1
|
Borges-Assis AB, Uliana DL, Hott SC, Guimarães FS, Lisboa SF, Resstel LBM. Bed nucleus of the stria terminalis CB1 receptors and the FAAH enzyme modulate anxiety behavior depending on previous stress exposure. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110739. [PMID: 36870468 DOI: 10.1016/j.pnpbp.2023.110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The endocannabinoid (eCB) anandamide (AEA) is synthesized on-demand in the post-synaptic terminal and can act on presynaptic cannabinoid type 1 (CB1) receptors, decreasing the release of neurotransmitters, including glutamate. AEA action is ended through enzymatic hydrolysis via FAAH (fatty acid amid hydrolase) in the post-synaptic neuron. eCB system molecules are widely expressed in brain areas involved in the modulation of fear and anxiety responses, including the Bed Nucleus of the Stria Terminalis (BNST), which is involved in the integration of autonomic, neuroendocrine, and behavioral regulation. The presence of the CB1 and FAAH was described in the BNST; however, their role in the modulation of defensive reactions is not fully comprehended. In the present work we aimed at investigating the role of AEA and CB1 receptors in the BNST in modulating anxiety-related behaviors. Adult male Wistar rats received local BNST injections of the CB1 receptor antagonist AM251 (0.1-0.6 nmol) and/or the FAAH inhibitor (URB597; 0.001-0.1 nmol) and were evaluated in the elevated plus maze (EPM) test, with or without previous acute restraint stress (2 h) exposure, or in the contextual fear conditioning. We observed that although AM251 and URB597 had no effects on the EPM, they increased and decreased, respectively, the conditioned fear response. Supporting a possible influence of stress in these differences, URB597 was able to prevent the restraint stress-induced anxiogenic effect in the EPM. The present data, therefore, suggest that eCB signaling in the BNST is recruited during more aversive situations to counteract the stress effect.
Collapse
Affiliation(s)
- Anna Bárbara Borges-Assis
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Lescano Uliana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, USA
| | - Sara Cristina Hott
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sabrina Francesca Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Oliveira LA, Pollo TRS, Rosa EA, Duarte JO, Xavier CH, Crestani CC. Both Prelimbic and Infralimbic Noradrenergic Neurotransmissions Modulate Cardiovascular Responses to Restraint Stress in Rats. Front Physiol 2021; 12:700540. [PMID: 34483957 PMCID: PMC8415160 DOI: 10.3389/fphys.2021.700540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 11/27/2022] Open
Abstract
The prelimbic (PL) and infralimbic (IL) subareas of the medial prefrontal cortex (mPFC) have been implicated in physiological and behavioral responses during aversive threats. The previous studies reported the noradrenaline release within the mPFC during stressful events, and the lesions of catecholaminergic terminals in this cortical structure affected stress-evoked local neuronal activation. Nevertheless, the role of mPFC adrenoceptors on cardiovascular responses during emotional stress is unknown. Thus, we investigated the role of adrenoceptors present within the PL and IL on the increase in both arterial pressure and heart rate (HR) and on the sympathetically mediated cutaneous vasoconstriction evoked by acute restraint stress. For this, bilateral guide cannulas were implanted into either the PL or IL of male rats. All animals were also subjected to catheter implantation into the femoral artery for cardiovascular recording. The increase in both arterial pressure and HR and the decrease in the tail skin temperature as an indirect measurement of sympathetically mediated cutaneous vasoconstriction were recorded during the restraint session. We observed that the microinjection of the selective α2-adrenoceptor antagonist RX821002 into either the PL or IL decreased the pressor response during restraint stress. Treatment of the PL or IL with either the α1-adrenoceptor antagonist WB4101 or the α2-adrenoceptor antagonist reduced the restraint-evoked tachycardia. The drop in the tail skin temperature was decreased by PL treatment with the β-adrenoceptor antagonist propranolol and with the α1- or α2-adrenoceptor antagonists. The α2-adrenoceptor antagonist into the IL also decreased the skin temperature response. Our results suggest that the noradrenergic neurotransmission in both PL and IL mediates the cardiovascular responses to aversive threats.
Collapse
Affiliation(s)
- Leandro A Oliveira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint Federal University of São Carlos (UFSCar) - São Paulo State University (UNESP) Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Taciana R S Pollo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Elinéia A Rosa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint Federal University of São Carlos (UFSCar) - São Paulo State University (UNESP) Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos H Xavier
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint Federal University of São Carlos (UFSCar) - São Paulo State University (UNESP) Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
3
|
Li TL, Chen JYS, Huang SC, Dai YWE, Hwang LL. Cardiovascular pressor effects of orexins in the dorsomedial hypothalamus. Eur J Pharmacol 2017; 818:343-350. [PMID: 29104046 DOI: 10.1016/j.ejphar.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
Orexins are important regulators of cardiovascular functions in various physiological and pathological conditions. The dorsomedial hypothalamus (DMH), an essential mediator of cardiovascular responses to stress, contains dense orexinergic innervations and receptors. We examined whether orexins can regulate cardiovascular functions through their actions in the DMH in anesthetized rats. An intra-DMH injection of orexin A (30pmol) produced elevation of arterial pressure and heart rate. Orexin A-sensitive sites were located within or immediately adjacent to the DMH and larger responses were induced at the compact part of the dorsomedial hypothalamic nucleus. Orexin A-induced responses were attenuated by intra-DMH pretreatment with an orexin receptor 1 (OX1R) antagonist, SB-334867 (15nmol) (17.7 ± 2.8 vs. 5.2 ± 1.0mmHg; 54.6 ± 10.0 vs. 22.8 ± 7.4 beats/min). Intra-DMH applied [Ala11,D-Leu15]-orexin B (300 pmol), an orexin receptor 2 (OX2R) agonist, elicited cardiovascular responses mimicking the responses of orexin A, except for a smaller pressor response (7.4 ± 1.7 vs. 16.4 ± 1.8mmHg). In a series of experiment, effects of orexin B (100pmol) and then orexin A (30pmol), were examined at a same site. Two patterns of responses were observed in 12 intra-DMH sites: (1) both orexin A and B (9 sites), and (2) only orexin A (3 sites) induced cardiovascular responses, respectively suggesting OX1R/OX2R-mediated and OX1R-predominant mechanisms. In conclusion, orexins regulated cardiovascular functions through OX1R/OX2R- or OX1R-mediated mechanisms at different locations in the DMH.
Collapse
Affiliation(s)
- Tzu-Ling Li
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Jennifer Y S Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Shang-Cheng Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Yu-Wen E Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| |
Collapse
|
4
|
Dampney RAL. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol 2015; 309:R429-43. [PMID: 26041109 DOI: 10.1152/ajpregu.00051.2015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023]
Abstract
Actual or potentially threatening stimuli in the external environment (i.e., psychological stressors) trigger highly coordinated defensive behavioral responses that are accompanied by appropriate autonomic and respiratory changes. As discussed in this review, several brain regions and pathways have major roles in subserving the cardiovascular and respiratory responses to threatening stimuli, which may vary from relatively mild acute arousing stimuli to more prolonged life-threatening stimuli. One key region is the dorsomedial hypothalamus, which receives inputs from the cortex, amygdala, and other forebrain regions and which is critical for generating autonomic, respiratory, and neuroendocrine responses to psychological stressors. Recent studies suggest that the dorsomedial hypothalamus also receives an input from the dorsolateral column in the midbrain periaqueductal gray, which is another key region involved in the integration of stress-evoked cardiorespiratory responses. In addition, it has recently been shown that neurons in the midbrain colliculi can generate highly synchronized autonomic, respiratory, and somatomotor responses to visual, auditory, and somatosensory inputs. These collicular neurons may be part of a subcortical defense system that also includes the basal ganglia and which is well adapted to responding to threats that require an immediate stereotyped response that does not involve the cortex. The basal ganglia/colliculi system is phylogenetically ancient. In contrast, the defense system that includes the dorsomedial hypothalamus and cortex evolved at a later time, and appears to be better adapted to generating appropriate responses to more sustained threatening stimuli that involve cognitive appraisal.
Collapse
Affiliation(s)
- Roger A L Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Furlong TM, McDowall LM, Horiuchi J, Polson JW, Dampney RAL. The effect of air puff stress on c-Fos expression in rat hypothalamus and brainstem: central circuitry mediating sympathoexcitation and baroreflex resetting. Eur J Neurosci 2014; 39:1429-38. [DOI: 10.1111/ejn.12521] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Teri M. Furlong
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Lachlan M. McDowall
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Jouji Horiuchi
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Jaimie W. Polson
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Roger A. L. Dampney
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| |
Collapse
|
6
|
Anxiety and hypothalamic-pituitary-adrenal axis responses to psychological stress are attenuated in male rats made lean by large litter rearing. Psychoneuroendocrinology 2011; 36:1080-91. [PMID: 21349647 DOI: 10.1016/j.psyneuen.2011.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 01/28/2011] [Indexed: 11/21/2022]
Abstract
An excellent strategy to treat overactive responses to stress is to exploit the body's inherent stress-inhibitory mechanisms. Stress responses are known to differ between individuals depending upon their level and distribution of adiposity and their experiences in early life. For instance, we have recently shown that female rats made obese by overfeeding during the neonatal period have exacerbated responses to psychological stress. The converse may be true for those that are underfed during this period. In this investigation we hypothesized that rats made lean by neonatal underfeeding would have reduced anxiety and attenuated hypothalamic-pituitary-adrenal (HPA) axis responses to psychological stress. Our findings show that male (but not female) rats, made smaller by being suckled in a large litter, show reduced anxiety-related behaviour compared with those from normal litters when tested in the elevated plus maze. These smaller males also have attenuated activation of the paraventricular nucleus of the hypothalamus in response to the psychological stress, restraint, and corticosterone responses to restraint that return more quickly to baseline than controls. These findings are exciting from the perspective of understanding and potentially exploiting the body's inherent stress-inhibitory mechanisms to treat overactive responses to stress. They also provide an indication that being lean may be able to ameliorate overactive stress responses. Understanding the mechanisms by which these stress responses are attenuated in lean animals will be important for future strategies to treat diseases associated with overactive HPA axes in humans.
Collapse
|
7
|
Early life activation of toll-like receptor 4 reprograms neural anti-inflammatory pathways. J Neurosci 2010; 30:7975-83. [PMID: 20534845 DOI: 10.1523/jneurosci.6078-09.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A single postnatal exposure to the bacterial endotoxin, lipopolysaccharide (LPS), reduces the neuroimmune response to a subsequent LPS exposure in the adult rat. The attenuated fever and proinflammatory response is caused by a paradoxical, amplified, early corticosterone response to LPS. Here we identify the mechanisms underlying the heightened corticosterone response to LPS in adults after early life exposure to LPS. In postnatal LPS-treated rats, hypothalamic corticotrophin-releasing hormone mRNA, pituitary proopiomelanocortin mRNA, and circulating adrenocorticotrophic hormone were all increased after adult exposure to LPS without significant modification to hippocampal or hypothalamic glucocorticoid receptor mRNA or protein or vagally mediated afferent signaling to the brain. Postnatal LPS administration did cause a persistent upregulation of the LPS Toll-like receptor-4 (TLR4) mRNA in liver and spleen, but not in brain, pituitary, or adrenal gland. In addition, cyclooxygenase-2 (COX-2), which is a prostaglandin biosynthetic enzyme and is normally undetectable in most peripheral tissue, was constitutively expressed in the liver. Adult immune activation of the upregulated TLR4 and COX-2 caused a rapid, amplified rise in circulating, but not brain, prostaglandin E(2) that induced an early, enhanced activation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, postnatal LPS reprograms the neuroimmune axis by priming peripheral tissues to create a novel, prostaglandin-mediated activation of the HPA axis brought about by increased constitutive expression of TLR4 and COX-2.
Collapse
|
8
|
Sui ZY, Li CR, Huang GB, Kwon YB, Kim KW, Lee KH, Chung YC. Age-specific effects of 6-hydroxydopamine lesions of the rat medial prefrontal cortex on stress-induced c-fos expression in subcortical areas. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1054-9. [PMID: 20677375 DOI: 10.1016/j.pnpbp.2010.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As adolescence is a critical period when dopaminergic neuronal maturation peaks, we hypothesized that 6-hydroxydopamine (OHDA) lesions of the medial prefrontal cortex (mPFC) in adolescent rats would have more negative effects than lesions in adult rats. Therefore, we investigated the effects of 6-OHDA lesions of the mPFC in adolescent and adult rats on stress-induced c-fos expression in the brain. Adolescent and adult Sprague-Dawley rats, aged 4 and 7 weeks on arrival, respectively, were studied. 6-OHDA (8.0 microg) for the lesion groups and ascorbic acid for the sham groups were injected bilaterally into the mPFC. All animals were pretreated with desipramine 30 min before being anesthetized. The control group did not undergo any surgery-related procedure except the desipramine injection. After recovery for 1 week, the rats were subjected to restraint stress for 1 h. Immediately after the stress, the rats were killed and c-fos immunohistochemistry was examined. The c-fos expression in the nucleus accumbens core (AcbC), nucleus accumbens shell (AcbSh), CA1, CA3, dentate gyrus (DG), central amygdaloid (Ce), basolateral amygdaloid (BL), and temporal cortex (Tc) was compared. Adolescent rats with 6-OHDA lesions subjected to restraint stress had greater c-fos expression in the AcbC, AcbSh, DG, Ce, BL, and Tc, compared to the sham and control groups, whereas these differences were not observed among the adult groups. These results suggest that a hypodopaminergic state in the mPFC of adolescent rats, but not adult rats, is related to increased sensitivity to stress, suggesting that damage to or maldevelopment of dopaminergic neurons during adolescence has an age-specific effect. Further research is warranted to investigate the mechanism of the age-specific effect of 6-OHDA lesions of the mPFC.
Collapse
Affiliation(s)
- Zhi Yan Sui
- Department of Psychiatry, Chonbuk National University Medical School and Institute for Medical Sciences, San 2-20 Geumam-dong, Deokjin-gu, Jeonju 561-756, South Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Ability of predator odour exposure to elicit conditioned versus sensitised post traumatic stress disorder-like behaviours, and forebrain deltaFosB expression, in rats. Neuroscience 2010; 169:733-42. [PMID: 20478366 DOI: 10.1016/j.neuroscience.2010.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/01/2010] [Accepted: 05/03/2010] [Indexed: 11/22/2022]
Abstract
At present, exposure of a rodent to the odour of a predator is one of the most common animal models of post traumatic stress disorder (PTSD). Despite this, the model remains incompletely characterized, particularly in regard to within subject assessment of major PTSD-like behaviours. In an attempt to redress this situation, we have extensively characterized the two broad categories of behaviour that are considered to characterize PTSD, that is sensitized behaviours such as social withdrawal and hypervigilance and conditioned behaviours such as avoidance of trauma linked cues. Specifically, we determined the presence and duration of both conditioned and sensitized behaviours, in the same cohort of animals, after three exposures to predator odour. Conditioned fear was assessed on the basis of inhibition of locomotor activity upon return to context 2, 7, 14, 21, and 28 days after the last odour exposure session. To assess the impact on sensitization behaviours, we monitored acoustic startle responses and social interaction behaviour 4, 9, 16, 23, and 30 days after the last exposure session. In addition to examining the behavioural consequences associated with odour exposure, we also determined the key brain regions that were activated using DeltaFosB immunohistochemistry. Our results show that the two groups of behaviours thought to characterize PTSD (conditioned and sensitized) do not travel together in the predator odour model, with clear evidence of enduring changes in conditioned fear but little evidence of changes in social interaction or acoustic startle. With regard to associated patterns of activity in the brain, we observed that odour-exposed animals exhibited significantly higher numbers of FosB-positive nuclei in only the medial prefrontal cortex (mPFC), a finding that can be viewed as being consistent with the observed behavioural changes.
Collapse
|
10
|
Blanco E, Castilla-Ortega E, Miranda R, Begega A, Aguirre JA, Arias JL, Santín LJ. Effects of medial prefrontal cortex lesions on anxiety-like behaviour in restrained and non-restrained rats. Behav Brain Res 2009; 201:338-42. [DOI: 10.1016/j.bbr.2009.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/01/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
|
11
|
Post-training infusion of glutamate into the bed nucleus of the stria terminalis enhanced inhibitory avoidance memory: an effect involving norepinephrine. Neurobiol Learn Mem 2009; 91:456-65. [PMID: 19186212 DOI: 10.1016/j.nlm.2009.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
This study examined an interaction between glutamate and norepinephrine in the bed nucleus of the stria terminalis (BNST) in modulating affective memory formation. Male Wistar rats with indwelling cannulae in the BNST were trained on a one-trial step-through inhibitory avoidance task and received pre- or post-training intra-BNST infusion of glutamate, norepinephrine or their antagonists. Results of the 1-day test indicated that post-training intra-BNST infusion of DL-2-amino-5-phosphonovaleric acid (APV) impaired retention in a dose- and time-dependent manner, while infusion of glutamate had an opposite effect. Co-infusion of 0.2microg glutamate and 0.02microg norepinephrine resulted in marked retention enhancement by summating non-apparent effects of the two drugs given at a sub-enhancing dose. The amnesic effect of 5.0microg APV was ameliorated by 0.02microg norepinephrine, while the memory enhancing effect of 1.0microg glutamate was attenuated by 5.0microg propranolol. These findings suggest that training on an inhibitory avoidance task may alter glutamate neurotransmission, which by activating NMDA receptors releases norepinephrine to modulate memory formation via beta adrenoceptors in the BNST.
Collapse
|
12
|
Dampney RAL, Horiuchi J, McDowall LM. Hypothalamic mechanisms coordinating cardiorespiratory function during exercise and defensive behaviour. Auton Neurosci 2008; 142:3-10. [PMID: 18725186 DOI: 10.1016/j.autneu.2008.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 11/26/2022]
Abstract
Defensive behaviour evoked by mild or moderate psychological stress as well as increased activity and arousal are part of everyday life in humans and other animals. Both defensive behaviour and exercise are associated with marked and often quite stereotyped changes in autonomic and respiratory function. These patterned responses are generated by feed-forward or "central command" mechanisms, and are also modulated by feedback from peripheral receptors. In this review we first describe the pattern of autonomic and respiratory changes associated with defensive behaviour and exercise, and then discuss the central mechanisms that generate these patterned responses in the light of recent studies, with a particular focus on the role of the dorsomedial hypothalamus (DMH). We consider the hypothesis that the cardiorespiratory changes associated with defensive behaviour and exercise may, at least in part, be driven by common central mechanisms. Finally, we discuss the possible role of the DMH in generating circadian rhythms in arterial blood pressure and heart rate, and also in generating longer-term increases in sympathetic activity in some types of hypertension.
Collapse
Affiliation(s)
- R A L Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
13
|
Lehner M, Taracha E, Skórzewska A, Turzyńska D, Sobolewska A, Maciejak P, Szyndler J, Hamed A, Bidziński A, Wisłowska-Stanek A, Płaźnik A. Expression of c-Fos and CRF in the brains of rats differing in the strength of a fear response. Behav Brain Res 2008; 188:154-67. [DOI: 10.1016/j.bbr.2007.10.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
14
|
Zaretskaia MV, Zaretsky DV, Sarkar S, Shekhar A, DiMicco JA. Induction of Fos-immunoreactivity in the rat brain following disinhibition of the dorsomedial hypothalamus. Brain Res 2008; 1200:39-50. [PMID: 18282559 DOI: 10.1016/j.brainres.2008.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 12/18/2022]
Abstract
Activation of neurons in the dorsomedial hypothalamus (DMH) appears to play an important role in signaling the excitation of brain regions responsible for experimental fever and for many of the physiological and behavioral changes seen in experimental stress or anxiety in rats. Here, we examined the effect of disinhibition of the DMH by unilateral microinjection of bicuculline methiodide (BMI) on Fos expression in selected regions of the brain that have been implicated in anxiety and responses to stress and fever in rats. Disinhibition of the DMH resulted in dramatic increases in local Fos expression and also increased the numbers of Fos-positive neurons in the lateral septal nucleus and in both the parvocellular and magnocellular subdivisions of the paraventricular nucleus, with greater increases ipsilateral to the injection site in the DMH. However, microinjection of BMI had no significant effect on Fos expression in the bed nucleus of the stria terminalis, another forebrain area implicated in stress and anxiety. In the brainstem, disinhibition of the DMH increased Fos expression in the nucleus tractus solitarius and the ventrolateral medulla bilaterally with greater increases again ipsilateral to the site of the microinjection, and also in the midline rostral raphe pallidus. Thus, disinhibition of neurons in the DMH in conscious rats results in increases in Fos expression in selected forebrain and brainstem regions that have been implicated in stress-induced physiological changes, anxiety, and experimental fever.
Collapse
Affiliation(s)
- Maria V Zaretskaia
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
15
|
Stone EA, Lin Y, Quartermain D. A final common pathway for depression? Progress toward a general conceptual framework. Neurosci Biobehav Rev 2007; 32:508-24. [PMID: 18023876 PMCID: PMC2265074 DOI: 10.1016/j.neubiorev.2007.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 11/29/2022]
Abstract
Functional neuroimaging studies of depressed patients have converged with functional brain mapping studies of depressed animals in showing that depression is accompanied by a hypoactivity of brain regions involved in positively motivated behavior together with a hyperactivity in regions involved in stress responses. Both sets of changes are reversed by diverse antidepressant treatments. It has been proposed that this neural pattern underlies the symptoms common to most forms of the depression, which are the loss of positively motivated behavior and increased stress. The paper discusses how this framework can organize diverse findings ranging from effects of monoamine neurotransmitters, cytokines, corticosteroids and neurotrophins on depression. The hypothesis leads to new insights concerning the relationship between the prolonged inactivity of the positive motivational network during a depressive episode and the loss of neurotrophic support, the potential antidepressant action of corticosteroid treatment, and to the key question of whether antidepressants act by inhibiting the activity of the stress network or by enhancing the activity of the positive motivational system.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
16
|
Stone EA, Lehmann ML, Lin Y, Quartermain D. Reduced evoked fos expression in activity-related brain regions in animal models of behavioral depression. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1196-207. [PMID: 17513031 DOI: 10.1016/j.pnpbp.2007.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/21/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
A previous study showed that two mouse models of behavioral depression, immune system activation and depletion of brain monoamines, are accompanied by marked reductions in stimulated neural activity in brain regions involved in motivated behavior. The present study tested whether this effect is common to other depression models by examining the effects of repeated forced swimming, chronic subordination stress or acute intraventricular galanin injection - three additional models - on baseline or stimulated c-fos expression in several brain regions known to be involved in motor or motivational processes (secondary motor, M2, anterior piriform cortex, APIR, posterior cingulate gyrus, CG, nucleus accumbens, NAC). Each of the depression models was found to reduce the fos response stimulated by exposure to a novel cage or a swim stress in all four of these brain areas but not to affect the response of a stress-sensitive region (paraventricular hypothalamus, PVH) that was included for control purposes. Baseline fos expression in these structures was either unaffected or affected in an opposite direction to the stimulated response. Pretreatment with either desmethylimipramine (DMI) or tranylcypromine (tranyl) attenuated these changes. It is concluded that the pattern of a reduced neural function of CNS motor/motivational regions with an increased function of stress areas is common to 5 models of behavioral depression in the mouse and is a potential experimental analog of the neural activity changes occurring in the clinical condition.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, 550 First Ave, New York, NY 10016, United States.
| | | | | | | |
Collapse
|
17
|
Mairesse J, Viltart O, Salomé N, Giuliani A, Catalani A, Casolini P, Morley-Fletcher S, Nicoletti F, Maccari S. Prenatal stress alters the negative correlation between neuronal activation in limbic regions and behavioral responses in rats exposed to high and low anxiogenic environments. Psychoneuroendocrinology 2007; 32:765-76. [PMID: 17666188 DOI: 10.1016/j.psyneuen.2007.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/25/2007] [Accepted: 03/29/2007] [Indexed: 11/27/2022]
Abstract
Behavioral adaptation to an anxiogenic environment involves the activity of various interconnected limbic regions, such as the amygdala, hippocampus and prefrontal cortex. Prenatal stress (PS) in rats affects the ability to cope with environmental challenges and alters brain plasticity, leading to long-lasting behavioral and neurobiological alterations. We examined in PS and control animals whether behavioral reactivity was correlated to neuronal activation by assessing Fos protein expression in limbic regions of rats exposed to a low or high anxiogenic environment (the closed and open arms of an elevated plus maze, respectively). A negative correlation was found between behavioral and neuronal activation, with a lower behavioral reactivity and a higher neuronal response observed in rats exposed to the more anxiogenic environment (the open arm) with respect to the less anxiogenic environment (the closed arm). Interestingly, the variation in the neurobehavioral response between the two arms of the maze was less pronounced in rats that had been subjected to PS. This study provides a remarkable example of how long-lasting changes in brain plasticity induced by PS affect the ability of limbic neurons to cope with anxiogenic stimuli of different strength.
Collapse
Affiliation(s)
- Jérôme Mairesse
- Neuroscience/Perinatal Stress Team, Univ. Lille 1, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Depression in humans and animal models has been found to be accompanied by a hypoactivity of brain regions involved in positively motivated behavior together with a hyperactivity in regions involved in stress responses. Both sets of changes are reversed by diverse antidepressant treatments. It has been proposed that this neural pattern underlies the symptoms common to most forms of depression, which are the loss of positively motivated behavior and the increase in stress. The present paper discusses how this framework can organize diverse findings on the multiple factors associated with this disorder. The hypothesis suggests new therapeutic strategies involving treatment with low-dose corticosteroids to suppress the stress network or with antagonists of alpha(1A)- and agonists of alpha(1B)-adrenoceptors to disinhibit or activate the positive motivational network, respectively.
Collapse
Affiliation(s)
- Eric A Stone
- Psychiatry, MHL HN510, NYU Medical Centre, New York, NY 10016, USA.
| |
Collapse
|
19
|
Sziray N, Leveleki C, Levay G, Markó B, Hársing LG, Mikics E, Barsy B, Haller J. Mechanisms underlying the long-term behavioral effects of traumatic experience in rats: the role of serotonin/noradrenaline balance and NMDA receptors. Brain Res Bull 2006; 71:376-85. [PMID: 17208655 DOI: 10.1016/j.brainresbull.2006.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/10/2006] [Indexed: 11/17/2022]
Abstract
Traumatic stressors induce long-lasting changes in behavior. It is believed that all three glutamatergic, serotonergic and noradrenergic neurotransmission play a role in the development of such behavioral changes, but their relative importance and relationship is poorly understood. We have shown previously that a single exposure of rats to electric shocks induces social avoidance for about 10 days. Here we assessed social avoidance 24 h after shock exposure in rats with chemically lesioned serotonergic and noradrenergic neurons. The effects of the NMDA receptor blocker MK-801 were also studied. When the serotonin/noradrenaline balance was shifted towards serotonergic dominance via chemical lesions, the behavioral dysfunction was markedly attenuated. The disruption of serotonergic neurotransmission (that lead to noradrenergic dominance) significantly increased the behavioral deficit. Shock responding was not secondary to lesion-induced differences in social behavior. Noteworthy, the brain noradrenaline/serotonin ratio correlated negatively with shock-induced social avoidance, suggesting that the ratio rather than absolute levels are important in this respect. In line with this assumption, double lesions had minor effects on social avoidance, suggesting that these monoaminergic systems modulate, but do not mediate the behavioral deficit. The blockade of NMDA receptors abolished the development of stress-induced social avoidance both when applied before shocks and when applied before behavioral testing. We confirmed that the long-term behavioral effects of traumatic experience result from glutamatergic activation, the effects of which are mediated by NMDA receptors. The development of the behavioral deficit is modulated by the balance between serotonergic and noradrenergic neurotransmission, possibly via effects on shock-induced glutamatergic activation.
Collapse
Affiliation(s)
- N Sziray
- EGIS Pharmaceuticals Plc., Division of Preclinical Research, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stone EA, Lehmann ML, Lin Y, Quartermain D. Depressive behavior in mice due to immune stimulation is accompanied by reduced neural activity in brain regions involved in positively motivated behavior. Biol Psychiatry 2006; 60:803-11. [PMID: 16814258 DOI: 10.1016/j.biopsych.2006.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 12/27/2022]
Abstract
BACKGROUND Immune stimulation inhibits positively motivated behavior and induces depressive illness. To help clarify the mechanism of these effects, neural activity in response to a positive stimulus was examined in brain regions associated with positively motivated activity defined on the basis of prior behavioral studies of central alpha1-adrenoceptor action. METHODS Mice pretreated with either lipopolysaccharide or, for comparison, reserpine were exposed to a motivating stimulus (fresh cage) and subsequently assayed for fos expression and mitogen-activated protein kinase (MAPK) phosphorylation, two measures associated with alpha1-adrenoceptor-dependent neural activity, in several positive-activity-related (motor, piriform, cingulate cortex, nucleus accumbens, locus coeruleus) and stress-related brain regions (paraventricular hypothalamus, bed nucleus stria terminalis). RESULTS Both lipopolysaccharide and reserpine pretreatment abolished fresh cage-induced fos expression and MAPK activation in the positive activity-related brain regions but enhanced these measures in the stress-related areas. CONCLUSIONS The results support the hypothesis that immune activation reduces alpha1-adrenoceptor-related signaling and neural activity in brain regions associated with positive activity while it increases these functions in stress-associated areas. It is suggested that neural activities of these two types of brain regions are mutually antagonistic and that a reciprocal shift toward the stress regions is a factor in the loss of positively motivated behaviors in sickness behavior and depressive illness.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
21
|
Stone EA, Quartermain D, Lin Y, Lehmann ML. Central alpha1-adrenergic system in behavioral activity and depression. Biochem Pharmacol 2006; 73:1063-75. [PMID: 17097068 DOI: 10.1016/j.bcp.2006.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/27/2006] [Accepted: 10/02/2006] [Indexed: 02/06/2023]
Abstract
Central alpha(1)-adrenoceptors are activated by norepinephrine (NE), epinephrine (EPI) and possibly dopamine (DA), and function in two fundamental and opposed types of behavior: (1) positively motivated exploratory and approach activities, and (2) stress reactions and behavioral inhibition. Brain microinjection studies have revealed that the positive-linked receptors are located in eight to nine brain regions spanning the neuraxis including the secondary motor cortex, piriform cortex, nucleus accumbens, preoptic area, lateral hypothalamic area, vermis cerebellum, locus coeruleus, dorsal raphe and possibly the C1 nucleus of the ventrolateral medulla, whereas the stress-linked receptors are present in at least three areas including the paraventricular nucleus of the hypothalamus, central nucleus of the amygdala and bed nucleus of the stria terminalis. Recent studies utilizing c-fos expression and mitogen-activated protein kinase activation have shown that various diverse models of depression in mice produce decreases in positive region-neural activity elicited by motivating stimuli along with increases in neural activity of stress areas. Both types of change are attenuated by various antidepressant agents. This has suggested that the balance of the two networks determines whether an animal displays depressive behavior. A central unresolved question concerns how the alpha(1)-receptors in the positive-activity and stress systems are differentially activated during the appropriate behavioral conditions and to what extent this is related to differences in endogenous ligands or receptor subtype distributions.
Collapse
Affiliation(s)
- Eric A Stone
- New York University School of Medicine, Department of Psychiatry, NYU Medical Center, MHL HN510, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | |
Collapse
|