1
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
2
|
Lee SM, Choi Y, Kim D, Jeong HJ, Do YH, Jung S, Lee B, Choi HJ, Kim S, Oh JM, Jeon S, Han J, Kim Y. Developmental deficits, synapse and dendritic abnormalities in a Clcn4 KO autism mice model: endophenotypic target for ASD. Transl Psychiatry 2025; 15:28. [PMID: 39863599 PMCID: PMC11762770 DOI: 10.1038/s41398-024-03201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests. Surprisingly, these symptoms were improved by Risperidone treatment, a drug commonly used to treat ASD. RNA sequencing data from mouse neural progenitor cells (mNPCs) showed that the genes regulating trans-synaptic signaling, transmembrane transport, and neuronal projection development were significantly decreased in Clcn4 knockdown (KD) cells compared to wild type (WT). Moreover, Risperidone treatment increased the genes related to the ion transmembrane transport, membrane potential, and neuron projection development in Clcn4 KD. Abnormalities in synaptic plasticity and dendritic spine formation were also observed in Clcn4 KO compared to WT. We observed that phosphorylation of SYNAPSIN, PSD95, ERK and CREB, as well as the expression of CDK5, were reduced in the brains of Clcn4 KO mice. In Clcn4 KO cortical neurons, the phosphorylation of SYNAPSIN and PSD95 expressions also decreased compared to WT, indicating disrupted synaptic function. Additionally, Sholl analysis revealed a reduction in dendritic branching and neuronal projection length in both mouse and human CLCN4 KD neurons. Finally, the decreased phosphorylation of SYNAPSIN and expression of PSD95 along with dendrite abnormalities were restored after Risperidone treatment. These data suggest that dendritic outgrowth and synapse remodeling may serve as endophenotypic targets for drug efficacy in ASD.
Collapse
Affiliation(s)
- Seong Mi Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Yura Choi
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ha Jin Jeong
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Young Ho Do
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Sohee Jung
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Bomee Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyung Jun Choi
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Suhyeon Kim
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Yeni Kim
- Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
- Dongguk University International Hospital, Institute of Clinical Psychopharmacology, Goyang, Republic of Korea.
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhang P, Li J, Li W, Qiao S, Ou Y, Yuan X. Synaptic endocytosis in adult adipose stromal cell-derived neurons. Brain Res 2024; 1827:148746. [PMID: 38184164 DOI: 10.1016/j.brainres.2023.148746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Synapses are essential for facilitating the transmission of information between neurons and for executing neurophysiological processes. Following the exocytosis of neurotransmitters, the synaptic vesicle may quickly undergo endocytosis to preserve the structural integrity of the synapse. When converting adipose-derived stromal cells (ADSCs) into neurons, the ADSCs have already demonstrated comparable morphology, structure, and electrophysiological characteristics to neurons. Nevertheless, there is currently no published study on the endocytotic function of neurons that are produced from ADSCs. This study aimed to examine synaptic endocytosis in neurons derived from ADSCs by qualitatively and quantitatively analyzing the presence of Ap-2, Clathrin, Endophilin, Dynamin, and Hsc70, which are the key proteins involved in clathrin-mediated endocytosis (CME), as well as by using FM1-43 and cadmium selenide quantum dots (CdSe QDs). Additionally, single-cell RNA sequencing (scRNA-seq) was used to look at the levels of both neuronal markers and markers related to CME at the same time. The results of this study provide evidence that synapses in neurons produced from ADSCs have a role in endocytosis, mainly through the CME route.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Jing Li
- Radiology Department of Tangshan Maternal and Child Health Hospital, Tangshan City, Hebei Province, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Sijia Qiao
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China.
| |
Collapse
|
4
|
Rue MCP, Baas‐Thomas N, Iyengar PS, Scaria LK, Marder E. Localization of chemical synapses and modulatory release sites in the cardiac ganglion of the crab, Cancer borealis. J Comp Neurol 2022; 530:2954-2965. [PMID: 35882035 PMCID: PMC9560961 DOI: 10.1002/cne.25385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/07/2023]
Abstract
The crustacean cardiac ganglion (CG) comprises nine neurons that provide rhythmic drive to the heart. The CG is the direct target of multiple modulators. Synapsin-like immunoreactivity was found clustered around the somata of the large cells (LC) and in a neuropil at the anterior branch of the CG trunk of Cancer borealis. This implicates the soma as a key site of synaptic integration, an unusual configuration in invertebrates. Proctolin is an excitatory neuromodulator of the CG, and proctolin-like immunoreactivity exhibited partial overlap with putative chemical synapses near the LCs and at the neuropil. A proctolin-like projection was also found in a pair of excitatory nerves entering the CG. GABA-like immunoreactivity was nearly completely colocalized with chemical synapses near the LCs but absent at the anterior branch neuropil. GABA-like projections were found in a pair of inhibitory nerves entering the CG. C. borealis Allatostatin B1 (CbASTB), red pigment concentrating hormone, and FLRFamide-like immunoreactivity each had a unique pattern of staining and co-localization with putative chemical synapses. These results provide morphological evidence that synaptic input is integrated at LC somata in the CG. Our findings provide a topographical organization for some of the multiple inhibitory and excitatory modulators that alter the rhythmic output of this semi-autonomous motor circuit.
Collapse
Affiliation(s)
- Mara C. P. Rue
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Natasha Baas‐Thomas
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Priya S. Iyengar
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Lara K. Scaria
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Eve Marder
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| |
Collapse
|
5
|
Watson J, Lukas D, Vickers ER, Galloway G, Mountford CE. Case Report: Capacity to Objectively Monitor the Response of a Chronic Pain Patient to Treatment. FRONTIERS IN NEUROIMAGING 2022; 1:831216. [PMID: 37555159 PMCID: PMC10406213 DOI: 10.3389/fnimg.2022.831216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 08/10/2023]
Abstract
Response to pain therapy is currently by patient self-report. We demonstrate that by evaluating the neurochemistry of a patient, using two-dimensional Correlated SpectroscopY (2D COSY) in a 3T MRI scanner, response to therapy can be recorded. A chronic temporomandibular joint (TMJ) pain patient was evaluated by a pain physician specializing in temporomandibular disorders (TMD), and by 2D COSY, before, and 6 days after treatment with Botulinum Toxin A. Prior to treatment the self-reported pain score was 8/10 and reduced to 0/10 within 24 h of treatment. The neurochemistry of the patient prior to treatment was typical of chronic pain. In particular, the Fuc-α(1-2) glycans were affected. Following treatment, the substrates, α-L Fucose, were elevated and the Fuc-α(1-2) glycans repopulated. The depletion of the molecule assigned the glutathione cysteine moiety, with chronic pain, is indicative of a Glutathione redox imbalance linked to neurodegeneration. This new approach to monitor pain could help discriminate the relative contributions in the complex interplay of the sensory and affective (emotional suffering) components of pain leading to appropriate individualized pharmaceutical drug regimens.
Collapse
Affiliation(s)
- Julia Watson
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Department of Radiology, Woolloongabba, QLD, Australia
- Department of Imaging Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Darren Lukas
- Institute for Glycomics, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | | | - Graham Galloway
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Imaging Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Carolyn E. Mountford
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Department of Radiology, Woolloongabba, QLD, Australia
- Department of Imaging Technology, Translational Research Institute, Woolloongabba, QLD, Australia
- Institute for Glycomics, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| |
Collapse
|
6
|
Moschetta M, Ravasenga T, De Fusco A, Maragliano L, Aprile D, Orlando M, Sacchetti S, Casagrande S, Lignani G, Fassio A, Baldelli P, Benfenati F. Ca 2+ binding to synapsin I regulates resting Ca 2+ and recovery from synaptic depression in nerve terminals. Cell Mol Life Sci 2022; 79:600. [PMID: 36409372 PMCID: PMC9678998 DOI: 10.1007/s00018-022-04631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Synapsin I (SynI) is a synaptic vesicle (SV)-associated phosphoprotein that modulates neurotransmission by controlling SV trafficking. The SynI C-domain contains a highly conserved ATP binding site mediating SynI oligomerization and SV clustering and an adjacent main Ca2+ binding site, whose physiological role is unexplored. Molecular dynamics simulations revealed that the E373K point mutation irreversibly deletes Ca2+ binding to SynI, still allowing ATP binding, but inducing a destabilization of the SynI oligomerization interface. Here, we analyzed the effects of this mutation on neurotransmitter release and short-term plasticity in excitatory and inhibitory synapses from primary hippocampal neurons. Patch-clamp recordings showed an increase in the frequency of miniature excitatory postsynaptic currents (EPSCs) that was totally occluded by exogenous Ca2+ chelators and associated with a constitutive increase in resting terminal Ca2+ concentrations. Evoked EPSC amplitude was also reduced, due to a decreased readily releasable pool (RRP) size. Moreover, in both excitatory and inhibitory synapses, we observed a marked impaired recovery from synaptic depression, associated with impaired RRP refilling and depletion of the recycling pool of SVs. Our study identifies SynI as a novel Ca2+ buffer in excitatory terminals. Blocking Ca2+ binding to SynI results in higher constitutive Ca2+ levels that increase the probability of spontaneous release and disperse SVs. This causes a decreased size of the RRP and an impaired recovery from depression due to the failure of SV reclustering after sustained high-frequency stimulation. The results indicate a physiological role of Ca2+ binding to SynI in the regulation of SV clustering and trafficking in nerve terminals.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Tiziana Ravasenga
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Antonio De Fusco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,Present Address: High-Definition Disease Modelling Lab, Campus IFOM-IEO, Milan, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Charitè Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Silvio Sacchetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Queens Square Institute of Neurology, University College London, London, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
7
|
Roque C, Pinto N, Vaz Patto M, Baltazar G. Astrocytes contribute to the neuronal recovery promoted by high-frequency repetitive magnetic stimulation in in vitro models of ischemia. J Neurosci Res 2021; 99:1414-1432. [PMID: 33522025 DOI: 10.1002/jnr.24792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
After decades of effort, there are no effective clinical treatments to induce the recovery of ischemia-injured tissues, and among the several strategies that have been explored, repetitive transcranial magnetic stimulation has proven to be one of the most promising, with beneficial effects in limb motor function, aphasia, hemispatial neglect, or dysphagia. Despite the clinical evidences, little is known about the mechanisms underlying those effects. The present study aimed to explore the cellular and molecular effects of high-frequency repetitive magnetic stimulation (HF-rMS) on an in vitro model of ischemia. Using primary cortical cultures exposed to oxygen and glucose deprivation followed by reperfusion, we observed that HF-rMS treatment prevents the ischemia-induced neuronal death by 21.2%, and the neurite degeneration triggered by ischemia. Our results also demonstrate that with this treatment there is an increase of 89.2% on the number cells expressing ERK1/2, of 20.1% on the number of cells expressing c-Fos, and a synaptogenic effect, through an increase of 62.9% in the number of synaptic puncta as well as of 49.4% in their intensity. Interestingly, our results indicate that astrocytes are crucial to the beneficial effects triggered by HF-rMS after ischemia, thus suggesting a direct effect of HF-rMS on these cells. The modulation of astrocytes with this non-invasive brain stimulation technique is a promising approach to promote the recovery of ischemia-induced injured tissues; however, it is essential to understand how these effects can be modulated in order to optimize the protocols and enhance the beneficial outcomes.
Collapse
Affiliation(s)
- Cláudio Roque
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Patto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Hogberg HT, de Cássia da Silveira E Sá R, Kleensang A, Bouhifd M, Cemiloglu Ulker O, Smirnova L, Behl M, Maertens A, Zhao L, Hartung T. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Arch Toxicol 2021; 95:207-228. [PMID: 33078273 PMCID: PMC7811506 DOI: 10.1007/s00204-020-02903-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.
Collapse
Affiliation(s)
- Helena T Hogberg
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Rita de Cássia da Silveira E Sá
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Andre Kleensang
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mounir Bouhifd
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ozge Cemiloglu Ulker
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Lena Smirnova
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Alexandra Maertens
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liang Zhao
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Logotheti S, Marquardt S, Richter C, Sophie Hain R, Murr N, Takan I, Pavlopoulou A, Pützer BM. Neural Networks Recapitulation by Cancer Cells Promotes Disease Progression: A Novel Role of p73 Isoforms in Cancer-Neuronal Crosstalk. Cancers (Basel) 2020; 12:cancers12123789. [PMID: 33339112 PMCID: PMC7765507 DOI: 10.3390/cancers12123789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is initiated by alterations in specific genes. However, at late stages, cancer cells become metastatic not necessarily through continuous accumulation of additional mutations, but by hijacking programs of normal embryonic development and reactivating them in an unusual place, at the wrong time. Here, we applied computational and experimental approaches to show that these malignant reactivations include genes that are crucial for the development and function of the nervous system. We use the paradigm of melanoma transition from less invasive to highly aggressive stages in order to show that major players of metastasis, such as TP73 gene products, are implicated in this process. This work provides evidence for interactions between cancer cells and the neuronal system, which may have important future implications for metastasis prevention and cancer management. Abstract Mechanisms governing tumor progression differ from those of initiation. One enigmatic prometastatic process is the recapitulation of pathways of neural plasticity in aggressive stages. Cancer and neuronal cells develop reciprocal interactions via mutual production and secretion of neuronal growth factors, neurothrophins and/or axon guidance molecules in the tumor microenvironment. Understanding cancer types where this process is active, as well as the drivers, markers and underlying mechanisms, has great significance for blocking tumor progression and improving patient survival. By applying computational and systemic approaches, in combination with experimental validations, we provide compelling evidence that genes involved in neuronal development, differentiation and function are reactivated in tumors and predict poor patient outcomes across various cancers. Across cancers, they co-opt genes essential for the development of distinct anatomical parts of the nervous system, with a frequent preference for cerebral cortex and neural crest-derived enteric nerves. Additionally, we show that p73, a transcription factor with a dual role in neuronal development and cancer, simultaneously induces neurodifferentiation and stemness markers during melanoma progression. Our data yield the basis for elucidating driving forces of the nerve–tumor cell crosstalk and highlight p73 as a promising regulator of cancer neurobiology.
Collapse
Affiliation(s)
- Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
- Correspondence: (S.L.); (B.M.P.); Tel.: +49-381-494-5066/68 (B.M.P.)
| | - Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Christin Richter
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Renée Sophie Hain
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Nico Murr
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey; (I.T.); (A.P.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey; (I.T.); (A.P.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Brigitte M. Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany; (S.M.); (C.R.); (R.S.H.); (N.M.)
- Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
- Correspondence: (S.L.); (B.M.P.); Tel.: +49-381-494-5066/68 (B.M.P.)
| |
Collapse
|
10
|
Li S, Weinstein G, Zare H, Teumer A, Völker U, Friedrich N, Knol MJ, Satizabal CL, Petyuk VA, Adams HHH, Launer LJ, Bennett DA, De Jager PL, Grabe HJ, Ikram MA, Gudnason V, Yang Q, Seshadri S. The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages. Brain Commun 2020; 2:fcaa176. [PMID: 33345186 PMCID: PMC7734441 DOI: 10.1093/braincomms/fcaa176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in brain development and function. Substantial amounts of BDNF are present in peripheral blood, and may serve as biomarkers for Alzheimer's disease incidence as well as targets for intervention to reduce Alzheimer's disease risk. With the exception of the genetic polymorphism in the BDNF gene, Val66Met, which has been extensively studied with regard to neurodegenerative diseases, the genetic variation that influences circulating BDNF levels is unknown. We aimed to explore the genetic determinants of circulating BDNF levels in order to clarify its mechanistic involvement in brain structure and function and Alzheimer's disease pathophysiology in middle-aged and old adults. Thus, we conducted a meta-analysis of genome-wide association study of circulating BDNF in 11 785 middle- and old-aged individuals of European ancestry from the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES), the Framingham Heart Study (FHS), the Rotterdam Study and the Study of Health in Pomerania (SHIP-Trend). Furthermore, we performed functional annotation analysis and related the genetic polymorphism influencing circulating BDNF to common Alzheimer's disease pathologies from brain autopsies. Mendelian randomization was conducted to examine the possible causal role of circulating BDNF levels with various phenotypes including cognitive function, stroke, diabetes, cardiovascular disease, physical activity and diet patterns. Gene interaction networks analysis was also performed. The estimated heritability of BDNF levels was 30% (standard error = 0.0246, P-value = 4 × 10-48). We identified seven novel independent loci mapped near the BDNF gene and in BRD3, CSRNP1, KDELC2, RUNX1 (two single-nucleotide polymorphisms) and BDNF-AS. The expression of BDNF was associated with neurofibrillary tangles in brain tissues from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). Seven additional genes (ACAT1, ATM, NPAT, WDR48, TTC21A, SCN114 and COX7B) were identified through expression and protein quantitative trait loci analyses. Mendelian randomization analyses indicated a potential causal role of BDNF in cardioembolism. Lastly, Ingenuity Pathway Analysis placed circulating BDNF levels in four major networks. Our study provides novel insights into genes and molecular pathways associated with circulating BDNF levels and highlights the possible involvement of plaque instability as an underlying mechanism linking BDNF with brain neurodegeneration. These findings provide a foundation for a better understanding of BDNF regulation and function in the context of brain aging and neurodegenerative pathophysiology.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, Haifa 3498838, Israel
| | - Habil Zare
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Maria J Knol
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Lenore J Launer
- Department of Health and Human Services, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David A Bennett
- Department of Neurology, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032, USA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
- German Center for Neurodegererative Diseases (DZNE), Rostock/Greifswald, Germany
| | - M Arfan Ikram
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Vilmundur Gudnason
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
- Icelandic Heart Association, 201 Kopavogur, Iceland
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
11
|
Han HA, Pang JKS, Soh BS. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med (Berl) 2020; 98:615-632. [PMID: 32198625 PMCID: PMC7220873 DOI: 10.1007/s00109-020-01893-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
The rapid advancement of genome editing technologies has opened up new possibilities in the field of medicine. Nuclease-based techniques such as the CRISPR/Cas9 system are now used to target genetically linked disorders that were previously hard-to-treat. The CRISPR/Cas9 gene editing approach wields several advantages over its contemporary editing systems, notably in the ease of component design, implementation and the option of multiplex genome editing. While results from the early phase clinical trials have been encouraging, the small patient population recruited into these trials hinders a conclusive assessment on the safety aspects of the CRISPR/Cas9 therapy. Potential safety concerns include the lack of fidelity in the CRISPR/Cas9 system which may lead to unintended DNA modifications at non-targeted gene loci. This review focuses modifications to the CRISPR/Cas9 components that can mitigate off-target effects in in vitro and preclinical models and its translatability to gene therapy in patient populations.
Collapse
Affiliation(s)
- Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Key Laboratory for Major Obstetric Disease of Guangdong Province, The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
12
|
Kang J, Wang Y, Wang D. Endurance and resistance training mitigate the negative consequences of depression on synaptic plasticity through different molecular mechanisms. Int J Neurosci 2019; 130:541-550. [DOI: 10.1080/00207454.2019.1679809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Kang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Youhua Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Di Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Tosh N, Quadrelli S, Galloway G, Mountford C. Two New Fucose-α (1-2)-Glycans Assigned In The Healthy Human Brain Taking The Number To Seven. Sci Rep 2019; 9:18806. [PMID: 31827116 PMCID: PMC6906471 DOI: 10.1038/s41598-019-54933-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
Fucosylated glycans are involved in the molecular mechanisms that underpin neuronal development, learning and memory. The capacity to study the fucose-α(1-2)-glycan residues noninvasively in the human brain, is integral to understanding their function and deregulation. Five fucose crosspeaks were assigned to fucosylated glycans using in vivo two-dimensional magnetic resonance Correlated SpectroscopY (2D L-COSY) of the brain. Recent improvements encompassed on the 3T Prisma (Siemens, Erlangen) with a 64-channel head and neck coil have allowed two new assignments. These are Fuc VI (F2:4.44, F1:1.37 ppm) and Fuc VII (F2: 4.29, F1:1.36 ppm). The Fuc VI crosspeak, close to the water resonance, is resolved due to decreased T1 noise. Fuc VII crosspeak, located between Fuc I and III, is available for inspection due to increased spectral resolution. Spectra recorded from 33 healthy men and women showed a maximum variation of up to 0.02 ppm in chemical shifts for all crosspeaks.
Collapse
Affiliation(s)
- Nathan Tosh
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia.,School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Scott Quadrelli
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia.,Princess Alexandra Hospital, Department of Radiology, Woolloongabba, Queensland, 4024, Australia
| | - Graham Galloway
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia
| | - Carolyn Mountford
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia.
| |
Collapse
|
14
|
Wesseling JF, Phan S, Bushong EA, Siksou L, Marty S, Pérez-Otaño I, Ellisman M. Sparse force-bearing bridges between neighboring synaptic vesicles. Brain Struct Funct 2019; 224:3263-3276. [PMID: 31667576 PMCID: PMC6875159 DOI: 10.1007/s00429-019-01966-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/05/2019] [Indexed: 12/28/2022]
Abstract
Most vesicles in the interior of synaptic terminals are clustered in clouds close to active zone regions of the plasma membrane where exocytosis occurs. Electron-dense structures, termed bridges, have been reported between a small minority of pairs of neighboring vesicles within the clouds. Synapsin proteins have been implicated previously, but the existence of the bridges as stable structures in vivo has been questioned. Here we use electron tomography to show that the bridges are present but less frequent in synapsin knockouts compared to wildtype. An analysis of distances between neighbors in wildtype tomograms indicated that the bridges are strong enough to resist centrifugal forces likely induced by fixation with aldehydes. The results confirm that the bridges are stable structures and that synapsin proteins are involved in formation or stabilization.
Collapse
Affiliation(s)
- John F Wesseling
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain. .,Departmento de Neurociencias (CIMA), Universidad de Navarra, Pamplona, Spain.
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
| | - Léa Siksou
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL Research University, Paris, France.,Global Research and Development, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Serge Marty
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL Research University, Paris, France.,Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | | | - Mark Ellisman
- National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California, San Diego, CA, USA
| |
Collapse
|
15
|
Kelty TJ, Schachtman TR, Mao X, Grigsby KB, Childs TE, Olver TD, Michener PN, Richardson RA, Roberts CK, Booth FW. Resistance-exercise training ameliorates LPS-induced cognitive impairment concurrent with molecular signaling changes in the rat dentate gyrus. J Appl Physiol (1985) 2019; 127:254-263. [PMID: 31120807 DOI: 10.1152/japplphysiol.00249.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effective treatments preventing brain neuroinflammatory diseases are lacking. Resistance-exercise training (RT) ameliorates mild cognitive impairment (MCI), a forerunner to neuroinflammatory diseases. However, few studies have addressed the molecular basis by which RT abates MCI. Thus experiments were performed to identify some molecular changes occurring in response to RT in young, female Wistar rats. To induce MCI, intraventricular lipopolysaccharide (LPS) injections were used to increase dentate gyrus inflammation, reflected by significantly increased TNF-α (~400%) and IL-1β (~1,500%) mRNA (P < 0.0001) after 6 wk. Five days after LPS injections, half of LPS-injected rats performed RT by ladder climbing for 6 wk, 3 days/wk, whereas half remained without ladders. RT for 6 wk increased lean body mass percentage (P < 0.05), individual muscle masses (gastrocnemius and tibialis anterior) (P < 0.05), and maximum lifting capacity (P < 0.001). The RT group, compared with sedentary controls, had 1) ameliorated spatial learning deficits (P < 0.05), 2) increased dentate gyrus phosphorylation of IGF-1R, protein kinase B, and GSK-3β proteins (P < 0.05), components of downstream IGF-1 signaling, and 3) increased dentate gyrus synaptic plasticity marker synapsin protein (P < 0.05). Two follow-up experiments (without LPS) characterized dentate gyrus signaling during short-term RT. Twenty-four hours following the third workout in a 1-wk training duration, phosphorylation of ERK1/2 and GSK-3β proteins, as well as proliferation marker protein, PCNA, were significantly increased (P < 0.05). Similar changes did not occur in a separate group of rats following a single RT workout. Taken together, these data indicate that RT ameliorates LPS-induced MCI after RT, possibly mediated by increased IGF-1 signaling pathway components within the dentate gyrus. NEW & NOTEWORTHY The data suggest that resistance-exercise training restores cognitive deficits induced by lipopolysaccharides and can activate associated IGF-1 signaling in the dentate gyrus. Our data show, for the first time, that as few as three resistance-exercise workouts (spread over 1 wk) can activate IGF-1 downstream signaling and increase proliferation marker PCNA in the dentate gyrus.
Collapse
Affiliation(s)
- Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - Todd R Schachtman
- Department of Psychology, University of Missouri , Columbia, Missouri
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Paige N Michener
- Department of Psychology, University of Missouri , Columbia, Missouri
| | | | - Christian K Roberts
- Geriatrics, Research, Education and Clinical Center, Veterans Affairs of Greater Los Angeles Healthcare System, Los Angeles, California
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Department of Pharmacology and Physiology, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Center, University of Missouri , Columbia, Missouri
| |
Collapse
|
16
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
17
|
Kullmann FA, Chang HH, Gauthier C, McDonnell BM, Yeh JC, Clayton DR, Kanai AJ, de Groat WC, Apodaca GL, Birder LA. Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12919. [PMID: 28719042 PMCID: PMC5963688 DOI: 10.1111/apha.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023]
Abstract
AIM The mechanisms underlying detection and transmission of sensory signals arising from visceral organs, such as the urethra, are poorly understood. Recently, specialized ACh-expressing cells embedded in the urethral epithelium have been proposed as chemosensory sentinels for detection of bacterial infection. Here, we examined the morphology and potential role in sensory signalling of a different class of specialized cells that express serotonin (5-HT), termed paraneurones. METHODS Urethrae, dorsal root ganglia neurones and spinal cords were isolated from adult female mice and used for immunohistochemistry and calcium imaging. Visceromotor reflexes (VMRs) were recorded in vivo. RESULTS We identified two morphologically distinct groups of 5-HT+ cells with distinct regional locations: bipolar-like cells predominant in the mid-urethra and multipolar-like cells predominant in the proximal and distal urethra. Sensory nerve fibres positive for calcitonin gene-related peptide, substance P, and TRPV1 were found in close proximity to 5-HT+ paraneurones. In vitro 5-HT (1 μm) stimulation of urethral primary afferent neurones, mimicking 5-HT release from paraneurones, elicited changes in the intracellular calcium concentration ([Ca2+ ]i ) mediated by 5-HT2 and 5-HT3 receptors. Approximately 50% of 5-HT responding cells also responded to capsaicin with changes in the [Ca2+ ]i . In vivo intra-urethral 5-HT application increased VMRs induced by urethral distention and activated pERK in lumbosacral spinal cord neurones. CONCLUSION These morphological and functional findings provide insights into a putative paraneurone-neural network within the urethra that utilizes 5-HT signalling, presumably from paraneurones, to modulate primary sensory pathways carrying nociceptive and non-nociceptive (mechano-sensitive) information to the central nervous system.
Collapse
Affiliation(s)
- F. A. Kullmann
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H. H. Chang
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - C. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - B. M. McDonnell
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J.-C. Yeh
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - D. R. Clayton
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A. J. Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W. C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G. L. Apodaca
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L. A. Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Mallik B, Kumar V. Regulation of actin-Spectrin cytoskeleton by ICA69 at the Drosophila neuromuscular junction. Commun Integr Biol 2017. [PMCID: PMC5824968 DOI: 10.1080/19420889.2017.1381806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bin-Amphiphysin-Rvs (BAR) domain containing proteins with their membrane deforming properties have emerged as key players in shaping up neuronal morphology and regulating cytoskeletal dynamics. However, the in vivo contexts in which BAR-domain proteins integrate membrane dynamics with cytoskeletal rearrangements remain poorly understood. Recently, we identified islet cell autoantigen 69 kDa as one of the N-BAR-domain containing proteins which regulate synaptic development and organization at the Drosophila neuromuscular junction. ICA69 genetically functions downstream of Rab2 to regulate synapse morphology. We found that ICA69 alters Spectrin level at the Drosophila NMJ, and redistributes actin regulatory proteins in cultured cells suggesting that ICA69 may regulate NMJ organization by regulating actin-Spectrin cytoskeleton. We propose a model in which ICA69 genetically interact with components of actin regulatory proteins for cytoskeleton dynamics to regulate NMJ development and synapse organization.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Laboratory of Neurogenetics, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| |
Collapse
|
19
|
Xie C, Chen YL, Wang DF, Wang YL, Zhang TP, Li H, Liang F, Zhao Y, Zhang GY. SgRNA Expression of CRIPSR-Cas9 System Based on MiRNA Polycistrons as a Versatile Tool to Manipulate Multiple and Tissue-Specific Genome Editing. Sci Rep 2017; 7:5795. [PMID: 28724960 PMCID: PMC5517485 DOI: 10.1038/s41598-017-06216-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
CRISPR/Cas9-mediated genome editing is a next-generation strategy for genetic modifications. Typically, sgRNA is constitutively expressed relying on RNA polymerase III promoters. Polymerase II promoters initiate transcription in a flexible manner, but sgRNAs generated by RNA polymerase II promoter lost their nuclease activity. To express sgRNAs in a tissue-specific fashion and endow CRISPR with more versatile function, a novel system was established in a polycistron, where miRNAs (or shRNAs) and sgRNAs alternately emerged and co-expressed under the control of a single polymerase II promoter. Effective expression and further processing of functional miRNAs and sgRNAs were achieved. The redundant nucleotides adjacent to sgRNA were degraded, and 5'- cap structure was responsible for the compromised nuclease capacity of sgRNA: Cas9 complex. Furthermore, this strategy fulfilled conducting multiplex genome editing, as well as executing neural- specific genome editing and enhancing the proportion of homologous recombination via inhibiting NHEJ pathway by shRNA. In summary, we designed a new construction for efficient expression of sgRNAs with miRNAs (shRNAs) by virtue of RNA polymerase II promoters, which will spur the development of safer, more controllable/regulable and powerful CRISPR/Cas9 system-mediated genome editing in a wide variety of further biomedical applications.
Collapse
Affiliation(s)
- Chen Xie
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen, 518107, Guangdong, China
| | - Yan-Lian Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Dong-Fang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, Guangdong, China
| | - Yi-Lin Wang
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Tian-Peng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hui Li
- Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen, 518107, Guangdong, China
| | - Fu Liang
- Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen, 518107, Guangdong, China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Guang-Ya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
20
|
Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins. Cell Signal 2017; 35:176-187. [DOI: 10.1016/j.cellsig.2017.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
|
21
|
Terry-Lorenzo RT, Torres VI, Wagh D, Galaz J, Swanson SK, Florens L, Washburn MP, Waites CL, Gundelfinger ED, Reimer RJ, Garner CC. Trio, a Rho Family GEF, Interacts with the Presynaptic Active Zone Proteins Piccolo and Bassoon. PLoS One 2016; 11:e0167535. [PMID: 27907191 PMCID: PMC5132261 DOI: 10.1371/journal.pone.0167535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Synaptic vesicles (SVs) fuse with the plasma membrane at a precise location called the presynaptic active zone (AZ). This fusion is coordinated by proteins embedded within a cytoskeletal matrix assembled at the AZ (CAZ). In the present study, we have identified a novel binding partner for the CAZ proteins Piccolo and Bassoon. This interacting protein, Trio, is a member of the Dbl family of guanine nucleotide exchange factors (GEFs) known to regulate the dynamic assembly of actin and growth factor dependent axon guidance and synaptic growth. Trio was found to interact with the C-terminal PBH 9/10 domains of Piccolo and Bassoon via its own N-terminal Spectrin repeats, a domain that is also critical for its localization to the CAZ. Moreover, our data suggest that regions within the C-terminus of Trio negatively regulate its interactions with Piccolo/Bassoon. These findings provide a mechanism for the presynaptic targeting of Trio and support a model in which Piccolo and Bassoon play a role in regulating neurotransmission through interactions with proteins, including Trio, that modulate the dynamic assembly of F-actin during cycles of synaptic vesicle exo- and endocytosis.
Collapse
Affiliation(s)
- Ryan T. Terry-Lorenzo
- Dept. of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Viviana I. Torres
- Dept. of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, Alameda, Santiago, Chile
| | - Dhananjay Wagh
- Dept. of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Jose Galaz
- Dept. of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Selene K. Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Clarissa L. Waites
- Dept. of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Eckart D. Gundelfinger
- Dept. of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Richard J. Reimer
- Dept. of Neurology and Neurological Sciences Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Craig C. Garner
- Dept. of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
- German Centers for Neurodegenerative Diseases, Charité - Medical University, Berlin, Germany
- * E-mail:
| |
Collapse
|
22
|
Pandey JP, Namboodiri AM, Elston RC. Immunoglobulin G genotypes and the risk of schizophrenia. Hum Genet 2016; 135:1175-9. [PMID: 27393575 PMCID: PMC5706111 DOI: 10.1007/s00439-016-1706-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/25/2016] [Indexed: 12/20/2022]
Abstract
Genes of the immune system are relevant to the etiology of schizophrenia. However, to our knowledge, no large-scale studies, using molecular methods, have been undertaken to investigate the role of highly polymorphic immunoglobulin GM (γ marker) genes in this disorder. In this investigation, we aimed to determine whether particular GM genotypes were associated with susceptibility to schizophrenia. Using a matched case-control study design, we analyzed DNA samples from 798 subjects-398 patients with schizophrenia and 400 controls-obtained from the U.S. National Institute of Mental Health Repository. GM alleles were determined by the TaqMan(®) genotyping assay. The GM 3/3; 23-/23- genotype was highly significantly associated with susceptibility to schizophrenia (p = 0.0002). Subjects with this genotype were over three times (OR 3.4; 95 % CI 1.7-6.7) as likely to develop schizophrenia as those without this genotype. Our results show that immunoglobulin GM genes are risk factors for the development of schizophrenia. Since GM alleles have been implicated in gluten sensitivity and in immunity to neurotropic viruses associated with cognitive impairment, the results presented here may help unify these two disparate areas of pathology affected in this disorder.
Collapse
Affiliation(s)
- Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Aryan M Namboodiri
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
23
|
Abstract
Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.
Collapse
Affiliation(s)
- Chijioke N Egbujo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Duncan Sinclair
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Li F, Wei G, Bai Y, Li Y, Huang F, Lin J, Hou Q, Deng R, Zhou JH, Zhang SX, Chen DF. MicroRNA-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin. Brain Res 2015; 1627:177-88. [PMID: 26423933 DOI: 10.1016/j.brainres.2015.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. The recent evidence in AD research suggests that alterations in the microRNA (miRNA) could contribute to risk for the disease. However, little is understood about the roles of miRNAs in cognitive impairment of early Alzheimer's disease (AD). Here, we used 5-month-old APP/PS1 mice, which mimic many of the salient features of the early stage of AD pathological process, to further investigate the roles of miRNAs in synaptic loss involved in learning and memory. We used miRNA expression microarrays on RNA extracted from the hippocampus of 5-month-old APP/PS1 mice and wild type mice. Real-time reverse transcription PCR was conducted to verify the candidate miRNAs discovered by microarray analysis. The data showed that miR-574 was increased significantly in the hippocampus of 5-month-old APP/PS1 mice, which were concomitant with that APP/PS1 mice at the same age displayed a significant synaptic loss and cognitive deficits. Bioinformatic analysis predicted that neuritin (Nrn1) mRNA is targeted by miR-574. Overexpression of miR-574 lowers the levels of neuritin and synaptic proteins expression in primary hippocampal neurons damage induced by Aβ25-35. And the expression of miR-574 was also up-regulated in the hippocampal neurons from APP/PS1 mice compared with WT littermates. In contrast, suppression of miR-574 by miR-574 inhibitor significantly results in higher levels of neuritin and synaptic proteins expression. Taken together, miR-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin.
Collapse
Affiliation(s)
- Fei Li
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Gang Wei
- Research & Development of New Drugs, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ye Bai
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yunjun Li
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Fengyuan Huang
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jian Lin
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qiuke Hou
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Rudong Deng
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jian Hong Zhou
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Sai Xia Zhang
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Dong Feng Chen
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
25
|
Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 2015; 16:923-38. [PMID: 26160654 DOI: 10.15252/embr.201540434] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig C Garner
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| |
Collapse
|
26
|
Wagh D, Terry-Lorenzo R, Waites CL, Leal-Ortiz SA, Maas C, Reimer RJ, Garner CC. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1. PLoS One 2015; 10:e0120093. [PMID: 25897839 PMCID: PMC4405365 DOI: 10.1371/journal.pone.0120093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022] Open
Abstract
The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1.
Collapse
Affiliation(s)
- Dhananjay Wagh
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Ryan Terry-Lorenzo
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Clarissa L. Waites
- Department of Pathology and Cell Biology Columbia University New York, New York, United States of America
| | - Sergio A. Leal-Ortiz
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Christoph Maas
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Richard J. Reimer
- Department of Neurology and Neurological Sciences Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Craig C. Garner
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Havranek T, Zatkova M, Lestanova Z, Bacova Z, Mravec B, Hodosy J, Strbak V, Bakos J. Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I. J Neurosci Res 2015; 93:893-901. [DOI: 10.1002/jnr.23559] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology; Slovak Academy of Sciences; Bratislava Slovakia
| | - Martina Zatkova
- Institute of Experimental Endocrinology; Slovak Academy of Sciences; Bratislava Slovakia
| | - Zuzana Lestanova
- Institute of Experimental Endocrinology; Slovak Academy of Sciences; Bratislava Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology; Slovak Academy of Sciences; Bratislava Slovakia
- Department of Normal and Pathological Physiology; Faculty of Medicine, Slovak Medical University; Bratislava Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology; Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Physiology; Faculty of Medicine, Comenius University; Bratislava Slovakia
| | - Julius Hodosy
- Institute of Physiology; Faculty of Medicine, Comenius University; Bratislava Slovakia
- Institute of Molecular Biomedicine; Faculty of Medicine, Comenius University; Bratislava Slovakia
| | - Vladimir Strbak
- Institute of Experimental Endocrinology; Slovak Academy of Sciences; Bratislava Slovakia
- Department of Normal and Pathological Physiology; Faculty of Medicine, Slovak Medical University; Bratislava Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology; Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Physiology; Faculty of Medicine, Comenius University; Bratislava Slovakia
| |
Collapse
|
28
|
Perissinotti PP, Ethington EA, Almazan E, Martínez-Hernández E, Kalil J, Koob MD, Piedras-Rentería ES. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice. Front Cell Neurosci 2015; 8:444. [PMID: 25610372 PMCID: PMC4285801 DOI: 10.3389/fncel.2014.00444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022] Open
Abstract
Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type) and CaV3.2 (α1H T-type) calcium channels; KLHL1 knockdown experiments (KD) cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014). Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO) mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT); and P/Q-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were also reduced in the KO hippocampus and cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC) frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine Maywood, IL, USA
| | - Elizabeth A Ethington
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine Maywood, IL, USA
| | - Erik Almazan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine Maywood, IL, USA
| | - Elizabeth Martínez-Hernández
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine Maywood, IL, USA
| | - Jennifer Kalil
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine Maywood, IL, USA
| | - Michael D Koob
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Erika S Piedras-Rentería
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine Maywood, IL, USA ; Neuroscience Institute, Loyola University Chicago, Stritch School of Medicine Maywood, IL, USA
| |
Collapse
|
29
|
Functional role of ATP binding to synapsin I in synaptic vesicle trafficking and release dynamics. J Neurosci 2015; 34:14752-68. [PMID: 25355227 DOI: 10.1523/jneurosci.1093-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Synapsins (Syns) are synaptic vesicle (SV)-associated proteins involved in the regulation of synaptic transmission and plasticity, which display a highly conserved ATP binding site in the central C-domain, whose functional role is unknown. Using molecular dynamics simulations, we demonstrated that ATP binding to SynI is mediated by a conformational transition of a flexible loop that opens to make the binding site accessible; such transition, prevented in the K269Q mutant, is not significantly affected in the absence of Ca(2+) or by the E373K mutation that abolishes Ca(2+)-binding. Indeed, the ATP binding to SynI also occurred under Ca(2+)-free conditions and increased its association with purified rat SVs regardless of the presence of Ca(2+) and promoted SynI oligomerization. However, although under Ca(2+)-free conditions, SynI dimerization and SV clustering were enhanced, Ca(2+) favored the formation of tetramers at the expense of dimers and did not affect SV clustering, indicating a role of Ca(2+)-dependent dimer/tetramer transitions in the regulation of ATP-dependent SV clustering. To elucidate the role of ATP/SynI binding in synaptic physiology, mouse SynI knock-out hippocampal neurons were transduced with either wild-type or K269Q mutant SynI and inhibitory transmission was studied by patch-clamp and electron microscopy. K269Q-SynI expressing inhibitory synapses showed increased synaptic strength due to an increase in the release probability, an increased vulnerability to synaptic depression and a dysregulation of SV trafficking, when compared with wild-type SynI-expressing terminals. The results suggest that the ATP-SynI binding plays predocking and postdocking roles in the modulation of SV clustering and plasticity of inhibitory synapses.
Collapse
|
30
|
Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. J Neurosci 2014; 34:7266-80. [PMID: 24849359 DOI: 10.1523/jneurosci.3973-13.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser(549) (site 6) and Ser(551) (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling.
Collapse
|
31
|
Intraneuronal accumulation of Aβ42 induces age-dependent slowing of neuronal transmission in Drosophila. Neurosci Bull 2014; 30:185-90. [PMID: 24733651 DOI: 10.1007/s12264-013-1409-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/11/2014] [Indexed: 01/02/2023] Open
Abstract
Beta amyloid (Aβ42)-induced dysfunction and loss of synapses are believed to be major underlying mechanisms for the progressive loss of learning and memory abilities in Alzheimer's disease (AD). The vast majority of investigations on AD-related synaptic impairment focus on synaptic plasticity, especially the decline of long-term potentiation of synaptic transmission caused by extracellular Aβ42. Changes in other aspects of synaptic and neuronal functions are less studied or undiscovered. Here, we report that intraneuronal accumulation of Aβ42 induced an age-dependent slowing of neuronal transmission along pathways involving multiple synapses.
Collapse
|
32
|
Krzeptowski W, Górska-Andrzejak J, Kijak E, Görlich A, Guzik E, Moore G, Pyza EM. External and circadian inputs modulate synaptic protein expression in the visual system of Drosophila melanogaster. Front Physiol 2014; 5:102. [PMID: 24772085 PMCID: PMC3982107 DOI: 10.3389/fphys.2014.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/28/2014] [Indexed: 12/30/2022] Open
Abstract
In the visual system of Drosophila melanogaster the retina photoreceptors form tetrad synapses with the first order interneurons, amacrine cells and glial cells in the first optic neuropil (lamina), in order to transmit photic and visual information to the brain. Using the specific antibodies against synaptic proteins; Bruchpilot (BRP), Synapsin (SYN), and Disc Large (DLG), the synapses in the distal lamina were specifically labeled. Then their abundance was measured as immunofluorescence intensity in flies held in light/dark (LD 12:12), constant darkness (DD), and after locomotor and light stimulation. Moreover, the levels of proteins (SYN and DLG), and mRNAs of the brp, syn, and dlg genes, were measured in the fly's head and brain, respectively. In the head we did not detect SYN and DLG oscillations. We found, however, that in the lamina, DLG oscillates in LD 12:12 and DD but SYN cycles only in DD. The abundance of all synaptic proteins was also changed in the lamina after locomotor and light stimulation. One hour locomotor stimulations at different time points in LD 12:12 affected the pattern of the daily rhythm of synaptic proteins. In turn, light stimulations in DD increased the level of all proteins studied. In the case of SYN, however, this effect was observed only after a short light pulse (15 min). In contrast to proteins studied in the lamina, the mRNA of brp, syn, and dlg genes in the brain was not cycling in LD 12:12 and DD, except the mRNA of dlg in LD 12:12. Our earlier results and obtained in the present study showed that the abundance of BRP, SYN and DLG in the distal lamina, at the tetrad synapses, is regulated by light and a circadian clock while locomotor stimulation affects their daily pattern of expression. The observed changes in the level of synaptic markers reflect the circadian plasticity of tetrad synapses regulated by the circadian clock and external inputs, both specific and unspecific for the visual system.
Collapse
Affiliation(s)
- Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Ewelina Kijak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Alicja Görlich
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Elżbieta Guzik
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Gareth Moore
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Elżbieta M Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| |
Collapse
|
33
|
Perissinotti PP, Ethington EG, Cribbs L, Koob MD, Martin J, Piedras-Rentería ES. Down-regulation of endogenous KLHL1 decreases voltage-gated calcium current density. Cell Calcium 2014; 55:269-80. [PMID: 24703904 DOI: 10.1016/j.ceca.2014.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The actin-binding protein Kelch-like 1 (KLHL1) can modulate voltage-gated calcium channels in vitro. KLHL1 interacts with actin and with the pore-forming subunits of Cav2.1 and CaV3.2 calcium channels, resulting in up-regulation of P/Q and T-type current density. Here we tested whether endogenous KLHL1 modulates voltage gated calcium currents in cultured hippocampal neurons by down-regulating the expression of KLHL1 via adenoviral delivery of shRNA targeted against KLHL1 (shKLHL1). Control adenoviruses did not affect any of the neuronal properties measured, yet down-regulation of KLHL1 resulted in HVA current densities ~68% smaller and LVA current densities 44% smaller than uninfected controls, with a concomitant reduction in α(1A) and α(1H) protein levels. Biophysical analysis and western blot experiments suggest Ca(V)3.1 and 3.3 currents are also present in shKLHL1-infected neurons. Synapsin I levels, miniature postsynaptic current frequency, and excitatory and inhibitory synapse number were reduced in KLHL1 knockdown. This study corroborates the physiological role of KLHL1 as a calcium channel modulator and demonstrates a novel, presynaptic role.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Cell and Molecular Physiology Department, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA
| | - Elizabeth G Ethington
- Cell and Molecular Physiology Department, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA
| | - Leanne Cribbs
- Office of Research Services, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA
| | - Michael D Koob
- Institute for Translational Neuroscience, Department of Lab Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jody Martin
- Cell and Molecular Physiology Department, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA; Neuroscience Institute, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA
| | - Erika S Piedras-Rentería
- Cell and Molecular Physiology Department, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA; Neuroscience Institute, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
34
|
Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats. Brain Res 2013; 1529:66-73. [DOI: 10.1016/j.brainres.2013.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/19/2022]
|
35
|
Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O. Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3, 4-Methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 2013; 125:736-46. [DOI: 10.1111/jnc.12247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/20/2013] [Accepted: 03/21/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Clara Ros-Simó
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Maria Moscoso-Castro
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Jéssica Ruiz-Medina
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques; IRBLLEIDA; Universitat de Lleida; Lleida Spain
| | - Olga Valverde
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| |
Collapse
|
36
|
Birch AM, McGarry NB, Kelly AM. Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus 2013; 23:437-50. [PMID: 23460346 DOI: 10.1002/hipo.22103] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 11/10/2022]
Abstract
Environmental manipulations can enhance neuroplasticity in the brain, with enrichment-induced cognitive improvements being linked to increased expression of growth factors, such as neurotrophins, and enhanced hippocampal neurogenesis. There is, however, a great deal of variation in environmental enrichment protocols used in the literature, making it difficult to assess the role of particular aspects of enrichment upon memory and the underlying associated mechanisms. This study sought to evaluate the efficacy of environmental enrichment, in the absence of exercise, as a cognitive enhancer and assess the role of Nerve Growth Factor (NGF), neurogenesis and synaptogenesis in this process. We report that rats housed in an enriched environment for 3 and 6 weeks (wk) displayed improved recognition memory, while rats enriched for 6 wk also displayed improved spatial and working memory. Neurochemical analyses revealed significant increases in NGF concentration and subgranular progenitor cell survival (as measured by BrdU+ nuclei) in the dentate gyrus of rats enriched for 6 wk, suggesting that these cellular changes may mediate the enrichment-induced memory improvements. Further analysis revealed a significant positive correlation between recognition task performance and BrdU+ nuclei. In addition, rats enriched for 6 wk showed a significant increase in expression of synaptophysin and synapsin I in the dentate gyrus, indicating that environmental enrichment can increase synaptogenesis. These data indicate a time-dependent cognitive-enhancing effect of environmental enrichment that is independent of physical activity. These data also support a role for increased concentration of NGF in dentate gyrus, synaptogenesis, and neurogenesis in mediating this effect.
Collapse
Affiliation(s)
- Amy M Birch
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
37
|
Lukiw WJ, Alexandrov PN. Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer's disease (AD) brain. Mol Neurobiol 2012; 46:11-9. [PMID: 22302353 PMCID: PMC3703615 DOI: 10.1007/s12035-012-8234-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/06/2012] [Indexed: 01/17/2023]
Abstract
Human brain cells rely on a specific subset of microRNAs (miRNAs or miRs) to shape their gene expression patterns, and this is mediated through microRNA effects on messenger RNA (mRNA) speciation and complexity. In recent studies (a) in short post-mortem interval Alzheimer's disease (AD) brain tissues versus age-matched controls, and (b) in pro-inflammatory cytokine- and Aβ42 peptide-stressed human neuronal-glial (HNG) cells in primary culture, we have identified several brain-abundant miRNA species found to be significantly up-regulated, including miR-125b and miR-146a. Both of these nuclear factor kappa B (NF-κB)-activated, 22 nucleotide small non-coding RNAs (sncRNAs) target the mRNA of the key, innate-immune- and inflammation-related regulatory protein, complement factor-H (CFH; chr 1q32), resulting in significant decreases in CFH expression (p < 0.01, ANOVA). Our results further indicate that HNG cells respond to IL-1β + Aβ42-peptide-induced stress by significant NF-κB-modulated up-regulation of miRNA-125b- and miRNA-146a. The complex interactive signaling of NF-κB, miR-125b, miR-146a, and perhaps other miRNAs, further illustrate interplay between inducible transcription factors and multiple pro-inflammatory sncRNAs that regulate CFH expression. The novel concept of miRNA actions involving mRNA target convergence and divergence are proposed and discussed. The combinatorial use of NF-кB inhibitors with anti-miRNAs (AMs; antagomirs) may have potential against CFH-driven pathogenic signaling in neurodegenerative disease, and may redirect our therapeutic perspectives to novel treatment strategies that have not yet been considered.
Collapse
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 7011-2272, USA.
| | | |
Collapse
|
38
|
Vasileva M, Horstmann H, Geumann C, Gitler D, Kuner T. Synapsin-dependent reserveo pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission. Eur J Neurosci 2012; 36:3005-20. [DOI: 10.1111/j.1460-9568.2012.08225.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 2012; 202:309-17. [DOI: 10.1016/j.neuroscience.2011.11.029] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/05/2023]
|
40
|
Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O'Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB. Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 2011; 31:18275-88. [PMID: 22171032 PMCID: PMC3259858 DOI: 10.1523/jneurosci.3305-11.2011] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Efficient excitatory transmission depends on a family of transporters that use the Na(+)-electrochemical gradient to maintain low synaptic concentrations of glutamate. These transporters consume substantial energy in the spatially restricted space of fine astrocytic processes. GLT-1 (EAAT2) mediates the bulk of this activity in forebrain. To date, relatively few proteins have been identified that associate with GLT-1. In the present study, GLT-1 immunoaffinity isolates were prepared from rat cortex using three strategies and analyzed by liquid chromatography-coupled tandem mass spectrometry. In addition to known interacting proteins, the analysis identified glycolytic enzymes and outer mitochondrial proteins. Using double-label immunofluorescence, GLT-1 was shown to colocalize with the mitochondrial matrix protein, ubiquinol-cytochrome c reductase core protein 2 or the inner mitochondrial membrane protein, ADP/ATP translocase, in rat cortex. In biolistically transduced hippocampal slices, fluorescently tagged GLT-1 puncta overlapped with fluorescently tagged mitochondria along fine astrocytic processes. In a Monte Carlo-type computer simulation, this overlap was significantly more frequent than would occur by chance. Furthermore, fluorescently tagged hexokinase-1 overlapped with mitochondria or GLT-1, strongly suggesting that GLT-1, mitochondria, and the first step in glycolysis are cocompartmentalized in astrocytic processes. Acute inhibition of glycolysis or oxidative phosphorylation had no effect on glutamate uptake in hippocampal slices, but simultaneous inhibition of both processes significantly reduced transport. Together with previous results, these studies show that GLT-1 cocompartmentalizes with Na(+)/K(+) ATPase, glycolytic enzymes, and mitochondria, providing a mechanism to spatially match energy and buffering capacity to the demands imposed by transport.
Collapse
Affiliation(s)
| | - Joshua G. Jackson
- 1Children's Hospital of Philadelphia Research Institute and
- 2Departments of Pediatrics,
| | - Amanda L. Sheldon
- 1Children's Hospital of Philadelphia Research Institute and
- 2Departments of Pediatrics,
- 3Neuroscience,
| | | | - Todd M. Greco
- 1Children's Hospital of Philadelphia Research Institute and
- 2Departments of Pediatrics,
- 3Neuroscience,
| | - John C. O'Donnell
- 1Children's Hospital of Philadelphia Research Institute and
- 4Pharmacology, and
| | - Lynn A. Spruce
- 1Children's Hospital of Philadelphia Research Institute and
| | - Rui Xiao
- 5Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Wensheng Guo
- 5Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mary Putt
- 5Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Harry Ischiropoulos
- 1Children's Hospital of Philadelphia Research Institute and
- 2Departments of Pediatrics,
- 4Pharmacology, and
| | - Michael B. Robinson
- 1Children's Hospital of Philadelphia Research Institute and
- 2Departments of Pediatrics,
- 4Pharmacology, and
| |
Collapse
|
41
|
Esposito G, Ana Clara F, Verstreken P. Synaptic vesicle trafficking and Parkinson's disease. Dev Neurobiol 2011; 72:134-44. [DOI: 10.1002/dneu.20916] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Abstract
Filamentous (F)-actin is a known regulator of the synaptic vesicle (SV) cycle, with roles in SV mobilization, fusion, and endocytosis. However, the molecular pathways that regulate its dynamic assembly within presynaptic boutons remain unclear. In this study, we have used shRNA-mediated knockdown to demonstrate that Piccolo, a multidomain protein of the active zone cytomatrix, is a key regulator of presynaptic F-actin assembly. Boutons lacking Piccolo exhibit enhanced activity-dependent Synapsin1a dispersion and SV exocytosis, and reduced F-actin polymerization and CaMKII recruitment. These phenotypes are rescued by stabilizing F-actin filaments and mimicked by knocking down Profilin2, another regulator of presynaptic F-actin assembly. Importantly, we find that mice with a targeted deletion of exon 14 from the Pclo gene, reported to lack >95% of Piccolo, continue to express multiple Piccolo isoforms. Furthermore, neurons cultured from these mice exhibit no defects in presynaptic F-actin assembly due to the expression of these isoforms at presynaptic boutons. These data reveal that Piccolo regulates neurotransmitter release by facilitating activity-dependent F-actin assembly and the dynamic recruitment of key signaling molecules into presynaptic boutons, and highlight the need for new genetic models with which to study Piccolo loss of function.
Collapse
|
43
|
Bogen IL, Jensen V, Hvalby Ø, Walaas SI. Glutamatergic neurotransmission in the synapsin I and II double knock-out mouse. Semin Cell Dev Biol 2011; 22:400-7. [DOI: 10.1016/j.semcdb.2011.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/13/2011] [Indexed: 01/19/2023]
|
44
|
Shupliakov O, Haucke V, Pechstein A. How synapsin I may cluster synaptic vesicles. Semin Cell Dev Biol 2011; 22:393-9. [DOI: 10.1016/j.semcdb.2011.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022]
|
45
|
Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience 2011; 189:108-22. [PMID: 21621590 DOI: 10.1016/j.neuroscience.2011.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/16/2011] [Accepted: 05/11/2011] [Indexed: 11/21/2022]
Abstract
Adult synapsin triple-knockout mice exhibit epilepsy that manifests as generalized tonic-clonic seizures. Because in vitro recordings have shown a reduction in quantal release from inhibitory neurons, an inherent excitation-inhibition imbalance has been hypothesized as the direct culprit for epilepsy in these mice. We critically assessed this hypothesis by examining neurotransmission during the emergence of epilepsy. Using long-term video and telemetric EEG monitoring we found that synapsin triple-knockout mice exhibit an abrupt transition during early adulthood from a seizure-free presymptomatic latent state to a consistent symptomatic state of sensory-induced seizures. Electrophysiological recordings showed that during the latent period larger field responses could be elicited in slices from mutant mice. However, only after the transition to a symptomatic state in the adult mice did evoked epileptiform activity become prevalent. This state was characterized by resistance to the epileptiform-promoting effects of 4-aminopyridine, by marked hypersensitivity to blockage of GABAA receptors, and by the emergence of unresponsiveness to NMDA receptor antagonism, all of which were not observed during the latent period. Importantly, enhancement in inhibitory transmission was associated with upregulation of GAD67 expression without affecting the number of inhibitory neurons in the same brain areas where epileptiform activity was recorded. We therefore suggest that while deletion of the synapsins initially increases cortical network activity, this enhanced excitability is insufficient to elicit seizures. Rather, compensatory epileptogenic mechanisms are activated during the latent period that lead to an additional almost-balanced enhancement of both the excitatory and inhibitory components of the network, finally culminating in the emergence of epilepsy.
Collapse
|
46
|
Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:744-59. [PMID: 20828592 DOI: 10.1016/j.pnpbp.2010.08.026] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 08/28/2010] [Accepted: 08/29/2010] [Indexed: 12/13/2022]
Abstract
Recently, the inflammatory and neurodegenerative (I&ND) hypothesis of depression was formulated (Maes et al., 2009), i.e. the neurodegeneration and reduced neurogenesis that characterize depression are caused by inflammation, cell-mediated immune activation and their long-term sequels. The aim of this paper is to review the body of evidence that external stressors may induce (neuro)inflammation, neurodegeneration and reduced neurogenesis; and that antidepressive treatments may impact on these pathways. The chronic mild stress (CMS) and learned helplessness (LH) models show that depression-like behaviors are accompanied by peripheral and central inflammation, neuronal cell damage, decreased neurogenesis and apoptosis in the hippocampus. External stress-induced depression-like behaviors are associated with a) increased interleukin-(IL)1β, tumor necrosis factor-α, IL-6, nuclear factor κB, cyclooxygenase-2, expression of Toll-like receptors and lipid peroxidation; b) antineurogenic effects and reduced brain-derived neurotrophic factor (BDNF) levels; and c) apoptosis with reduced levels of Bcl-2 and BAG1 (Bcl-2 associated athanogene 1), and increased levels of caspase-3. Stress-induced inflammation, e.g. increased IL-1β, but not reduced neurogenesis, is sufficient to cause depression. Antidepressants a) reduce peripheral and central inflammatory pathways by decreasing IL-1β, TNFα and IL-6 levels; b) stimulate neuronal differentiation, synaptic plasticity, axonal growth and regeneration through stimulatory effects on the expression of different neurotrophic factors, e.g. trkB, the receptor for brain-derived neurotrophic factor; and c) attenuate apoptotic pathways by activating Bcl-2 and Bcl-xl proteins, and suppressing caspase-3. It is concluded that external stressors may provoke depression-like behaviors through activation of inflammatory, oxidative, apoptotic and antineurogenic mechanisms. The clinical efficacity of antidepressants may be ascribed to their ability to reverse these different pathways.
Collapse
Affiliation(s)
- Marta Kubera
- Department of Experimental Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
47
|
Moorman S, Mello CV, Bolhuis JJ. From songs to synapses: molecular mechanisms of birdsong memory. Molecular mechanisms of auditory learning in songbirds involve immediate early genes, including zenk and arc, the ERK/MAPK pathway and synapsins. Bioessays 2011; 33:377-85. [PMID: 21381060 DOI: 10.1002/bies.201000150] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are remarkable behavioral, neural, and genetic similarities between the way songbirds learn to sing and human infants learn to speak. Furthermore, the brain regions involved in birdsong learning, perception, and production have been identified and characterized in detail. In particular, the caudal medial nidopallium (the avian analog of the mammalian auditory-association cortex) has been found to contain the neural substrate of auditory memory, paving the way for analyses of the underlying molecular mechanisms. Recently, the zebra finch genome was sequenced, and annotated cDNA databases representing over 15,000 unique brain-expressed genes are available, enabling high-throughput gene expression analyses. Here we review the involvement of immediate early genes (e.g. zenk and arc), their downstream targets (e.g. synapsins), and their regulatory signaling pathways (e.g. MAPK/ERK) in songbird memory. We propose that in-depth investigations of zenk- and ERK-dependent cascades will help to further unravel the molecular basis of auditory memory.
Collapse
Affiliation(s)
- Sanne Moorman
- Behavioral Biology, Department of Biology and Helmholtz Institute, Utrecht University, The Netherlands
| | | | | |
Collapse
|
48
|
Harrill JA, Robinette BL, Mundy WR. Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicol In Vitro 2011; 25:368-87. [DOI: 10.1016/j.tiv.2010.10.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/11/2023]
|
49
|
Revest JM, Kaouane N, Mondin M, Le Roux A, Rougé-Pont F, Vallée M, Barik J, Tronche F, Desmedt A, Piazza PV. The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry 2010; 15:1125, 1140-51. [PMID: 20368707 PMCID: PMC2990189 DOI: 10.1038/mp.2010.40] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GR(NesCre)), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress.
Collapse
Affiliation(s)
- J-M Revest
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France.
| | - N Kaouane
- Université de Bordeaux, Bordeaux, France,CNRS UMR5228, Cognitive and Integrative Neurosciences, Talence, France
| | - M Mondin
- Université de Bordeaux, Bordeaux, France,CNRS UMR 5091, Cellular Physiology of the Synapse, Bordeaux, France
| | - A Le Roux
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - F Rougé-Pont
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - M Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - J Barik
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Paris, France
| | - F Tronche
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Paris, France
| | - A Desmedt
- Université de Bordeaux, Bordeaux, France,CNRS UMR5228, Cognitive and Integrative Neurosciences, Talence, France
| | - P V Piazza
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France,Department of Pathophysiology, Université de Bordeaux, INSERM U862, Bordeaux F33077, France. E-mail: or
| |
Collapse
|
50
|
Nuwal T, Heo S, Lubec G, Buchner E. Mass spectrometric analysis of synapsins in Drosophila melanogaster and identification of novel phosphorylation sites. J Proteome Res 2010; 10:541-50. [PMID: 21028912 DOI: 10.1021/pr100746s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synapsins are synaptic vesicle-associated phosphoproteins that play a major role in the fine regulation of neurotransmitter release. In Drosophila, synapsins are required for complex behavior including learning and memory. Synapsin isoforms were immunoprecipitated from homogenates of wild-type Drosophila heads using monoclonal antibody 3C11. Synapsin null mutants (Syn(97)) served as negative controls. The eluted proteins were separated by SDS-PAGE and visualized by silver staining. Gel pieces picked from five bands specific for wild type were analyzed by nano-LC-ESI-MS/MS following multienzyme digestion (trypsin, chymotrypsin, AspN, subtilisin, pepsin, and proteinase K). The protein was unambiguously identified with high sequence coverage (90.83%). A number of sequence conflicts were observed and the N-terminal amino acid was identified as methionine rather than leucine expected from the cDNA sequence. Several peptides from the larger isoform demonstrated that the in-frame UAG stop codon at position 582 which separates two large open reading frames is read through by tRNAs for lysine. Seven novel phosphorylation sites in Drosophila synapsin were identified at Thr-86, Ser-87, Ser-464, Thr-466, Ser-538, Ser-961, and Tyr-982 and verified by phosphatase treatment. No phosphorylation was observed at the conserved PKA/CaM kinase-I/IV site (RRFS, edited to RGFS) in domain A or a potential PKA site near domain E.
Collapse
Affiliation(s)
- Tulip Nuwal
- Department of Neurobiology and Genetics, Biozentrum, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | |
Collapse
|