1
|
Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and Myelin: Active players in Neurodegenerative brains? Dev Neurobiol 2022; 82:160-174. [PMID: 35081276 DOI: 10.1002/dneu.22867] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing OL and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Nan-Xing Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
2
|
Fletcher JL, Makowiecki K, Cullen CL, Young KM. Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin Cell Dev Biol 2021; 118:14-23. [PMID: 33863642 DOI: 10.1016/j.semcdb.2021.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
During cortical development and throughout adulthood, oligodendrocytes add myelin internodes to glutamatergic projection neurons and GABAergic inhibitory neurons. In addition to directing node of Ranvier formation, to enable saltatory conduction and influence action potential transit time, oligodendrocytes support axon health by communicating with axons via the periaxonal space and providing metabolic support that is particularly critical for healthy ageing. In this review we outline the timing of oligodendrogenesis in the developing mouse and human cortex and describe the important role that oligodendrocytes play in sustaining and modulating neuronal function. We also provide insight into the known and speculative impact that myelination has on cortical axons and their associated circuits during the developmental critical periods and throughout life, particularly highlighting their life-long role in learning and remembering.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
3
|
Pepper RE, Pitman KA, Cullen CL, Young KM. How Do Cells of the Oligodendrocyte Lineage Affect Neuronal Circuits to Influence Motor Function, Memory and Mood? Front Cell Neurosci 2018; 12:399. [PMID: 30524235 PMCID: PMC6262292 DOI: 10.3389/fncel.2018.00399] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are immature cells in the central nervous system (CNS) that can rapidly respond to changes within their environment by modulating their proliferation, motility and differentiation. OPCs differentiate into myelinating oligodendrocytes throughout life, and both cell types have been implicated in maintaining and modulating neuronal function to affect motor performance, cognition and emotional state. However, questions remain about the mechanisms employed by OPCs and oligodendrocytes to regulate circuit function, including whether OPCs can only influence circuits through their generation of new oligodendrocytes, or can play other regulatory roles within the CNS. In this review, we detail the molecular and cellular mechanisms that allow OPCs, newborn oligodendrocytes and pre-existing oligodendrocytes to regulate circuit function and ultimately influence behavioral outcomes.
Collapse
Affiliation(s)
- Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
4
|
Sanchez-Rodriguez MA, Gomez O, Esteban PF, Garcia-Ovejero D, Molina-Holgado E. The endocannabinoid 2-arachidonoylglycerol regulates oligodendrocyte progenitor cell migration. Biochem Pharmacol 2018; 157:180-188. [PMID: 30195734 DOI: 10.1016/j.bcp.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and β (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration. By contrast, increasing the levels of endogenous 2-AG by blocking its degradation (impairing monoacylglycerol lipase activity with JZL-184) significantly increased OPC migration, as did agonists of the CB1, CB2 or CB1/CB2 cannabinoid receptors. This latter effect was abolished by selective CB1 or CB2 antagonists, strongly suggesting that cannabinoid receptor activation specifically potentiates OPC chemotaxis and chemokinesis in response to PDGF/FGF. Furthermore, the chemoattractive activity of these cannabinoid receptor agonists on OPCs was even evident in the absence of PDGF/FGF. In cultured brain slices prepared from the corpus callosum of postnatal rat brains, DAGL or cannabinoid receptor inhibition substantially diminished the in situ migration of Sox10+ OPCs. Overall, these results reveal a novel function of endogenous 2-AG in PDGF and FGF induced OPC migration, highlighting the importance of the endocannabinoid system in regulating essential steps in oligodendrocyte development.
Collapse
Affiliation(s)
- Maria A Sanchez-Rodriguez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Oscar Gomez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
5
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Hamdan H, Patyal P, Kockara NT, Wight PA. The wmN1 enhancer region in intron 1 is required for expression of human PLP1. Glia 2018; 66:1763-1774. [PMID: 29683207 DOI: 10.1002/glia.23339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/10/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
Abstract
The myelin proteolipid protein gene (PLP1) encodes the most abundant protein present in myelin from the central nervous system (CNS). Its expression must be tightly controlled as evidenced by mutations that alter PLP1 dosage; both overexpression (elevated PLP1 copy number) and lack thereof (PLP1 deletion) result in X-linked genetic disorders in man. However, not much is known about the mechanisms that govern expression of the human gene. To address this, transgenic mice were generated which utilize human PLP1 (hPLP1) sequences (proximal 6.2 kb of 5'-flanking DNA to the first 38 bp of exon 2) to drive expression of a lacZ reporter cassette. LoxP sites were incorporated around a 1.5-kb section of hPLP1 intron 1 since it contains sequence orthologous to the wmN1 region from mouse which, previously, was shown to augment expression of a minimally-promoted transgene coincident with the active myelination period of CNS development. Eight transgenic lines were generated with the parental, 6.2hPLP(+)Z/FL, transgene. All lines expressed the transgene appropriately in brain as evidenced by staining with X-gal in white matter regions and olfactory bulb. Removal of the "wmN1" region from 6.2hPLP(+)Z/FL with a ubiquitously expressed Cre-driver caused a dramatic reduction in transgene activity. These results demonstrate for the first time that the wmN1 enhancer region: (1) is functional in hPLP1; (2) works in collaboration with its native promoter-not just a basal heterologous promoter; (3) is required for high levels of hPLP1 gene activity; (4) has a broader effect, both spatially and temporally, than originally projected with mPlp1.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pankaj Patyal
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
7
|
Newville J, Jantzie LL, Cunningham LA. Embracing oligodendrocyte diversity in the context of perinatal injury. Neural Regen Res 2017; 12:1575-1585. [PMID: 29171412 PMCID: PMC5696828 DOI: 10.4103/1673-5374.217320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the traditional view that oligodendrocytes are a homogenous cell population. Oligodendrocytes of distinct origins, maturational stages, and regional locations may differ in their functional capacity or susceptibility to injury. One of the most unique qualities of the oligodendrocyte is its ability to produce myelin. Myelin abnormalities have been ascribed to a remarkable array of perinatal brain injuries, with concomitant oligodendrocyte dysregulation. Within this review, we discuss new insights into the diversity of the oligodendrocyte lineage and highlight their relevance in paradigms of perinatal brain injury. Future therapeutic development will be informed by comprehensive knowledge of oligodendrocyte pathophysiology that considers the particular facets of heterogeneity that this lineage exhibits.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lauren L. Jantzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
8
|
Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron 2017; 94:500-516.e9. [PMID: 28472653 DOI: 10.1016/j.neuron.2017.04.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.
Collapse
Affiliation(s)
- Anastassia Voronova
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Beatrix S Wang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Siraj Zahr
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
9
|
Chen KS, Harris L, Lim JWC, Harvey TJ, Piper M, Gronostajski RM, Richards LJ, Bunt J. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol 2017; 525:2465-2483. [PMID: 28295292 DOI: 10.1002/cne.24206] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Matsumoto S, Banine F, Feistel K, Foster S, Xing R, Struve J, Sherman LS. Brg1 directly regulates Olig2 transcription and is required for oligodendrocyte progenitor cell specification. Dev Biol 2016; 413:173-87. [PMID: 27067865 DOI: 10.1016/j.ydbio.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/28/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
The Olig2 basic-helix-loop-helix transcription factor promotes oligodendrocyte specification in early neural progenitor cells (NPCs), including radial glial cells, in part by recruiting SWI/SNF chromatin remodeling complexes to the enhancers of genes involved in oligodendrocyte differentiation. How Olig2 expression is regulated during oligodendrogliogenesis is not clear. Here, we find that the Brg1 subunit of SWI/SNF complexes interacts with a proximal Olig2 promoter and represses Olig2 transcription in the mouse cortex at E14, when oligodendrocyte progenitors (OPCs) are not yet found in this location. Brg1 does not interact with the Olig2 promoter in the E14 ganglionic eminence, where NPCs differentiate into Olig2-positive OPCs. Consistent with these findings, Brg1-null NPCs demonstrate precocious expression of Olig2 in the cortex. However, these cells fail to differentiate into OPCs. We further find that Brg1 is necessary for neuroepithelial-to-radial glial cell transition, but not neuronal differentiation despite a reduction in expression of the pro-neural transcription factor Pax6. Collectively, these and earlier findings support a model whereby Brg1 promotes neurogenic radial glial progenitor cell specification but is dispensable for neuronal differentiation. Concurrently, Brg1 represses Olig2 expression and the specification of OPCs, but is required for OPC differentiation and oligodendrocyte maturation.
Collapse
Affiliation(s)
- Steven Matsumoto
- Integrative Biosciences Department, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Kerstin Feistel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Scott Foster
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Rubing Xing
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Jaime Struve
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA; Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
11
|
Iijima K, Kurachi M, Shibasaki K, Naruse M, Puentes S, Imai H, Yoshimoto Y, Mikuni M, Ishizaki Y. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions. J Neurochem 2015. [DOI: 10.1111/jnc.13262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keiya Iijima
- Department of Neurosurgery; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masashi Kurachi
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masae Naruse
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Sandra Puentes
- Department of Neurosurgery; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Hideaki Imai
- Department of Neurosurgery; Tokyo University Graduate School of Medicine; Bunkyo-ku Tokyo Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masahiko Mikuni
- Department of Psychiatry and Neuroscience; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| |
Collapse
|
12
|
Abstract
Oligodendrocyte precursor cells (OPCs) originate in the ventricular zones (VZs) of the brain and spinal cord and migrate throughout the developing central nervous system (CNS) before differentiating into myelinating oligodendrocytes (OLs). It is not known whether OPCs or OLs from different parts of the VZ are functionally distinct. OPCs persist in the postnatal CNS, where they continue to divide and generate myelinating OLs at a decreasing rate throughout adult life in rodents. Adult OPCs respond to injury or disease by accelerating their cell cycle and increasing production of OLs to replace lost myelin. They also form synapses with unmyelinated axons and respond to electrical activity in those axons by generating more OLs and myelin locally. This experience-dependent "adaptive" myelination is important in some forms of plasticity and learning, for example, motor learning. We review the control of OL lineage development, including OL population dynamics and adaptive myelination in the adult CNS.
Collapse
Affiliation(s)
- Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, WBSB 1001, Baltimore, Maryland 21205
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Dimou L, Götz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 2014; 94:709-37. [PMID: 24987003 DOI: 10.1152/physrev.00036.2013] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The diverse functions of glial cells prompt the question to which extent specific subtypes may be devoted to a specific function. We discuss this by reviewing one of the most recently discovered roles of glial cells, their function as neural stem cells (NSCs) and progenitor cells. First we give an overview of glial stem and progenitor cells during development; these are the radial glial cells that act as NSCs and other glial progenitors, highlighting the distinction between the lineage of cells in vivo and their potential when exposed to a different environment, e.g., in vitro. We then proceed to the adult stage and discuss the glial cells that continue to act as NSCs across vertebrates and others that are more lineage-restricted, such as the adult NG2-glia, the most frequent progenitor type in the adult mammalian brain, that remain within the oligodendrocyte lineage. Upon certain injury conditions, a distinct subset of quiescent astrocytes reactivates proliferation and a larger potential, clearly demonstrating the concept of heterogeneity with distinct subtypes of, e.g., astrocytes or NG2-glia performing rather different roles after brain injury. These new insights not only highlight the importance of glial cells for brain repair but also their great potential in various aspects of regeneration.
Collapse
Affiliation(s)
- Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
14
|
Expression of proteolipid protein gene in spinal cord stem cells and early oligodendrocyte progenitor cells is dispensable for normal cell migration and myelination. J Neurosci 2014; 34:1333-43. [PMID: 24453324 DOI: 10.1523/jneurosci.2477-13.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plp1 gene expression occurs very early in development, well before the onset of myelination, creating a conundrum with regard to the function of myelin proteolipid protein (PLP), one of the major proteins in compact myelin. Using PLP-EGFP mice to investigate Plp1 promoter activity, we found that, at very early time points, PLP-EGFP was expressed in Sox2+ undifferentiated precursors in the spinal cord ventricular zone (VZ), as well as in the progenitors of both neuronal and glial lineages. As development progressed, most PLP-EGFP-expressing cells gave rise to oligodendrocyte progenitor cells (OPCs). The expression of PLP-EGFP in the spinal cord was quite dynamic during development. PLP-EGFP was highly expressed as cells delaminated from the VZ. Expression was downregulated as cells moved laterally through the cord, and then robustly upregulated as OPCs differentiated into mature myelinating oligodendrocytes. The presence of PLP-EGFP expression in OPCs raises the question of its role in this migratory population. We crossed PLP-EGFP reporter mice into a Plp1-null background to investigate the role of PLP in early OPC development. In the absence of PLP, normal numbers of OPCs were generated and their distribution throughout the spinal cord was unaffected. However, the orientation and length of OPC processes during migration was abnormal in Plp1-null mice, suggesting that PLP plays a role either in the structural integrity of OPC processes or in their response to extracellular cues that orient process outgrowth.
Collapse
|
15
|
Kaneko N, Kako E, Sawamoto K. Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives. Front Cell Neurosci 2013; 7:235. [PMID: 24348331 PMCID: PMC3842008 DOI: 10.3389/fncel.2013.00235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022] Open
Abstract
In the postnatal mammalian brain, stem cells in the ventricular-subventricular zone (V-SVZ) continuously generate neuronal and glial cells throughout life. Genetic labeling of cells of specific lineages have demonstrated that the V-SVZ is an important source of the neuroblasts and/or oligodendrocyte progenitor cells (OPCs) that migrate toward injured brain areas in response to several types of insult, including ischemia and demyelinating diseases. However, this spontaneous regeneration is insufficient for complete structural and functional restoration of the injured brain, so interventions to enhance these processes are sought for clinical applications. Erythropoietin (EPO), a clinically applied erythropoietic factor, is reported to have cytoprotective effects in various kinds of insult in the central nervous system. Moreover, recent studies suggest that EPO promotes the V-SVZ-derived neurogenesis and oligodendrogenesis. EPO increases the proliferation of progenitors in the V-SVZ and/or the migration and differentiation of their progenies in and around injured areas, depending on the dosage, timing, and duration of treatment, as well as the type of animal model used. On the other hand, EPO has undesirable side effects, including thrombotic complications. We recently demonstrated that a 2-week treatment with the EPO derivative asialo-EPO promotes the differentiation of V-SVZ-derived OPCs into myelin-forming mature oligodendrocytes in the injured white matter of neonatal mice without causing erythropoiesis. Here we present an overview of the multifaceted effects of EPO and its derivatives in the V-SVZ and discuss the possible applications of these molecules in regenerative medicine.
Collapse
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Eisuke Kako
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan ; Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| |
Collapse
|
16
|
Impact of lipid nutrition on neural stem/progenitor cells. Stem Cells Int 2013; 2013:973508. [PMID: 24260036 PMCID: PMC3821937 DOI: 10.1155/2013/973508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
The neural system originates from neural stem/progenitor cells (NSPCs). Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.
Collapse
|
17
|
Petrik D, Yun S, Latchney SE, Kamrudin S, LeBlanc JA, Bibb JA, Eisch AJ. Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires cdk5. PLoS One 2013; 8:e72819. [PMID: 23991155 PMCID: PMC3753242 DOI: 10.1371/journal.pone.0072819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
The early postnatal period is a unique time of brain development, as diminishing amounts of neurogenesis coexist with waves of gliogenesis. Understanding the molecular regulation of early postnatal gliogenesis may provide clues to normal and pathological embryonic brain ontogeny, particularly in regards to the development of astrocytes and oligodendrocytes. Cyclin dependent kinase 5 (Cdk5) contributes to neuronal migration and cell cycle control during embryogenesis, and to the differentiation of neurons and oligodendrocytes during adulthood. However, Cdk5's function in the postnatal period and within discrete progenitor lineages is unknown. Therefore, we selectively removed Cdk5 from nestin-expressing cells and their progeny by giving transgenic mice (nestin-CreERT2/R26R-YFP/CDK5(flox/flox) [iCdk5] and nestin-CreERT2/R26R-YFP/CDK5(wt/wt) [WT]) tamoxifen during postnatal (P) days P2-P 4 or P7-P 9, and quantified and phenotyped recombined (YFP+) cells at P14 and P21. When Cdk5 gene deletion was induced in nestin-expressing cells and their progeny during the wave of cortical and hippocampal gliogenesis (P2-P4), significantly fewer YFP+ cells were evident in the cortex, corpus callosum, and hippocampus. Phenotypic analysis revealed the cortical decrease was due to fewer YFP+ astrocytes and oligodendrocytes, with a slightly earlier influence seen in oligodendrocytes vs. astrocytes. This effect on cortical gliogenesis was accompanied by a decrease in YFP+ proliferative cells, but not increased cell death. The role of Cdk5 in gliogenesis appeared specific to the early postnatal period, as induction of recombination at a later postnatal period (P7-P9) resulted in no change YFP+ cell number in the cortex or hippocampus. Thus, glial cells that originate from nestin-expressing cells and their progeny require Cdk5 for proper development during the early postnatal period.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Oligodendrocytes are the myelin-forming cells of the CNS. They differentiate from oligodendrocyte precursor cells (OPCs) that are produced from progenitors throughout life but more actively during the neonatal period and in response to demyelinating insults. An accurate regulation of oligodendrogenesis is required to generate oligodendrocytes during these developmental or repair processes. We hypothesized that this regulation implicates transcription factors, which are expressed by OPCs and/or their progenitors. Ascl1/Mash1 is a proneural transcription factor previously implicated in embryonic oligodendrogenesis and operating in genetic interaction with Olig2, an essential transcriptional regulator in oligodendrocyte development. Herein, we have investigated the contribution of Ascl1 to oligodendrocyte development and remyelination in the postnatal cortex. During the neonatal period, Ascl1 expression was detected in progenitors of the cortical subventricular zone and in cortical OPCs. Different genetic approaches to delete Ascl1 in cortical progenitors or OPCs reduced neonatal oligodendrogenesis, showing that Ascl1 positively regulated both OPC specification from subventricular zone progenitors as well as the balance between OPC differentiation and proliferation. Examination of remyelination processes, both in the mouse model for focal demyelination of the corpus callosum and in multiple sclerosis lesions in humans, indicated that Ascl1 activity was upregulated along with increased oligodendrogenesis observed in remyelinating lesions. Additional genetic evidence indicated that remyelinating oligodendrocytes derived from Ascl1(+) progenitors/OPCs and that Ascl1 was required for proper remyelination. Together, our results show that Ascl1 function modulates multiple steps of OPC development in the postnatal brain and in response to demyelinating insults.
Collapse
|
19
|
Buono KD, Vadlamuri D, Gan Q, Levison SW. Leukemia inhibitory factor is essential for subventricular zone neural stem cell and progenitor homeostasis as revealed by a novel flow cytometric analysis. Dev Neurosci 2012; 34:449-62. [PMID: 23258129 DOI: 10.1159/000345155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/15/2012] [Indexed: 12/16/2022] Open
Abstract
Stem cells rely on extracellular signals produced by the niche, which dictate their ability to self-renew, expand and differentiate. It is essential to have sensitive and reproducible methods of either quantifying or isolating these stem cells and progenitors to understand their intrinsic properties and how extrinsic signals regulate their development. However, stem cells are difficult to distinguish from multipotential progenitors, which may look and act like them. Here we define a 4-color flow cytometry panel using CD133, LeX, CD140a, NG2 to define a neural stem cell (NSC) as well as 4 classes of multipotential progenitors and 3 classes of bipotential progenitors, several of which have not been described previously. We performed gain and loss of function studies for leukemia inhibitory factor (LIF) and showed a depletion of NSCs, a subset of multipotential neural precursors and immature oligodendrocytes in LIF null mice. Gain of function studies showed that LIF increased the abundance of these precursors. Our studies also show that these NPs have differential requirements for LIF and ciliary neurotrophic factor (CNTF) and for epidermal growth factor (EGF), fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) for their propagation in vitro. Surprisingly, the related cytokine, CNTF, was less potent than LIF in increasing the NSCs and more potent than LIF in increasing the PDGF responsive multipotential precursors. Finally, we show that LIF increases the expression of the core transcription factors: Klf4, Fbx15, Nanog, Sox2 and c-Myc. Altogether our FACS (fluorescence-activated cell sorter) analyses reveal that the neonatal subventricular zone is far more heterogeneous than previously suspected and our studies provide new insights into the signals and mechanisms that regulate their self-renewal and proliferation.
Collapse
Affiliation(s)
- Krista D Buono
- Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
20
|
Possible roles of Plexin-A4 in positioning of oligodendrocyte precursor cells in developing cerebral cortex. Neurosci Lett 2012; 516:259-64. [DOI: 10.1016/j.neulet.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 12/29/2022]
|
21
|
Harwell CC, Parker PRL, Gee SM, Okada A, McConnell SK, Kreitzer AC, Kriegstein AR. Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation. Neuron 2012; 73:1116-26. [PMID: 22445340 DOI: 10.1016/j.neuron.2012.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 01/24/2023]
Abstract
VIDEO ABSTRACT The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry.
Collapse
Affiliation(s)
- Corey C Harwell
- Eli and Edythe Broad Institute of Regeneration Medicine and Stem Cell Research, University of California-San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ueki T, Tsuruo Y, Yamamoto Y, Yoshimura K, Takanaga H, Seiwa C, Motojima K, Asou H, Yamamoto M. A new monoclonal antibody, 4F2, specific for the oligodendroglial cell lineage, recognizes ATP-dependent RNA helicase Ddx54: possible association with myelin basic protein. J Neurosci Res 2011; 90:48-59. [PMID: 21932369 DOI: 10.1002/jnr.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/07/2022]
Abstract
Recent research in neural development has highlighted the importance of markers to discriminate phenotypic alterations of neural cells at various developmental stages. We isolated a new monoclonal antibody, 4F2, which was shown to be specific for an oligodendrocyte lineage. In primary cultures of oligodendroglial and mixed neural cells, the 4F2 antibody labeled a large proportion of Sox2(+) , Sox10(+) , A2B5(+) , NG2(+) , Olig2(+) , O4(+) , and myelin basic protein (MBP)(+) cells but did not label any GFAP(+) or NeuN(+) cells. In immunohistochemisty of rat embryos, the 4F2 antibody labeled a portion of neuroepithelial cells of the neural tube at embryonic day 9. The 4F2-positive cells were located initially in the ventricular zone as Musashi1(+) Tuj1(-) populations and distributed throughout the striatum; thereafter, they populated the whole brain and spinal cord. These cells showed ramified processes during embryonal development. The 4F2 antigen was associated with all four isoforms of MBP in coimmunoprecipitation experiments using brain homogenates or cell lysates of cultured oligodendrocytes. Immunoscreening of a brain cDNA library identified the antigen as DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (Ddx54), a member of the DEAD box family of RNA helicases involved in RNA metabolism, transcription, and translation. Cotransfection of the Ddx54 gene with MBP isoform genes increased the nuclear localization of the 21.5-kDa MBP isoform, which has been reported to function as a nuclear signal transduction molecule. These data indicate that Ddx54 might be not only a useful marker for investigating the ontogeny of oligodendrocytes but also an important factor in oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Neuro-Glia Cell Biology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
K(V)7/KCNQ channels are functionally expressed in oligodendrocyte progenitor cells. PLoS One 2011; 6:e21792. [PMID: 21750731 PMCID: PMC3130044 DOI: 10.1371/journal.pone.0021792] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 06/12/2011] [Indexed: 11/26/2022] Open
Abstract
Background KV7/KCNQ channels are widely expressed in neurons and they have multiple important functions, including control of excitability, spike afterpotentials, adaptation, and theta resonance. Mutations in KCNQ genes have been demonstrated to associate with human neurological pathologies. However, little is known about whether KV7/KCNQ channels are expressed in oligodendrocyte lineage cells (OLCs) and what their functions in OLCs. Methods and Findings In this study, we characterized KV7/KCNQ channels expression in rat primary cultured OLCs by RT-PCR, immunostaining and electrophysiology. KCNQ2-5 mRNAs existed in all three developmental stages of rat primary cultured OLCs. KV7/KCNQ proteins were also detected in oligodendrocyte progenitor cells (OPCs, early developmental stages of OLCs) of rat primary cultures and cortex slices. Voltage-clamp recording revealed that the IM antagonist XE991 significantly reduced KV7/KCNQ channel current (IK(Q)) in OPCs but not in differentiated oligodendrocytes. In addition, inhibition of KV7/KCNQ channels promoted OPCs motility in vitro. Conclusions These findings showed that KV7/KCNQ channels were functionally expressed in rat primary cultured OLCs and might play an important role in OPCs functioning in physiological or pathological conditions.
Collapse
|
24
|
Del Bigio MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 2011; 134:1344-61. [PMID: 21478186 DOI: 10.1093/brain/awr052] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In premature infants, germinal matrix haemorrhage in the brain is a common occurrence. However, cell proliferation and fate determination in the normal human germinal matrix is poorly understood. Human ganglionic eminence samples were collected prospectively from autopsies of premature and term infants with no evidence of pathological process (n=78; dying at post-menstrual age 14-88 weeks). The ganglionic eminence was thickest at 20-26 weeks and involuted by 34-36 weeks. Proliferating cells, detected by Ki67 immunoreactivity, were abundant throughout the ganglionic eminence prior to 18 weeks, after which a sharp boundary between the dorsal and ventral ganglionic eminence appeared with reduced cell proliferation in the dorsal region. Ki67 immunoreactivity persisted in the majority of ventral cells until ∼28 weeks, after which time the proportion of proliferating cells dropped quickly. The expression of cell lineage markers (such as Olig2, SOX2, platelet-derived growth factor receptor alpha) showed partitioning at the microscopic level. The hypothesis that germinal matrix haemorrhage suppresses cell proliferation was then addressed. In comparison to controls, germinal matrix haemorrhage (n=47; born at post-menstrual age 18-34 weeks followed by survival of 0 h to 98 days) was associated with significantly decreased cell proliferation if survival was >12 h. The cell cycle arrest transcription factor p53 was transiently increased and the oligodendroglial lineage markers Olig2 and platelet-derived growth factor receptor alpha were decreased. Cell death was negligible. A low level of microglial activation was detected. Haemorrhage-associated suppression of cell proliferation in premature human infants could partially explain the reduced brain size and clinical effects in children who suffer germinal matrix haemorrhage after premature birth.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, 401 Brodie Centre, 727 McDermot Avenue, Winnipeg MB, R3E 3P5, Canada.
| |
Collapse
|
25
|
Ventromedian forebrain dysgenesis follows early prenatal ethanol exposure in mice. Neurotoxicol Teratol 2010; 33:231-9. [PMID: 21074610 DOI: 10.1016/j.ntt.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/07/2010] [Indexed: 11/20/2022]
Abstract
Ethanol exposure on gestational day (GD) 7 in the mouse has previously been shown to result in ventromedian forebrain deficits along with facial anomalies characteristic of fetal alcohol syndrome (FAS). To further explore ethanol's teratogenic effect on the ventromedian forebrain in this mouse model, scanning electron microscopic and histological analyses were conducted. For this, time mated C57Bl/6J mice were injected with 2.9g/kg ethanol or saline twice, at a 4h interval, on their 7th day of pregnancy. On GD 12.5, 13 and 17, control and ethanol-exposed specimens were collected and processed for light and scanning electron microscopic analyses. Gross morphological changes present in the forebrains of ethanol-exposed embryos included cerebral hemispheres that were too close in proximity or rostrally united, enlarged foramina of Monro, enlarged or united lateral ventricles, and varying degrees of hippocampal and ventromedian forebrain deficiency. In GD 12.5 control and ethanol-exposed embryos, in situ hybridization employing probes for Nkx2.1 or Fzd8 to distinguish the preoptic area and medial ganglionic eminences (MGEs) from the lateral ganglionic eminences, respectively, confirmed the selective loss of ventromedian tissues. Immunohistochemical labeling of oligodendrocyte progenitors with Olig2, a transcription factor necessary for their specification, and of GABA, an inhibitory neurotransmitter, showed ethanol-induced reductions in both. To investigate later consequences of ventromedian forebrain loss, MGE-derived somatostatin-expressing interneurons in the subpallial region of GD 17 fetal mice were examined, with results showing that the somatostatin-expressing interneurons that were present were dysmorphic in the ethanol-exposed fetuses. The potential functional consequences of this insult are discussed.
Collapse
|
26
|
Larson TA, Gordon TN, Lau HE, Parichy DM. Defective adult oligodendrocyte and Schwann cell development, pigment pattern, and craniofacial morphology in puma mutant zebrafish having an alpha tubulin mutation. Dev Biol 2010; 346:296-309. [PMID: 20692250 DOI: 10.1016/j.ydbio.2010.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/26/2010] [Accepted: 07/30/2010] [Indexed: 11/18/2022]
Abstract
The processes of myelination remain incompletely understood but are of profound biomedical importance owing to the several dysmyelinating and demyelinating disorders known in humans. Here, we analyze the zebrafish puma mutant, isolated originally for pigment pattern defects limited to the adult stage. We show that puma mutants also have late-arising defects in Schwann cells of the peripheral nervous system, locomotor abnormalities, and sex-biased defects in adult craniofacial morphology. Using methods of positional cloning, we identify a critical genetic interval harboring two alpha tubulin loci, and we identify a chemically induced missense mutation in one of these, tubulin alpha 8-like 3a (tuba8l3a). We demonstrate tuba8l3a expression in the central nervous system (CNS), leading us to search for defects in the development of oligodendrocytes, the myelinating cells of the CNS. We find gross reductions in CNS myelin and oligodendrocyte numbers in adult puma mutants, and these deficits are apparent already during the larval-to-adult transformation. By contrast, analyses of embryos and early larvae reveal a normal complement of oligodendrocytes that nevertheless fail to localize normal amounts of myelin basic protein (mbp) mRNA in cellular processes, and fail to organize these processes as in the wild-type. This study identifies the puma mutant as a valuable model for studying microtubule-dependent events of myelination, as well as strategies for remyelination in the adult.
Collapse
Affiliation(s)
- Tracy A Larson
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | | | |
Collapse
|
27
|
Targeted overexpression of a golli-myelin basic protein isoform to oligodendrocytes results in aberrant oligodendrocyte maturation and myelination. ASN Neuro 2009; 1:AN20090029. [PMID: 19715557 PMCID: PMC2785512 DOI: 10.1042/an20090029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recently, several in vitro studies have shown that the golli–myelin basic proteins regulate Ca2+ homoeostasis in OPCs (oligodendrocyte precursor cells) and immature OLs (oligodendrocytes), and that a number of the functions of these cells are affected by cellular levels of the golli proteins. To determine the influence of golli in vivo on OL development and myelination, a transgenic mouse was generated in which the golli isoform J37 was overexpressed specifically within OLs and OPCs. The mouse, called JOE (J37-overexpressing), is severely hypomyelinated between birth and postnatal day 50. During this time, it exhibits severe intention tremors that gradually abate at later ages. After postnatal day 50, ultrastructural studies and Northern and Western blot analyses indicate that myelin accumulates in the brain, but never reaches normal levels. Several factors appear to underlie the extensive hypomyelination. In vitro and in vivo experiments indicate that golli overexpression causes a significant delay in OL maturation, with accumulation of significantly greater numbers of pre-myelinating OLs that fail to myelinate axons during the normal myelinating period. Immunohistochemical studies with cell death and myelin markers indicate that JOE OLs undergo a heightened and extended period of cell death and are unable to effectively myelinate until 2 months after birth. The results indicate that increased levels of golli in OPC/OLs delays myelination, causing significant cell death of OLs particularly in white matter tracts. The results provide in vivo evidence for a significant role of the golli proteins in the regulation of maturation of OLs and normal myelination.
Collapse
|
28
|
Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J Neurosci 2009; 29:8335-49. [PMID: 19571125 DOI: 10.1523/jneurosci.5669-08.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transcription factor Pax6 has been implicated in neocortical neurogenesis in vertebrates, including humans. Analyses of the role of Pax6 in layer formation and cognitive abilities have been hampered by perinatal lethality of Pax6 mutants. Here, we generated viable mutants exhibiting timed, restricted inactivation of Pax6 during early and late cortical neurogenesis using Emx1-Cre and hGFAP-Cre lines, respectively. The disruption of Pax6 at the onset of neurogenesis using Emx1-Cre line resulted in premature cell cycle exit of early progenitors, increase of early born neuronal subsets located in the marginal zone and lower layers, and a nearly complete absence of upper layer neurons, especially in the rostral cortex. Furthermore, progenitors, which accumulated in the enlarged germinal neuroepithelium at the pallial/subpallial border in the Pax6 mutants, produced an excess of oligodendrocytes. The inactivation of Pax6 after generation of the lower neuronal layers using hGFAP-Cre line did not affect specification or numbers of late-born neurons, indicating that the severe reduction of upper layer neurons in Pax6 deficiency is mostly attributable to a depletion of the progenitor pool, available for late neurogenesis. We further show that Pax6(fl/fl);Emx1-Cre mutants exhibited deficiencies in sensorimotor information integration, and both hippocampus-dependent short-term and neocortex-dependent long-term memory recall. Because a majority of the morphological and behavior disabilities of the Pax6 mutant mice parallel abnormalities reported for aniridia patients, a condition caused by PAX6 haploinsufficiency, the Pax6 conditional mutant mice generated here represent a valuable genetic tool to understand how the developmental cortical disruption can lead to a human behavior abnormality.
Collapse
|
29
|
Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J Neurosci 2009; 29:7256-70. [PMID: 19494148 DOI: 10.1523/jneurosci.5653-08.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteolipid promoter (plp promoter) activity in the newborn mouse CNS is restricted to NG2-expressing oligodendroglial progenitor cells and oligodendrocytes. There are two populations of NG2 progenitors based on their plp promoter expression. Whereas the general population of NG2 progenitors has been shown to be multipotent in vitro and after transplantation, it is not known whether the subpopulation of plp promoter-expressing NG2 progenitors [i.e., plp promoter-expressing NG2 progenitors (PPEPs)] has the potential to generate multilineage cells during normal development in vivo. We addressed this issue by fate mapping Plp-Cre-ER(T2)/Rosa26-EYFP (PCE/R) double-transgenic mice, which carried an inducible Cre gene under the control of the plp promoter. Expression of the enhanced yellow fluorescent protein (EYFP) reporter gene in PPEPs was elicited by administering tamoxifen to postnatal day 7 PCE/R mice. We have demonstrated that early postnatal PPEPs, which had been thought to be restricted to the oligodendroglial lineage, also unexpectedly gave rise to a subset of immature, postmitotic, protoplasmic astrocytes in the gray matter of the spinal cord and ventral forebrain, but not in white matter. Furthermore, these PPEPs also gave rise to small numbers of immature, DCX (doublecortin)-negative neurons in the ventral forebrain, dorsal cerebral cortex, and hippocampus. EYFP-labeled representatives of each of these lineages survived to adulthood. These findings indicate that there are regional differences in the fates of neonatal PPEPs, which are multipotent in vivo, giving rise to oligodendrocytes, astrocytes, and neurons.
Collapse
|
30
|
Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage-gated Ca2+ influx. J Neurosci 2009; 29:6663-76. [PMID: 19458236 DOI: 10.1523/jneurosci.5806-08.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Migration of oligodendrocyte progenitor cells (OPCs) from proliferative zones to their final location in the brain is an essential step in nervous system development. Golli proteins, products of the myelin basic protein gene, can modulate voltage-gated Ca(2+) uptake in OPCs during process extension and retraction. Given the importance of process extension/retraction on movement, the consequences of golli expression on OPC migration were examined in vivo and in vitro using time-lapse imaging of isolated OPCs and acute brain slice preparations from golli KO and golli J37 overexpressing mice (JOE). The results indicated that golli stimulated migration, and this enhanced motility was associated with increases in the activity of voltage operated Ca(2+) channels (VOCCs). Activation of VOCCs by high K(+) resulted in a significant increase in the migration speed of JOE OPCs versus control cells and golli-mediated modulation of OPC migration disappeared in the presence of VOCC antagonists. During migration, OPCs generated Ca(2+) oscillations that were dependent on voltage-calcium influx and both the amplitude and frequency of these Ca(2+) transients correlated positively with the rate of cell movement under a variety of pharmacological treatments. The Ca(2+) transient amplitude and the rate of cell movement were significantly lower in KO cells and significantly higher in JOE cells suggesting that the presence of golli promotes OPC migration by increasing the size of voltage-mediated Ca(2+) oscillations. These data define a new molecule that regulates Ca(2+) homeostasis in OPCs, and are the first to demonstrate that voltage-gated Ca(2+) channels can regulate an OPC function, such as migration.
Collapse
|
31
|
Abstract
Limited knowledge about human oligodendrogenesis prompted us to explore the lineage relationship between cortical radial glia (RG) cells and oligodendrocytes (OLs) in the human fetal forebrain. RG cells were isolated from cortical ventricular/subventricular zone and their progeny was followed in vitro. One portion of RG cells differentiated into cells of OL lineage identified by cell-type specific antibodies, including platelet-derived growth factor receptor-alpha (PDGFRalpha), NG2, O4, myelin basic protein, and myelin oligodendrocyte glycoprotein. Moreover, using Cre Lox fate mapping (brain lipid binding protein-Cre/Floxed-yellow fluorescent protein) we established a direct link between RG cells and OL progenitors. In vitro generation of RG-derived O4(+) OL progenitors was enhanced by addition of sonic hedgehog (SHH) and reduced by the SHH inhibitor, cyclopamine, suggesting the role of SHH signaling in this process. In summary, our in vitro experiments revealed that a portion of cortical RG cells isolated from human forebrain at the second trimester of gestation generates OL progenitors and this suggests a role of SHH in this process.
Collapse
Affiliation(s)
- Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | |
Collapse
|
32
|
Ono K, Takebayashi H, Ikenaka K. Olig2 transcription factor in the developing and injured forebrain; cell lineage and glial development. Mol Cells 2009; 27:397-401. [PMID: 19390819 DOI: 10.1007/s10059-009-0067-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022] Open
Abstract
Olig2 transcription factor is widely expressed throughout the central nervous system; therefore, it is considered to have multiple functions in the developing, mature and injured brain. In this mini-review, we focus on Olig2 in the forebrain (telencephalon and diencephalon) and discuss the functional significance of Olig2 and the differentiation properties of Olig2-expressing progenitors in the development and injured states. Short- and long-term lineage analysis in the developing forebrain elucidated that not all late Olig2+ cells are direct cohorts of early cells and that Olig2 lineage cells differentiate into neurons or glial cells in a region- and stage-dependent manner. Olig2-deficient mice revealed large elimination of oligodendrocyte precursor cells and a decreased number of astrocyte progenitors in the dorsal cortex, whereas no reduction in the number of GABAergic neurons. In addition to Olig2 function in the developing cortex, Olig2 is also reported to be important for glial scar formation after injury. Thus, Olig2 can be essential for glial differentiation during development and after injury.
Collapse
Affiliation(s)
- Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | |
Collapse
|
33
|
Makinodan M, Tatsumi K, Manabe T, Yamauchi T, Makinodan E, Matsuyoshi H, Shimoda S, Noriyama Y, Kishimoto T, Wanaka A. Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring. J Neurosci Res 2008; 86:2190-200. [PMID: 18438922 DOI: 10.1002/jnr.21673] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidemiological data suggest a relationship between maternal infection and a high incidence of schizophrenia in offspring. An animal model based on this hypothesis was made by injecting double-stranded RNA, polyinosinic-polycytidylic acid (poly-I:C), into early pregnant mice, and their offspring were examined for biochemical and histological abnormalities. Mouse brains were examined with special reference to oligodendrocytes, which have been implicated in several neurodevelopmental disorders. We detected a significant decrease of myelin basic protein (MBP) mRNA and protein at early postnatal periods in poly-I:C mice. MBP immunocytochemistry and electron microscopy revealed that the hippocampus of juvenile poly-I:C mice was less myelinated than in PBS mice, with no significant loss of oligodendrocytes. In addition, axonal diameters were significantly smaller in juvenile poly-I:C mice than in control mice. These abnormalities reverted to normal levels when the animals reached the adult stage. These findings suggest that retarded myelination and axonal abnormalities in early postnatal stages caused by maternal immune activation could be related to schizophrenia-related behaviors in adulthood.
Collapse
Affiliation(s)
- Manabu Makinodan
- Department of Psychiatry, Nara Medical University Medical School, Kashihara City, Nara, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lyck L, Krøigård T, Finsen B. Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice. Eur J Neurosci 2008; 26:1749-64. [PMID: 17897392 DOI: 10.1111/j.1460-9568.2007.05763.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The post-natal growth spurt of the mammalian neocortex has been attributed to maturation of dendritic arborizations, growth and myelination of axons, and addition of glia. It is unclear whether this growth may also involve recruitment of additional neurones. Using stereological methods, we analysed the number of neurones and glia in the neocortex during post-natal development in two separate strains of mice. Cell counting by the optical fractionator revealed that the number of neurones increased 80-100% from the time of birth to post-natal day (P)16, followed by a reduction by approximately 25% in the young adult mouse at P50-55. Unexpectedly, at the time of birth less than half of the neurones and at P8 only 65% of the neurones expressed neuronal nuclear antigen (NeuN), a marker of mature post-migratory neurones. In accordance with these observations, NeuN acquisition by neurones in layer VIa was delayed until P16. The number of glia reached its maximum at P16, whereas the number of oligodendroglia, identified using a transgenic marker, increased until P55, the latest time of observation. Neurones continued to accumulate in the developing neocortex during the first 2 weeks of post-natal development, underscoring fundamental differences in brain development in the mouse compared with human and non-human primates. Further, delayed acquisition of NeuN by neurones in the deepest neocortical layers and continued addition of oligodendroglia to the neocortex suggested that neocortical maturation should be regarded as an ongoing process continuing into the young adult mouse.
Collapse
Affiliation(s)
- Lise Lyck
- Medical Biotechnology Center, University of Southern Denmark, Odense
| | | | | |
Collapse
|
35
|
Ndubaku U, de Bellard ME. Glial cells: old cells with new twists. Acta Histochem 2007; 110:182-95. [PMID: 18068219 PMCID: PMC2365468 DOI: 10.1016/j.acthis.2007.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 12/11/2022]
Abstract
Based on their characteristics and function--migration, neural protection, proliferation, axonal guidance and trophic effects--glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed--as true stem cells in the nervous system--and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells.
Collapse
Affiliation(s)
- Ugo Ndubaku
- Biology Department, California State University Northridge, MC 8303, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | | |
Collapse
|
36
|
Petryniak MA, Potter GB, Rowitch DH, Rubenstein JLR. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 2007; 55:417-33. [PMID: 17678855 PMCID: PMC2039927 DOI: 10.1016/j.neuron.2007.06.036] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Progenitors within the ventral telencephalon can generate GABAergic neurons and oligodendrocytes, but regulation of the neuron-glial switch is poorly understood. We investigated the combinatorial expression and function of Dlx1&2, Olig2, and Mash1 transcription factors in the ventral telencephalon. We show that Dlx homeobox transcription factors, required for GABAergic interneuron production, repress oligodendrocyte precursor cell (OPC) formation by acting on a common progenitor to determine neuronal versus oligodendroglial cell fate acquisition. We demonstrate that Dlx1&2 negatively regulate Olig2-dependant OPC formation and that Mash1 promotes OPC formation by restricting the number of Dlx+ progenitors. Progenitors transplanted from Dlx1&2 mutant ventral telencephalon into newborn wild-type mice do not produce neurons but differentiate into myelinating oligodendrocytes that survive into adulthood. Our results identify another role for Dlx genes as modulators of neuron versus oligodendrocyte development in the ventral embryonic forebrain.
Collapse
Affiliation(s)
- Magdalena A. Petryniak
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
| | - Gregory B. Potter
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| | - David H. Rowitch
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
- Institute for Regeneration Medicine, Department of Neurological Surgery, UCSF
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| |
Collapse
|
37
|
Zhou L, Li CJ, Wang Y, Xia W, Yao B, Jin JY, Gui JF. Identification and characterization of a MBP isoform specific to hypothalamus in orange-spotted grouper (Epinephelus coioides). J Chem Neuroanat 2007; 34:47-59. [PMID: 17513086 DOI: 10.1016/j.jchemneu.2007.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 03/30/2007] [Accepted: 03/31/2007] [Indexed: 11/30/2022]
Abstract
Myelin basic protein (MBP), as a major component of the myelin sheath, has been revealed to play an important role in forming and maintaining myelin structure in vertebrate nervous system. In teleost, hypothalamus is an instinctive brain center and plays significant roles in many physiological functions, such as energy metabolism, growth, reproduction, and stress response. In comparison with other MBP identified in vertebrates, a smallest MBP is cloned and identified from the orange-spotted grouper hypothalamic cDNA plasmid library in this study. RT-PCR analysis and Western blot detection indicate that the EcMBP is specific to hypothalamus, and expresses mainly in the tuberal hypothalamus in adult grouper. Immunofluorescence localization suggests that EcMBP should be expressed by oligodendrocytes, and the expressing cells should be concentrated in hypothalamus and the area surrounding hypothalamus, such as NPOpc, VC, DP, NLTm, and NDLI. The studies on EcMBP expression pattern and developmental behaviour in the brains of grouper embryos and larvae reveal that the EcMBP-expressing cells are only limited in a defined set of cells on the border of hypothalamus, and suggest that the EcMBP-expressing cells might be a subpopulation of oligodendrocyte progenitor cells. This study not only identifies a smallest MBP isoform specific to hypothalamus that can be used as a molecular marker of oligodendrocytes in fish, but also provides new insights for MBP evolution and cellular distribution.
Collapse
Affiliation(s)
- L Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Parras CM, Hunt C, Sugimori M, Nakafuku M, Rowitch D, Guillemot F. The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 2007; 27:4233-42. [PMID: 17442807 PMCID: PMC6672315 DOI: 10.1523/jneurosci.0126-07.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bHLH (basic helix-loop-helix) transcription factor Mash1 is best known for its role in the regulation of neurogenesis. However, Mash1 is also expressed in oligodendrocyte precursors and has recently been shown to promote the generation of oligodendrocytes in cell culture, suggesting that it may regulate oligodendrogenesis as well. Here, we show that in the developing ventral forebrain, Mash1 is expressed by a subset of oligodendrocyte precursors (OPCs) as soon as they are generated in the ventricular zone. Using reporter mice, we demonstrate that a subset of OPCs in both the embryonic and postnatal forebrain originate from Mash1-positive progenitors, including a large fraction of adult NG2-positive OPCs. Using Mash1 null mutant mice, we show that Mash1 is required for the generation of an early population of OPCs in the ventral forebrain between embryonic day 11.5 (E11.5) and E13.5, whereas OPCs generated later in embryonic development are not affected. Overexpression of Mash1 in the dorsal telencephalon induces expression of PDGFRalpha (platelet-derived growth factor receptor alpha) but not other OPC markers, suggesting that Mash1 specifies oligodendrogenesis in cooperation with other factors. Analysis of double-mutant mice suggests that Olig2 is one of the factors that cooperate with Mash1 for generation of OPCs. Together, our results show for the first time that Mash1 cooperates in vivo with Olig2 in oligodendrocyte specification, demonstrating an essential role for Mash1 in the generation of a subset of oligodendrocytes and revealing a genetic heterogeneity of oligodendrocyte lineages in the mouse forebrain.
Collapse
Affiliation(s)
- Carlos M. Parras
- Division of Molecular Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Charles Hunt
- Division of Molecular Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Michiya Sugimori
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| | - David Rowitch
- University of California, San Francisco, Children's Hospital at University of California, San Francisco Medical Center, San Francisco, California 94143-0734
| | - François Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
39
|
Identification of two novel glial-restricted cell populations in the embryonic telencephalon arising from unique origins. BMC DEVELOPMENTAL BIOLOGY 2007; 7:33. [PMID: 17439658 PMCID: PMC1858687 DOI: 10.1186/1471-213x-7-33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/17/2007] [Indexed: 01/12/2023]
Abstract
Background Considerably less attention has been given to understanding the cellular components of gliogenesis in the telencephalon when compared to neuronogenesis, despite the necessity of normal glial cell formation for neurological function. Early proposals of exclusive ventral oligodendrocyte precursor cell (OPC) generation have been challenged recently with studies revealing the potential of the dorsal telencephalon to also generate oligodendrocytes. The identification of OPCs generated from multiple regions of the developing telencephalon, together with the need of the embryonic telencephalon to provide precursor cells for oligodendrocytes as well as astrocytes in ventral and dorsal areas, raises questions concerning the identity of the precursor cell populations capable of generating macroglial subtypes during multiple developmental windows and in differing locations. Results We have identified progenitor populations in the ventral and dorsal telencephalon restricted to the generation of astrocytes and oligodendrocytes. We further demonstrate that the dorsal glial progenitor cells can be generated de novo from the dorsal telencephalon and we demonstrate their capacity for in vivo production of both myelin-forming oligodendrocytes and astrocytes upon transplantation. Conclusion Based on our results we offer a unifying model of telencephalic gliogenesis, with the generation of both oligodendrocytes and astrocytes from spatially separate, but functionally similar, glial restricted populations at different developmental times in the dorsal and ventral CNS.
Collapse
|
40
|
Abstract
The Scratch genes belong to the Snail superfamily of zinc-finger transcription factors present in the metazoa, represented in mammals by the Scratch1 and Scratch2 genes. We have analyzed the expression of these genes in the brain of mice at developmental stages between 9.5 days-post-coitum to adulthood. Both genes are expressed in the mantle layer of the neuroepithelium at mid-gestational stages in all regions except for the region corresponding to the V2 interneuron column, which lacked Scratch2 transcripts. From perinatal to adult stages, the expression patterns of the two genes differ. Scratch1 remains strongly expressed in almost all brain regions, although it is not found in some ventral structures such as motor nuclei and hypothalamic regions. In contrast, Scratch2 expression progressively diminishes and virtually no expression can be detected in the adult brain. Nevertheless, strong expression of Scratch2 is retained in the postnatal cortical subventricular zone, in the inner part of the cerebellar external granular layer, and in the glial cells of the adult vomeronasal nerve.
Collapse
Affiliation(s)
- Faustino Marín
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain
| | | |
Collapse
|
41
|
Okada A, Tominaga M, Horiuchi M, Tomooka Y. Plexin-A4 is expressed in oligodendrocyte precursor cells and acts as a mediator of semaphorin signals. Biochem Biophys Res Commun 2006; 352:158-63. [PMID: 17109816 DOI: 10.1016/j.bbrc.2006.10.176] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 01/03/2023]
Abstract
Class 3 semaphorin acts as a guidance clue for both cell migration and nerve fiber projection. The signal of class 3 semaphorin travels via a receptor complex consisting of neuropilins and Plexin-A subfamily. Although it has been reported that class 3 semaphorin acts as a repellent for oligodendrocyte precursor cells (OPCs), which migrate actively during brain development, the expression of Plexin-A subfamily has not been reported in OPCs yet. Therefore, it is currently unclear how semaphorin signals can travel in OPCs. In the present study, the expression of Plexin-A4 (PlexA4) was first demonstrated in a newly established OPC line and OPCs in developing brain. In the OPC line, repulsion for process extension was caused by both Sema3A and Sema6A, and the effect of the semaphorins was diminished in cells expressing PlexA4 lacking the cytoplasmic domain. These results strongly suggest that PlexA4 expressed in OPCs acts as a mediator of semaphorin signals.
Collapse
Affiliation(s)
- Atsumasa Okada
- Department of Biological Science and Technology, and Tissue Engineering Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
42
|
Horiuchi M, Tomooka Y. An oligodendroglial progenitor cell line FBD-102b possibly secretes a radial glia-inducing factor. Neurosci Res 2006; 56:213-9. [PMID: 16884801 DOI: 10.1016/j.neures.2006.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 11/19/2022]
Abstract
Interactions between oligodendroglial and astroglial lineages during development are still unclear. In this study, FBD-102b, derived from p53-/- fetal brains, was characterized as an oligodendroglial progenitor cell (OPC) line. In co-culture with 102b cells, cells of an astrocyte progenitor cell line, FBD-104, elongated monopolar processes, like radial glia, and actively proliferated. Conditioned medium of 102b cells also induced the process elongation that was associated with down-regulation of GFAP and up-regulation of vimentin and nestin. These results suggested that OPCs secrete a radial glia-inducing factor that might maintain the radial glial processes to use as scaffolds of migration.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Department of Biological Science and Technology, and Tissue Engineering Research Center, Tokyo University of Science, 2641 Yamazaki, Noda City, Chiba 278-8510, Japan
| | | |
Collapse
|
43
|
Lelievre V, Ghiani CA, Seksenyan A, Gressens P, de Vellis J, Waschek JA. Growth factor-dependent actions of PACAP on oligodendrocyte progenitor proliferation. ACTA ACUST UNITED AC 2006; 137:58-66. [PMID: 16989910 DOI: 10.1016/j.regpep.2006.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/20/2006] [Accepted: 04/22/2006] [Indexed: 11/28/2022]
Abstract
We previously reported that rat oligodendrocyte progenitors (OLP) express receptors for the pituitary adenylyl cyclase-activating peptide (PACAP) in vivo and in vitro. Addition of PACAP to cultured OLP triggered a potent elevation in intracellular cAMP contents, a dose-dependent stimulation of proliferation, and a delay in myelinogenesis (Lee M, Lelievre V, Zhao P, Torres M, Rodriguez W, Byun JY, Doshi S, Ioffe Y, Gupta G, de los Monteros AE, de Vellis J, Waschek J. Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J Neurosci. 2001 21:3849-59.). In an attempt to understand how PACAP might interact with growth factors known to stimulate OLP proliferation, we investigated PACAP actions on OLP proliferation in the presence of Fibroblast Growth Factor-2 (FGF-2) and PDGF. Multiple PACAP receptor subtype mRNAs and splice variants were detected in these cultures. PACAP by itself potently stimulated OLP proliferation and enhanced the ability of FGF-2 to stimulate DNA synthesis. In contrast, this peptide strongly antagonized the mitogenic effects of PDGF in association with a reduction of PDGFalpha receptor gene expression. Additionally, we investigated the interaction of PACAP with the morphogenetic factor sonic hedgehog (Shh), which recently was shown to be crucial for oligodendrocyte generation. OLP cultures were found to express mRNAs for both ptc1 (Shh receptor) and gli1 (Shh target gene) and responded to Shh treatment with an increase in proliferation. PACAP antagonized the ability of Shh to stimulate OLP proliferation. Moreover, transcriptional targets of Shh signaling were also reduced by this treatment, suggesting that PACAP directly antagonized Shh signaling. These studies reveal complex in vitro interactions of PACAP with other factors involved in OLP development.
Collapse
Affiliation(s)
- Vincent Lelievre
- David Geffen School of Medicine, Department of Psychiatry, Semel Institute for Neuroscience and Mental Retardation Research Center, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
44
|
Harry GJ, Lawler C, Brunssen SH. Maternal infection and white matter toxicity. Neurotoxicology 2006; 27:658-70. [PMID: 16787664 PMCID: PMC1592133 DOI: 10.1016/j.neuro.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/01/2006] [Accepted: 05/10/2006] [Indexed: 12/11/2022]
Abstract
Studies examining maternal infection as a risk factor for neurological disorders in the offspring have suggested that altered maternal immune status during pregnancy can be considered as an adverse event in prenatal development. Infection occurring in the mother during the gestational period has been implicated in multiple neurological effects. The current manuscript will consider the issue of immune/inflammatory conditions during prenatal development where adverse outcomes have been linked to maternal systemic infection. The discussions will focus primary on white matter and oligodendrocytes as they have been identified as target processes. This white matter damage occurs in very early preterm infants and in various other human diseases currently being examined for a linkage to maternal or early developmental immune status. The intent is to draw attention to the impact of altered immune status during pregnancy on the offspring for the consideration of such contributing factors to the general assessment of developmental neurotoxicology.
Collapse
Affiliation(s)
- G Jean Harry
- Neurotoxicology Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health/DHHS, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
45
|
Loulier K, Ruat M, Traiffort E. Increase of proliferating oligodendroglial progenitors in the adult mouse brain upon Sonic hedgehog delivery in the lateral ventricle. J Neurochem 2006; 98:530-42. [PMID: 16805844 DOI: 10.1111/j.1471-4159.2006.03896.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sonic hedgehog signaling is required for the maintenance of stem cell niches in the postnatal subventricular zone and the proliferation of neural progenitors in the mature hippocampus. We show here that delivery of Sonic hedgehog protein into the lateral ventricle of adult mice increases cell proliferation in the corpus callosum and cerebral cortex. In this latter area, the number of neural progenitors expressing the proteoglycan NG2 is enhanced 2 days after the injection. In both areas, mRNA up-regulation of the transcriptional target gene Patched was observed in cells expressing the oligodendroglial transcription factor Olig1. Twenty-six days following the adenovirus-mediated delivery of Sonic hedgehog into the lateral ventricle, newly generated cells in the cerebral cortex and in the corpus callosum are influenced towards the initial steps of oligodendrogenesis, as indicated by a 50% increase in the number of cells expressing the oligodendroglial marker DM20. Our experiments demonstrate that the number of oligodendrocyte precursor cells in the cerebral cortex and corpus callosum can be increased upon delivery of Sonic hedgehog proteins and highlight the potential capacity of the adult brain to mobilize a pool of premyelinating cells.
Collapse
Affiliation(s)
- Karine Loulier
- CNRS, Signal Transduction and Developmental Neuropharmacology, UPR9040 Laboratoire de Neurobiologie Cellulaire et Moléculaire, Institut de Neurobiologie Alfred Fessard, IFR 2118, Gif sur Yvette, France
| | | | | |
Collapse
|
46
|
Abematsu M, Kagawa T, Fukuda S, Inoue T, Takebayashi H, Komiya S, Taga T. Basic fibroblast growth factor endows dorsal telencephalic neural progenitors with the ability to differentiate into oligodendrocytes but not gamma-aminobutyric acidergic neurons. J Neurosci Res 2006; 83:731-43. [PMID: 16496354 DOI: 10.1002/jnr.20762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic fibroblast growth factor (bFGF) is commonly used to enrich and maintain neural stem cells in vitro. Olig2 is an essential transcription factor for oligodendrocyte lineage specification and is expressed predominantly in ventral neuroepithelial cells in the medial and lateral ganglionic eminence (GE), where oligodendrocyte progenitors originate. Here we report significant induction of Olig2 expression in dorsal neuroepithelium-derived cells cultured in the presence of bFGF, in which Olig2-expressing cells were initially negligible. Among Olig2-expressing cells appearing after a 5-day treatment with bFGF, 99.8% coexpressed nestin. There was no significant difference in proliferation or apoptosis in dorsal and ventral neuroepithelial cultures in the presence of bFGF, suggesting that bFGF induces ectopic expression of Olig2 in dorsal "cortical" neuroepithelial cells. Similarly, expression of Mash1, another ventral neuroepithelial cell marker gene, was also induced in cultured dorsal neuroepithelial cells in the presence of bFGF. Conversely, in this culture, expression of dorsal neuroepithelial cell markers, such as Neurogenin1, Neurogenin2, Pax6, and Emx2, was down-regulated. These results suggested a possible ventralizing activity of bFGF. In fact, bFGF-treated dorsal neuroepithelial cells acquired the potential to generate O4-positive oligodendrocytes with efficacy comparable to that observed with GE-derived cells. In marked contrast, bFGF did not enable dorsal neuroepithelial cells to generate gamma-aminobutyric acid (GABA) neurons, which normally develop only from GE in vivo. Thus, bFGF endows dorsal telencephalic neural progenitors with the ability to differentiate into oligodendrocytes but not GABAergic neurons, suggesting the presence of different mechanisms governing specification of dorsoventral cell identities of neuronal and glial cell lineages.
Collapse
Affiliation(s)
- Masahiko Abematsu
- Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Naruse M, Nakahira E, Miyata T, Hitoshi S, Ikenaka K, Bansal R. Induction of oligodendrocyte progenitors in dorsal forebrain by intraventricular microinjection of FGF-2. Dev Biol 2006; 297:262-73. [PMID: 16782086 DOI: 10.1016/j.ydbio.2006.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 05/11/2006] [Accepted: 05/15/2006] [Indexed: 01/15/2023]
Abstract
During embryonic development, oligodendrocyte progenitors (OLPs) originate from the ventral forebrain under the regulation of Sonic hedgehog (Shh). Shh controls the expression of transcription factor Olig2, which is strongly implicated in OLP generation. Studies of mice deficient in Shh expression suggest, however, that an alternative pathway for OLP generation may exist. The generation of OLPs in dorsal forebrain has been suggested since treatment of dorsal-neural progenitor cells in culture with fibroblast growth factor (FGF-2) results in OLP induction. To ask if dorsal induction of OLPs in embryonic forebrain can occur in vivo and if FGF-2 could initiate an alternative pathway of regulation, we used in utero microinjection of FGF-2 into the lateral ventricles of mouse fetal forebrain. A single injection of FGF-2 at E13.5 resulted in the expression of the OLP markers Olig2 and PDGFRalpha mRNA in dorsal forebrain ventricular and intermediate zones. However, FGF-2 did not induce dorsal expression of Shh, Patched1 or Nkx2.1, and co-injection of FGF-2 and a Shh inhibitor did not attenuate the induction of Olig2 and PDGFRalpha, suggesting that Shh signaling was not involved in this FGF-2-mediated dorsal induction. These results demonstrate that the dorsal embryonic forebrain in vivo has the potential to generate OLPs in the presence of normal positional cues and that this can be driven by FGF-2 independent of Shh signaling.
Collapse
Affiliation(s)
- Masae Naruse
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, Hayama, Miura, Kanagawa 240-0193, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
During development, several populations of progenitor cells in the dorsal telencephalon generate a large variety of neurons which acquire distinct morphologies and physiological properties and serve distinct functions in the mammalian cortex. This paper reviews recent work that has identified (i) key molecules involved in the specification and differentiation of cortical neurons, (ii) novel genes which distinguish distinct subsets of cortical progenitors and may be involved in the diversification of cortical neurons present in different cortical layers, and (iii) mechanisms involved in the generation of different projection neuronal subtypes in the well-studied model of layer 5 of the rodent cortex.
Collapse
Affiliation(s)
- Francois Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA London, UK
| | | | | | | |
Collapse
|
49
|
|
50
|
Yue T, Xian K, Hurlock E, Xin M, Kernie SG, Parada LF, Lu QR. A critical role for dorsal progenitors in cortical myelination. J Neurosci 2006; 26:1275-80. [PMID: 16436615 PMCID: PMC6674567 DOI: 10.1523/jneurosci.4717-05.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Much controversy regarding the anatomical sources of oligodendrocytes in the spinal cord and hindbrain has been resolved. However, the relative contribution of dorsal and ventral progenitors to myelination of the cortex is still a subject of debate. To assess the contribution of dorsal progenitors to cortical myelination, we ablated the basic helix-loop-helix transcription factor Olig2 in the developing dorsal telencephalon. In Olig2-ablated cortices, myelination is arrested at the progenitor stage. Under these conditions, ventrally derived oligodendrocytes migrate dorsally into the Olig2-ablated territory but cannot fully compensate for myelination deficits observed at postnatal stages. Thus, spatially restricted ablation of Olig2 function unmasks a contribution of dorsal progenitors to cortical myelination that is much greater than hitherto appreciated.
Collapse
|