15 mg/kg over 10 days, (3) an ibogaine control group that received 10 days of saline followed by 50 mg/kg ibogaine hydrochloride, (4) a combination morphine and ibogaine group 1 that received the escalating morphine regime followed by 50 mg/kg ibogaine hydrochloride and (5) a second combination morphine and ibogaine group 2 which followed the same morphine and ibogaine regimen yet was terminated 72 h after administration compared to 24 h in the other groups. White matter from the internal capsule was dissected and qPCR and western blotting determined protein and gene expression of CNP and MBP. Morphine upregulated CNPase whereas ibogaine alone had no effect on CNP mRNA or protein expression. However, ibogaine administration following repeated morphine administration had an immediate effect by increasing CNP mRNA expression. This effect diminished after 72 h and resulted in a highly significant upregulation of CNPase protein at 72 h post administration. Ibogaine administration alone significantly upregulated protein expression yet downregulated MBP mRNA expression. Ibogaine administration following repeated morphine administration significantly upregulated MBP mRNA expression which increased at 72 h post administration resulting in a highly significant upregulation of MBP protein expression at 72 h post administration. These findings indicate that ibogaine is able to upregulate genes and proteins involved in the process of remyelination following opioid use and highlights an important mechanism of action of ibogaine's ability to treat substance use disorders.
Collapse
Affiliation(s)
- Demi Govender
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Leila Moloko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Papathanasopoulos
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nancy Tumba
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin Owen
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Calvey
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Takahashi K, Hong L, Kurokawa K, Miyagawa K, Mochida-Saito A, Takeda H, Tsuji M. Brexpiprazole prevents colitis-induced depressive-like behavior through myelination in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110666. [PMID: 36273507 DOI: 10.1016/j.pnpbp.2022.110666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022]
Abstract
Patients with inflammatory bowel disease (IBD) have higher rates of psychiatric pathology including depression. The dextran sulfate sodium (DSS)-treated mice exhibit IBD- and depressive-like phenotypes. A disturbed intestinal environment causes a decrease in serotonin and abnormal myelination in the brain, along with depressive-like behavior in rodents. However, the involvement of these factors in DSS-induced depressive-like behavior in mice remains unclear. In this study, we examined whether myelin proteins in the prefrontal cortex (PFC) and hippocampi were altered in DSS-treated mice, along with the changes in the serotonergic system in the PFC by western blotting and HPLC. The effects of brexpiprazole (Brx), a serotonin modulator, on DSS-induced depressive-like behavior using the tail-suspension test were evaluated. Subsequently, we investigated Brx's effects on the levels of myelin, nodal proteins, and neurotrophic molecules in the PFC with western blotting, and examined the altered node of Ranvier formation by immunohistochemistry. DSS-treated mice showed a reduction in myelin and nodal proteins, dysfunction of the serotonergic system, and impaired formation of the nodes of Ranvier in the PFC. Brx administration prevented the DSS-induced depressive-like behavior and demyelination in the PFC. However, the Brx-mediated effects were inhibited by the selective 5-HT1A antagonist, WAY100635, or the selective TrkB antagonist, ANA-12. Brx decreased the phosphorylation of ERK, CREB, and TrkB along with the expression of BDNF in the PFC of DSS-treated mice. Moreover, the effects of Brx were blocked by WAY100635. These findings indicated that myelination regulated by the activation of the ERK1/2-CREB-BDNF-TrkB pathway in the PFC may be involved in mediating the antidepressant effects of Brx.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Lihua Hong
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| |
Collapse
|
4
|
Flounlacker KM, Hahn YK, Xu R, Simons CA, Tian T, Hauser KF, Knapp PE. Myelin regulatory factor is a target of individual and interactive effects of HIV-1 Tat and morphine in the striatum and pre-frontal cortex. J Neurovirol 2023; 29:15-26. [PMID: 36853588 DOI: 10.1007/s13365-022-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 03/01/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) remain pervasive even with increased efficacy/use of antiretroviral therapies. Opioid use/abuse among HIV + individuals is documented to exacerbate CNS deficits. White matter (WM) alterations, including myelin pallor, and volume/structural alterations detected by diffusion tensor imaging are common observations in HIV + individuals, and studies in non-human primates suggest that WM may harbor virus. Using transgenic mice that express the HIV-1 Tat protein, we examined in vivo effects of 2-6 weeks of Tat and morphine exposure on WM using genomic and biochemical methods. RNA sequencing of striatal tissue at 2 weeks revealed robust changes in mRNAs associated with oligodendrocyte precursor populations and myelin integrity, including those for transferrin, the atypical oligodendrocyte marker N-myc downstream regulated 1 (Ndrg1), and myelin regulatory factor (Myrf/Mrf), an oligodendrocyte-specific transcription factor with a significant role in oligodendrocyte differentiation/maturation. Western blots conducted after 6-weeks exposure in 3 brain regions (striatum, corpus callosum, pre-frontal cortex) revealed regional differences in the effect of Tat and morphine on Myrf levels, and on levels of myelin basic protein (MBP), whose transcription is regulated by Myrf. Responses included individual and interactive effects. Although baseline and post-treatment levels of Myrf and MBP differed between brain regions, post-treatment MBP levels in striatum and pre-frontal cortex were compatible with changes in Myrf activity. Additionally, the Myrf regulatory ubiquitin ligase Fbxw7 was identified as a novel target in our model. These results suggest that Myrf and Fbxw7 contribute to altered myelin gene regulation in HIV.
Collapse
Affiliation(s)
- Kelly M Flounlacker
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA.
| | - Yun Kyung Hahn
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA
| | - Ruqiang Xu
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA
| | - Chloe A Simons
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA
| | - Tao Tian
- Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA.,Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,The Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Pamela E Knapp
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St, Richmond, VA, 23298-0709, USA.,Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,The Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| |
Collapse
|
5
|
Antidepressant effects of Enterococcus faecalis 2001 through the regulation of prefrontal cortical myelination via the enhancement of CREB/BDNF and NF-κB p65/LIF/STAT3 pathways in olfactory bulbectomized mice. J Psychiatr Res 2022; 148:137-148. [PMID: 35123326 DOI: 10.1016/j.jpsychires.2022.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
A therapeutic strategy through the gut-brain axis has been proven to be effective in treatment for depression. In our previous study, we demonstrated that Enterococcus faecalis 2001 (EF-2001) prevents colitis-induced depressive-like behavior through the gut-brain axis in mice. More recently, we found that demyelination in the prefrontal cortex (PFC) was associated with depressive-like behavior in an animal model of major depressive disorder, olfactory bulbectomized (OBX) mice. The present study investigated the effects of EF-2001 on depressive-like behaviors in OBX mice and the underlying molecular mechanisms from the perspective of myelination in the PFC. OBX mice exhibited depressive-like behaviors in the tail-suspension, splash, and sucrose preference tests, and decreased myelin and paranodal proteins along with mature oligodendrocytes in the PFC. These behavioral and biochemical changes were all prevented by treatment with EF-2001. Further, EF-2001 treatment increased brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) in the PFC. Interestingly, an immunohistochemical analysis revealed enhanced phospho (p) -cAMP-responsive element binding protein (CREB) expression in neurons, p-nuclear factor-kappa B (NFκB) p65 (Ser536) expression in astrocytes, and p-signal transducer and activator of transcription 3 (STAT3) (Ty705) expression in mature oligodendrocytes in the PFC of OBX mice. From these results, we suggest that EF-2001 administration prevents depressive-like behaviors by regulating prefrontal cortical myelination via the enhancement of CREB/BDNF and NFκB p65/LIF/STAT3 pathways. Our findings strongly support the idea that a therapeutic strategy involving the gut microbiota may be a promising alternative treatment for alleviating symptoms of depression.
Collapse
|
6
|
High environmental temperature: Insights into behavioural, neurodevelopmental and gut microbiome changes following gestational exposure in rats. Neuroscience 2022; 488:60-76. [DOI: 10.1016/j.neuroscience.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
|
7
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
8
|
Seiwa C, Sugiyama I, Sugawa M, Murase H, Kudoh C, Asou H. The Absence of Myelin Basic Protein Reduces Non-Amyloidogenic Processing of Amyloid Precursor Protein. Curr Alzheimer Res 2021; 18:326-334. [PMID: 34218780 DOI: 10.2174/1567205018666210701162851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/11/2020] [Accepted: 01/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The accumulation of amyloid β-protein (Aβ) in the brain is a pathological feature of Alzheimer's disease (AD). Aβ peptides originate from amyloid precursor protein (APP). APP can be proteolytically cleaved through amyloidogenic or non-amyloidogenic pathways. The molecular effects on APP metabolism / processing may be influenced by myelin and the breakdown of myelin basic protein (MBP) in AD patients and mouse models of AD pathology. METHODS We directly tested whether MBP can alter influence APP processing in MBP-/- mice, known as Shiverer (shi/shi) mice, in which no functional MBP is produced due to gene breakage from the middle of MBP exon II. RESULTS A significant reduction of the cerebral sAPPα level in Shiverer (shi/shi) mice was found, although the levels of both total APP and sAPPβ remain unchanged. The reduction of sAPPα was considered to be due to the changes in the expression levels of a disintegrin and metalloproteinase-9 (ADAM9) catalysis and non-amyloid genic processing of APP in the absence of MBP because it binds to ADAM9. MBP -/- mice exhibited increased Aβ oligomer production. CONCLUSION Together, these findings suggest that in the absence of MBP, there is a marked reduction of non-amyloidogenic APP processing to sAPPα, and targeting myelin of oligodendrocytes may be a novel therapy for the prevention and treatment of AD.
Collapse
Affiliation(s)
| | - Ichiro Sugiyama
- Department of Neurosurgy,Keio University School of Medicine, Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan
| | | | - Hiroaki Murase
- Glovia Myelin Research Institute, 75-1, Onocho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Chiaki Kudoh
- KUDOH Clinic for Neurosurgery and Neurology, 1-23-10, Omori-kita, Otaku, Tokyo 143-0016, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, 75-1, Onocho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
9
|
Disturbance of prefrontal cortical myelination in olfactory bulbectomized mice is associated with depressive-like behavior. Neurochem Int 2021; 148:105112. [PMID: 34171413 DOI: 10.1016/j.neuint.2021.105112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 12/28/2022]
Abstract
Recent studies have reported that demyelination is associated with the development of depression. Olfactory bulbectomized (OBX) rodents are a useful experimental animal model for depressive disorder. However, little is known about the change in myelination in the brain of OBX mice. To address this question, we observed depressive-like behavior of OBX mice in the tail-suspension test, and determined the quantity of myelin proteins in the prefrontal cortex (PFC), striatum and hippocampus on day 14 or 21 after surgery. The number of nodes of Ranvier paired with the paranodal marker contactin-associated protein (Caspr), as well as the numbers of immature and mature oligodendrocytes in the PFC, were also measured on day 21 after surgery. We examined whether these behavioral and neurochemical changes observed in OBX mice were reversed by chronic administration of imipramine. OBX mice showed depressive-like behavior in the tail-suspension test together with a decrease in the levels of myelin proteins such as myelin basic protein, myelin-associated glycoprotein and cyclicnucleotide phosphodiesterase in the PFC on day 21 after surgery. The number of nodes of Ranvier and mature oligodendrocytes were also decreased in the PFC of OBX mice, while the number of immature oligodendrocytes was increased on day 21 after surgery. However, the number of immature oligodendrocytes in the PFC of OBX mice was decreased on day 35 after surgery. Administration of imipramine (20 mg/kg) for 2 weeks from day 21 after surgery improved OBX-induced depressive-like behavior and abnormal myelination in the PFC. The present findings suggest that the disturbance of myelin function in the PFC may contribute to the pathophysiology of depression, and further support the notion that it plays an important role in the psychological state.
Collapse
|
10
|
Ryu J, Stone P, Lee S, Payne B, Gorse K, Lafrenaye A. Buprenorphine alters microglia and astrocytes acutely following diffuse traumatic brain injury. Sci Rep 2021; 11:8620. [PMID: 33883663 PMCID: PMC8060410 DOI: 10.1038/s41598-021-88030-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a common phenomenon, accounting for significant cost and adverse health effects. While there is information about focal pathologies following TBI, knowledge of more diffuse processes is lacking, particularly regarding how analgesics affect this pathology. As buprenorphine is the most commonly used analgesic in experimental TBI models, this study investigated the acute effects of the opioid analgesic buprenorphine (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. We utilized a model of central fluid percussion injury (CFPI) in adult male rats treated with a single subcutaneous bolus of Bup-SR-Lab or saline 15 min post-injury. Microscopic assessments were performed at 1 day post-injury. Cell impermeable dextran was infused intraventricularly prior to sacrifice to assess neuronal membrane disruption. Axonal injury was assessed by investigating labeling of the anterogradely transported amyloid precursor protein. Neuroinflammation was assessed by analyzing Iba-1 + microglial and GFAP + astrocyte histological/morphological features as well as cytokine levels in both regions of interest (ROIs). Myelin pathology was assessed by evaluating the expression of myelin basic protein (MBP) and the propensity of MBP + myelin debris. Acute physiologic data showed no difference between groups except for reduction in weight loss following cFPI in Bup treated animals compared to saline. There were no discernable differences in axonal injury or membrane disruption between treatment groups. Cytokine levels were consistent between Bup and saline treated animals, however, microglia and astrocytes revealed region specific histological changes at 1d following Bup treatment. Myelin integrity and overall MBP expression showed no differences between Bup and saline treated animals, but there were significant regional differences in MBP expression between the cortex and thalamus. These data suggest effects of Bup treatment on weight following CFPI and potential regional specificity of Bup-associated microglial and astrocyte alterations, but very little change in other acute pathology at 1-day post-injury. Overall, this preliminary study indicates that use of Bup-SR-Lab in preclinical work does have effects on acute glial pathology, however, longer term studies will be needed to assess potential effects of Bup treatment on more chronic pathological progressions.
Collapse
Affiliation(s)
- Jane Ryu
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| | - Phillip Stone
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| | | | - Brighton Payne
- grid.266671.20000 0000 9565 4349University of Mary Washington, Fredericksburg, VA USA
| | - Karen Gorse
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| | - Audrey Lafrenaye
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| |
Collapse
|
11
|
Gazzin S, Dal Ben M, Montrone M, Jayanti S, Lorenzon A, Bramante A, Bottin C, Moretti R, Tiribelli C. Curcumin Prevents Cerebellar Hypoplasia and Restores the Behavior in Hyperbilirubinemic Gunn Rat by a Pleiotropic Effect on the Molecular Effectors of Brain Damage. Int J Mol Sci 2020; 22:ijms22010299. [PMID: 33396688 PMCID: PMC7795686 DOI: 10.3390/ijms22010299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
Bilirubin toxicity to the central nervous system (CNS) is responsible for severe and permanent neurologic damage, resulting in hearing loss, cognitive, and movement impairment. Timely and effective management of severe neonatal hyperbilirubinemia by phototherapy or exchange transfusion is crucial for avoiding permanent neurological consequences, but these therapies are not always possible, particularly in low-income countries. To explore alternative options, we investigated a pharmaceutical approach focused on protecting the CNS from pigment toxicity, independently from serum bilirubin level. To this goal, we tested the ability of curcumin, a nutraceutical already used with relevant results in animal models as well as in clinics in other diseases, in the Gunn rat, the spontaneous model of neonatal hyperbilirubinemia. Curcumin treatment fully abolished the landmark cerebellar hypoplasia of Gunn rat, restoring the histological features, and reverting the behavioral abnormalities present in the hyperbilirubinemic rat. The protection was mediated by a multi-target action on the main bilirubin-induced pathological mechanism ongoing CNS damage (inflammation, redox imbalance, and glutamate neurotoxicity). If confirmed by independent studies, the result suggests the potential of curcumin as an alternative/complementary approach to bilirubin-induced brain damage in the clinical scenario.
Collapse
Affiliation(s)
- Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
- Correspondence:
| | - Matteo Dal Ben
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| | - Michele Montrone
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| | - Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| | - Andrea Lorenzon
- SPF Animal Facility, CBM Scarl, Bldg. Q2, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (A.L.); (A.B.)
| | - Alessandra Bramante
- SPF Animal Facility, CBM Scarl, Bldg. Q2, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (A.L.); (A.B.)
| | - Cristina Bottin
- Department of Medical Sciences, Ospedale di Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| |
Collapse
|
12
|
Wang K, Donnarumma F, Pettit ME, Szot CW, Solouki T, Murray KK. MALDI imaging directed laser ablation tissue microsampling for data independent acquisition proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4475. [PMID: 31726477 DOI: 10.1002/jms.4475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3-μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single-pot solid-phase-enhanced sample preparation (SP3) method and analyzed by LC-MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post-translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Michael E Pettit
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Carson W Szot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| |
Collapse
|
13
|
Darling JS, Daniel JM. Pubertal hormones mediate sex differences in levels of myelin basic protein in the orbitofrontal cortex of adult rats. Neuroscience 2019; 406:487-495. [PMID: 30926549 DOI: 10.1016/j.neuroscience.2019.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022]
Abstract
Previous work from our lab revealed that adult female rats have increased levels of myelin basic protein (MBP), a marker for myelination, in the orbitofrontal cortex (OFC) as compared to adult males. The goal of the present study was to determine the role of gonadal hormones, acting either in adulthood or at puberty, in the development of an adult sex difference in OFC levels of MBP. In an initial experiment, we replicated our previous results demonstrating that gonadally intact female rats have increased levels of MBP in the OFC as compared to males. In a second experiment, gonadectomy in adulthood did not alter MBP levels in rats of either sex. In a third experiment, gonadectomy immediately prior to pubertal onset resulted in significant reduction of levels of MBP in adult females but not males. This reduction eliminated the sex difference in adult MBP levels in the OFC. These results reveal puberty to be an organizational time point for a sex difference in the OFC of adult rats in levels of a marker of myelination. This neuroanatomical difference may contribute to observed sex differences in OFC-associated behaviors including in inhibitory control.
Collapse
Affiliation(s)
- Jeffrey S Darling
- Neuroscience Program, Tulane University, New Orleans, LA; Tulane Brain Institute, Tulane University, New Orleans, LA.
| | - Jill M Daniel
- Neuroscience Program, Tulane University, New Orleans, LA; Tulane Brain Institute, Tulane University, New Orleans, LA; Psychology Department, Tulane University, New Orleans, LA
| |
Collapse
|
14
|
Wendel KM, Lee JB, Affeldt BM, Hamer M, Harahap-Carrillo IS, Pardo AC, Obenaus A. Corpus Callosum Vasculature Predicts White Matter Microstructure Abnormalities after Pediatric Mild Traumatic Brain Injury. J Neurotrauma 2018; 36:152-164. [PMID: 29739276 DOI: 10.1089/neu.2018.5670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Emerging data suggest that pediatric traumatic brain injury (TBI) is associated with impaired developmental plasticity and poorer neuropsychological outcomes than adults with similar head injuries. Unlike adult mild TBI (mTBI), the effects of mTBI on white matter (WM) microstructure and vascular supply are not well understood in the pediatric population. The cerebral vasculature plays an important role providing necessary nutrients and removing waste. To address this critical element, we examined the microstructure of the corpus callosum (CC) following pediatric mTBI using diffusion tensor magnetic resonance imaging (DTI), and investigated myelin, oligodendrocytes, and vasculature of WM with immunohistochemistry (IHC). We hypothesized that pediatric mTBI leads to abnormal WM microstructure and impacts the vasculature within the CC, and that these alterations to WM vasculature contribute to the long-term altered microstructure. We induced in mice a closed-head injury (CHI) mTBI at post-natal day (P) 14; then at 4, 14, and 60 days post-injury (DPI) mice were sacrificed for analysis. We observed persistent changes in apparent diffusion coefficient (ADC) within the ipsilateral CC following mTBI, indicating microstructural changes, but surprisingly changes in myelin and oligodendrocyte densities were minimal. However, vascular features of the ipsilateral CC such as vessel density, length, and number of junctions were persistently altered following mTBI. Correlative analysis showed a strong inverse relationship between ADC and vessel density at 60 DPI, suggesting increased vessel density following mTBI may restrict WM diffusion characteristics. Our findings suggest that WM vasculature contributes to the long-term microstructural changes within the ipsilateral CC following mTBI.
Collapse
Affiliation(s)
- Kara M Wendel
- 1 Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine , Irvine, California
| | - Jeong Bin Lee
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Bethann M Affeldt
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Mary Hamer
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | | | - Andrea C Pardo
- 3 Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Andre Obenaus
- 1 Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine , Irvine, California
- 2 Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
- 4 Department of Pediatrics, University of California, Irvine School of Medicine , Irvine, California
| |
Collapse
|
15
|
Llufriu-Dabén G, Carrete A, Chierto E, Mailleux J, Camand E, Simon A, Vanmierlo T, Rose C, Allinquant B, Hendriks JJ, Massaad C, Meffre D, Jafarian-Tehrani M. Targeting demyelination via α-secretases promoting sAPPα release to enhance remyelination in central nervous system. Neurobiol Dis 2018; 109:11-24. [DOI: 10.1016/j.nbd.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
|
16
|
Plymire DA, Wing CE, Robinson DE, Patrie SM. Continuous Elution Proteoform Identification of Myelin Basic Protein by Superficially Porous Reversed-Phase Liquid Chromatography and Fourier Transform Mass Spectrometry. Anal Chem 2017; 89:12030-12038. [PMID: 29016107 DOI: 10.1021/acs.analchem.7b02426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelin basic protein (MBP) plays an important structural and functional role in the neuronal myelin sheath. Translated MBP exhibits extreme microheterogeneity with numerous alternative splice variants (ASVs) and post-translational modifications (PTMs) reportedly tied to central nervous system maturation, myelin stability, and the pathobiology of various de- and dys-myelinating disorders. Conventional bioanalytical tools cannot efficiently examine ASV and PTM events simultaneously, which limits understanding of the role of MBP microheterogeneity in human physiology and disease. To address this need, we report on a top-down proteomics pipeline that combines superficially porous reversed-phase liquid chromatography (SPLC), Fourier transform mass spectrometry (FTMS), data-independent acquisition (DIA) with nozzle-skimmer dissociation (NSD), and aligned data processing resources to rapidly characterize abundant MBP proteoforms within murine tissue. The three-tier proteoform identification and characterization workflow resolved four known MBP ASVs and hundreds of differentially modified states from a single 90 min SPLC-FTMS run on ∼0.5 μg of material. This included 323 proteoforms for the 14.1 kDa ASV alone. We also identified two novel ASVs from an alternative transcriptional start site (ATSS) of the MBP gene as well as a never before characterized S-acylation event linking palmitic acid, oleic acid, and stearic acid at C78 of the 17.125 kDa ASV.
Collapse
Affiliation(s)
- Daniel A Plymire
- Department of Pathology, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Casey E Wing
- Department of Pathology, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Dana E Robinson
- Department of Pathology, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Steven M Patrie
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Pathology, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
17
|
Morrison KE, Narasimhan S, Fein E, Bale TL. Peripubertal Stress With Social Support Promotes Resilience in the Face of Aging. Endocrinology 2016; 157:2002-14. [PMID: 26943365 PMCID: PMC4870871 DOI: 10.1210/en.2015-1876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The peripubertal period of development is a sensitive window, during which adverse experiences can increase the risk for presentation of cognitive and affective dysfunction throughout the lifespan, especially in women. However, such experiences in the context of a supportive social environment can actually ameliorate this risk, suggesting that resilience can be programmed in early life. Affective disorders and cognitive deficits commonly emerge during aging, with many women reporting increased difficulty with prefrontal cortex (PFC)-dependent executive functions. We have developed a mouse model to examine the interaction between peripubertal experience and age-related changes in cognition and stress regulation. Female mice were exposed to peripubertal chronic stress, during which they were either individually housed or housed with social interaction. One year after this stress experience, mice were examined in tasks to access their cognitive ability and flexibility in stress reactive measures. In a test of spatial memory acquisition and reversal learning where aged females normally display a decreased performance, the females that had experienced stress with social interaction a year earlier showed improved performance in reversal learning, a measure of cognitive flexibility. Because peripuberty is a time of major PFC maturation, we performed transcriptomic and biochemical analysis of the aged PFC, in which long-term changes in microRNA expression and in myelin proteins were found. These data suggest that stress in the context of social support experienced over the pubertal window can promote epigenetic reprogramming in the brain to increase the resilience to age-related cognitive decline in females.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sneha Narasimhan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ethan Fein
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tracy L Bale
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
18
|
Wisztorski M, Desmons A, Quanico J, Fatou B, Gimeno JP, Franck J, Salzet M, Fournier I. Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis. Proteomics 2016; 16:1622-32. [DOI: 10.1002/pmic.201500508] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Maxence Wisztorski
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
| | - Annie Desmons
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
| | - Jusal Quanico
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
| | - Benoit Fatou
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
| | - Jean-Pascal Gimeno
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
- ONCOLille; Maison Régionale de la Recherche Clinique; Lille France
| | - Julien Franck
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
| | - Michel Salzet
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
| | - Isabelle Fournier
- Univ. Lille, Inserm; U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM; Lille France
| |
Collapse
|
19
|
An Extract of Chinpi, the Dried Peel of the Citrus Fruit Unshiu, Enhances Axonal Remyelination via Promoting the Proliferation of Oligodendrocyte Progenitor Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8692698. [PMID: 27022404 PMCID: PMC4789069 DOI: 10.1155/2016/8692698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
The aging-induced decrease in axonal myelination/remyelination is due to impaired recruitment and differentiation of oligodendrocyte progenitor cells (OPCs). Our previous studies have shown that a monoclonal antibody to DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (Ddx54), a member of the DEAD box family of RNA helicases, (1) specifically labels oligodendrocyte lineages, (2) binds to mRNA and protein isoforms of myelin basic proteins (MBP), and (3) regulates migration of OPCs from ventricular zone to corpus callosum in mice. It has also been demonstrated that specific loss of a 21.5 kDa MBP isoform (MBP21.5) reflects demyelination status, and oral administration of an extract of Chinpi, citrus unshiu peel, reversed the aging-induced demyelination. Here, we report that Chinpi treatment induced a specific increase in the MBP21.5, led to the reappearance of Ddx54-expressing cells in ventricular-subventricular zone and corpus callosum of aged mice, and promoted remyelination. Treatment of in vitro OPC cultures with Chinpi constituents, hesperidin plus narirutin, led to an increase in 5-bromo-2′-deoxyuridine incorporation in Ddx54-expressing OPCs, but not in NG2- or Olig2-expressing cell populations. The present study suggests that Ddx54 plays crucial role in remyelination. Furthermore, Chinpi and Chinpi-containing herbal medicines may be a therapeutic option for the aging-induced demyelination diseases.
Collapse
|
20
|
Qi Q, Zhang Y, Shen L, Wang R, Zhou J, Lü H, Hu J. Olig1 expression pattern in neural cells during rat spinal cord development. Neuropsychiatr Dis Treat 2016; 12:909-16. [PMID: 27143892 PMCID: PMC4841409 DOI: 10.2147/ndt.s99257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Our purpose was to systematically investigate the expression pattern and role of Olig1 in neural cells during rat spinal cord development. ANIMALS AND METHODS Spinal cord tissues were dissected from Sprague-Dawley rats at embryonic day 14.5 (E14.5) and E18.5, postnatal day 0 (P0), P3, P7, postnatal 2 weeks (P2W), P4W, and adults (more than 2 months after birth), respectively. The expression of Olig1 was determined by Western blot and immunostaining. To observe expression of Olig1 in different neural cell types, a double immunohistochemical staining was performed using antibodies against Olig1 with O4, β-tubulin, glial fibrillary acidic protein (GFAP), and myelin basic protein, respectively. RESULTS The expression of Olig1 protein shows a significant level change in rat spinal cord at different developmental time points. Starting with E14.5, the expression gradually increased and peaked at E18.5. Olig1 decreased gradually from P3 and reached its lowest level on P7. However, interestingly, the Olig1 expression increased again from P2W, until adulthood. Olig1 was coexpressed with O4-positive oligodendrocyte progenitor cells (OPCs) and β-tubulin-positive neurons at all time points during development. Olig1 was also coexpressed transiently with GFAP-positive astrocytes at only E14.5. Olig1 was localized in the cytoplasm of O4- and β-tubulin-positive cells during the period from E14.5 to adult. CONCLUSION The expression of Olig1 in OPCs and neurons at all time points during development and in astrocytes at E14.5 suggests that Olig1 may play an important role in the generation and maturation of specific neural cells during development of spinal cord. Our results contribute to understanding the mechanism underlying developmental regulation of neural cells by Olig1.
Collapse
Affiliation(s)
- Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China; Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yuxin Zhang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jiansheng Zhou
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Hezuo Lü
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China; Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China; Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| |
Collapse
|
21
|
Bayless DW, Daniel JM. Sex differences in myelin-associated protein levels within and density of projections between the orbital frontal cortex and dorsal striatum of adult rats: implications for inhibitory control. Neuroscience 2015; 300:286-96. [PMID: 26002313 DOI: 10.1016/j.neuroscience.2015.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022]
Abstract
Impulsive actions and decisions often lead to undesirable outcomes. Lesion and neuroimaging studies have revealed that the orbital frontal cortex (OFC) and dorsal striatum (dSTR) play key roles in inhibitory control. It has been proposed that greater OFC input into the dSTR reflects enhanced top-down cognitive control and less impulsive responding. We previously reported a sex difference in inhibitory control, such that female rats make fewer impulsive errors than do male rats. The goal of the present study was to investigate differences in the OFC and dSTR of young adult male and female rats. In Experiment 1, we measured levels of two myelin-associated proteins, myelin basic protein (MBP) and myelin proteolipid protein (PLP), in the OFC and dSTR. Western blot data revealed that females had significantly higher levels of both MBP and PLP in the OFC but similar levels in the dSTR as compared to males. In Experiment 2, we infused the anterograde tracer, biotinylated dextran amine (BDA), into the OFC and measured the density of BDA in the dSTR. BDA was visualized using histochemistry followed by light microscopy imaging and densitometry analysis. Density of BDA in the dSTR was significantly greater in females as compared to males indicating that the projections from the OFC to dSTR may be greater in females as compared to males. Our results suggest a potential neuroanatomical sex difference that may contribute to the reported differences in inhibitory control levels of male and female rats.
Collapse
Affiliation(s)
- D W Bayless
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA.
| | - J M Daniel
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Neuroscience Program, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
22
|
Jadhav S, Greenberg ML. Harnessing the power of yeast to elucidate the role of sphingolipids in metabolic and signaling processes pertinent to psychiatric disorders. ACTA ACUST UNITED AC 2014; 9:533-551. [PMID: 25750665 DOI: 10.2217/clp.14.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of therapies for neuropsychiatric disorders is hampered by the lack of understanding of the mechanisms underlying their pathologies. While aberrant sphingolipid metabolism is associated with psychiatric illness, the role of sphingolipids in these disorders is not understood. The genetically tractable yeast model can be exploited in order to elucidate the cellular consequences of sphingolipid perturbation. Hypotheses generated from studies in yeast and tested in mammalian cells may contribute to our understanding of the role of sphingolipids in psychiatric disorders and to the development of new treatments. Here, we compare sphingolipid metabolism in yeast and mammalian cells, discuss studies implicating sphingolipids in psychiatric disorders and propose approaches that utilize yeast in order to elucidate sphingolipid function and identify drugs that target sphingolipid synthesis.
Collapse
Affiliation(s)
- Shyamalagauri Jadhav
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
23
|
Evans TM, Van Remmen H, Purkar A, Mahesula S, Gelfond JA, Sabia M, Qi W, Lin AL, Jaramillo CA, Haskins WE. Microwave & Magnetic (M 2) Proteomics of a Mouse Model of Mild Traumatic Brain Injury. TRANSLATIONAL PROTEOMICS 2014; 3:10-21. [PMID: 26157646 DOI: 10.1016/j.trprot.2014.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Short-term increases in oxidative stress and decreases in motor function, including debilitating effects on balance and motor control, can occur following primary mild traumatic brain injuries (mTBI). However, the long-term effects on motor unit impairment and integrity as well as the molecular mechanisms underlying secondary injuries are poorly understood. We hypothesized that changes in central nervous system-specific protein (CSP) expression might correlate to these long-term effects. To test our hypothesis, we longitudinally assessed a closed-skull mTBI mouse model, vs. sham control, at 1, 7, 30, and 120 days post-injury. Motor impairment was determined by rotarod and grip strength performance measures, while motor unit integrity was determined using electromyography. Relative protein expression was determined by microwave & magnetic (M2) proteomics of ipsilateral brain tissue, as previously described. Isoprostane measurements were performed to confirm a primary oxidative stress response. Decoding the relative expression of 476 ± 56 top-ranked proteins for each specimen revealed statistically significant changes in the expression of two well-known CSPs at 1, 7 and 30 days post-injury: P < 0.001 for myelin basic protein (MBP) and P < 0.05 for myelin associated glycoprotein (MAG). This was confirmed by Western blot. Moreover, MAG, αII-spectrin (SPNA2) and neurofilament light (NEFL) expression at 30 days post-injury were directly related to grip strength (P < 0.05). While higher-powered studies of larger cohorts merit further investigation, this study supports the proof-of-concept that M2 proteomics is a rapid method to quantify putative protein biomarkers and therapeutic targets of mTBI and suggests the feasibility of CSP expression correlations to long-term effects on motor impairment.
Collapse
Affiliation(s)
- Teresa M Evans
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Holly Van Remmen
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA ; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Anjali Purkar
- Pediatric Biochemistry Laboratory, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Swetha Mahesula
- Pediatric Biochemistry Laboratory, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - J Al Gelfond
- Department of Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Marian Sabia
- South Texas Veterans Health Care System, San Antonio, Texas, USA, Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Wenbo Qi
- South Texas Veterans Health Care System, San Antonio, Texas, USA, Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ai-Ling Lin
- Research Imaging Institute, Barshop Institute and Department of Cellular & Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, USA
| | - Carlos A Jaramillo
- Polytrauma Rehabilitation Center, South Texas Veterans Health Care System, San Antonio, Texas, USA, Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - William E Haskins
- Pediatric Biochemistry Laboratory, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
24
|
Ichinose M, Kamei Y, Iriyama T, Imada S, Seyama T, Toshimitsu M, Asou H, Yamamoto M, Fujii T. Hypothermia attenuates apoptosis and protects contact between myelin basic protein-expressing oligodendroglial-lineage cells and neurons against hypoxia-Ischemia. J Neurosci Res 2014; 92:1270-85. [DOI: 10.1002/jnr.23418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Mari Ichinose
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Shinya Imada
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Takahiro Seyama
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Masatake Toshimitsu
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Hiroaki Asou
- Center for Kampo Medicine, Keio University School of Medicine; Tokyo Japan
| | | | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| |
Collapse
|
25
|
Zhan R, Yamamoto M, Ueki T, Yoshioka N, Tanaka K, Morisaki H, Seiwa C, Yamamoto Y, Kawano H, Tsuruo Y, Watanabe K, Asou H, Aiso S. A DEAD-box RNA helicase Ddx54 protein in oligodendrocytes is indispensable for myelination in the central nervous system. J Neurosci Res 2012; 91:335-48. [PMID: 23239230 DOI: 10.1002/jnr.23162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/22/2012] [Accepted: 10/02/2012] [Indexed: 02/05/2023]
Abstract
We recently reported that a new monoclonal antibody, 4F2, which labels oligodendroglial lineage cells, recognizes a DEAD-box RNA helicase Ddx54 and that Ddx54 binds to myelin basic protein (MBP) in brain and cultured oligodendrocytes. To elucidate the biological function of Ddx54, we generated a recombinant adenovirus, Ad-shRNA:Ddx54, expressing a short hairpin RNA to silence endogenous Ddx54 protein. The virus was intraventricularly injected into the brains of mice on postnatal day (PD) 2. The brains at PD 9 were then analyzed by immunohistochemistry. In untreated normal brain sections, as well as control brains that had been injected with Ad-β-Gal, myelination of axons occurred in the corpus callosum with filamentous patterns of immunosignals of myelin-associated glycoprotein (MAG) and MBP. In Ad-shRNA:Ddx54-injected brain, substantial amounts of MAG and MBP immunosignals were present, but MBP immunosignals accumulated in the subplate layer and did not intrude into the emerging white matter. Immunoblot analysis revealed that Ddx54 knockdown caused a significant decrease in the level of 21.5 kDa MBP isoform and Ddx54, but the amount of Olig2; 2',3'-cyclic nucleotide 3' phosphodiesterase; MAG; three MBP isoforms (14, 17.5, and 18 kDa); and QKI-5, QKI-6, and QKI-7 proteins remained unchanged. Transfection of the Ddx54 expression vector into luciferase reporter-introduced neuroepithelial cells resulted in upregulated MBP promoter activity. Immunoprecipitation of Ddx54 protein in MBP-transfected HEK293 cells indicated that Ddx54 may directly interact with MBP mRNA. These results suggest that Ddx54 protein play an important role in central nervous system myelination, presumably in myelin sheath formation after the differentiation of oligodendrocytes.
Collapse
Affiliation(s)
- Rui Zhan
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ajao DO, Pop V, Kamper JE, Adami A, Rudobeck E, Huang L, Vlkolinsky R, Hartman RE, Ashwal S, Obenaus A, Badaut J. Traumatic brain injury in young rats leads to progressive behavioral deficits coincident with altered tissue properties in adulthood. J Neurotrauma 2012; 29:2060-74. [PMID: 22697253 DOI: 10.1089/neu.2011.1883] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) affects many infants and children, and results in enduring motor and cognitive impairments with accompanying changes in white matter tracts, yet few experimental studies in rodent juvenile models of TBI (jTBI) have examined the timeline and nature of these deficits, histologically and functionally. We used a single controlled cortical impact (CCI) injury to the parietal cortex of rats at post-natal day (P) 17 to evaluate behavioral alterations, injury volume, and morphological and molecular changes in gray and white matter, with accompanying measures of electrophysiological function. At 60 days post-injury (dpi), we found that jTBI animals displayed behavioral deficits in foot-fault and rotarod tests, along with a left turn bias throughout their early developmental stages and into adulthood. In addition, anxiety-like behaviors on the zero maze emerged in jTBI animals at 60 dpi. The final lesion constituted only ∼3% of brain volume, and morphological tissue changes were evaluated using MRI, as well as immunohistochemistry for neuronal nuclei (NeuN), myelin basic protein (MBP), neurofilament-200 (NF200), and oligodendrocytes (CNPase). White matter morphological changes were associated with a global increase in MBP immunostaining and reduced compound action potential amplitudes at 60 dpi. These results suggest that brain injury early in life can induce long-term white matter dysfunction, occurring in parallel with the delayed development and persistence of behavioral deficits, thus modeling clinical and longitudinal TBI observations.
Collapse
Affiliation(s)
- David O Ajao
- Department of Physiology, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mahesula S, Raphael I, Raghunathan R, Kalsaria K, Kotagiri V, Purkar AB, Anjanappa M, Shah D, Pericherla V, Jadhav YLA, Gelfond JA, Forsthuber TG, Haskins WE. Immunoenrichment microwave and magnetic proteomics for quantifying CD47 in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Electrophoresis 2012; 33:3820-9. [PMID: 23160929 PMCID: PMC3724470 DOI: 10.1002/elps.201200515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 09/30/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023]
Abstract
We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating immunoenrichment prior to rapid microwave and magnetic (IM(2) ) sample preparation, might enable correlation of the relative expression of CD47 and other low abundance proteins to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, anti-CD47 antibodies were used to enrich for low abundance CD47 prior to microwave and magnetic proteomics in EAE. Decoding protein expression at each time point, with CD47-immunoenriched samples and targeted proteomic analysis, enabled peptides from the low abundance proteins to be precisely quantified throughout disease progression, including: CD47: 86-99, corresponding to the "marker of self" overexpressed by myelin that prevents phagocytosis, or "cellular devouring," by microglia and macrophages; myelin basic protein: 223-228, corresponding to myelin basic protein; and migration inhibitory factor: 79-87, corresponding to a proinflammatory cytokine that inhibits macrophage migration. While validation in a larger cohort is underway, we conclude that IM(2) proteomics is a rapid method to precisely quantify peptides from CD47 and other low abundance proteins throughout disease progression in EAE. This is likely due to improvements in selectivity and sensitivity, necessary to partially overcome masking of low abundance proteins by high abundance proteins and improve dynamic range.
Collapse
Affiliation(s)
- Swetha Mahesula
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Itay Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Rekha Raghunathan
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Karan Kalsaria
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Venkat Kotagiri
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Anjali B. Purkar
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Manjushree Anjanappa
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Darshit Shah
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Vidya Pericherla
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Yeshwant Lal Avinash Jadhav
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Jonathan A.L. Gelfond
- Department of Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
| | - Thomas G. Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
| | - William E. Haskins
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Medicine, Division of Hematology & Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
| |
Collapse
|
28
|
Padhi BK, Pelletier G. Perturbation of myelin basic protein (Mbp) splice variant expression in developing rat cerebellum following perinatal exposure to methylmercury. Toxicol Lett 2012; 213:374-80. [PMID: 22835759 DOI: 10.1016/j.toxlet.2012.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/12/2012] [Accepted: 07/14/2012] [Indexed: 01/01/2023]
Abstract
Myelin sheaths surrounding axons are essential for saltatory conduction of nerve impulse in the central nervous system. A major protein constituent of myelin sheaths is produced by the myelin basic protein (Mbp) gene, whose expression in oligodendrocytes is conserved across vertebrates. In rat, five Mbp splice variants resulting from alternative splicing of exons 2, 5 and/or 6 are characterized. We developed a PCR-based strategy to quantify individual Mbp splice variants and characterized a sixth Mbp splice variant lacking only exon 5. This newly identified splice variant is predominantly expressed in developing rat brain and has orthologs in mouse and human. Many neurotoxic chemicals can perturb myelination and Mbp gene expression. Regulation of Mbp gene expression at the post-transcriptional level was assessed following perinatal exposure to neurotoxic methylmercury (2 mg/kg b.w./day). Similar reductions in total and individual Mbp splice variant mRNA levels suggest that methylmercury-induced perturbation in Mbp gene expression occurred as a consequence of decreased oligodendrocyte cell population in absence of a significant impact on its post-transcriptional regulation.
Collapse
Affiliation(s)
- Bhaja K Padhi
- Hazard Identification Division, HECSB, Health Canada, Tunney's Pasture, Ottawa, ON, K1A 0L2, Canada
| | | |
Collapse
|
29
|
Abstract
Iron is critical in multiple aspects of CNS development, but its role in neurodevelopment--the ability of iron deficiency to alter normal development--is difficult to dissociate from the effects of anemia. We developed a novel dietary restriction model in the rat that allows us to study the effects of iron deficiency in the absence of severe anemia. Using a combination of auditory brainstem response analyses (ABR) and electron microscopy, we identified an unexpected impact of nonanemic iron deficiency on axonal diameter and neurofilament regulation in the auditory nerve. These changes are associated with altered ABR latency during development. In contrast to models of severe iron deficiency with anemia, we did not find consistent or prolonged defects in myelination. Our data demonstrate that iron deficiency in the absence of anemia disrupts normal development of the auditory nerve and results in altered conduction velocity.
Collapse
|
30
|
The 21.5-kDa isoform of myelin basic protein has a non-traditional PY-nuclear-localization signal. Biochem Biophys Res Commun 2012; 422:670-5. [PMID: 22609403 DOI: 10.1016/j.bbrc.2012.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/09/2012] [Indexed: 12/16/2022]
Abstract
The predominant 18.5-kDa classic myelin basic protein (MBP) is mainly responsible for compaction of the myelin sheath in the central nervous system, but is multifunctional, having numerous interactions with Ca(2+)-calmodulin, actin, tubulin, and SH3-domains, and can tether these proteins to a lipid membrane in vitro. The full-length 21.5-kDa MBP isoform has an additional 26 residues encoded by exon-II of the classic gene, which causes it to be trafficked to the nucleus of oligodendrocytes (OLGs). We have performed site-directed mutagenesis of selected residues within this segment in red fluorescent protein (RFP)-tagged constructs, which were then transfected into the immortalized N19-OLG cell line to view protein localization using epifluorescence microscopy. We found that 21.5-kDa MBP contains two non-traditional PY-nuclear-localization signals, and that arginine and lysine residues within these motifs were involved in subcellular trafficking of this protein to the nucleus, where it may have functional roles during myelinogenesis.
Collapse
|
31
|
Ueki T, Tsuruo Y, Yamamoto Y, Yoshimura K, Takanaga H, Seiwa C, Motojima K, Asou H, Yamamoto M. A new monoclonal antibody, 4F2, specific for the oligodendroglial cell lineage, recognizes ATP-dependent RNA helicase Ddx54: possible association with myelin basic protein. J Neurosci Res 2011; 90:48-59. [PMID: 21932369 DOI: 10.1002/jnr.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/07/2022]
Abstract
Recent research in neural development has highlighted the importance of markers to discriminate phenotypic alterations of neural cells at various developmental stages. We isolated a new monoclonal antibody, 4F2, which was shown to be specific for an oligodendrocyte lineage. In primary cultures of oligodendroglial and mixed neural cells, the 4F2 antibody labeled a large proportion of Sox2(+) , Sox10(+) , A2B5(+) , NG2(+) , Olig2(+) , O4(+) , and myelin basic protein (MBP)(+) cells but did not label any GFAP(+) or NeuN(+) cells. In immunohistochemisty of rat embryos, the 4F2 antibody labeled a portion of neuroepithelial cells of the neural tube at embryonic day 9. The 4F2-positive cells were located initially in the ventricular zone as Musashi1(+) Tuj1(-) populations and distributed throughout the striatum; thereafter, they populated the whole brain and spinal cord. These cells showed ramified processes during embryonal development. The 4F2 antigen was associated with all four isoforms of MBP in coimmunoprecipitation experiments using brain homogenates or cell lysates of cultured oligodendrocytes. Immunoscreening of a brain cDNA library identified the antigen as DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (Ddx54), a member of the DEAD box family of RNA helicases involved in RNA metabolism, transcription, and translation. Cotransfection of the Ddx54 gene with MBP isoform genes increased the nuclear localization of the 21.5-kDa MBP isoform, which has been reported to function as a nuclear signal transduction molecule. These data indicate that Ddx54 might be not only a useful marker for investigating the ontogeny of oligodendrocytes but also an important factor in oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Neuro-Glia Cell Biology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation 2011; 8:76. [PMID: 21729281 PMCID: PMC3152910 DOI: 10.1186/1742-2094-8-76] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/05/2011] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Microglial activation in multiple sclerosis has been postulated to contribute to long-term neurodegeneration during disease. Fingolimod has been shown to impact on the relapsing remitting phase of disease by modulating autoreactive T-cell egress from lymph organs. In addition, it is brain penetrant and has been shown to exert multiple effects on nervous system cells. METHODS In this study, the impact of fingolimod and other sphingosine-1-phosphate receptor active molecules following lysophosphotidyl choline-induced demyelination was examined in the rat telencephalon reaggregate, spheroid cell culture system. The lack of immune system components allowed elucidation of the direct effects of fingolimod on CNS cell types in an organotypic situation. RESULTS Following demyelination, fingolimod significantly augmented expression of myelin basic protein in the remyelination phase. This increase was not associated with changes in neurofilament levels, indicating de novo myelin protein expression not associated with axonal branching. Myelin wrapping was confirmed morphologically using confocal and electron microscopy. Increased remyelination was associated with down-regulation of microglial ferritin, tumor necrosis factor alpha and interleukin 1 during demyelination when fingolimod was present. In addition, nitric oxide metabolites and apoptotic effectors caspase 3 and caspase 7 were reduced during demyelination in the presence of fingolimod. The sphingosine-1-phosphate receptor 1 and 5 agonist BAF312 also increased myelin basic protein levels, whereas the sphingosine-1-phosphate receptor 1 agonist AUY954 failed to replicate this effect on remyelination. CONCLUSIONS The results presented indicate that modulation of S1P receptors can ameliorate pathological effectors associated with microglial activation leading to a subsequent increase in protein and morphological markers of remyelination. In addition, sphingosine-1-phosphate receptor 5 is implicated in promoting remyelination in vitro. This knowledge may be of benefit for treatment of chronic microglial inflammation in multiple sclerosis.
Collapse
Affiliation(s)
- Samuel J Jackson
- Centre for Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | | | | |
Collapse
|
33
|
Developmental PCB exposure induces hypothyroxinemia and sex-specific effects on cerebellum glial protein levels in rats. Int J Dev Neurosci 2010; 28:553-60. [PMID: 20691776 DOI: 10.1016/j.ijdevneu.2010.07.237] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/21/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent lipophilic environmental contaminants which are found in fatty tissues of humans and wild-life alike. Maternal transfer of PCBs to offspring is easily achieved across the placenta and via lactation. In male rats, perinatal PCB exposure induces behavioral abnormalities, in addition to hypothyroxinemia and white matter changes. There are sex differences in white matter volume synthesis and density in adult and aged rodents. Yet whether PCB exposure effects on white matter are sex-specific is unclear, because the previous studies were conducted in male offspring. Furthermore, although hypothyroxinemia induced by PCB exposure is thought to trigger white matter changes, PCBs also affect interleukin-6 (IL-6) expression, and IL-6 regulates white matter growth. We hypothesized that perinatal PCB exposure would have sex-specific effects on white matter development associated with altered IL-6 levels. We found that female offspring had higher levels of myelin basic protein (MBP) than males did, at postnatal day (PND) 7, 18 and 21. PCB exposure induced hypothyroxinemia in males and females at PND7, 14, 21, and 42. PCB exposure also increased MBP and reduced glial fibrillary acidic protein (GFAP) levels in males at PND21, but had the opposite effect in females. In addition, at PND14 and 21, PCB exposure elevated IL-6 levels in male offspring only. The induction of sex-specific changes in white matter proteins, in the absence of sex differences in thyroxine levels after PCB exposure, suggests that serum thyroxine levels do not directly contribute to the white matter alterations. Instead, IL-6 may contribute to increased MBP levels in males, whereas in females estromimetic and thyromimetic PCB metabolites may affect white matter development. This data adds to an increasing body of literature showing that perinatal insults induce sex-specific effects in offspring.
Collapse
|
34
|
The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour? Nutr Res Rev 2009; 21:42-55. [PMID: 19079853 DOI: 10.1017/s0954422408945182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pyridine nucleotide NAD+ is derived from dietary niacin and serves as the substrate for the synthesis of cyclic ADP-ribose (cADPR), an intracellular Ca signalling molecule that plays an important role in synaptic plasticity in the hippocampus, a region of the brain involved in spatial learning. cADPR is formed in part via the activity of the ADP-ribosyl cyclase enzyme CD38, which is widespread throughout the brain. In the present review, current evidence of the relationship between dietary niacin and behaviour is presented following investigations of the effect of niacin deficiency, pharmacological nicotinamide supplementation and CD38 gene deletion on brain nucleotides and spatial learning ability in mice and rats. In young male rats, both niacin deficiency and nicotinamide supplementation significantly altered brain NAD+ and cADPR, both of which were inversely correlated with spatial learning ability. These results were consistent across three different models of niacin deficiency (pair feeding, partially restricted feeding and niacin recovery). Similar changes in spatial learning ability were observed in Cd38- / - mice, which also showed decreases in brain cADPR. These findings suggest an inverse relationship between spatial learning ability, dietary niacin intake and cADPR, although a direct link between cADPR and spatial learning ability is still missing. Dietary niacin may therefore play a role in the molecular events regulating learning performance, and further investigations of niacin intake, CD38 and cADPR may help identify potential molecular targets for clinical intervention to enhance learning and prevent or reverse cognitive decline.
Collapse
|
35
|
Abstract
Among all mammalian species, pups are highly dependent on their mother not only for nutrition, but also for physical interaction. Therefore, disruption of the mother-pup interaction changes the physiology and behaviour of pups. We review how maternal separation in the early developmental period brings about changes in the behaviour and neuronal systems of the offspring of rats and mice. Early weaning in mice results in adulthood a persistent increase in anxiety-like and aggressive behaviour. The early-weaned mice also show higher hypothalamic-pituitary-adrenal activity in response to novelty stress. Neurochemically, the early-weaned male mice, but not female mice, show precocious myelination in the amygdala, decreased brain-derived neurotrophic factor protein levels in the hippocampus and prefrontal cortex, and reduced bromodeoxyuridine immunoreactivity in the dentate gyrus. Because higher corticosterone levels are persistently observed up to 48 h when the mice are weaned on postnatal day 14, the exposure of the developing brain to higher corticosterone levels may be one of the effects of early weaning. These results suggest that deprivation of the mother-infant interaction during the late lactating period results in behavioural and neurochemical changes in adulthood and that these stress responses are sexually dimorphic (i.e. the male is more vulnerable to early weaning stress).
Collapse
Affiliation(s)
- T Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Fuchinobe, Sagamihara, Kanagawa, Japan.
| | | |
Collapse
|
36
|
Orosz F, Lehotzky A, Oláh J, Ovádi J. TPPP/p25: A New Unstructured Protein Hallmarking Synucleinopathies. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Lehotzky A, Tőkési N, Gonzalez-Alvarez I, Merino V, Bermejo M, Orosz F, Lau P, Kovacs G, Ovádi J. Progress in the development of early diagnosis and a drug with unique pharmacology to improve cancer therapy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3599-3617. [PMID: 18644768 PMCID: PMC2696110 DOI: 10.1098/rsta.2008.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cancer continues to be one of the major health and socio-economic problems worldwide, despite considerable efforts to improve its early diagnosis and treatment. The identification of new constituents as biomarkers for early diagnosis of neoplastic cells and the discovery of new type of drugs with their mechanistic actions are crucial to improve cancer therapy. New drugs have entered the market, thanks to industrial and legislative efforts ensuring continuity of pharmaceutical development. New targets have been identified, but cancer therapy and the anti-cancer drug market still partly depend on anti-mitotic agents. The objective of this paper is to show the effects of KAR-2, a potent anti-mitotic compound, and TPPP/p25, a new unstructured protein, on the structural and functional characteristics of the microtubule system. Understanding the actions of these two potential effectors on the microtubule system could be the clue for early diagnosis and improvement of cancer therapy.
Collapse
Affiliation(s)
- A. Lehotzky
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| | - N. Tőkési
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| | - I. Gonzalez-Alvarez
- Department of Pharmaceutics and Pharmaceutical Technology, University of Valencia46010 Valencia, Spain
| | - V. Merino
- Department of Pharmaceutics and Pharmaceutical Technology, University of Valencia46010 Valencia, Spain
| | - M. Bermejo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Valencia46010 Valencia, Spain
| | - F. Orosz
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| | - P. Lau
- Section of Developmental Genetics, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD 20892, USA
| | - G.G. Kovacs
- Institute of Neurology, Medical University of Vienna1097 Vienna, Austria
| | - J. Ovádi
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| |
Collapse
|
38
|
Ono M, Kikusui T, Sasaki N, Ichikawa M, Mori Y, Murakami-Murofushi K. Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice. Neuroscience 2008; 156:1103-10. [DOI: 10.1016/j.neuroscience.2008.07.078] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/26/2008] [Accepted: 07/29/2008] [Indexed: 01/06/2023]
|
39
|
Kodama Y, Kikusui T, Takeuchi Y, Mori Y. Effects of early weaning on anxiety and prefrontal cortical and hippocampal myelination in male and female Wistar rats. Dev Psychobiol 2008; 50:332-42. [PMID: 18393286 DOI: 10.1002/dev.20289] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated developmental changes in myelin formation in the prefrontal cortex and the hippocampus, and behavioral effects of early weaning in Wistar rats. Early-weaned rats showed decreased numbers of open-arm entries in an elevated plus-maze in both sexes at 4 weeks old; this effect persisted in males, but ceased in females after this age. Expression of myelin basic protein (MBP) showed both age-dependent increases and sex differences; 4-week-old males exhibited higher MBP levels in the hippocampus, whereas 7-week-old males showed lower MBP levels in the prefrontal cortex compared to females of the same age. There was a tendency for group differences from weaning for the 21.5-kDa isoform in the prefrontal cortex. Although these results suggest that male rats are more vulnerable than females to early-weaning effects on anxiety-related behaviors, further detailed analysis is needed to clarify the functional relationship between myelination and anxiety-related behaviors.
Collapse
Affiliation(s)
- Yuka Kodama
- Laboratory of Veterinary Ethology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | |
Collapse
|
40
|
Ottens AK, Golden EC, Bustamante L, Hayes RL, Denslow ND, Wang KKW. Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. J Neurochem 2007; 104:1404-14. [PMID: 18036155 DOI: 10.1111/j.1471-4159.2007.05086.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotrauma, as in the case of traumatic brain injury, promotes protease over-activation characterized by the select fragmentation of brain proteins. The resulting polypeptides are indicators of biochemical processes, which can be used to study post-injury dynamics and may also be developed into biomarkers. To this end, we devised a novel mass spectrometry approach to characterize post-injury calpain proteolytic processing of myelin basic protein (MBP), a biomarker of brain injury that denotes white matter damage and recovery. Our approach exceeds conventional immunological assays in its deconvolution of multiple protein isoforms, its absolute quantification of proteolytic fragments and its polypeptide selectivity. We quantified and characterized post-injury proteolytic processing of all MBP isoforms identified in adult rat cortex. Further, the translation of calpain-cleaved MBP into CSF was verified following brain injury. We ascertained that the exon-6 sequence of MBP resulted in a characteristic shift in gel migration for intact and fragmented protein alike. We also found evidence for a second post-TBI cleavage event within exon-2 and for the dimerization of the post-TBI 4.3 kDa fragment. Ultimately, the novel methodology described here can be used to study MBP dynamics and other similar proteolytic events of relevance to brain injury and other CNS processes.
Collapse
Affiliation(s)
- Andrew K Ottens
- Department of Psychiatry, Centers for Neuroproteomics and Biomarker Research and Traumatic Brain Injury Studies at the McKnight Brain Institute of the University of Florida, Gainesville, Florida 32610-0256, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Song YJC, Lundvig DMS, Huang Y, Gai WP, Blumbergs PC, Højrup P, Otzen D, Halliday GM, Jensen PH. p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1291-303. [PMID: 17823288 PMCID: PMC1988878 DOI: 10.2353/ajpath.2007.070201] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
p25alpha is an oligodendroglial protein that can induce aggregation of alpha-synuclein and accumulates in oligodendroglial cell bodies containing fibrillized alpha-synuclein in the neurodegenerative disease multiple system atrophy (MSA). We demonstrate biochemically that p25alpha is a constituent of myelin and a high-affinity ligand for myelin basic protein (MBP), and in situ immunohistochemistry revealed that MBP and p25alpha colocalize in myelin in normal human brains. Analysis of MSA cases reveals dramatic changes in p25alpha and MBP throughout the course of the disease. In situ immunohistochemistry revealed a cellular redistribution of p25alpha immunoreactivity from the myelin to the oligodendroglial cell soma, with no overall change in p25alpha protein concentration using immunoblotting. Concomitantly, an approximately 80% reduction in the concentration of full-length MBP protein was revealed by immunoblotting along with the presence of immunoreactivity for MBP degradation products in oligodendroglia. The oligodendroglial cell bodies in MSA displayed an enlargement along with the relocalization of p25alpha, and this was enhanced after the deposition of alpha-synuclein in the glial cytoplasmic inclusions. Overall, the data indicate that changes in the cellular interactions between MBP and p25alpha occur early in MSA and contribute to abnormalities in myelin and subsequent alpha-synuclein aggregation and the ensuing neuronal degeneration that characterizes this disease.
Collapse
Affiliation(s)
- Yun Ju C Song
- Prince of Wales Medical Research Institute, Randwick, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kikusui T, Kiyokawa Y, Mori Y. Deprivation of mother-pup interaction by early weaning alters myelin formation in male, but not female, ICR mice. Brain Res 2006; 1133:115-22. [PMID: 17184748 DOI: 10.1016/j.brainres.2006.11.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
We previously reported that early-weaned Balb/c mice develop a persistent increase in anxiety as well as aggression, and we suggested that deprivation of mother-pup interaction from postnatal days 15 to 21 might account for this phenomenon. In the present study, we investigated developmental changes in myelin formation and behavioral effects of early weaning in male and female ICR mice. Early weaning was associated with decreased numbers of open-arm entries in an elevated plus-maze for both male and female mice at 3 weeks of age (W3); this effect was persistently observed in males, but ceased after W3 in females. Compared to the brains of normally weaned mice, the brains of the early-weaned males at W8 and of the females at W5 were of lesser mass. Western blotting with whole-brain homogenates identified four isoforms of myelin basic protein (MBP; 21.5, 18.5, 17.0, and 14.0 kDa). Expression of these MBPs increased gradually in normally weaned mice. In contrast, in the early-weaned male mice, but not the early-weaned female mice, it increased robustly at W3 and then declined at W5, as compared to the normally weaned mice. These results suggest that early weaning influences not only anxiety-related behavior but also myelin formation in the brain during the developmental period, particularly between 3 and 5 weeks of age, and male mice are more vulnerable than females to early-weaning effects on behavior and myelin formation.
Collapse
Affiliation(s)
- Takefumi Kikusui
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
43
|
Skjoerringe T, Lundvig DMS, Jensen PH, Moos T. P25?/Tubulin polymerization promoting protein expression by myelinating oligodendrocytes of the developing rat brain. J Neurochem 2006; 99:333-42. [PMID: 16879710 DOI: 10.1111/j.1471-4159.2006.04073.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P25alpha/tubulin polymerization promoting protein (TPPP) is a brain specific phosphoprotein that displays microtubule bundling activity. In the mature brain, p25alpha/TPPP distributes to oligodendrocytes and choroid plexus epithelium. We mapped the spatial and temporal distribution of p25alpha/TPPP in the developing rat brain. Having localized its expression to neuronal tissue by Western blot analyses, the distribution of p25alpha/TPPP to developing oligodendrocytes was confirmed using a specific antibody. In the pre-natal and post-natal brain, p25alpha/TPPP was localized to the perinuclear cytoplasm of myelinating oligodendrocytes from embryonic (E) day E20 as verified from cellular co-localization with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP). Oligodendrocyte progenitor cells and pre-myelinating oligodendrocytes identified by the expression of NG2 proteoglycan and CD9, respectively, both failed to contain p25alpha/TPPP. In contrast, P25alpha/TPPP co-localized with beta(IV)-tubulin from post-natal (p) day P10 suggesting that p25alpha/TPPP plays an important role for tubulin-related transport in developing, myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Tina Skjoerringe
- Institute of Medical Anatomy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
44
|
Liu MC, Akle V, Zheng W, Kitlen J, O'Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KKW. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 2006; 98:700-12. [PMID: 16893416 DOI: 10.1111/j.1471-4159.2006.03882.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.
Collapse
Affiliation(s)
- Ming Cheng Liu
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainsville, Florida 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sonabend AM, Ulasov IV, Lesniak MS. Conditionally replicative adenoviral vectors for malignant glioma. Rev Med Virol 2006; 16:99-115. [PMID: 16416455 DOI: 10.1002/rmv.490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High-grade gliomas constitute an important challenge to modern medicine, and although great effort has been made to prolong patient survival, the prognosis for this disease remains poor. Due to recent discoveries in the molecular basis of gliomas, gene therapy is becoming a promising alternative. In this review, we discuss the use of conditionally replicative adenoviral vectors (CRAd) and their applications in neuro-oncology. Such vectors, when rendered conditionally replicative via transductional and transcriptional modifications, offer great promise for patients with malignant brain tumours. We review data from preclinical and clinical studies utilising such vectors and discuss the limitations and future perspectives of CRAd oncolytic therapy for malignant glioma.
Collapse
Affiliation(s)
- Adam M Sonabend
- Division of Neurosurgery, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
46
|
Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. ACTA ACUST UNITED AC 2004; 164:111-22. [PMID: 14709544 PMCID: PMC2171962 DOI: 10.1083/jcb.200308101] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult multipotent neural progenitor cells can differentiate into neurons, astrocytes, and oligodendrocytes in the mammalian central nervous system, but the molecular mechanisms that control their differentiation are not yet well understood. Insulin-like growth factor I (IGF-I) can promote the differentiation of cells already committed to an oligodendroglial lineage during development. However, it is unclear whether IGF-I affects multipotent neural progenitor cells. Here, we show that IGF-I stimulates the differentiation of multipotent adult rat hippocampus-derived neural progenitor cells into oligodendrocytes. Modeling analysis indicates that the actions of IGF-I are instructive. Oligodendrocyte differentiation by IGF-I appears to be mediated through an inhibition of bone morphogenetic protein signaling. Furthermore, overexpression of IGF-I in the hippocampus leads to an increase in oligodendrocyte markers. These data demonstrate the existence of a single molecule, IGF-I, that can influence the fate choice of multipotent adult neural progenitor cells to an oligodendroglial lineage.
Collapse
Affiliation(s)
- Jenny Hsieh
- Laboratory of Genetics, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Oligodendrocytes (OLs) are the glial cells of the central nervous system and are classically known to form myelin sheaths around most axons of higher vertebrates. Whether these cells might have other roles, in particular during development, has not been studied. Taking advantage of a transgenic mouse model in which OLs can be selectively killed in a desired time-frame, we have investigated the impact of OL ablation on cerebellar development. OL ablation was induced during the first 3 postnatal weeks, a time at which cerebellum development is ongoing. Strikingly, OL ablation triggers a profound perturbation of the known cerebellum developmental program, characterized by the disorganization of the cortical layers, abnormal foliation and a complete alteration of Purkinje cell dendritic arborization and axonal fasciculation. This phenotype is accompanied by decreased granule cell density, a disorganized Bergmann glia network and impaired migration of interneurons in the molecular layer. These results demonstrate a previously ignored role of OLs in the formation of the cerebellar cytoarchitecture.
Collapse
Affiliation(s)
- Carole Mathis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM/CNRS/ULP, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
48
|
Sugiyama I, Tanaka K, Akita M, Yoshida K, Kawase T, Asou H. Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats. J Neurosci Res 2002; 70:309-17. [PMID: 12391590 DOI: 10.1002/jnr.10386] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have revealed a significant decrease in white matter volume, including loss of myelin, with age but minimal decrease in gray matter volume (Guttmann et al., [1998] Neurology 50:972-978). Myelin is necessary for the rapid conduction of impulses along axons. Myelinated nerve includes various domains, the node of Ranvier, the paranodal region, the juxtaparanodal region and the internode. The paranodal junction may serve to anchor the myelin sheath to the axon. We analyzed the ultrastructure of the paranodal region in myelinated fibers from the aged rat brain. Severe alterations of myelinated fibers were observed in 31-month-old rats, resulting in the appearance of macrophages, splitting of the myelin sheath, myelin balloon formation and separation from the axon. Many paranodal retractions of myelinated axons occurred in the aged rats. It should be noted that the paranodal junction is functionally important, serving to anchor the myelin to the axon and that there is a diffusion barrier in the paranodal region. We analyzed myelin-related proteins from young and aged rat brains. The 21.5-kDa isoform of myelin basic protein (MBP) almost disappeared in the 31-month-old rats, whereas other myelin proteins were not significantly changed between young and aged rats. These results suggest that this isoform, a highly cationic charged major dense component protein that binds lipid bilayer in the membrane, may participate in the formation of a paranodal diffusion barrier at the myelin/noncompact membrane border.
Collapse
Affiliation(s)
- Ichiro Sugiyama
- Department of Neurobiology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|