1
|
Li GG, Piao CJ, Wan P, Li SY, Wei YX, Zhao GJ, Wu WY, Hong L, Chu CP, Qiu DL. Opposing actions of CRF-R1 and CB1 receptor on facial stimulation-induced MLI-PC plasticity in mouse cerebellar cortex. BMC Neurosci 2022; 23:39. [PMID: 35754033 PMCID: PMC9235104 DOI: 10.1186/s12868-022-00726-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) is the major neuromodulator orchestrating the stress response, and is secreted by neurons in various regions of the brain. Cerebellar CRF is released by afferents from inferior olivary neurons and other brainstem nuclei in response to stressful challenges, and contributes to modulation of synaptic plasticity and motor learning behavior via its receptors. We recently found that CRF modulates facial stimulation-evoked molecular layer interneuron-Purkinje cell (MLI-PC) synaptic transmission via CRF type 1 receptor (CRF-R1) in vivo in mice, suggesting that CRF modulates sensory stimulation-evoked MLI-PC synaptic plasticity. However, the mechanism of how CRF modulates MLI-PC synaptic plasticity is unclear. We investigated the effect of CRF on facial stimulation-evoked MLI-PC long-term depression (LTD) in urethane-anesthetized mice by cell-attached recording technique and pharmacological methods. RESULTS Facial stimulation at 1 Hz induced LTD of MLI-PC synaptic transmission under control conditions, but not in the presence of CRF (100 nM). The CRF-abolished MLI-PC LTD was restored by application of a selective CRF-R1 antagonist, BMS-763,534 (200 nM), but it was not restored by application of a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Blocking cannabinoid type 1 (CB1) receptor abolished the facial stimulation-induced MLI-PC LTD, and revealed a CRF-triggered MLI-PC long-term potentiation (LTP) via CRF-R1. Notably, either inhibition of protein kinase C (PKC) with chelerythrine (5 µM) or depletion of intracellular Ca2+ with cyclopiazonic acid (100 µM), completely prevented CRF-triggered MLI-PC LTP in mouse cerebellar cortex in vivo. CONCLUSIONS The present results indicated that CRF blocked sensory stimulation-induced opioid-dependent MLI-PC LTD by triggering MLI-PC LTP through CRF-R1/PKC and intracellular Ca2+ signaling pathway in mouse cerebellar cortex. These results suggest that activation of CRF-R1 opposes opioid-mediated cerebellar MLI-PC plasticity in vivo in mice.
Collapse
Affiliation(s)
- Guang-Gao Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China.,Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
| | - Chun-Jian Piao
- Grade 2019 College Students Major in Clinical Medicine, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China
| | - Peng Wan
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Shu-Yu Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China
| | - Yu-Xuan Wei
- Grade 2019 College Students Major in Clinical Medicine, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China
| | - Guo-Jun Zhao
- Grade 2019 College Students Major in Clinical Medicine, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China
| | - Wen-Yuan Wu
- Department of Urology, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China.
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China.,Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, China. .,Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin, China.
| |
Collapse
|
2
|
Sharpe AL, Trzeciak M, Eliason NL, Blankenship HE, Byrd BM, Douglas PD, Freeman WM, Beckstead MJ. Repeated cocaine or methamphetamine treatment alters astrocytic CRF2 and GLAST expression in the ventral midbrain. Addict Biol 2022; 27:e13120. [PMID: 34825430 PMCID: PMC9872560 DOI: 10.1111/adb.13120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/26/2023]
Abstract
Dopamine neurons in the substantia nigra (SN) and ventral tegmental area (VTA) play a central role in the reinforcing properties of abused drugs including methamphetamine and cocaine. Chronic effects of psychostimulants in the SN/VTA also involve non-dopaminergic transmitters, including glutamate and the stress-related peptide corticotropin-releasing factor (CRF). In the SN/VTA, astrocytes express a variety of membrane-bound neurotransmitter receptors and transporters that influence neurotransmission. CRF receptor type 2 (CRF2) activity in the VTA is important for stress-induced relapse and drug-seeking behaviour, but the localization of its effects is incompletely understood. Here, we first identified CRF2 transcript in astrocytes of the SN/VTA using RNA-Seq in Aldh1l1;NuTRAP mice and confirmed it using in situ hybridization (RNAscope) in wild-type mice. We then used immunofluorescence to quantify the astrocytic marker protein S100β, glial-specific glutamate/aspartate transporter GLAST, and CRF2 in the SN/VTA following 12 days of treatment (i.p.) with methamphetamine (3 mg/kg), cocaine (10 mg/kg), or saline. We observed a significant decrease in GLAST immunofluorescence in brains of psychostimulant treated mice compared with saline controls. In addition, we observed increased labelling of CRF2 in drug treated groups, a decrease in the number of S100β positive cells, and an increase of co-staining of CRF2 with both S100β and tyrosine hydroxylase (dopamine neurons). Our results suggest a significant interaction between CRF2, GLAST, and astrocytes in the midbrain that emerges with repeated exposure to psychostimulants. These findings provide rationale for future investigation of astrocyte-based strategies for altering cellular and circuit function in response to stress and drug exposure.
Collapse
Affiliation(s)
- Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma City, OK, 73117
| | - Marta Trzeciak
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| | - Nicole L. Eliason
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma City, OK, 73117
| | - Harris E. Blankenship
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| | - Bre’Ana M. Byrd
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma City, OK, 73117
| | - Phillip D. Douglas
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| | - Willard M. Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| | - Michael J. Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| |
Collapse
|
3
|
Activation CRF-R2 augments cerebellar climbing fiber-Purkinje cell synaptic transmission via presynaptic PKA pathway in mice. Neurosci Lett 2022; 777:136584. [DOI: 10.1016/j.neulet.2022.136584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
|
4
|
Wu WY, Liu Y, Wu MC, Wang HW, Chu CP, Jin H, Li YZ, Qiu DL. Corticotrophin-Releasing Factor Modulates the Facial Stimulation-Evoked Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission in vivo in Mice. Front Cell Neurosci 2020; 14:563428. [PMID: 33324165 PMCID: PMC7726213 DOI: 10.3389/fncel.2020.563428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is an important neuromodulator in central nervous system that modulates neuronal activity via its receptors during stress responses. In cerebellar cortex, CRF modulates the simple spike (SS) firing activity of Purkinje cells (PCs) has been previously demonstrated, whereas the effect of CRF on the molecular layer interneuron (MLI)–PC synaptic transmission is still unknown. In this study, we examined the effect of CRF on the facial stimulation–evoked cerebellar cortical MLI-PC synaptic transmission in urethane-anesthetized mice by in vivo cell-attached recording, neurobiotin juxtacellular labeling, immunohistochemistry techniques, and pharmacological method. Cell-attached recordings from cerebellar PCs showed that air-puff stimulation of ipsilateral whisker pad evoked a sequence of tiny parallel fiber volley (N1) followed by MLI-PC synaptic transmission (P1). Microapplication of CRF in cerebellar cortical molecular layer induced increases in amplitude of P1 and pause of SS firing. The CRF decreases in amplitude of P1 waveform were in a dose-dependent manner with the EC50 of 241 nM. The effects of CRF on amplitude of P1 and pause of SS firing were abolished by either a non-selective CRF receptor antagonist, α-helical CRF-(9-14), or a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM), but were not prevented by a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Notably, application CRF not only induced a significant increase in spontaneous spike firing rate, but also produced a significant increase in the number of the facial stimulation–evoked action potential in MLIs. The effect of CRF on the activity of MLIs was blocked by the selective CRF-R1 antagonist, and the MLIs expressed the CRF-R1 imunoreactivity. These results indicate that CRF increases excitability of MLIs via CRF-R1, resulting in an enhancement of the facial stimulation–evoked MLI-PC synaptic transmission in vivo in mice.
Collapse
Affiliation(s)
- Wen-Yuan Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China.,Department of Urology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| | - Mao-Cheng Wu
- Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hong-Wei Wang
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| | - Hua Jin
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Nephrology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yu-Zi Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| |
Collapse
|
5
|
Wang HW, Zhao JT, Li BX, Su SS, Bing YH, Chu CP, Wang WM, Li YZ, Qiu DL. Corticotrophin-Releasing Factor Modulates Cerebellar Purkinje Cells Simple Spike Activity in Vivo in Mice. Front Cell Neurosci 2018; 12:184. [PMID: 30034323 PMCID: PMC6043798 DOI: 10.3389/fncel.2018.00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/11/2018] [Indexed: 12/04/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is a major neuromodulator that modulates cerebellar neuronal activity via CRF receptors during stress responses. In the cerebellar cortex, CRF dose-dependently increases the simple spike (SS) firing rate of Purkinje cells (PCs), while the synaptic mechanisms of this are still unclear. We here investigated the effect of CRF on the spontaneous SS activity of cerebellar PCs in urethane-anesthetized mice by in vivo electrophysiological recording and pharmacological methods. Cell-attached recordings from PCs showed that micro-application of CRF in cerebellar cortical molecular layer induced a dose-dependent increase in SS firing rate in the absence of GABAA receptor activity. The CRF-induced increase in SS firing rate was completely blocked by a nonselective CRF receptor antagonist, α-helical CRF-(9–14). Nevertheless, application of either a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM) or a selective CRF-R2 antagonist, antisauvagine-30 (200 nM) significantly attenuated, but failed to abolished the CRF-induced increase in PCs SS firing rate. In vivo whole-cell patch-clamp recordings from PCs showed that molecular layer application of CRF significantly increased the frequency, but not amplitude, of miniature postsynaptic currents (mEPSCs). The CRF-induced increase in the frequency of mEPSCs was abolished by a CRF-R2 antagonist, as well as protein kinase A (PKA) inhibitors. These results suggested that CRF acted on presynaptic CRF-R2 of cerebellar PCs resulting in an increase of glutamate release through PKA signaling pathway, which contributed to modulation of the cerebellar PCs outputs in Vivo in mice.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Jing-Tong Zhao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Bing-Xue Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Shan-Shan Su
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan-Hua Bing
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Wei-Ming Wang
- Department of Osteology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yu-Zi Li
- Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular of the Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
6
|
Tan LA, Vaughan JM, Perrin MH, Rivier JE, Sawchenko PE. Distribution of corticotropin-releasing factor (CRF) receptor binding in the mouse brain using a new, high-affinity radioligand, [125I]-PD-Sauvagine. J Comp Neurol 2017; 525:3840-3864. [DOI: 10.1002/cne.24307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Laura A. Tan
- Laboratory of Neuronal Structure and Function; The Salk Institute for Biological Studies; La Jolla CA
| | - Joan M. Vaughan
- Laboratory of Neuronal Structure and Function; The Salk Institute for Biological Studies; La Jolla CA
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies; La Jolla CA
| | - Marilyn H. Perrin
- Laboratory of Neuronal Structure and Function; The Salk Institute for Biological Studies; La Jolla CA
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies; La Jolla CA
| | - Jean E. Rivier
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies; La Jolla CA
| | - Paul E. Sawchenko
- Laboratory of Neuronal Structure and Function; The Salk Institute for Biological Studies; La Jolla CA
| |
Collapse
|
7
|
Libster AM, Title B, Yarom Y. Corticotropin-releasing factor increases Purkinje neuron excitability by modulating sodium, potassium, and Ih currents. J Neurophysiol 2015; 114:3339-50. [PMID: 26445872 DOI: 10.1152/jn.00745.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/03/2015] [Indexed: 01/08/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is a neuromodulator closely associated with stress responses. It is synthesized and released in the central nervous system by various neurons, including neurons of the inferior olive. The targets of inferior olivary neurons, the cerebellar Purkinje neurons (PNs), are endowed with CRF receptors. CRF increases the excitability of PNs in vivo, but the biophysical mechanism is not clear. Here we examine the effect of CRF on the firing properties of PNs using acute rat cerebellar slices. CRF increased the PN firing rate, regardless of whether they were firing tonically or switching between firing and quiescent periods. Current- and voltage-clamp experiments showed that the increase in firing rate was associated with a voltage shift of the activation curve of the persistent sodium current and hyperpolarizing-activated current, as well as activation of voltage-dependent potassium current. The multiple effects on various ionic currents, which are in agreement with the possibility that activation of CRF receptors triggers several intracellular pathways, are manifested as an increase excitability of PN.
Collapse
Affiliation(s)
- Avraham M Libster
- Edmond & Lily Safra Center for Brain Sciences, Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Ben Title
- Edmond & Lily Safra Center for Brain Sciences, Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Yosef Yarom
- Edmond & Lily Safra Center for Brain Sciences, Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
8
|
Schmidt EF, Kus L, Gong S, Heintz N. BAC transgenic mice and the GENSAT database of engineered mouse strains. Cold Spring Harb Protoc 2013; 2013:2013/3/pdb.top073692. [PMID: 23457350 DOI: 10.1101/pdb.top073692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The brain is a complex tissue comprising hundreds of distinct cell types, each of which has unique circuitry and plays a discrete role in nervous system function. Large-scale studies mapping gene-expression patterns throughout the nervous system have revealed that many genes are exclusively expressed in specific cell populations. The GENSAT (Gene Expression Nervous System Atlas) Project created a library of engineered mice utilizing bacterial artificial chromosomes (BACs) to drive the expression of enhanced green fluorescent protein (eGFP) in genetically defined cell populations. BACs contain large segments of genomic DNA and retain most of the transcriptional regulatory elements directing the expression of a given gene, resulting in more faithful reproduction of endogenous expression patterns. BAC transgenic mice offer a robust solution to the challenging task of stably and reproducibly accessing specific cell types from a heterogeneous tissue such as the brain. A significant advantage of utilizing eGFP as a reporter is the fact that it can fill entire cells, including neuronal dendrites and axons as well as glial processes, making GENSAT reporter mice a powerful tool for neuroimaging studies. This article provides a primer on the generation of BAC transgenic mice and advantages for their use in labeling genetically defined cell types. It also provides an overview of searching the GENSAT database and ordering engineered mouse lines.
Collapse
|
9
|
Chitravanshi VC, Kawabe K, Sapru HN. Bradycardic effects of microinjections of urocortin 3 into the nucleus ambiguus of the rat. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1023-30. [PMID: 23019211 DOI: 10.1152/ajpregu.00224.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The presence of urocortin 3 (UCN3) and CRF2 receptors (CRF2R) has been demonstrated in brain tissue. Nucleus ambiguus (nAmb) is the predominant brain area providing parasympathetic innervation to the heart. On the basis of these reports, it was hypothesized that activation of CRF2Rs in the nAmb may elicit cardiac effects. Experiments were carried out in urethane-anesthetized, artificially ventilated, and adult male Wistar rats. Microinjections of l-glutamate (l-GLU, 5 mM) were used to identify the nAmb. Different concentrations of UCN3 (0.031, 0.062, 0.125, 0.25, and 0.5 mM) microinjected into the nAmb elicited decreases in heart rate (HR) (5.3 ± 1, 22 ± 3.3, 38 ± 4.9, 45.7 ± 2.7, and 27.3 ± 2.3 bpm, respectively). The volume of all microinjections was 30 nl. Blood pressure changes concomitant with decreases in HR were not observed. Bradycardia elicited by microinjections of UCN3 (0.25 mM; maximally effective concentration) into the nAmb was significantly (P < 0.05) attenuated by microinjections of selective CRF2R antagonists (K41498, 0.5 mM, and astressin 2B, 0.25 mM) at the same site. Bilateral vagotomy abolished the bradycardic responses to UCN3. These results indicated that activation of CRF2Rs in the nAmb by UCN3 elicited bradycardia, which was vagally mediated. UCNs have been reported to exert cardioprotective effects in heart failure and ischemia/reperfusion injury. In this situation, centrally induced bradycardia by UCN3 would be beneficial. The results of the present investigation provide a platform for future studies on the role of CRF2Rs in the nAmb in pathological states such as heart failure.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Dept. of Neurological Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
10
|
Pournajafi-Nazarloo H, Partoo L, Yee J, Stevenson J, Sanzenbacher L, Kenkel W, Mohsenpour SR, Hashimoto K, Carter CS. Effects of social isolation on mRNA expression for corticotrophin-releasing hormone receptors in prairie voles. Psychoneuroendocrinology 2011; 36:780-9. [PMID: 21095063 PMCID: PMC3104077 DOI: 10.1016/j.psyneuen.2010.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated that various type of stressors modulate messenger ribonucleic acid (mRNA) for type 1 corticotropin-releasing hormone (CRH) receptor (CRH-R1 mRNA) and type 2 CRH receptor (CRH-R2 mRNA). The purpose of this study was to explore the effect of social isolation stress of varying durations on the CRH, CRH-R1 and CRH-R2 mRNAs expression in the hypothalamus, hippocampus and pituitary of socially monogamous female and male prairie voles (Microtus ochrogaster). Isolation for 1h (single isolation) or 1h of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma corticosterone levels. Single or repeated isolation increased hypothalamic CRH mRNA expression, but no changes in CRH-R1 mRNA in the hypothalamus were observed. Continuous isolation for 4 weeks (chronic isolation) showed no effect on hypothalamic CRH or CRH-R1 mRNAs in female or male animals. However, hypothalamic CRH-R2 mRNA was significantly reduced in voles exposed to chronic isolation. Single or repeated isolation, but not chronic isolation, significantly increased CRH-R1 mRNA and decreased CRH-R2 mRNA in the pituitary. Despite elevated CRH mRNA expression, CRH-R1 and CRH-R2 mRNAs were not modulated in the hippocampus following single or repeated isolation. Although, chronic isolation did not affect hippocampal CRH or CRH-R1 mRNAs, it did increase CRH-R2 mRNA expression in females and males. The results of the present study in prairie voles suggest that social isolation has receptor subtype and species-specific consequences for the modulation of gene expression for CRH and its receptors in brain and pituitary. Previous studies have revealed a female-biased increase in oxytocin in response to chronic isolation; however, we did not find a sex difference in CRH or its receptors following single, repeated or chronic social isolation, suggesting that sexually dimorphic processes beyond the CRH system, possibly involving vasopressin, might explain this difference.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu S, Ren W, Qu MH, Bishop GA, Wang GD, Wang XY, Xia Y, Wood JD. Differential actions of urocortins on neurons of the myenteric division of the enteric nervous system in guinea pig distal colon. Br J Pharmacol 2009; 159:222-36. [PMID: 20002096 DOI: 10.1111/j.1476-5381.2009.00516.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Urocortins (Ucns) 1, 2 and 3 are corticotropin-releasing factor (CRF)-related neuropeptides and may be involved in neural regulation of colonic motor functions. Nevertheless, details of the neural mechanism of action for Ucns have been unclear. We have, here, tested the hypothesis that Ucns act in the enteric nervous system (ENS) to influence colonic motor behaviour. EXPERIMENTAL APPROACH We used intracellular recording with 'sharp' microelectrodes, followed by intraneuronal injection of biocytin, and immunohistochemical localization of CRF(1) and CRF(2) receptors in guinea pig colonic tissue. KEY RESULTS Application of Ucn1 depolarized membrane potentials and elevated excitability in 58% of AH-type and 60% of S-type colonic myenteric neurons. In most of the neurons tested, depolarizing responses evoked by Ucn-1 were suppressed by the CRF(1) receptor antagonist NBI 27914, but were unaffected by the CRF(2) receptor antagonist antisauvagine-30. The selective CRF(2) receptor agonists, Ucn2 and Ucn3, evoked depolarizing responses in 12 and 8% of the AH-type myenteric neurons, respectively, and had no effect on S-type neurons. Antisauvagine-30, but not NBI 27914, suppressed these Ucn2- and Ucn3-evoked responses. Immunohistochemical staining identified CRF(1) as the predominant CRF receptor subtype expressed by ganglion cell somas, while CRF(2)-immunoreactive neuronal somas were sparse. Ucns did not affect excitatory synaptic transmission in the ENS. CONCLUSIONS AND IMPLICATIONS The results suggest that Ucns act as neuromodulators to influence myenteric neuronal excitability. The excitatory action of Ucn1 in myenteric neurons was primarily at CRF(1) receptors, and the excitatory action of Ucn2 and Ucn3 was at CRF(2) receptors.
Collapse
Affiliation(s)
- Sumei Liu
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakamura T, Sapru HN. Cardiovascular responses to microinjections of urocortins into the NTS: role of inotropic glutamate receptors. Am J Physiol Heart Circ Physiol 2009; 296:H2022-9. [PMID: 19395554 PMCID: PMC2716101 DOI: 10.1152/ajpheart.00191.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
Abstract
Urocortin 1 (Ucn1) and urocortin 3 (Ucn3) are new members of the corticotrophin-releasing factor (CRF) peptide family. Ucn1 is a ligand for both the CRF type 1 receptors (CRF(1)Rs) and the CRF type 2 receptors (CRF(2)Rs), whereas Ucn3 is a high-affinity ligand for the CRF(2)Rs. Recently, we reported that Ucn3 microinjections into the medial nucleus tractus solitarius (mNTS) elicit decreases in mean arterial pressure (MAP) and heart rate (HR) (Nakamura T, Kawabe K, Sapru HN. Am J Physiol Heart Circ Physiol 296: H325-H332, 2009). The presence of CRF(2)Rs on afferent terminals has been reported in the mNTS of the rat. It was hypothesized that activation of CRF(2)Rs on afferent terminals in the mNTS may release glutamate, which, in turn, may elicit decreases in MAP and HR via activation of ionotropic glutamate receptors (iGLURs). This hypothesis was tested in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (100 nl) of Ucn1 (0.12 mM) into the mNTS elicited decreases in MAP and HR. The responses were partially blocked by microinjections of iGLUR antagonists into the mNTS. On the other hand, the decreases in MAP and HR elicited by microinjections of Ucn3 (0.06 mM) into the mNTS were completely blocked by microinjections of iGLUR antagonists into the mNTS. These results indicate that activation of CRF(2)Rs in the mNTS, by Ucn1 and Ucn3, releases glutamate, which, in turn, elicits decreases in MAP and HR via activation of iGLURs.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Neurological Surgery, MSB H-586, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
13
|
Pournajafi-Nazarloo H, Partoo L, Sanzenbacher L, Paredes J, Hashimoto K, Azizi F, Sue Carter C. Stress differentially modulates mRNA expression for corticotrophin-releasing hormone receptors in hypothalamus, hippocampus and pituitary of prairie voles. Neuropeptides 2009; 43:113-23. [PMID: 19185916 DOI: 10.1016/j.npep.2008.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/18/2022]
Abstract
This study compares the effect of an acute stressor (restraint for 1h) versus a chronic stressor (social isolation for 4 weeks) on the expression of mRNAs for corticotropin-releasing hormone (CRH), CRH receptor type 1 (CRH-R1) and type 2 (CRH-R2) in the hypothalamus, hippocampus and pituitary of socially monogamous female prairie voles (Microtus ochrogaster). Animals were studied immediately following a stressor or as a function of repairing with a familiar sibling. Despite elevated expression of CRH mRNA, no alteration of CRH-R1 mRNA in the hypothalamus was observed following restraint stress or 4 weeks of social isolation. Hypothalamic CRH-R2 mRNA was significantly lower in voles exposed to restraint or isolation. CRH-R2 mRNA also remained down-regulated in isolated animals when these animals were re-paired with their sibling for one day following 28 days of isolation. Restraint, but not isolation, significantly increased CRH-R1 mRNA and decreased CRH-R2 mRNA in the pituitary. However, these differences were no longer observed when these animals were re-paired with their sibling for one day. Despite elevated CRH mRNA expression, CRH-R1 mRNA did not increase in the hippocampus following restraint or social isolation. Social isolation, but not restraint stress, increased CRH-R2 mRNA in the hippocampus, when these animals were re-paired with their sibling for one day the modulation of CRH mRNA remained up-regulated. Plasma corticosterone was elevated only following restraint, and not in animals that were handled, isolated or re-paired. The results of the present study reveal that acute restraint as well as social isolation can have significant consequences for the modulation of gene expression for the CRH receptors in brain and pituitary of prairie voles.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kessler M, Kiliman B, Humes C, Arai AC. Spontaneous activity in Purkinje cells: multi-electrode recording from organotypic cerebellar slice cultures. Brain Res 2008; 1218:54-69. [PMID: 18533133 DOI: 10.1016/j.brainres.2008.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 11/20/2022]
Abstract
Organotypic cerebellar cultures were maintained on multi-electrode dishes (MED) with an 8x8 array of electrodes and examined for physiological activity. The cultures remained viable for up to seven months and exhibited spontaneous discharges most likely originating from Purkinje cells. Spike frequencies varied but were mostly around 10-30 Hz and were often stable over weeks with average drifts of <20% per week. Spontaneous firing was significantly reduced by blockers of sodium channels (riluzole) and several potassium channels (iberiotoxin, TEA, 4-amino-pyridine), but blockers of calcium channels, GIRK channels, and SK-type potassium channels were ineffective. Inhibitors of excitatory and inhibitory synaptic transmission made spike discharges more regular. Particularly robust changes in spike frequency were produced by agents that increase cGMP. Bromo-cGMP, the NO donor SNAP, the guanylate cyclase activator YC-1, and the phosphodiesterase inhibitor zaprinast greatly reduced spike frequency. Activation of the metabotropic receptor mGluR1 and inhibition of I(h) channels caused a majority of cells to switch from tonic firing to a cyclic activity mode in which intense firing alternated with silence. Agonists for cholinergic, serotonergic, histamine, opiate, and CRF receptors had no effect, but those for adrenergic and adenosine A1 receptors reduced firing. Moreover, brief application of bromocriptine caused a delayed decrease in firing that reached a minimum after 24 to 48 h and recovered after 1-2 weeks. Taken together, our results demonstrate that long-term cultures maintained on multi-electrode arrays retain many essential features of cerebellar physiology and that they provide a test system that is well suited for broad screening of pharmacological agents as well as for studying long-term effects of drugs, tissue factors, and pathogens.
Collapse
Affiliation(s)
- Markus Kessler
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | | | | | | |
Collapse
|
15
|
Gounko NV, Gramsbergen A, van der Want JJL. Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum. THE CEREBELLUM 2008; 7:4-8. [DOI: 10.1007/s12311-008-0008-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Tian JB, King JS, Bishop GA. Stimulation of the inferior olivary complex alters the distribution of the type 1 corticotropin releasing factor receptor in the adult rat cerebellar cortex. Neuroscience 2008; 153:308-17. [PMID: 18358620 DOI: 10.1016/j.neuroscience.2008.01.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/03/2007] [Accepted: 01/24/2008] [Indexed: 11/15/2022]
Abstract
In a previous study, it was shown that populations of climbing fibers, derived from the inferior olivary complex (IOC) contain the peptide corticotropin releasing factor (CRF) and that the expression of this peptide in climbing fibers could be modulated by the level of activity in olivary afferents. The intent of this study was to determine if there was comparable plasticity in the distribution of the type 1 CRF receptor (CRF-R1) in the cerebellum of the rat. Our results indicate that CRF-R1 was localized primarily to Purkinje cell somata and their primary dendrites and granule cells. In addition, scattered immunolabeling was present over the somata of Golgi cells, basket cells and stellate cells, as well as Bergmann glial cells and their processes. IOC stimulation for 30 min at 1 Hz increased CRF-R1 expression in molecular layer interneurons and processes of Bergmann glial cells. Little to no effect on CRF receptor distribution was observed in Purkinje cells, granule cells, or Golgi cells. IOC stimulation at 5 Hz however, increased CRF-R1 expression in the processes of Bergmann glial cells while decreasing its expression in basket, stellate and, to some extent, in Purkinje cells. The present results suggest that there is activity-dependent plasticity in CRF-R1 expression that must be considered in defining the mechanism by which the CRF family of peptides modulates activity in cerebellar circuits. The present results also suggest that the primary targets of CRF released from climbing fibers are Bergmann glial cells and interneurons in the molecular layer. Further, interneurons responded with a decrease in receptor expression following more intense levels of stimulation suggesting the possibility of internalization of the receptor. In contrast, Bergmann glial cells showed an increased expression in receptor expression. These data suggest that CRF released from climbing fibers may modulate the physiological properties of basket and stellate cells as well as having a heretofore unidentified and potentially unique effect on Bergmann glia.
Collapse
Affiliation(s)
- J-B Tian
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
17
|
Lee KH, Bishop GA, Tian JB, Jang YJ, Bui BC, Nguyen TLX, Ahn JY, King JS. Cellular localization of the full-length isoform of the type 2 corticotropin releasing factor receptor in the postnatal mouse cerebellar cortex. J Neurosci Res 2007; 85:1996-2005. [PMID: 17471557 DOI: 10.1002/jnr.21333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Corticotropin releasing factor (CRF) and its cognate receptors, defined as Type 1 and Type 2 have been localized within the cerebellum. The Type 2 CRF receptor (CRF-R2) is known to have both a full length (CRF-R2alpha) and a truncated (CRF-R2alpha-tr) isoform. A recent study documented CRF-R2alpha primarily in Bergann glia and astrocytes, as well as in populations of Purkinje cells in the adult cerebellum. The goal of the present study is to determine if CRF-R2alpha is present in the postnatal cerebellum, and if so to describe its cellular distribution. RT-PCR data showed that CRF-R2alpha is expressed in the mouse cerebellum from birth through postnatal day 21. Between birth and P14, CRF-R2alpha-immunoreactivity was localized within the somata of Purkinje cells, and migrating GABAergic interneurons. GFAP-immunoreactive astrocytes, including Bergmann glia, also expressed CRF-R2alpha-immunoreactivity from P3-P14. There is a change, however, in CRF-R2alpha immunolabeling within neurons as the cerebellum matures. Compared to its expression in the adult cerebellum, Purkinje cells, and GABAergic interneurons showed more extensive CRF-R2alpha immunolabeling during early postnatal development. We postulate that CRF-R2alpha could be involved in developmental events related to the survival and differentiation of Purkinje cells and GABAergic neurons, whereas in the adult, this isoform of the CRF receptor family is likely involved in modulating Bergmann glia that have been shown to play a role in regulating the synaptic environment around Purkinje neurons.
Collapse
Affiliation(s)
- Kyung-Hoon Lee
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43120, USA
| | | | | | | | | | | | | | | |
Collapse
|