1
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
2
|
Jin T, Leng B. Cynaropicrin Averts the Oxidative Stress and Neuroinflammation in Ischemic/Reperfusion Injury Through the Modulation of NF-kB. Appl Biochem Biotechnol 2023; 195:5424-5438. [PMID: 35838888 PMCID: PMC10457408 DOI: 10.1007/s12010-022-04060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Cerebral ischemia and successive reperfusion are the prevailing cause of cerebral stroke. Currently cerebral stroke is considered to be one of the prior causes for high mortality, disability, and morbidity. Cynaropicrin, a sesquiterpene lactone, exhibits various pharmacologic properties and also has an anti-inflammatory property associated with the suppression of the key pro-inflammatory NF-κB pathway. The protective effect of cynaropicrin against oxidative stress and neuroinflammation during CIR injury through the modulation of NF-κB pathway was studied in the current investigation. The experimental rats split into 5 groups as sham-operated control group (group 1), middle cerebral artery occlusion (MCAO)-induced rats (group 2), MCAO rats treated with cynaropicrin (diluted in saline) immediately 2 h after MCAO with 5, 10, and 25 mg/kg administration orally were designated as groups 3, 4, and 5, respectively. In MCAO-induced animals, the severity of ischemic was evident by the elevated level nitrate, MDA, MMPs, inflammatory mediators, Bax, caspase-3, and NF-κB. The level of Nrf-2, antioxidant enzymes, Bcl-2, and IL-10 was reduced in the MCAO-induced animals. Treatment with cynaropicrin in dosage-based manner increased the level of antioxidant enzymes, IL-10, Nrf-2, and Bcl-2 in the animals which indicates the antioxidative effect of cynaropicrin. The level of nitrate, MDA, MMPs, proinflammatory cytokines, inflammatory mediators, Bax, caspase-3, and NF-κB was reduced in the rats treated with cynaropicrin in a dosage-based manner. Experimental animals treated with cynaropicrin in a dosage-dependent way showed a defensive mechanism against oxidative stress and neuroinflammation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Tao Jin
- Department of Interventional and Vascular Surgery, Affiliated Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China
| | - Bing Leng
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
3
|
Zhai S, Hu W, Wang W, Chai L, An Q, Li C, Liu Z. Tracking autophagy process with a through bond energy transfer-based ratiometric two-photon viscosity probe. Biosens Bioelectron 2022; 213:114484. [PMID: 35724553 DOI: 10.1016/j.bios.2022.114484] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
Abstract
Autophagy is a self-degradation process in cells, which is of vital significance to the health and operation of organisms. Due to the increase of lysosomal viscosity during autophagy, viscosity probes that specifically accumulate in lysosome are powerful tools for monitoring autophagy and investigating related diseases. However, there is still a lack of viscosity-sensitive ratiometric autophagy probes, which restricts the tracking of autophagy with high accuracy in complex physiological environment. Herein, a viscosity-responsive, lysosome targeted two-photon fluorescent probe Lyso-Vis was designed based on through bond energy transfer (TBET) mechanism. The TBET-based probe achieved the separation of two emission baselines, which greatly improved the resolution and reliability of sensing and imaging. Under 810 nm two-photon excitation, the emission intensity ratio of the red and green channel increased with a viscosity dependent manner. Lyso-Vis not only for the first time realized ratiometric sensing of lysosomal viscosity during autophagy process, but also visualized the association of autophagy with inflammation and stroke, and it was applied to explore the activation and inhibition of autophagy during stroke in mice.
Collapse
Affiliation(s)
- Shuyang Zhai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Hu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Weibo Wang
- Key Laboratory of Pesticide and Chemical Biology College of Chemistry, Ministry of Education Central China Normal University, Wuhan, 430079, China
| | - Li Chai
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Qian An
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan, 430074, China.
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Pawluk H, Woźniak A, Grześk G, Kołodziejska R, Kozakiewicz M, Kopkowska E, Grzechowiak E, Kozera G. The Role of Selected Pro-Inflammatory Cytokines in Pathogenesis of Ischemic Stroke. Clin Interv Aging 2020; 15:469-484. [PMID: 32273689 PMCID: PMC7110925 DOI: 10.2147/cia.s233909] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
Stroke is currently one of the most common causes of death and disability in the world, and its pathophysiology is a complex process, involving the oxidative stress and inflammatory reaction. Unfortunately, no biochemical factors useful in the diagnostics and treatment of stroke have been clearly established to date. Therefore, researchers are increasingly interested in the inflammatory response triggered by cerebral ischemia and its role in the development of cerebral infarction. This article gives an overview of the available literature data concerning the role of pro-inflammatory cytokines in acute stroke. Detailed analysis of their role in cerebral circulation disturbances can also suggest certain immune response regulatory mechanisms aimed to reduce damage to the nervous tissue in the course of stroke.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Grzegorz Grześk
- 2nd Department of Cardiology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Ewa Kopkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Elżbieta Grzechowiak
- Department of Neurology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Grzegorz Kozera
- Department of Neurology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
- Medical Stimulation Center, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Abstract
Appropriate autophagy has protective effects on ischemic nerve tissue, while excessive autophagy may cause cell death. The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia. Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke. This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows. (1) Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR, the AMPK pathway, and inhibition of inflammasome activation. (2) Activation of inflammation triggers the formation of autophagosomes, and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1. Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK, reducing the flux and autophagy level, thereby inducing inflammatory activity. (3) By blocking the activation of autophagy, the activation of inflammasomes can alleviate cerebral ischemic injury. Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway, which is beneficial to the recovery of neural tissue after ischemia. Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway. These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yin-Yi Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Yong Liu
- Department of Neurology, Shanghai university of medicine & health Sciences Affiliated Zhoupu hospital, Shanghai, China
| |
Collapse
|
6
|
Núñez MT, Hidalgo C. Noxious Iron-Calcium Connections in Neurodegeneration. Front Neurosci 2019; 13:48. [PMID: 30809110 PMCID: PMC6379295 DOI: 10.3389/fnins.2019.00048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Iron and calcium share the common feature of being essential for normal neuronal function. Iron is required for mitochondrial function, synaptic plasticity, and the development of cognitive functions whereas cellular calcium signals mediate neurotransmitter exocytosis, axonal growth and synaptic plasticity, and control the expression of genes involved in learning and memory processes. Recent studies have revealed that cellular iron stimulates calcium signaling, leading to downstream activation of kinase cascades engaged in synaptic plasticity. The relationship between calcium and iron is Janus-faced, however. While under physiological conditions iron-mediated reactive oxygen species generation boosts normal calcium-dependent signaling pathways, excessive iron levels promote oxidative stress leading to the upsurge of unrestrained calcium signals that damage mitochondrial function, among other downstream targets. Similarly, increases in mitochondrial calcium to non-physiological levels result in mitochondrial dysfunction and a predicted loss of iron homeostasis. Hence, if uncontrolled, the iron/calcium self-feeding cycle becomes deleterious to neuronal function, leading eventually to neuronal death. Here, we review the multiple cell-damaging responses generated by the unregulated iron/calcium self-feeding cycle, such as excitotoxicity, free radical-mediated lipid peroxidation, and the oxidative modification of crucial components of iron and calcium homeostasis/signaling: the iron transporter DMT1, plasma membrane, and intracellular calcium channels and pumps. We discuss also how iron-induced dysregulation of mitochondrial calcium contributes to the generation of neurodegenerative conditions, including Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Marco Tulio Núñez
- Iron and Neuroregeneration Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Calcium Signaling Laboratory, Biomedical Research Institute, CEMC, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Jiménez-Maldonado A, Rentería I, García-Suárez PC, Moncada-Jiménez J, Freire-Royes LF. The Impact of High-Intensity Interval Training on Brain Derived Neurotrophic Factor in Brain: A Mini-Review. Front Neurosci 2018; 12:839. [PMID: 30487731 PMCID: PMC6246624 DOI: 10.3389/fnins.2018.00839] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a protein mainly synthetized in the neurons. Early evidence showed that BDNF participates in cognitive processes as measured at the hippocampus. This neurotrophin is as a reliable marker of brain function; moreover, recent studies have demonstrated that BDNF participates in physiological processes such as glucose homeostasis and lipid metabolism. The BDNF has been also studied using the exercise paradigm to determine its response to different exercise modalities; therefore, BDNF is considered a new member of the exercise-related molecules. The high-intensity interval training (HIIT) is an exercise protocol characterized by low work volume performed at a high intensity [i.e., ≥80% of maximal heart rate (HRmax)]. Recent evidence supports the contention that HIIT elicits higher fat oxidation in skeletal muscle than other forms of exercise. Similarly, HIIT is a good stimulus to increase maximal oxygen uptake (VO2max). Few studies have investigated the impact of HIIT on the BDNF response. The present work summarizes the effects of acute and long-term HIIT on BDNF.
Collapse
Affiliation(s)
| | - Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - José Moncada-Jiménez
- Human Movement Sciences Research Center, University of Costa Rica, San José, Costa Rica
| | | |
Collapse
|
8
|
Jung ME, Mallet RT. Intermittent hypoxia training: Powerful, non-invasive cerebroprotection against ethanol withdrawal excitotoxicity. Respir Physiol Neurobiol 2018; 256:67-78. [PMID: 28811138 PMCID: PMC5825251 DOI: 10.1016/j.resp.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
Ethanol intoxication and withdrawal exact a devastating toll on the central nervous system. Abrupt ethanol withdrawal provokes massive release of the excitatory neurotransmitter glutamate, which over-activates its postsynaptic receptors, causing intense Ca2+ loading, p38 mitogen activated protein kinase activation and oxidative stress, culminating in ATP depletion, mitochondrial injury, amyloid β deposition and neuronal death. Collectively, these mechanisms produce neurocognitive and sensorimotor dysfunction that discourages continued abstinence. Although the brain is heavily dependent on blood-borne O2 to sustain its aerobic ATP production, brief, cyclic episodes of moderate hypoxia and reoxygenation, when judiciously applied over the course of days or weeks, evoke adaptations that protect the brain from ethanol withdrawal-induced glutamate excitotoxicity, mitochondrial damage, oxidative stress and amyloid β accumulation. This review summarizes evidence from ongoing preclinical research that demonstrates intermittent hypoxia training to be a potentially powerful yet non-invasive intervention capable of affording robust, sustained neuroprotection during ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| | - Robert T Mallet
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
9
|
Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders. Brain Sci 2017; 7:brainsci7100131. [PMID: 29035306 PMCID: PMC5664058 DOI: 10.3390/brainsci7100131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/11/2022] Open
Abstract
Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism, such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder (AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1), a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable transmembrane protein whose interaction within AUD has not been well explored. The current review will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function is myelination of neurons in the brain, are a key component in new learning and adaptation to environmental challenges. The current review briefly introduces the role of oligodendrocytes in healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction with PECAM-1 on the cerebral endothelium.
Collapse
|
10
|
Neurons and astrocytes in an infantile neuroaxonal dystrophy (INAD) mouse model show characteristic alterations in glutamate-induced Ca 2+ signaling. Neurochem Int 2017; 108:121-132. [DOI: 10.1016/j.neuint.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
|
11
|
Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic Inflammation in Acute Stroke. J Clin Neurol 2017; 13:1-9. [PMID: 28079313 PMCID: PMC5242162 DOI: 10.3988/jcn.2017.13.1.1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is caused by arterial occlusion due to a thrombus or an embolus. Such occlusion induces multiple and concomitant pathophysiological processes that involve bioenergetic failure, acidosis, loss of cell homeostasis, excitotoxicity, and disruption of the blood-brain barrier. All of these mechanisms contribute to neuronal death, mainly via apoptosis or necrosis. The immune system is involved in this process in the early phases after brain injury, which contributes to potential enlargement of the infarct size and involves the penumbra area. Whereas inflammation and the immune system both exert deleterious effects, they also contribute to brain protection by stimulating a preconditioning status and to the concomitant repair of the injured parenchyma. This review describes the main phases of the inflammatory process occurring after arterial cerebral occlusion, with an emphasis on the role of single mediators.
Collapse
Affiliation(s)
- Simone Vidale
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy.
| | - Arturo Consoli
- Department of Interventional Neurovascular Unit, Careggi University Hospital, Florence, Italy
| | - Marco Arnaboldi
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy
| | - Domenico Consoli
- Department of Neurology, G. Jazzolino Hospital, Vibo Valentia, Italy
| |
Collapse
|
12
|
O'Hare Doig RL, Bartlett CA, Smith NM, Hodgetts SI, Dunlop SA, Hool L, Fitzgerald M. Specific combinations of ion channel inhibitors reduce excessive Ca 2+ influx as a consequence of oxidative stress and increase neuronal and glial cell viability in vitro. Neuroscience 2016; 339:450-462. [PMID: 27725216 DOI: 10.1016/j.neuroscience.2016.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/15/2016] [Accepted: 10/02/2016] [Indexed: 01/02/2023]
Abstract
Combinations of Ca2+ channel inhibitors have been proposed as an effective means to prevent excess Ca2+ flux and death of neurons and glia following neurotrauma in vivo. However, it is not yet known if beneficial outcomes such as improved viability have been due to direct effects on intracellular Ca2+ concentrations. Here, the effects of combinations of Lomerizine (Lom), 2,3-dioxo-7-(1H-imidazol-1-yl)6-nitro-1,2,3,4-tetrahydro-1-quinoxalinyl]acetic acid monohydrate (YM872), 3,5-dimethyl-1-adamantanamine (memantine (Mem)) and/or adenosine 5'-triphosphate periodate oxidized sodium salt (oxATP) to block voltage-gated Ca2+ channels, Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, NMDA receptors and purinergic P2X7 receptors (P2X7R) respectively, on Ca2+ concentration and viability of rat primary mixed cortical (MC) cultures exposed to hydrogen peroxide (H2O2) insult, were assessed. The contribution of ryanodine-sensitive intracellular stores to intracellular Ca2+ concentration was also assessed. Live cell calcium imaging revealed that a 30min H2O2 insult induced a slow increase in intracellular Ca2+, in part from intracellular sources, associated with loss of cell viability by 6h. Most combinations of inhibitors that included oxATP significantly decreased Ca2+ influx and increased cell viability when administered simultaneously with H2O2. However, reductions in intracellular Ca2+ concentration were not always linked to improved cell viability. Examination of the density of specific cell subpopulations demonstrated that most combinations of inhibitors that included oxATP preserved NG2+ non-oligodendroglial cells, but preservation of astrocytes and neurons required additional inhibitors. Olig2+ oligodendroglia and ED-1+ activated microglia/macrophages were not preserved by any of the inhibitor combinations. These data indicate that following H2O2 insult, limiting intracellular Ca2+ entry via P2X7R is generally associated with increased cell viability. Protection of NG2+ non-oligodendroglial cells by Ca2+ channel inhibitor combinations may contribute to observed beneficial outcomes in vivo.
Collapse
Affiliation(s)
- Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Smith
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Hool
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
13
|
Mitochondria from a mouse model of the human infantile neuroaxonal dystrophy (INAD) with genetic defects in VIA iPLA 2 have disturbed Ca 2+ regulation with reduction in Ca 2+ capacity. Neurochem Int 2016; 99:187-193. [DOI: 10.1016/j.neuint.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/21/2022]
|
14
|
Hidalgo C, Arias-Cavieres A. Calcium, Reactive Oxygen Species, and Synaptic Plasticity. Physiology (Bethesda) 2016; 31:201-15. [DOI: 10.1152/physiol.00038.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this review article, we address how activity-dependent Ca2+ signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca2+ signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca2+ signaling contribute to age-related synaptic plasticity deterioration.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
- Center of Molecular Studies of the Cell and Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandra Arias-Cavieres
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
| |
Collapse
|
15
|
Strokin M, Reiser G. Mitochondrial Ca2+ Processing by a Unit of Mitochondrial Ca2+ Uniporter and Na+/Ca2+ Exchanger Supports the Neuronal Ca2+ Influx via Activated Glutamate Receptors. Neurochem Res 2016; 41:1250-62. [DOI: 10.1007/s11064-015-1819-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
|
16
|
Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders. Int J Mol Sci 2015; 16:28194-217. [PMID: 26633354 PMCID: PMC4691042 DOI: 10.3390/ijms161226095] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Ascorbic acid is a key antioxidant of the Central Nervous System (CNS). Under brain activity, ascorbic acid is released from glial reservoirs to the synaptic cleft, where it is taken up by neurons. In neurons, ascorbic acid scavenges reactive oxygen species (ROS) generated during synaptic activity and neuronal metabolism where it is then oxidized to dehydroascorbic acid and released into the extracellular space, where it can be recycled by astrocytes. Other intrinsic properties of ascorbic acid, beyond acting as an antioxidant, are important in its role as a key molecule of the CNS. Ascorbic acid can switch neuronal metabolism from glucose consumption to uptake and use of lactate as a metabolic substrate to sustain synaptic activity. Multiple evidence links oxidative stress with neurodegeneration, positioning redox imbalance and ROS as a cause of neurodegeneration. In this review, we focus on ascorbic acid homeostasis, its functions, how it is used by neurons and recycled to ensure antioxidant supply during synaptic activity and how this antioxidant is dysregulated in neurodegenerative disorders.
Collapse
|
17
|
Poersch AB, Trombetta F, Souto NS, de Oliveira Lima C, Braga ACM, Dobrachinski F, Ribeiro LR, Soares FAA, Fighera MR, Royes LFF, Oliveira MS, Furian AF. Fumonisin B1 facilitates seizures induced by pentylenetetrazol in mice. Neurotoxicol Teratol 2015; 51:61-7. [PMID: 26342287 DOI: 10.1016/j.ntt.2015.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
Fumonisin B1 (FB1) is a Fusarium spp. mycotoxin which constitutes a major public health issue because of its worldwide distribution and diversity of toxic effects.While the liver and kidney are considered the major target organs of FB1 toxicity in several species, evidence indicates that FB1 may be toxic to the brain. To further investigate the effects of FB1 on the central nervous system the present study aimed to test the hypothesis that acute FB1 exposure causes brain hyperexcitability and the potential underlying mechanisms. For these purposes, adult male C57BL/6 mice were injected with FB1 (8 mg/kg, i.p.) or its vehicle and 30 min thereafter received with a low dose of the classical convulsant pentylenetetrazol (PTZ, 30 mg/kg, i.p.) or its vehicle. After behavioral evaluation the cerebral cortex and the hippocampus were collected for analysis of Na(+),K(+)-ATPase activity, mitochondrial membrane potential (ΔΨm) and mitochondrial complex I and II activities. We found that FB1 reduced the latency for PTZ-induced myoclonic jerks and increased the number of these events. After exposure to FB1 total and α1 Na(+),K(+)-ATPase activities increased in cerebral cortex, whereas the same enzyme activities decreased in the hippocampus. Although no changes in mitochondrial complex I and II activities were found, acute exposure to FB1 increased ΔΨm in the cerebral cortex. Altogether, present results indicate that FB1 causes brain hyperexcitability in vivo, and that mitochondrial dysfunction may represent a potential underlying mechanism.
Collapse
Affiliation(s)
- Alice Bertotto Poersch
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Francielle Trombetta
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Naiéli Schiefelbein Souto
- Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Camilla de Oliveira Lima
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Ana Cláudia Monteiro Braga
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Fernando Dobrachinski
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brazil
| | - Leandro Rodrigo Ribeiro
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Félix Alexandre Antunes Soares
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil; Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil; Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil; Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
18
|
Jeong SA, Kim IY, Lee AR, Yoon MJ, Cho H, Lee JS, Choi KS. Ca2+ influx-mediated dilation of the endoplasmic reticulum and c-FLIPL downregulation trigger CDDO-Me-induced apoptosis in breast cancer cells. Oncotarget 2015; 6:21173-92. [PMID: 26053096 PMCID: PMC4673258 DOI: 10.18632/oncotarget.4065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022] Open
Abstract
The synthetic triterpenoid 2-cyano-3, 12-dioxooleana-1, 9(11)-dien-C28-methyl ester (CDDO-Me) is considered a promising anti-tumorigenic compound. In this study, we show that treatment with CDDO-Me induces progressive endoplasmic reticulum (ER)-derived vacuolation in various breast cancer cells and ultimately kills these cells by inducing apoptosis. We found that CDDO-Me-induced increases in intracellular Ca2+ levels, reflecting influx from the extracellular milieu, make a critical contribution to ER-derived vacuolation and subsequent cell death. In parallel with increasing Ca2+ levels, CDDO-Me markedly increased the generation of reactive oxygen species (ROS). Interestingly, there exists a reciprocal positive-regulatory loop between Ca2+ influx and ROS generation that triggers ER stress and ER dilation in response to CDDO-Me. In addition, CDDO-Me rapidly reduced the protein levels of c-FLIPL (cellular FLICE-inhibitory protein) and overexpression of c-FLIPL blocked CDDO-Me-induced cell death, but not vacuolation. These results suggest that c-FLIPL downregulation is a key contributor to CDDO-Me-induced apoptotic cell death, independent of ER-derived vacuolation. Taken together, our results show that ER-derived vacuolation via Ca2+ influx and ROS generation as well as caspase activation via c-FLIPL downregulation are responsible for the potent anticancer effects of CDDO-Me on breast cancer cells.
Collapse
Affiliation(s)
- Soo Ah Jeong
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Graduate Program of Cancer Biology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - In Young Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Graduate Program of Cancer Biology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - A Reum Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Graduate Program of Cancer Biology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Mi Jin Yoon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Graduate Program of Cancer Biology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Graduate Program of Cancer Biology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Jong-Soo Lee
- Department of Life Science, Ajou University, Suwon, Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Graduate Program of Cancer Biology, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
19
|
Effect of dietary iron loading on recognition memory in growing rats. PLoS One 2015; 10:e0120609. [PMID: 25746420 PMCID: PMC4352024 DOI: 10.1371/journal.pone.0120609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/26/2015] [Indexed: 11/22/2022] Open
Abstract
While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron loading in improved memory.
Collapse
|
20
|
Badawi Y, Pal R, Hui D, Michaelis EK, Shi H. Ischemic tolerance in an in vivo model of glutamate preconditioning. J Neurosci Res 2014; 93:623-32. [PMID: 25421886 DOI: 10.1002/jnr.23517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/29/2014] [Accepted: 10/17/2014] [Indexed: 11/10/2022]
Abstract
Ischemia initiates a complicated biochemical cascade of events that triggers neuronal death. This study focuses on glutamate-mediated neuronal tolerance to ischemia-reperfusion. We employed an animal model of lifelong excess release of glutamate, the glutamate dehydrogenase 1 transgenic (Tg) mouse, as a model of in vivo glutamate preconditioning. Nine- and twenty-two-month-old Tg and wild-type (wt) mice were subjected to 90 min of middle cerebral artery occlusion, followed by 24 hr of reperfusion. The Tg mice suffered significantly reduced infarction and edema volume compared with their wt counterparts. We further analyzed proteasomal activity, level of ubiquitin immunostaining, and microtubule-associated protein-2A (MAP2A) expression to understand the mechanism of neuroprotection observed in the Tg mice. We found that, in the absence of ischemia, the Tg mice exhibited higher activity of the 20S and 26S proteasomes, whereas there was no significant difference in the level of hippocampal ubiquitin immunostaining between wt and Tg mice. A surprising, significant increase was observed in MAP2A expression in neurons of the Tg hippocampus following ischemia-reperfusion compared with that in wt hippocampus. The results suggest that increased proteasome activity and MAP2A synthesis and transport might account for the effectiveness of glutamate preconditioning against ischemia-reperfusion.
Collapse
Affiliation(s)
- Yomna Badawi
- Neuroscience Program, University of Kansas, Lawrence, Kansas; Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas
| | | | | | | | | |
Collapse
|
21
|
Paula-Lima AC, Adasme T, Hidalgo C. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 2014; 21:892-914. [PMID: 24410659 DOI: 10.1089/ars.2013.5796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- 1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile
| | | | | |
Collapse
|
22
|
Effect of N-arachidonoyl dopamine on activity of neuronal network in primary hippocampus culture upon hypoxia modelling. Bull Exp Biol Med 2014; 156:461-4. [PMID: 24771427 DOI: 10.1007/s10517-014-2374-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Indexed: 10/25/2022]
Abstract
We studied the effect of endocannabinoid N-arachidonoyl dopamine on spontaneous bioelectric activity of cultured hippocampal neurons in a model of hypoxia/reoxygenation. Incubation under hypoxic conditions induced irreversible decrease in spontaneous bioelectric activity of neurons and their death. Application of N-arachidonoyl dopamine during hypoxia and in the post-hypoxic period preserved bioelectric activity and viability of neurons. The protective effect of N-arachidonoyl dopamine was primarily mediated by type I cannabinoid receptors.
Collapse
|
23
|
Hasan SM, Redzic ZB, Alshuaib WB. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups. Brain Res 2013; 1520:61-9. [DOI: 10.1016/j.brainres.2013.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 01/30/2023]
|
24
|
PARK HAEJEONG, KIM HAKJAE. Inhibitory effect of nicardipine on rotenone-induced apoptosis in SH-SY5Y human neuroblastoma cells. Mol Med Rep 2013; 7:941-6. [DOI: 10.3892/mmr.2013.1260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/28/2012] [Indexed: 11/06/2022] Open
|
25
|
Haase A, Rott S, Mantion A, Graf P, Plendl J, Thünemann AF, Meier WP, Taubert A, Luch A, Reiser G. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 2012; 126:457-68. [PMID: 22240980 PMCID: PMC3307608 DOI: 10.1093/toxsci/kfs003] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 μg/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 μg/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages.
Collapse
Affiliation(s)
- Andrea Haase
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zündorf G, Reiser G. The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation. J Neurochem 2011; 119:1194-204. [PMID: 21988180 DOI: 10.1111/j.1471-4159.2011.07527.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (•-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration.
Collapse
Affiliation(s)
- Gregor Zündorf
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
27
|
Pancani T, Anderson KL, Porter NM, Thibault O. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone. Cell Calcium 2011; 50:548-58. [PMID: 21978418 DOI: 10.1016/j.ceca.2011.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/24/2011] [Accepted: 09/10/2011] [Indexed: 11/19/2022]
Abstract
Neuronal Ca(2+) dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca(2+) sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca(2+) signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca(2+) dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including Fura-2 and NADH imaging, provides results that are consistent with the idea that Ca(2+) levels may rapidly alter glycolytic activity, and that downstream events beyond Ca(2+) dysregulation with aging, may alter cellular metabolism in the brain.
Collapse
Affiliation(s)
- Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, United States.
| | | | | | | |
Collapse
|
28
|
Bunik VI, Schloss JV, Pinto JT, Dudareva N, Cooper AJL. A survey of oxidative paracatalytic reactions catalyzed by enzymes that generate carbanionic intermediates: implications for ROS production, cancer etiology, and neurodegenerative diseases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:307-60. [PMID: 21692372 DOI: 10.1002/9780470920541.ch7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Victoria I Bunik
- School of Bioinformatics and Bioengineering, and Belozersky Institute of Physico-Chemical Biology, Moscow Lomonosov State University, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
29
|
Muñoz P, Humeres A, Elgueta C, Kirkwood A, Hidalgo C, Núñez MT. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem 2011; 286:13382-92. [PMID: 21296883 DOI: 10.1074/jbc.m110.213785] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.
Collapse
Affiliation(s)
- Pablo Muñoz
- Centro de Neurociencia, Universidad de Valparaíso, Valparaíso 2360102, Chile.
| | | | | | | | | | | |
Collapse
|
30
|
Isaev NK, Stelmashook EV, Dirnagl U, Plotnikov EY, Kuvshinova EA, Zorov DB. Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. BIOCHEMISTRY (MOSCOW) 2011; 73:149-55. [DOI: 10.1134/s0006297908020053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Nazıroğlu M. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 2010; 36:355-66. [PMID: 21140288 DOI: 10.1007/s11064-010-0347-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 12/13/2022]
Abstract
The Na+ and Ca(2+)-permeable melastatin related transient receptor potential 2 (TRPM2) channels can be gated either by ADP-ribose (ADPR) in concert with Ca(2+) or by hydrogen peroxide (H(2)O(2)), an experimental model for oxidative stress, binding to the channel's enzymatic Nudix domain. Since the mechanisms that lead to TRPM2 gating in response to ADPR and H(2)O(2) are not understood in neuronal cells, I summarized previous findings and important recent advances in the understanding of Ca(2+) influx via TRPM2 channels in different neuronal cell types and disease processes. Considering that TRPM2 is activated by oxidative stress, mediated cell death and inflammation, and is highly expressed in brain, the channel has been investigated in the context of central nervous system. TRPM2 plays a role in H(2)O(2) and amyloid β-peptide induced striatal cell death. Genetic variants of the TRPM2 gene confer a risk of developing Western Pacific amyotropic lateral sclerosis and parkinsonism-dementia complex and bipolar disorders. TRPM2 also contributes to traumatic brain injury processes such as oxidative stress, inflammation and neuronal death. There are a limited number of TRPM2 channel blockers and they seem to be cell specific. For example, ADPR-induced Ca(2+) influx in rat hippocampal cells was not blocked by N-(p-amylcinnomoyl)anthralic acid (ACA), the IP(3) receptor inhibitor 2-aminoethoxydiphenyl borate or PLC inhibitor flufenamic acid (FFA). However, the Ca(2+) entry in rat primary striatal cells was blocked by ACA and FFA. In conclusion TRPM2 channels in neuronal cells can be gated by either ADPR or H(2)O(2). It seems to that the exact relationship between TRPM2 channels activation and neuronal cell death still remains to be determined.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
32
|
Shindo Y, Fujimoto A, Hotta K, Suzuki K, Oka K. Glutamate-induced calcium increase mediates magnesium release from mitochondria in rat hippocampal neurons. J Neurosci Res 2010; 88:3125-32. [DOI: 10.1002/jnr.22467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Domoki F, Kis B, Gáspár T, Snipes JA, Bari F, Busija DW. Rosuvastatin induces delayed preconditioning against L-glutamate excitotoxicity in cultured cortical neurons. Neurochem Int 2009; 56:404-9. [PMID: 19931334 DOI: 10.1016/j.neuint.2009.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
We tested whether rosuvastatin (RST) protected against excitotoxic neuronal cell death in rat primary cortical neuronal cultures. L-glutamate (200 microM, 1h) reduced neuronal viability (% of naive controls, mean+/-SEM, n=8-32, *p<0.05) from 100+/-2% to 60+/-1%*, but pretreatment with RST (0.5 microM, 3 days) increased survival to 88+/-2%*. RST-induced neuroprotection was not affected by co-application with mevalonate (10 microM), although the same dose of mevalonate fully prevented the neurotoxic effects of a high dose (20 microM) of RST. RST (0.5 microM) pretreatment did not affect mitochondrial membrane potential or superoxide anion levels in quiescent neurons. However, RST pretreatment blunted elevations in free intracellular Ca(2+) and reduced increases in superoxide anion levels following glutamate exposure. Manganese superoxide dismutase (SOD), copper-zinc SOD, catalase, and reduced glutathione levels were unaffected by RST pretreatment. In contrast, acute, one time RST application did not affect either baseline or L-glutamate-induced increases in superoxide levels. In summary, three-day RST pretreatment induces resistance to the excitotoxic effect of L-glutamate in cultured neurons apparently by a mechanism that is independent of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibition. The delayed neuroprotection by RST against excitotoxicity does not involve sustained mitochondrial depolarization or superoxide anion production as initiating events, although it is associated with reduced Ca(2+) influx and superoxide anion production upon L-glutamate challenge.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Freestone PS, Chung KKH, Guatteo E, Mercuri NB, Nicholson LFB, Lipski J. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 2009; 30:1849-59. [PMID: 19912331 DOI: 10.1111/j.1460-9568.2009.06990.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05-1 microm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 +/- 15 pA) associated with increases in intracellular [Ca(2+)] ([Ca(2+)](i)) (73.8 +/- 7.7 nm) and intracellular [Na(+)] (3.1 +/- 0.6 mm) (all with 1 microm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca(2+)](i) rise was abolished by removing extracellular Ca(2+), and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca(2+)](i) rise resulted in a large (46.6 +/- 25.3 nm) Ca(2+) response when baseline [Ca(2+)](i) was increased by a 'priming' protocol that activated voltage-gated Ca(2+) channels. There was also a positive correlation between 'naturally' occurring variations in baseline [Ca(2+)](i) and the rotenone-induced [Ca(2+)](i) rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K(+) channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca(2+)](i) rise by a small increase in baseline [Ca(2+)](i).
Collapse
Affiliation(s)
- Peter S Freestone
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
35
|
Graf A, Kabysheva M, Klimuk E, Trofimova L, Dunaeva T, Zündorf G, Kahlert S, Reiser G, Storozhevykh T, Pinelis V, Sokolova N, Bunik V. Role of 2-oxoglutarate dehydrogenase in brain pathologies involving glutamate neurotoxicity. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Rönicke S, Kruska N, Kahlert S, Reiser G. The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis 2009; 36:401-10. [DOI: 10.1016/j.nbd.2009.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/09/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022] Open
|
37
|
Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 2009; 422:405-21. [PMID: 19698086 DOI: 10.1042/bj20090722] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanism-based inhibitors and both forward and reverse genetics have proved to be essential tools in revealing roles for specific enzymatic processes in cellular function. Here, we review experimental studies aimed at assessing the impact of OG (2-oxoglutarate) oxidative decarboxylation on basic cellular activities in a number of biological systems. After summarizing the catalytic and regulatory properties of the OGDHC (OG dehydrogenase complex), we describe the evidence that has been accrued on its cellular role. We demonstrate an essential role of this enzyme in metabolic control in a wide range of organisms. Targeting this enzyme in different cells and tissues, mainly by its specific inhibitors, effects changes in a number of basic functions, such as mitochondrial potential, tissue respiration, ROS (reactive oxygen species) production, nitrogen metabolism, glutamate signalling and survival, supporting the notion that the evolutionary conserved reaction of OG degradation is required for metabolic adaptation. In particular, regulation of OGDHC under stress conditions may be essential to overcome glutamate excitotoxicity in neurons or affect the wound response in plants. Thus, apart from its role in producing energy, the flux through OGDHC significantly affects nitrogen assimilation and amino acid metabolism, whereas the side reactions of OGDHC, such as ROS production and the carboligase reaction, have biological functions in signalling and glyoxylate utilization. Our current view on the role of OGDHC reaction in various processes within complex biological systems allows us a far greater fundamental understanding of metabolic regulation and also opens up new opportunities for us to address both biotechnological and medical challenges.
Collapse
|
38
|
Bunik VI, Kabysheva MS, Klimuk EI, Storozhevykh TP, Pinelis VG. Phosphono Analogues of 2-Oxoglutarate Protect Cerebellar Granule Neurons upon Glutamate Excitotoxicity. Ann N Y Acad Sci 2009; 1171:521-9. [DOI: 10.1111/j.1749-6632.2009.04709.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Haeger P, Alvarez A, Leal N, Adasme T, Núñez MT, Hidalgo C. Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotox Res 2009; 17:238-47. [PMID: 19655216 DOI: 10.1007/s12640-009-9096-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
Abstract
Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, -IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells. Diverse physiological or pathological conditions induce differential DMT1 variant expression, which are cell-type dependent. Hence, it becomes relevant to ascertain if activation of neuronal plasticity processes that require functional N-methyl D: -aspartate (NMDA) receptors, including in vitro stimulation of NMDA receptor-mediated signaling and spatial memory training, selectively modify DMT1 variant expression. Here, we report for the first time that brief (5 min) exposure of primary hippocampal cultures to NMDA (50 muM) increased 24 h later the expression of DMT1-1B and DMT1+IRE, but not of DMT1-IRE mRNA. In contrast, endogenous DMT1 mRNA levels remained unaffected following 6 h incubation with brain-derived nerve factor. NMDA (25-50 muM) also enhanced DMT1 protein expression 24-48 h later; this enhancement was abolished by the transcription inhibitor actinomycin D and by the NMDA receptor antagonist MK-801, implicating NMDA receptors in de novo DMT1 expression. Additionally, spatial memory training enhanced DMT1-1B and DMT1+IRE expression and increased DMT1 protein content in rat hippocampus, where the exon1A variant was not found. These results suggest that NMDA receptor-dependent plasticity processes stimulate expression of the iron transporter DMT1-1B+IRE isoform, which presumably plays a significant role in hippocampal spatial memory formation.
Collapse
Affiliation(s)
- Paola Haeger
- Centro FONDAP de Estudios Moleculares de la Célula, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
40
|
Gáspár T, Domoki F, Lenti L, Katakam PVG, Snipes JA, Bari F, Busija DW. Immediate neuronal preconditioning by NS1619. Brain Res 2009; 1285:196-207. [PMID: 19523929 DOI: 10.1016/j.brainres.2009.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 01/21/2023]
Abstract
The objectives of our present experiments were to determine whether the BK(Ca) channel agonist NS1619 is able to induce immediate preconditioning in cultured rat cortical neurons and to elucidate the role of BK(Ca) channels in the initiation of immediate preconditioning. NS1619 depolarized mitochondria and increased reactive oxygen species (ROS) generation, but neither of these effects was inhibited by BK(Ca) channel antagonists. NS1619 also activated the extracellular signal-regulated kinase signaling pathways. One-hour treatment with NS1619 induced immediate protection against glutamate excitotoxicity (viability 24 h after glutamate exposure: control, 58.45+/-0.95%; NS1619 50 microM, 78.99+/-0.90%; NS1619 100 microM, 86.89+/-1.20%; NS1619 150 microM, 93.23+/-1.23%; mean+/-SEM; p<0.05 vs. control; n=16-32). Eliminating ROS during the preconditioning phase effectively blocked the development of cytoprotection. In contrast, the BK(Ca) channel blockers iberiotoxin and paxilline, the phosphoinositide 3-kinase inhibitor wortmannin, the protein kinase C blocker chelerythrine, and the mitogen activated protein kinase antagonist PD98059 were unable to antagonize the immediate neuroprotective effect. Finally, preconditioning with NS1619 reduced the calcium load and ROS surge upon glutamate exposure and increased superoxide dismutase activity. Our results indicate that NS1619 is an effective inducer of immediate neuronal preconditioning, but the neuroprotective effect is independent of the activation of BK(Ca) channels.
Collapse
Affiliation(s)
- Tamás Gáspár
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Gáspár T, Domoki F, Lenti L, Institoris A, Snipes JA, Bari F, Busija DW. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures. Brain Res 2009; 1270:1-9. [PMID: 19302986 DOI: 10.1016/j.brainres.2009.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/24/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
Abstract
Reduced availability of reactive oxygen species is a key component of neuroprotection against various toxic stimuli. Recently we showed that the hydrogen peroxide scavenger catalase plays a central role in delayed preconditioning induced by the mitochondrial ATP-sensitive potassium channel opener BMS-191095. The purpose of the experiments discussed here was to investigate the neuroprotective effect of catalase in vitro using a recombinant adenoviral catalase gene transfer protocol. To induce catalase overexpression, cultured rat cortical neurons were infected with the adenoviral vector Ad5CMVcatalase and control cells were incubated with Ad5CMVntLacZ for 24 h. Gene transfer effectively increased catalase protein levels and activity, but did not influence other antioxidants tested. Ad5CMVcatalase, with up to 10 plaque forming units (pfu) per neuron, did not affect cell viability under control conditions and did not protect against glutamate excitotoxicity or oxygen-glucose deprivation. In contrast, catalase overexpression conferred a dose-dependent protection against exposure to hydrogen peroxide (viability: control, 33.02+/-1.09%; LacZ 10 pfu/cell, 32.85+/-1.51%; catalase 1 pfu/cell, 62.09+/-4.17%*; catalase 2 pfu/cell, 98.71+/-3.35%*; catalase 10 pfu/cell, 99.68+/-1.99%*; *p<0.05 vs. control; mean+/-SEM). Finally, the protection could be antagonized using the catalase inhibitor 3-aminotriazole. Our results support the view that enhancing cellular antioxidant capacity may play a crucial role in neuroprotective strategies.
Collapse
Affiliation(s)
- Tamás Gáspár
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kabysheva MS, Storozhevykh TP, Pinelis VG, Bunik VI. Synthetic regulators of the 2-oxoglutarate oxidative decarboxylation alleviate the glutamate excitotoxicity in cerebellar granule neurons. Biochem Pharmacol 2009; 77:1531-40. [PMID: 19426691 DOI: 10.1016/j.bcp.2009.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/24/2022]
Abstract
Impairment of the 2-oxoglutarate oxidative decarboxylation by the 2-oxoglutarate dehydrogenase complex (OGDHC) is associated with the glutamate accumulation, ROS production and neuropathologies. We hypothesized that correct function of OGDHC under metabolic stress is essential to overcome the glutamate excitotoxic action on neurons. We show that synthetic phosphono analogs of 2-oxoglutarate, succinyl phosphonate and its phosphono ethyl ester, improve the catalysis by brain OGDHC through inhibiting the side reaction of irreversible inactivation of its first component, 2-oxoglutarate dehydrogenase. Under the substrate and cofactor saturation, the component and complex undergo the inactivation during catalysis with the apparent rate constant 0.2 min(-1). The inactivation rate is reduced by 90% and 60% in the presence of 50 microM succinyl phosphonate and its phosphono ethyl ester, correspondingly. In cultured cerebellar granule neurons exposed to excitotoxic glutamate, the phosphonates (100 microM) protect from the irreversible impairment of mitochondrial function and delayed calcium deregulation. The deregulation amplitude is decreased by succinyl phosphonate and its phosphono ethyl ester by 50% and 30%, correspondingly. Thus, succinyl phosphonate is more potent than its phosphono ethyl ester in protecting both the isolated brain OGDHC from inactivation and cultured neurons from the glutamate-induced calcium deregulation. The correlation of the relative efficiency of the phosphonates in vitro and in situ indicates that their cellular effects are due to targeting OGDHC, which is in accord with independent studies. We conclude that the compounds preserving the 2-oxoglutarate dehydrogenase activity are of neuroprotective value upon metabolic disbalance induced by glutamate excess.
Collapse
Affiliation(s)
- Maria S Kabysheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russian Federation
| | | | | | | |
Collapse
|
43
|
α-Ketoglutarate dehydrogenase contributes to production of reactive oxygen species in glutamate-stimulated hippocampal neurons in situ. Neuroscience 2009; 158:610-6. [PMID: 18996448 DOI: 10.1016/j.neuroscience.2008.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/15/2008] [Accepted: 10/28/2008] [Indexed: 12/18/2022]
|
44
|
Iijima T, Tanaka K, Matsubara S, Kawakami H, Mishima T, Suga K, Akagawa K, Iwao Y. Calcium loading capacity and morphological changes in mitochondria in an ischemic preconditioned model. Neurosci Lett 2008; 448:268-72. [PMID: 18955111 DOI: 10.1016/j.neulet.2008.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 01/25/2023]
Abstract
The concept of the mitochondrial permeability transition (mPT) has been used to explain cell death induced by calcium deregulation, which is in turn induced by a disruption in the mitochondrial loading capacity of cytosolic calcium (CLC). Whether mitochondria have specific morphologies representing the CLC and the mPT remains controversial. We examined ultrastructural changes in the mitochondria of cultured hippocampal neurons preconditioned with oxygen-glucose deprivation (OGD) for 30 min (30OGD) or 120 min (120OGD). The CLC was then evaluated using simultaneous imaging of the mitochondrial and plasma Ca++ concentrations after the induction of Ca++ influx by the application of glutamate. In the 30OGD group, the CLC increased as the mitochondria rapidly reacted to the increase in plasma Ca++, which was soon cleared. In the 120OGD group, however, the CLC was disturbed because the mitochondrial uptake of Ca was blunted, and the plasma Ca++ was not cleared after glutamate application. We classified the specific morphological changes in the mitochondria according to a previously reported classification. Rounded mitochondria with scarce interior content were observed in the 120OGD group, a model of prolonged lethal OGD, and disruptions in the mitochondrial outer membrane were frequently confirmed, suggesting mPT. The 30OGD group, a model of enhanced CLC in preconditioned neurons, was characterized by round mitochondria with condensed matrices. After glutamate application, the mitochondria became even more rounded with expanded matrices, and outer membrane disruptions were occasionally seen. Our observations suggest that subpopulations of mitochondria with specific morphologies are linked to the CLC and mPT.
Collapse
Affiliation(s)
- Takehiko Iijima
- Department of Anesthesiology, Kyorin University, School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Detection of de- and hyperpolarization of mitochondria of cultured astrocytes and neurons by the cationic fluorescent dye rhodamine 123. J Neurosci Methods 2008; 171:87-92. [DOI: 10.1016/j.jneumeth.2008.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 12/16/2022]
|
46
|
Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 2008; 138:514-524. [PMID: 18375065 DOI: 10.1016/j.pain.2008.01.029] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/14/2008] [Accepted: 01/25/2008] [Indexed: 01/02/2023]
Abstract
Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, thus suggesting ROS involvement in central sensitization. To investigate ROS involvement in central sensitization, the effects of ROS scavengers and donors on pain behaviors were examined in mice. Capsaicin- induced hyperalgesia was used as a pain model since it has 2 distinctive pain components, primary and secondary hyperalgesia representing peripheral and central sensitization, respectively. Capsaicin (25 microg/5 microl) was injected intradermally into the left hind foot. Foot withdrawal frequencies in response to von Frey filament stimuli were measured and used as an indicator of mechanical hyperalgesia. The production of ROS was examined by using a ROS sensitive dye, MitoSox. Mice developed primary and secondary mechanical hyperalgesia after capsaicin injection. A systemic or intrathecal post-treatment with either phenyl-N-tert-butylnitrone (PBN) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-1 oxyl (TEMPOL), ROS scavengers, significantly reduced secondary hyperalgesia, but not primary hyperalgesia, in a dose-dependent manner. Pretreatment with ROS scavengers also significantly reduced the magnitude and duration of capsaicin-induced secondary hyperalgesia. On the other hand, intrathecal injection of tert-butylhydroperoxide (t-BOOH, 5 microl), a ROS donor, produced a transient hyperalgesia in a dose-dependent manner. The number of MitoSox positive dorsal horn neurons was increased significantly after capsaicin treatment. This study suggests that ROS mediates the development and maintenance of capsaicin-induced hyperalgesia in mice, mainly through central sensitization and that the elevation of spinal ROS is most likely due to increased production of mitochondrial superoxides in the dorsal horn neurons.
Collapse
|
47
|
Kahlert S, Blaser T, Tulapurkar M, Reiser G. P2Y receptor-activating nucleotides modulate cellular reactive oxygen species production in dissociated hippocampal astrocytes and neurons in culture independent of parallel cytosolic Ca(2+) rise and change in mitochondrial potential. J Neurosci Res 2008; 85:3443-56. [PMID: 17492786 DOI: 10.1002/jnr.21316] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With mixed cultures of hippocampal astrocytes and neurons, we investigated the influence of nucleotides on cytosolic Ca(2+) level, generation of reactive oxygen species (ROS), and mitochondrial potential. We employed ATP and four purine/pyrimidine derivates, which are P2Y receptor subtype-preferring agonists. Stimulation with ATP, a P2Y(1/2/4) receptor agonist in rat, caused a large cytosolic Ca(2+) increase in astrocytes and a considerably smaller Ca(2+) response in neighboring neurons. The P2Y(1) receptor antagonist MRS2179 completely blocked the ATP-induced Ca(2+) response in astrocytes and neurons. Application of ATP significantly reduced the mitochondrial potential in neurons, which was not inhibited by MRS2179. Interestingly, MRS2179 mediated a mitochondrial depolarization without affecting the cytosolic Ca(2+) level. Stimulation with UDP, a P2Y(6) receptor agonist; UTP, a P2Y(2/4) receptor agonist; 2MeSATP, a P2Y(1) receptor agonist; or 2MeSADP, a P2Y(1/12/13) receptor agonist, evoked significant Ca(2+) responses in astrocytes but small Ca(2+) responses in neurons. In astrocytes, there was an inverse relationship between the amplitude of the cytosolic Ca(2+) peak and the rate of ROS generation in response to nucleotide application. Activation with UDP resulted in the highest ROS generation that we detected, whereas 2MeSADP and 2MeSATP reduced the ROS generation below the basal level. 2MeSADP and UDP caused mitochondrial depolarization of comparable size. Thus, neither in astrocytes nor in neurons did the degree of mitochondrial depolarization correlate with ROS generation. Nucleotides acting via P2Y receptors can modulate ROS generation of hippocampal neurons without acutely changing the cytosolic Ca(2+) level. Thus, ROS might function as a signaling molecule upon nucleotide-induced P2Y receptor activation in brain.
Collapse
Affiliation(s)
- Stefan Kahlert
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | | | | |
Collapse
|
48
|
Hernández-Fonseca K, Cárdenas-Rodríguez N, Pedraza-Chaverri J, Massieu L. Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res 2008; 86:1768-80. [DOI: 10.1002/jnr.21634] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Souza dos Santos P, Saraiva DF, Ferraz da Costa DC, Scofano HM, de Carvalho-Alves PC. Trifluoperazine protects brain plasma membrane Ca(2+)-ATPase from oxidative damaging. Exp Brain Res 2007; 177:347-57. [PMID: 16955267 DOI: 10.1007/s00221-006-0678-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/11/2006] [Indexed: 01/04/2023]
Abstract
In the central nervous system (CNS), a number of different pathological processes such as necrosis, Parkinson's and Alzheimer's diseases are related to disturbance in calcium homeostasis associated with oxidative stress. Here we compare the susceptibility of rat brain plasma membrane Ca(2+)-ATPase (PMCA) and sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) isoforms to in vitro oxidative stress, and investigate a putative role of trifluoperazine (TFP), an antipsychotic drug that is also a powerful inhibitor of Ca(2+)-transporter proteins, in protecting these enzymes. It is shown that, in rat brain, PMCA is very sensitive to the damage induced by preincubation with Fe(2+)-ascorbate, or Fe(2+)-ascorbate plus H2O2, while SERCA is resistant. Inhibition of PMCA activity promoted by Fe(2+)/ascorbate medium is fully prevented by the presence of microM concentrations of either butylated hydroxytoluene (BHT) or TFP, but only partially protected, or reversed, by dithiothreitol (DTT), pointing to some protein cysteine(s) as one of the main targets for a lipid peroxidation-dependent damaging mechanism. However, when 0.5-1 mM H2O2 is added together with Fe(2+)/ascorbate, both BHT and TFP only partially prevent ATPase activity inhibition, and DTT does not confer any protection, suggesting two possible additional mechanisms involving both lipid peroxidation and direct damage to PMCA at amino acid residues other than cysteines. A possible use of micromolar concentrations of TFP as a direct antioxidant protector for PMCA under oxidative stress conditions is discussed.
Collapse
|
50
|
Zappalà A, Li Volti G, Serapide MF, Pellitteri R, Falchi M, La Delia F, Cicirata V, Cicirata F. Expression of pannexin2 protein in healthy and ischemized brain of adult rats. Neuroscience 2007; 148:653-67. [PMID: 17692470 DOI: 10.1016/j.neuroscience.2007.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
The expression pattern of the pannexin2 protein (Px2) in healthy and ischemized brains of adult rats was investigated. A polyclonal antibody for rat Px2 was generated in chicken and purified for affinity. This antibody was used to study by Western blot, Enzyme-Linked Immunosorbent Assay, and immunohistochemistry, the expression pattern of Px2 in healthy brain of adult rats and in the hippocampus of rats submitted to bilateral clamping of carotid arteries for 20 min, followed by different times of reperfusion (I/R) (8 h, 24 h, 48 h, 72 h, 14 days and 30 days). Immunohistochemical studies visualized the wide and complex expression pattern of Px2 in the healthy brain. All Px2(+) positive cells were neurons which also showed no puncta on their cellular membranes. Both pyramidal cells and interneurons, the majority of which were positive to parvalbumin, were stained in healthy hippocampus. The number of Px2 interneurons in the hippocampus showed a progressive reduction at successive time intervals after I/R, with a negative peak of about -40% after 72 h from I/R. Interneurons which were positive for both Px2 and parvalbumin, represented about the 85% of all parvalbumin cells stained in the hippocampus. This percentage rested grossly unmodified at different time intervals after I/R in spite of the progressive neuronal depletion. Concomitantly, an intense astrogliosis occurred in the hippocampus. Most of the astroglial cells expressed de novo and for a transient time (from 24 h to 14 days from I/R), Px2. Primary co-cultures of hippocampal neurons and astrocytes were submitted to transient ischemia-like injury. This set of experiments further confirmed the in vivo results by showing that Px2 is de novo and transiently expressed in astroglial cells following a transient ischemia-like injury. These results suggested the expression of Px2 in the astrocytes may be induced either from injured neurons or by biochemical pathways internal to the astrocyte itself. In conclusion, our results showed the transient expression of Px2 in astrocytes of reactive gliosis occurring in the hippocampus following I/R injury. We hypothesize that Px2 expression in astrocytes following an ischemic insult is principally involved in the formation of hemichannels for the release of signaling molecules devoted to influence the cellular metabolism and the redox status of the surrounding environment.
Collapse
Affiliation(s)
- A Zappalà
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|