1
|
Zhou Y, Rashad S, Ando D, Kobayashi Y, Tominaga T, Niizuma K. Dynamic mRNA Stability Buffer Transcriptional Activation During Neuronal Differentiation and Is Regulated by SAMD4A. J Cell Physiol 2024. [PMID: 39513231 DOI: 10.1002/jcp.31477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Neurons are exceptionally sensitive to oxidative stress, which is the basis for many neurodegenerative disease pathophysiologies. The posttranscriptional basis for neuronal differentiation and behavior is not well characterized. The steady-state levels of mRNA are outcomes of an interplay between RNA transcription and decay. However, the correlation between mRNA transcription, translation, and stability remains elusive. We utilized a SH-SY5Y-based neural differentiation model that is widely used to study neurodegenerative diseases. After neuronal differentiation, we observed enhanced sensitivity of mature neurons to mitochondrial stresses and ferroptosis induction. We employed a newly developed simplified mRNA stability profiling technique to explore the role of mRNA stability in SH-SY5Y neuronal differentiation model. Transcriptome-wide mRNA stability analysis revealed neural-specific RNA stability kinetics. Our analysis revealed that mRNA stability could either exert the buffering effect on gene products or change in the same direction as transcription. Importantly, we observed that changes in mRNA stability corrected over or under transcription of mRNAs to maintain mRNA translation dynamics. Furthermore, we conducted integrative analysis of our mRNA stability data set, and a published CRISPR-i screen focused on neuronal oxidative stress responses. Our analysis unveiled novel neuronal stress response genes that were not evident at the transcriptional or translational levels. SEPHS2 emerged as an important neuronal stress regulator based on this integrative analysis. Motif analysis unveiled SAMD4A as a major regulator of the dynamic changes in mRNA stability observed during differentiation. Knockdown of SAMD4A impaired neuronal differentiation and influenced the response to oxidative stress. Mechanistically, SAMD4A was found to alter the stability of several mRNAs. The novel insights into the interplay between mRNA stability and cellular behaviors provide a foundation for understanding neurodevelopmental processes and neurodegenerative disorders and highlight dynamic mRNA stability as an important layer of gene expression.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Kobayashi
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Karlström V, Sagredo E, Planells J, Welinder C, Jungfleisch J, Barrera-Conde A, Engfors L, Daniel C, Gebauer F, Visa N, Öhman M. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 2024; 52:12021-12038. [PMID: 39217468 PMCID: PMC11514483 DOI: 10.1093/nar/gkae753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.
Collapse
Affiliation(s)
- Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Clinical Sciences, Lund University, Lund SE-221 84, Sweden
| | - Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Andrea Barrera-Conde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Linus Engfors
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), ES-08003 Barcelona, Spain
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| |
Collapse
|
3
|
Stewart RK, Nguyen P, Laederach A, Volkan PC, Sawyer JK, Fox DT. Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation. Nat Commun 2024; 15:5270. [PMID: 38902233 PMCID: PMC11190236 DOI: 10.1038/s41467-024-48344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent mRNA stability in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for mRNA stability and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA stability and protein expression.
Collapse
Affiliation(s)
- Rebeccah K Stewart
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Patrick Nguyen
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jessica K Sawyer
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA.
- Duke Regeneration Center, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Tang Y, Wu J, Liu C, Gan L, Chen H, Sun YL, Liu J, Tao YX, Zhu T, Chen C. Schwann cell-derived extracellular vesicles promote memory impairment associated with chronic neuropathic pain. J Neuroinflammation 2024; 21:99. [PMID: 38632655 PMCID: PMC11025217 DOI: 10.1186/s12974-024-03081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.
Collapse
Affiliation(s)
- Yidan Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiahui Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changliang Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, West China Hospital, Emergency Medicine and National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya-Lan Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
6
|
Niu M, Zong C. Reply to: Methodological concerns and lack of evidence for single-synapse RNA-seq. Nat Biotechnol 2023; 41:1225-1228. [PMID: 37500916 DOI: 10.1038/s41587-023-01878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Muchun Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Marchesi N, Linciano P, Campagnoli LIM, Fahmideh F, Rossi D, Costa G, Ambrosio FA, Barbieri A, Collina S, Pascale A. Short- and Long-Term Regulation of HuD: A Molecular Switch Mediated by Folic Acid? Int J Mol Sci 2023; 24:12201. [PMID: 37569576 PMCID: PMC10418318 DOI: 10.3390/ijms241512201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Pasquale Linciano
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | | | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | - Giosuè Costa
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (G.C.); (F.A.A.)
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, 88055 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (G.C.); (F.A.A.)
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| |
Collapse
|
8
|
Stewart RK, Nguyen P, Laederach A, Volkan PC, Sawyer JK, Fox DT. Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550700. [PMID: 37546801 PMCID: PMC10402044 DOI: 10.1101/2023.07.26.550700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent expression in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for expression control and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA and protein expression.
Collapse
|
9
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
10
|
Ge X, Xue G, Ding Y, Li R, Hu K, Xu T, Sun M, Liao W, Zhao B, Wen C, Du J. The Loss of YTHDC1 in Gut Macrophages Exacerbates Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205620. [PMID: 36922750 PMCID: PMC10190588 DOI: 10.1002/advs.202205620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The nuclear N6 -methyladenosine (m6 A) reader YT521-B homology-domain-containing protein 1 (YTHDC1) is required to maintain embryonic stem cell identity. However, little is known about its biological functions in intestinal-resident macrophages and inflammatory bowel disease (IBD). Herein, it is demonstrated that macrophage-specific depletion or insufficiency of YTHDC1 accelerates IBD development in animal models. On the molecular basis, YTHDC1 reduction in IBD-derived macrophages is attributed to Zinc finger protein 36 (ZFP36)-induced mRNA degradation. Importantly, transcriptome profiling and mechanistic assays unveil that YTHDC1 in macrophages regulates Ras homolog family member H (RHOH) to suppress inflammatory responses and fine-tunes NME nucleoside diphosphate kinase 1 (NME1) to enhance the integrity of colonic epithelial barrier, respectively. Collectively, this study identifies YTHDC1 as an important factor for the resolution of inflammatory responses and restoration of colonic epithelial barrier in the setting of IBD.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Gang Xue
- Department of GastroenterologySecond Hospital of Shanxi Medical UniversityTaiyuanShanxi030001China
| | - Yan Ding
- Department of DermatologyHainan Provincial Hospital of Skin DiseaseHaikouHainan570000China
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Kaining Hu
- Department of Human GeneticsThe University of ChicagoChicagoIL60637USA
| | - Tengjiao Xu
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ming Sun
- College of Life SciencesMudanjiang Medical UniversityMudanjiangHeilongjiang157011China
| | - Wang Liao
- Department of CardiologyHainan General Hospital and Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Chuangyu Wen
- Central LaboratoryAffiliated Dongguan HospitalSouthern Medical UniversityDongguanGuangdong523108China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
- Institute of Biomedical ResearchShanxi Medical UniversityTaiyuanShanxi030001China
| |
Collapse
|
11
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
12
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
13
|
Olguin SL, Patel P, Buchanan CN, Dell'Orco M, Gardiner AS, Cole R, Vaughn LS, Sundararajan A, Mudge J, Allan AM, Ortinski P, Brigman JL, Twiss JL, Perrone-Bizzozero NI. KHSRP loss increases neuronal growth and synaptic transmission and alters memory consolidation through RNA stabilization. Commun Biol 2022; 5:672. [PMID: 35798971 PMCID: PMC9262970 DOI: 10.1038/s42003-022-03594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Amy S Gardiner
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Robert Cole
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Pavel Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC, 29208, USA.
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
14
|
Hemagirri M, Sasidharan S. Biology of aging: Oxidative stress and RNA oxidation. Mol Biol Rep 2022; 49:5089-5105. [PMID: 35449319 DOI: 10.1007/s11033-022-07219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
The prevalence of aged people has increased rapidly in recent years and brings profound demographic changes worldwide. The multi-level progression of aging occurs at diverse stages of complexity, from cell to organ systems and eventually to the human as a whole. The cellular and molecular damages are usually regulated by the cells; repair or degrade mechanisms. However, these mechanisms are not entirely functional; their effectiveness decreases with age due to influence from endogenous sources like oxidative stress, which all contribute to the aging process. The hunt for novel strategies to increase the man's longevity since ancient times needs better understandings of the biology of aging, oxidative stress, and their roles in RNA oxidation. The critical goal in developing new strategies to increase the man's longevity is to compile the novel developed knowledge on human aging into a single picture, preferably able to understand the biology of aging and the contributing factors. This review discusses the biology of aging, oxidative stress, and their roles in RNA oxidation, leading to aging in humans.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| |
Collapse
|
15
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
16
|
DFpin: Deep learning-based protein-binding site prediction with feature-based non-redundancy from RNA level. Comput Biol Med 2022; 142:105216. [PMID: 35030497 DOI: 10.1016/j.compbiomed.2022.105216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/02/2022] [Indexed: 11/20/2022]
Abstract
The interaction between proteins and RNA is closely related to various human diseases. Computer-aided drug design can be facilitated by detecting the RNA sites that bind proteins. However, due to the aggregation of binding sites in RNA sequences, high sample similarity occurs when extracting RNA fragments by using a sliding window. Considering these problems, we present a method, DFpin, to predict protein-interacting nucleotides in RNA. To retain more key nucleotide sites, we used the redundancy method based on feature similarity, that is, feature redundancy is removed based on the RNA mono-nucleotide composition to maintain the diversity of RNA samples and avoid the residue of redundant data. In addition, to extract key abstract features and avoid over-fitting, we used the cascade structure of a deep forest model to predict protein-interacting nucleotides. Overall, DFpin demonstrated excellent classification with 85.4% accuracy and 93.3% area under the curve. Compared with other methods, the accuracy of DFpin was better, suggesting that feature-based redundancy removal and deep forest can help predict nucleotides of protein interactions. The source code and all dataset are available at: https://github.com/zhaoxj-tech/DFpin.git.
Collapse
|
17
|
Borgonetti V, Coppi E, Galeotti N. Targeting the RNA-Binding Protein HuR as Potential Thera-Peutic Approach for Neurological Disorders: Focus on Amyo-Trophic Lateral Sclerosis (ALS), Spinal Muscle Atrophy (SMA) and Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms221910394. [PMID: 34638733 PMCID: PMC8508990 DOI: 10.3390/ijms221910394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
The importance of precise co- and post-transcriptional processing of RNA in the regulation of gene expression has become increasingly clear. RNA-binding proteins (RBPs) are a class of proteins that bind single- or double-chain RNA, with different affinities and selectivity, thus regulating the various functions of RNA and the fate of the cells themselves. ELAV (embryonic lethal/abnormal visual system)/Hu proteins represent an important family of RBPs and play a key role in the fate of newly transcribed mRNA. ELAV proteins bind AU-rich element (ARE)-containing transcripts, which are usually present on the mRNA of proteins such as cytokines, growth factors, and other proteins involved in neuronal differentiation and maintenance. In this review, we focused on a member of ELAV/Hu proteins, HuR, and its role in the development of neurodegenerative disorders, with a particular focus on demyelinating diseases.
Collapse
|
18
|
Dell’Orco M, Elyaderani A, Vannan A, Sekar S, Powell G, Liang WS, Neisewander JL, Perrone-Bizzozero NI. HuD Regulates mRNA-circRNA-miRNA Networks in the Mouse Striatum Linked to Neuronal Development and Drug Addiction. BIOLOGY 2021; 10:biology10090939. [PMID: 34571817 PMCID: PMC8468275 DOI: 10.3390/biology10090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Gene expression controls all aspects of life, including that of humans. Genes are expressed by copying the information stored in the DNA into RNA molecules, and this process is regulated in part by multiple RNA-binding proteins (RBPs). One such protein, HuD, plays a critical role in the development of neurons and has been implicated in childhood brain tumors, neurodegenerative disorders (Parkinson’s, Alzheimer’s, and ALS), and drug abuse. In addition, HuD participates in neuronal remodeling mechanisms in the mature brain and promotes regeneration of peripheral nerves. HuD primarily binds to transcribed messenger RNAs, which are then stabilized for translation into proteins. However, recent studies demonstrate that HuD also regulates the expression of non-coding RNAs, such as circular RNAs (circRNAs) and microRNAs (miRNAs). In this study, we examined the role of HuD in the control of non-coding RNA expression in the mouse striatum, a brain region associated both with normal behaviors and pathological conditions such as drug abuse. Our results show that HuD regulates mRNA-circRNA-miRNA networks involved in the expression of genes associated with brain development and remodeling of neuronal connections. These findings suggest the possibility of new mechanisms controlling brain development, neurodegenerative diseases, and substance use disorders. Abstract The RNA-binding protein HuD (a.k.a., ELAVL4) is involved in neuronal development and synaptic plasticity mechanisms, including addiction-related processes such as cocaine conditioned-place preference (CPP) and food reward. The most studied function of this protein is mRNA stabilization; however, we have recently shown that HuD also regulates the levels of circular RNAs (circRNAs) in neurons. To examine the role of HuD in the control of coding and non-coding RNA networks associated with substance use, we identified sets of differentially expressed mRNAs, circRNAs and miRNAs in the striatum of HuD knockout (KO) mice. Our findings indicate that significantly downregulated mRNAs are enriched in biological pathways related to cell morphology and behavior. Furthermore, deletion of HuD altered the levels of 15 miRNAs associated with drug seeking. Using these sets of data, we predicted that a large number of upregulated miRNAs form competing endogenous RNA (ceRNA) networks with circRNAs and mRNAs associated with the neuronal development and synaptic plasticity proteins LSAMP and MARK3. Additionally, several downregulated miRNAs form ceRNA networks with mRNAs and circRNAs from MEF2D, PIK3R3, PTRPM and other neuronal proteins. Together, our results indicate that HuD regulates ceRNA networks controlling the levels of mRNAs associated with neuronal differentiation and synaptic physiology.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amir Elyaderani
- Neurogenomics Division, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; (A.E.); (S.S.); (W.S.L.)
| | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.V.); (G.P.); (J.L.N.)
| | - Shobana Sekar
- Neurogenomics Division, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; (A.E.); (S.S.); (W.S.L.)
| | - Gregory Powell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.V.); (G.P.); (J.L.N.)
| | - Winnie S. Liang
- Neurogenomics Division, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; (A.E.); (S.S.); (W.S.L.)
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.V.); (G.P.); (J.L.N.)
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131, USA;
- Correspondence:
| |
Collapse
|
19
|
Wang X, Ge X, Liao W, Cao Y, Li R, Zhang F, Zhao B, Du J. ZFP36 promotes VDR mRNA degradation to facilitate cell death in oral and colonic epithelial cells. Cell Commun Signal 2021; 19:85. [PMID: 34380509 PMCID: PMC8355874 DOI: 10.1186/s12964-021-00765-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vitamin D receptor (VDR) plays a vital protective role in oral and colonic epithelial cells. Albeit we know that VDR expression is reduced in the mucosal epithelial layers of autoimmune diseases, the mechanism by which VDR is decreased remains elusive. METHODS VDR and zinc finger protein 36 (ZFP36) levels in human samples and cell lines were detected by real-time PCR, western blot and immunostaining. Luciferase report assay was used to test cis-elements in VDR gene promoter, real-time PCR was applied to measure mRNA decay and western blot was performed to evaluate protein degradation. RNA affinity chromatography assay was used to test protein-mRNA interaction. Co-immunoprecipitation was used to detect protein-protein interaction. The role of ZFP36 in AU-rich elements (AREs) in the 3' untranslated region (UTR) of VDR mRNA was also measured by luciferase report assay. RESULTS We identify ZFP36 can bind with the AREs in the 3'UTR of VDR mRNA, leading to mRNA degradation in oral and colonic epithelial cells under inflammatory circumstance. Either ZFP36 protein or AREs of VDR mRNA mutation abolishes this protein-mRNA binding process. After the key amino acid's mutation, ZFP36 fails to decrease VDR mRNA expression. We also find that VDR physically binds with Y box-binding protein 1 (YBX-1) to block YBX-1's nuclear translocation and ameliorate cell death in the presence of inflammation. CONCLUSION These findings provide insights into the cause of VDR decrease in oral and colonic epithelial cells under inflammatory condition and explain how VDR maintains cell viability in these cells. Video abstract.
Collapse
Affiliation(s)
- Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, China
| | - Yong Cao
- Division of Gastroenterology, Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
20
|
Sena RM, Twiss JL, Gardiner AS, Dell’Orco M, Linsenbardt DN, Perrone-Bizzozero NI. The RNA-Binding Protein HuD Regulates Alternative Splicing and Alternative Polyadenylation in the Mouse Neocortex. Molecules 2021; 26:2836. [PMID: 34064652 PMCID: PMC8151252 DOI: 10.3390/molecules26102836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca M. Sena
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Jeffery L. Twiss
- Department Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Amy S. Gardiner
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
- Department Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michela Dell’Orco
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - David N. Linsenbardt
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Nora I. Perrone-Bizzozero
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| |
Collapse
|
21
|
Yang X, Wen Z, Zhang D, Li Z, Li D, Nagalakshmi U, Dinesh-Kumar SP, Zhang Y. Proximity labeling: an emerging tool for probing in planta molecular interactions. PLANT COMMUNICATIONS 2021; 2:100137. [PMID: 33898976 PMCID: PMC8060727 DOI: 10.1016/j.xplc.2020.100137] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 05/13/2023]
Abstract
Protein-protein interaction (PPI) networks are key to nearly all aspects of cellular activity. Therefore, the identification of PPIs is important for understanding a specific biological process in an organism. Compared with conventional methods for probing PPIs, the recently described proximity labeling (PL) approach combined with mass spectrometry (MS)-based quantitative proteomics has emerged as a powerful approach for characterizing PPIs. However, the application of PL in planta remains in its infancy. Here, we summarize recent progress in PL and its potential utilization in plant biology. We specifically summarize advances in PL, including the development and comparison of different PL enzymes and the application of PL for deciphering various molecular interactions in different organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Xinxin Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
22
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic regulation by m 6A RNA methylation in brain development and diseases. J Cereb Blood Flow Metab 2020; 40:2331-2349. [PMID: 32967524 PMCID: PMC7820693 DOI: 10.1177/0271678x20960033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Cellular RNAs are pervasively tagged with diverse chemical moieties, collectively called epitranscriptomic modifications. The methylation of adenosine at N6 position generates N6-methyladenosine (m6A), which is the most abundant and reversible epitranscriptomic modification in mammals. The m6A signaling is mediated by a dedicated set of proteins comprised of writers, erasers, and readers. Contrary to the activation-repression binary view of gene regulation, emerging evidence suggests that the m6A methylation controls multiple aspects of mRNA metabolism, such as splicing, export, stability, translation, and degradation, culminating in the fine-tuning of gene expression. Brain shows the highest abundance of m6A methylation in the body, which is developmentally altered. Within the brain, m6A methylation is biased toward neuronal transcripts and sensitive to neuronal activity. In a healthy brain, m6A maintains several developmental and physiological processes such as neurogenesis, axonal growth, synaptic plasticity, circadian rhythm, cognitive function, and stress response. The m6A imbalance contributes to the pathogenesis of acute and chronic CNS insults, brain cancer, and neuropsychiatric disorders. This review discussed the molecular mechanisms of m6A regulation and its implication in the developmental, physiological, and pathological processes of the brain.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA
| |
Collapse
|
23
|
HuD regulates SOD1 expression during oxidative stress in differentiated neuroblastoma cells and sporadic ALS motor cortex. Neurobiol Dis 2020; 148:105211. [PMID: 33271327 DOI: 10.1016/j.nbd.2020.105211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after H2O2 exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis.
Collapse
|
24
|
Du J, Liao W, Liu W, Deb DK, He L, Hsu PJ, Nguyen T, Zhang L, Bissonnette M, He C, Li YC. N 6-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation. Dev Cell 2020; 55:737-753.e7. [PMID: 33220174 DOI: 10.1016/j.devcel.2020.10.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/12/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
Bacterial infection triggers a cytokine storm that needs to be resolved to maintain the host's wellbeing. Here, we report that ablation of m6A methyltransferase subunit METTL14 in myeloid cells exacerbates macrophage responses to acute bacterial infection in mice, leading to high mortality due to sustained production of pro-inflammatory cytokines. METTL14 depletion blunts Socs1 m6A methylation and reduces YTHDF1 binding to the m6A sites, which diminishes SOCS1 induction leading to the overactivation of TLR4/NF-κB signaling. Forced expression of SOCS1 in macrophages depleted of METTL14 or YTHDF1 rescues the hyper-responsive phenotype of these macrophages in vitro and in vivo. We further show that LPS treatment induces Socs1 m6A methylation and sustains SOCS1 induction by promoting Fto mRNA degradation, and forced FTO expression in macrophages mimics the phenotype of METTL14-depleted macrophages. We conclude that m6A methylation-mediated SOCS1 induction is required to maintain the negative feedback control of macrophage activation in response to bacterial infection.
Collapse
Affiliation(s)
- Jie Du
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA; Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wang Liao
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA; Department of Cardiology, Hainan General Hospital, Hainan Clinical Research Institute, Haikou, Hainan, China
| | - Weicheng Liu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Dilip K Deb
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Lei He
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Phillip J Hsu
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Tivoli Nguyen
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Linda Zhang
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Binas O, Tants JN, Peter SA, Janowski R, Davydova E, Braun J, Niessing D, Schwalbe H, Weigand JE, Schlundt A. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res 2020; 48:7385-7403. [PMID: 32491174 PMCID: PMC7367199 DOI: 10.1093/nar/gkaa465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Adenylate/uridylate-rich elements (AREs) are the most common cis-regulatory elements in the 3′-untranslated region (UTR) of mRNAs, where they fine-tune turnover by mediating mRNA decay. They increase plasticity and efficacy of mRNA regulation and are recognized by several ARE-specific RNA-binding proteins (RBPs). Typically, AREs are short linear motifs with a high content of complementary A and U nucleotides and often occur in multiple copies. Although thermodynamically rather unstable, the high AU-content might enable transient secondary structure formation and modify mRNA regulation by RBPs. We have recently suggested that the immunoregulatory RBP Roquin recognizes folded AREs as constitutive decay elements (CDEs), resulting in shape-specific ARE-mediated mRNA degradation. However, the structural evidence for a CDE-like recognition of AREs by Roquin is still lacking. We here present structures of CDE-like folded AREs, both in their free and protein-bound form. Moreover, the AREs in the UCP3 3′-UTR are additionally bound by the canonical ARE-binding protein AUF1 in their linear form, adopting an alternative binding-interface compared to the recognition of their CDE structure by Roquin. Strikingly, our findings thus suggest that AREs can be recognized in multiple ways, allowing control over mRNA regulation by adapting distinct conformational states, thus providing differential accessibility to regulatory RBPs.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Elena Davydova
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Braun
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| |
Collapse
|
26
|
Pistono C, Monti MC, Marchesi N, Boiocchi C, Campagnoli LIM, Morlotti D, Cuccia M, Govoni S, Montomoli C, Mallucci G, Bergamaschi R, Pascale A. Unraveling a new player in multiple sclerosis pathogenesis: The RNA-binding protein HuR. Mult Scler Relat Disord 2020; 41:102048. [PMID: 32200342 DOI: 10.1016/j.msard.2020.102048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND ELAV-like proteins are a small family of RNA-binding proteins that are fundamental players in post-transcriptional mechanisms and are involved in the pathogenesis of neurologic and psychiatric disorders. HuR, the ubiquitously expressed member of the family, is also implicated in sustaining inflammation and inflammatory diseases, supporting the production of pro-inflammatory cytokines. Inflammation plays a central role in Multiple Sclerosis (MS), which represents the most common cause of permanent physical disability in young adults. MS is a chronic autoimmune disease affecting the Central Nervous System, with a complex aetiology involving genetic, environmental and epigenetic factors. No data are available on the potential entanglement of HuR in MS pathogenesis in patients. In the present work, we aimed at exploring HuR protein levels in peripheral blood mononuclear cells (PBMCs) from MS patients, compared to healthy controls. To further elucidate the possible involvement of HuR in MS, we also investigated the relationship between this specific RNA-binding protein and HSP70-2 protein, also considering the HSP70-2 rs1061581 polymorphism, given that HSP70-2 mRNA has been reported as a HuR target and this specific polymorphism to be associated with MS risk. METHODS Alleles and genotypes for HSP70-2 rs1061581 polymorphism were assessed, by using a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, followed by digestion with restriction enzyme, in MS patients and healthy controls. PBMCs from a subgroup of patients and controls were used to evaluate HuR and HSP70-2 protein content by Western blot. RESULTS PBMCs from 52 MS patients had a lower HuR and higher HSP70-2 protein content compared to 43 healthy controls. An increase of 100 units of HuR significantly decreased the risk of developing MS by 9.8% (OR: 0.902, 95% CI: 0.83-0.98), controlling for HSP70-2 protein expression, HSP70-2 rs1061581 genotype, age and sex. Moreover, holding HuR levels, an increase of 100 units of HSP70-2 protein significantly increased the MS risk by 18.1% (OR: 1.181, 95% CI: 1.03-1.36) and the genetic susceptibility of developing MS for HSP70-2 rs1061581 GG carriers is confirmed. Of interest, MS patients with a moderate to severe form of MS (MSSS ≥ 3) showed a trend towards a reduction of HuR protein levels compared to patients with mild disease severity (MSSS < 3). CONCLUSIONS HuR protein levels are reduced in MS patients compared to healthy subjects, and the protein amount may continue to decline with disease progression, suggesting a putative role of this RNA-binding protein. Moreover, our results suggest that MS pathology may have disrupted the link between HuR and its target transcript HSP70-2. It will be important to further explore the exact role of HuR in MS, considering the complex interplay with other RNA-binding factors and target mRNAs.
Collapse
Affiliation(s)
- Cristiana Pistono
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Maria Cristina Monti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Chiara Boiocchi
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Danila Morlotti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Mariaclara Cuccia
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cristina Montomoli
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Giulia Mallucci
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Bergamaschi
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Jiang X, He M, Bai J, Chan CB, Wong AOL. Signal Transduction for TNFα-Induced Type II SOCS Expression and Its Functional Implication in Growth Hormone Resistance in Carp Hepatocytes. Front Endocrinol (Lausanne) 2020; 11:20. [PMID: 32082258 PMCID: PMC7003395 DOI: 10.3389/fendo.2020.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
In mammals, local production of tumor necrosis factor α (TNFα) inhibits growth hormone (GH)-induced IGF-I expression at tissue level and contributes to GH resistance caused by sepsis/endotoxemia and inflammation. Although the loss of GH responsiveness can be mediated by a parallel rise in SOCS expression, the signaling mechanisms for TNFα-induced SOCS expression at the hepatic level have not been characterized and the comparative aspects of the phenomenon, especially in lower vertebrates, are still unknown. Recently, type II SOCS, including SOCS1-3 and CISH, have been cloned in grass carp and shown to act as the feedback repressors for GH signaling via JAK2/STAT5 pathway. To shed light on the mechanisms for TNFα-induced GH resistance in fish model, grass carp TNFα was cloned and confirmed to be a single-copy gene expressed in various tissues including the liver. In carp hepatocytes, incubation with the endotoxin LPS induced TNFα expression with parallel rises in SOCS1-3 and CISH mRNA levels. Similar to LPS, TNFα treatment could block GH-induced IGF-I/-II mRNA expression and elevate SOCS1, SOCS3, and CISH transcript levels. However, TNFα was not effective in altering SOCS2 expression. In parallel experiment, LPS blockade of IGF-I/-II signals caused by GH could be partially reverted by TNFα receptor antagonism. At hepatocyte level, TNFα induction also triggered rapid phosphorylation of IκBα, MEK1/2, ERK1/2, MKK3/6, P38MAPK, Akt, JAK2, and STAT1,3,5, and TNFα-induced SOCS1, SOCS3, and CISH mRNA expression could be negated by inhibiting the IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT cascades. Our findings, as a whole, suggest that local production of TNFα may interfere with IGF-I/-II induction by GH in the carp liver by up-regulation of SOCS1, SOCS3, and CISH via IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT-dependent mechanisms, which may contribute to GH resistance induced by endotoxin in carp species.
Collapse
|
28
|
Ju Y, Yuan L, Yang Y, Zhao H. CircSLNN: Identifying RBP-Binding Sites on circRNAs via Sequence Labeling Neural Networks. Front Genet 2019; 10:1184. [PMID: 31824574 PMCID: PMC6886371 DOI: 10.3389/fgene.2019.01184] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 11/28/2022] Open
Abstract
The interactions between RNAs and RNA binding proteins (RBPs) are crucial for understanding post-transcriptional regulation mechanisms. A lot of computational tools have been developed to automatically predict the binding relationship between RNAs and RBPs. However, most of the methods can only predict the presence or absence of binding sites for a sequence fragment, without providing specific information on the position or length of the binding sites. Besides, the existing tools focus on the interaction between RBPs and linear RNAs, while the binding sites on circular RNAs (circRNAs) have been rarely studied. In this study, we model the prediction of binding sites on RNAs as a sequence labeling problem, and propose a new model called circSLNN to identify the specific location of RBP-binding sites on circRNAs. CircSLNN is driven by pretrained RNA embedding vectors and a composite labeling model. On our constructed circRNA datasets, our model has an average F1 score of 0.790. We assess the performance on full-length RNA sequences, the proposed model outperforms previous classification-based models by a large margin.
Collapse
Affiliation(s)
- Yuqi Ju
- Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liangliang Yuan
- Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yang
- Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Zhao
- Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Abstract
Similar to many other biological molecules, RNA is vulnerable to chemical insults from endogenous and exogenous sources. Noxious agents such as reactive oxygen species or alkylating chemicals have the potential to profoundly affect the chemical properties and hence the function of RNA molecules in the cell. Given the central role of RNA in many fundamental biological processes, including translation and splicing, changes to its chemical composition can have a detrimental impact on cellular fitness, with some evidence suggesting that RNA damage has roles in diseases such as neurodegenerative disorders. We are only just beginning to learn about how cells cope with RNA damage, with recent studies revealing the existence of quality-control processes that are capable of recognizing and degrading or repairing damaged RNA. Here, we begin by reviewing the most abundant types of chemical damage to RNA, including oxidation and alkylation. Focusing on mRNA damage, we then discuss how alterations to this species of RNA affect its function and how cells respond to these challenges to maintain proteostasis. Finally, we briefly discuss how chemical damage to noncoding RNAs such as rRNA, tRNA, small nuclear RNA, and small nucleolar RNA is likely to affect their function.
Collapse
Affiliation(s)
- Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, To whom correspondence should be addressed:
Dept. of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, MO 63130. Tel.:
314-935-7662; Fax:
314-935-4432; E-mail:
| |
Collapse
|
30
|
Ryu HG, Kim S, Lee S, Lee E, Kim HJ, Kim DY, Kim KT. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem 2019; 149:413-426. [PMID: 30488434 DOI: 10.1111/jnc.14638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Misfolded proteins with abnormal polyglutamine (polyQ) expansion cause neurodegenerative disorders, including Huntington's disease. Recently, it was found that polyQ aggregates accumulate as a result of vaccinia-related kinase 2 (VRK2)-mediated degradation of TCP-1 ring complex (TRiC)/chaperonin-containing TCP-1 (CCT), which has an essential role in the prevention of polyQ protein aggregation and cytotoxicity. The levels of VRK2 are known to be much higher in actively proliferating cells but are maintained at a low level in the brain via an unknown mechanism. Here, we found that basal levels of neuronal cell-specific VRK2 mRNA are maintained by post-transcriptional, rather than transcriptional, regulation. Moreover, heterogeneous nuclear ribonucleoprotein Q (HNRNP Q) specifically binds to the 3'untranslated region of VRK2 mRNA in neuronal cells to reduce the mRNA stability. As a result, we found a dramatic decrease in CCT4 protein levels in response to a reduction in HNRNP Q levels, which was followed by an increase in polyQ aggregation in human neuroblastoma cells and mouse cortical neurons. Taken together, these results provide new insights into how neuronal HNRNP Q decreases VRK2 mRNA stability and contributes to the prevention of Huntington's disease, while also identifying new prognostic markers of HD.
Collapse
Affiliation(s)
- Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eunju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Advanced Bio Convergence Center, Pohang Technopark, Pohang, Korea
| | - Hyo-Jin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,SL BIGEN, Seongnam, Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
31
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
32
|
Zybura-Broda K, Wolder-Gontarek M, Ambrozek-Latecka M, Choros A, Bogusz A, Wilemska-Dziaduszycka J, Rylski M. HuR (Elavl1) and HuB (Elavl2) Stabilize Matrix Metalloproteinase-9 mRNA During Seizure-Induced Mmp-9 Expression in Neurons. Front Neurosci 2018; 12:224. [PMID: 29686606 PMCID: PMC5900018 DOI: 10.3389/fnins.2018.00224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 01/28/2023] Open
Abstract
Matrix metalloproteinase-9 (Mmp-9) is involved in different general and cell-type–specific processes, both in neuronal and non-neuronal cells. Moreover, it is implicated in an induction or progression of various human disorders, including diseases of the central nervous system. Mechanisms regulating activity-driven Mmp-9 expression in neurons are still not fully understood. Here, we show that stabilization of Mmp-9 mRNA is one of the factors responsible for the neuronal activity-evoked upregulation of Mmp-9 mRNA expression in hippocampal neurons. Furthermore, we demonstrate that the molecular mechanism related to this stabilization is dependent on the neuronal seizure-triggered transiently increased binding of the mRNA stability-inducing protein, HuR, to ARE1 and ARE4 motifs of the 3′UTR for Mmp-9 mRNA as well as the stably augmented association of another mRNA-stabilizing protein, HuB, to the ARE1 element of the 3′UTR. Intriguingly, we demonstrate further that both HuR and HuB are crucial for an incidence of Mmp-9 mRNA stabilization after neuronal activation. This study identifies Mmp-9 mRNA as the first HuB target regulated by mRNA stabilization in neurons. Moreover, these results are the first to describe an existence of HuR-dependent mRNA stabilization in neurons of the brain.
Collapse
Affiliation(s)
- Katarzyna Zybura-Broda
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | | | - Artur Choros
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Bogusz
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Marcin Rylski
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
33
|
Autophagy Stimulus Promotes Early HuR Protein Activation and p62/SQSTM1 Protein Synthesis in ARPE-19 Cells by Triggering Erk1/2, p38 MAPK, and JNK Kinase Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4956080. [PMID: 29576851 PMCID: PMC5822911 DOI: 10.1155/2018/4956080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/03/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
RNA-binding protein dysregulation and altered expression of proteins involved in the autophagy/proteasome pathway play a role in many neurodegenerative disease onset/progression, including age-related macular degeneration (AMD). HuR/ELAVL1 is a master regulator of gene expression in human physiopathology. In ARPE-19 cells exposed to the proteasomal inhibitor MG132, HuR positively affects at posttranscriptional level p62 expression, a stress response gene involved in protein aggregate clearance with a role in AMD. Here, we studied the early effects of the proautophagy AICAR + MG132 cotreatment on the HuR-p62 pathway. We treated ARPE-19 cells with Erk1/2, AMPK, p38MAPK, PKC, and JNK kinase inhibitors in the presence of AICAR + MG132 and evaluated HuR localization/phosphorylation and p62 expression. Two-hour AICAR + MG132 induces both HuR cytoplasmic translocation and threonine phosphorylation via the Erk1/2 pathway. In these conditions, p62 mRNA is loaded on polysomes and its translation in de novo protein is favored. Additionally, for the first time, we report that JNK can phosphorylate HuR, however, without modulating its localization. Our study supports HuR's role as an upstream regulator of p62 expression in ARPE-19 cells, helps to understand better the early events in response to a proautophagy stimulus, and suggests that modulation of the autophagy-regulating kinases as potential therapeutic targets for AMD may be relevant.
Collapse
|
34
|
Abstract
Post-transcriptional regulation is linked to the development of pain hypersensitivity. A growing body of evidence indicates that RNA-binding proteins are involved in pain. RNA-based inhibitors are a potential new source of pain therapeutics.
RNA-protein interactions permeate biology. Transcription, translation, processing, and mRNA decay all hinge on widespread use of regulatory information decoded by RNA-binding proteins. The final committed step of protein synthesis, translation, is intimately linked to nociceptor excitability. Understanding the factors that control translation is essential as nociceptor plasticity is a hallmark of persistent pain. Here, we review the growing body of evidence for widespread involvement of RNA-binding proteins in pain. Many of the relevant factors have been implicated in post-transcriptional and translational mechanisms of mRNA control. We propose that recent advances in the development of RNA-based therapeutics provide a potential means to exploit our current understanding of liaisons between RNAs and proteins for therapeutic purposes.
Collapse
Affiliation(s)
| | - Zachary T. Campbell
- Corresponding author at: Department of Biological Sciences, 800 W. Campbell Road, RL10 BSB 12.510, Richardson, TX 75080, United States.
| |
Collapse
|
35
|
Candidate proteins from predegenerated nerve exert time-specific protection of retinal ganglion cells in glaucoma. Sci Rep 2017; 7:14540. [PMID: 29109409 PMCID: PMC5673995 DOI: 10.1038/s41598-017-14860-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
Glaucoma is thought to be the main cause of severe visual impairment or permanent loss of vision. Current therapeutic strategies are not sufficient to protect against glaucoma. Thus, new therapies and potential novel therapeutic targets must be developed to achieve progress in the treatment of this insidious disease. This study was undertaken to verify whether the time of administration of an extract from predegenerated rat sciatic nerves as well as exposure time of this extract onto retinal ganglion cells (RGCs) influences the survival of RGCs in a rat glaucoma model. We have demonstrated that extract obtained from the predegenerated sciatic nerves protects RGCs in a rat glaucoma model. The neuroprotective effect depends mostly on the time of administration of the extract and less clearly on the time of exposure to the extract and is associated with stimulation of endogenous BDNF expression both in RGCs and glial cells. The 14th day following glaucoma induction represents a therapeutic window for effective treatment in a glaucoma model. Mass Spectrometry analysis demonstrated that metallothionein 2 (MT2) may be a key molecule responsible for neuroprotective effects on RGC survival.
Collapse
|
36
|
Increased intraocular pressure alters the cellular distribution of HuR protein in retinal ganglion cells - A possible sign of endogenous neuroprotection failure. Biochim Biophys Acta Mol Basis Dis 2017; 1864:296-306. [PMID: 29107807 DOI: 10.1016/j.bbadis.2017.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/09/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
The RNA-binding protein, HuR, modulates mRNA processing and gene expression of several stress response proteins i.e. Hsp70 and p53 that have been postulated to be involved in the pathogenesis of glaucoma, a chronic optic neuropathy leading to irreversible blindness. We evaluated HuR protein expression in retinas and optic nerves of glaucomatous rats and human primary open angle glaucoma patients and its possible impact on stress response mechanisms. We found that the cytoplasmic content of HuR was reduced more extensively in glaucomatous retinas than in optic nerves and this was linked with a declined cytoplasmic Hsp70 level and p53 nuclear translocation. In the optic nerve, the p53 content was decreased as a feature of reactive gliosis. Based on our findings, we conclude that the alteration in the HuR content, observed both in rat glaucoma model and human glaucoma samples, affects post-transcriptionally the expression of genes crucial for maintaining cell homeostasis; therefore, we postulate that HuR may be involved in the pathogenesis of glaucoma.
Collapse
|
37
|
Gomes C, Lee SJ, Gardiner AS, Smith T, Sahoo PK, Patel P, Thames E, Rodriguez R, Taylor R, Yoo S, Heise T, Kar AN, Perrone-Bizzozero N, Twiss JL. Axonal localization of neuritin/CPG15 mRNA is limited by competition for HuD binding. J Cell Sci 2017; 130:3650-3662. [PMID: 28871047 DOI: 10.1242/jcs.201244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
HuD protein (also known as ELAVL4) has been shown to stabilize mRNAs with AU-rich elements (ARE) in their 3' untranslated regions (UTRs), including Gap43, which has been linked to axon growth. HuD also binds to neuritin (Nrn1) mRNA, whose 3'UTR contains ARE sequences. Although the Nrn1 3'UTR has been shown to mediate its axonal localization in embryonic hippocampal neurons, it is not active in adult dorsal root ganglion (DRG) neurons. Here, we asked why the 3'UTR is not sufficient to mediate the axonal localization of Nrn1 mRNA in DRG neurons. HuD overexpression increases the ability of the Nrn1 3'UTR to mediate axonal localizing in DRG neurons. HuD binds directly to the Nrn1 ARE with about a two-fold higher affinity than to the Gap43 ARE. Although the Nrn1 ARE can displace the Gap43 ARE from HuD binding, HuD binds to the full 3'UTR of Gap43 with higher affinity, such that higher levels of Nrn1 are needed to displace the Gap43 3'UTR. The Nrn1 3'UTR can mediate a higher level of axonal localization when endogenous Gap43 is depleted from DRG neurons. Taken together, our data indicate that endogenous Nrn1 and Gap43 mRNAs compete for binding to HuD for their axonal localization and activity of the Nrn1 3'UTR.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amy S Gardiner
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Terika Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Reycel Rodriguez
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ross Taylor
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Tilman Heise
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
38
|
Mamon LA, Ginanova VR, Kliver SF, Yakimova AO, Atsapkina AA, Golubkova EV. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton. Cytoskeleton (Hoboken) 2017; 74:161-169. [PMID: 28296067 DOI: 10.1002/cm.21362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 02/05/2023]
Abstract
The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr10 and sbr5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton.
Collapse
Affiliation(s)
- L A Mamon
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - V R Ginanova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - S F Kliver
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A O Yakimova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A A Atsapkina
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - E V Golubkova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| |
Collapse
|
39
|
Berberoglu MA, Gallagher TL, Morrow ZT, Talbot JC, Hromowyk KJ, Tenente IM, Langenau DM, Amacher SL. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 2017; 424:162-180. [PMID: 28279710 DOI: 10.1016/j.ydbio.2017.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/24/2022]
Abstract
Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.
Collapse
Affiliation(s)
- Michael A Berberoglu
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Thomas L Gallagher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Zachary T Morrow
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Jared C Talbot
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Kimberly J Hromowyk
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Inês M Tenente
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David M Langenau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Omics analysis of mouse brain models of human diseases. Gene 2017; 600:90-100. [DOI: 10.1016/j.gene.2016.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023]
|
41
|
Kawashima F, Saito K, Kurata H, Maegaki Y, Mori T. c-jun is differentially expressed in embryonic and adult neural precursor cells. Histochem Cell Biol 2017; 147:721-731. [PMID: 28091742 DOI: 10.1007/s00418-016-1536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2016] [Indexed: 12/23/2022]
Abstract
c-jun, a major component of AP-1 transcription factor, has a wide variety of functions. In the embryonic brain, c-jun mRNA is abundantly expressed in germinal layers around the ventricles. Although the subventricular zone (SVZ) of the adult brain is a derivative of embryonic germinal layers and contains neural precursor cells (NPCs), the c-jun expression pattern is not clear. To study the function of c-jun in adult neurogenesis, we analyzed c-jun expression in the adult SVZ by immunohistochemistry and compared it with that of the embryonic brain. We found that almost all proliferating embryonic NPCs expressed c-jun, but the number of c-jun immunopositive cells among proliferating adult NPCs was about half. In addition, c-jun was hardly expressed in post-mitotic migrating neurons in the embryonic brain, but the majority of c-jun immunopositive cells were tangentially migrating neuroblasts heading toward the olfactory bulb in the adult brain. In addition, status epilepticus is known to enhance the transient proliferation of adult NPCs, but the c-jun expression pattern was not significantly affected. These expression patterns suggest that c-jun has a pivotal role in the proliferation of embryonic NPCs, but it has also other roles in adult neurogenesis.
Collapse
Affiliation(s)
- Fumiaki Kawashima
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kengo Saito
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hirofumi Kurata
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Tetsuji Mori
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
42
|
Crist RC, Doyle GA, Nelson EC, Degenhardt L, Martin NG, Montgomery GW, Saxon AJ, Ling W, Berrettini WH. A polymorphism in the OPRM1 3'-untranslated region is associated with methadone efficacy in treating opioid dependence. THE PHARMACOGENOMICS JOURNAL 2016; 18:173-179. [PMID: 27958381 PMCID: PMC5468510 DOI: 10.1038/tpj.2016.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 11/10/2022]
Abstract
The mu-opioid receptor (MOR) is the primary target of methadone and buprenorphine. The primary neuronal transcript of the OPRM1 gene, MOR-1, contains a ~13kb 3′ untranslated region with five common haplotypes in European-Americans. We analyzed the effects of these haplotypes on the percentage of opioid positive urine tests in European-Americans (n = 582) during a 24-week, randomized, open-label trial of methadone or buprenorphine/naloxone (Suboxone) for the treatment of opioid dependence. A single haplotype, tagged by rs10485058, was significantly associated with patient urinalysis data in the methadone treatment group. Methadone patients with the A/A genotype at rs10485058 were less likely to have opioid-positive urine drug screens than those in the combined A/G and G/G genotypes group (Relative Risk = 0.76, 95% confidence intervals = 0.73–0.80, p = 0.0064). Genotype at rs10485058 also predicted self-reported relapse rates in an independent population of Australian patients of European descent (n = 1215) who were receiving opioid substitution therapy (p = 0.003). In silico analysis predicted that miR-95-3p would interact with the G, but not the A allele of rs10485058. Luciferase assays indicated miR-95-3p decreased reporter activity of constructs containing the G, but not the A allele of rs10485058, suggesting a potential mechanism for the observed pharmacogenetic effect. These findings suggest that selection of a medication for opioid dependence based on rs10485058 genotype might improve outcomes in this ethnic group.
Collapse
Affiliation(s)
- R C Crist
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| | - G A Doyle
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| | - E C Nelson
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - L Degenhardt
- National Drug and Alcohol Research Centre, UNSW Australia, Sydney, New South Wales, Australia
| | - N G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - G W Montgomery
- The University of Queensland, Herston, Queensland, Australia
| | - A J Saxon
- Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - W Ling
- University of California, Los Angeles, Integrated Substance Abuse Programs, Los Angeles, CA, USA
| | - W H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| |
Collapse
|
43
|
Wahba A, Lehman SL, Tofilon PJ. Radiation-induced translational control of gene expression. TRANSLATION (AUSTIN, TEX.) 2016; 5:e1265703. [PMID: 28702276 PMCID: PMC5501380 DOI: 10.1080/21690731.2016.1265703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Radiation-induced gene expression has long been hypothesized to protect against cell death. Defining this process would provide not only insight into the mechanisms mediating cell survival after radiation exposure, but also a novel source of targets for radiosensitization. However, whereas the radiation-induced gene expression profiles using total cellular mRNA have been generated for cell lines as well as normal tissues, with few exception, the changes in mRNA do not correlate with changes in the corresponding protein. The traditional approach to profiling gene expression, i.e., using total cellular RNA, does not take into account posttranscriptional regulation. In this review, we describe the use of gene expression profiling of polysome-bound RNA to establish that radiation modifies gene expression via translational control. Because changes in polysome-bound mRNA correlate with changes in protein, analysis of the translational profiles provides a unique data set for investigating the mechanisms mediating cellular radioresponse.
Collapse
Affiliation(s)
- Amy Wahba
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Stacey L. Lehman
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Philip J. Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
44
|
Chen Y, Wei Q, Chen X, Li C, Cao B, Ou R, Hadano S, Shang HF. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2016; 9:69. [PMID: 27582688 PMCID: PMC4987348 DOI: 10.3389/fnmol.2016.00069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/29/2016] [Indexed: 02/05/2023] Open
Abstract
Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. Methods: We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS) and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson's disease (PD) patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics. Results: Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935) having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group). However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. Conclusion: This study provided evidence of abnormal miRNA expression patterns in the peripheral blood leukocytes of SALS patients. Leukocytes miRNAs provide a promising opportunity for detection of SALS. The specificity of under-expression of hsa-miR-183 in SALS needs to be confirmed by further miRNA studies on other neurodegenerative diseases.
Collapse
Affiliation(s)
- YongPing Chen
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - QianQian Wei
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - XuePing Chen
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - ChunYu Li
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - RuWei Ou
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of MedicineIsehara, Japan; The Institute of Medical Sciences, Tokai UniversityIsehara, Japan; Research Center for Brain and Nervous Diseases, Tokai University Graduate School of MedicineIsehara, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| |
Collapse
|
45
|
Armbrecht HJ, Siddiqui AM, Green M, Farr SA, Kumar VB, Banks WA, Patrick P, Shah GN, Morley JE. Antisense against Amyloid-β Protein Precursor Reverses Memory Deficits and Alters Gene Expression in Neurotropic and Insulin-Signaling Pathways in SAMP8 Mice. J Alzheimers Dis 2016; 46:535-48. [PMID: 25854933 DOI: 10.3233/jad-142760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The senescence-accelerated mouse (SAMP8) strain exhibits an age-related decrease in memory accompanied by an increase in hippocampal amyloid-β protein precursor (AβPP) and amyloid-β peptide (Aβ). We have shown that administration of an antisense oligonucleotide against the Aβ region of AβPP (AβPP antisense) reverses the memory deficits. The purpose of this study was to determine the effect of peripheral (IV) administration of AβPP antisense on hippocampal gene expression. The AβPP antisense reversed the memory deficits and altered expression of 944 hippocampal genes. Pathway analysis showed significant gene expression changes in nine pathways. These include the MAPK signaling pathway (p = 0.0078) and the phosphatidylinositol signaling pathway (p = 0.043), which we have previously shown to be altered in SAMP8 mice. The changes in these pathways contributed to significant changes in the neurotropin (p = 0.0083) and insulin signaling (p = 0.015) pathways, which are known to be important in learning and memory. Changes in these pathways were accompanied by phosphorylation changes in the downstream target proteins p70S6K, GSK3β, ERK, and CREB. These changes in hippocampal gene expression and protein phosphorylation may suggest specific new targets for antisense therapy aimed at improving memory.
Collapse
Affiliation(s)
- Harvey J Armbrecht
- Geriatric Research, Education and Clinical Center (GRECC), St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA.,Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Akbar M Siddiqui
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Michael Green
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Susan A Farr
- Geriatric Research, Education and Clinical Center (GRECC), St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Vijaya B Kumar
- Geriatric Research, Education and Clinical Center (GRECC), St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - William A Banks
- Geriatric Research, Education and Clinical Center (GRECC), St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ping Patrick
- Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Gul N Shah
- Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - John E Morley
- Geriatric Research, Education and Clinical Center (GRECC), St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol 2016; 119:149-60. [PMID: 27001133 DOI: 10.1111/bcpt.12581] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
Kim DY. Post-transcriptional regulation of gene expression in neural stem cells. Cell Biochem Funct 2016; 34:197-208. [PMID: 27001557 DOI: 10.1002/cbf.3181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
Expression of each gene can be controlled at several steps during the flow of genetic information from DNA to protein. Tight regulation of gene expression is especially important for stem cells because of their greater ripple effects, compared with terminally differentiated cells. Dysregulation of gene expression arising in stem cells can be perpetuated within the stem cell pool via self-renewal throughout life. In addition, transcript profiles within stem cells can determine the selective advantage or disadvantage of each cell, leading to changes in cell fate, such as a tendency for proliferation, death, and differentiation. The identification of neural stem/progenitor cells (NSPCs) and greater understanding of their cellular physiology have raised the possibility of using NSPCs to replace damaged or injured neurons. However, an accurate grasp of gene expression control must take precedence in order to use NSPCs in therapies for neurological diseases. Recently, accumulating evidence has demonstrated the importance of post-transcriptional regulation in NSPC fate decisions. In this review, we will summarize and discuss the recent findings on key mRNA modulators and their vital roles in NSPC homeostasis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
48
|
Anji A, Kumari M. Guardian of Genetic Messenger-RNA-Binding Proteins. Biomolecules 2016; 6:4. [PMID: 26751491 PMCID: PMC4808798 DOI: 10.3390/biom6010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.
Collapse
Affiliation(s)
- Antje Anji
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Meena Kumari
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
49
|
Shi J, He Y, Hewett SJ, Hewett JA. Interleukin 1β Regulation of the System xc- Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR. J Biol Chem 2015; 291:1643-1651. [PMID: 26601945 DOI: 10.1074/jbc.m115.697821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Indexed: 01/05/2023] Open
Abstract
System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1β increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1β induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1β-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1β-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1β-induced stabilization of astrocyte xCT mRNA.
Collapse
Affiliation(s)
- Jingxue Shi
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Yan He
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Sandra J Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - James A Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
50
|
Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1423-31. [PMID: 26518267 PMCID: PMC4655839 DOI: 10.1016/j.bbagrm.2015.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/04/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Excessive mitochondrial fission is associated with the pathogenesis of neurodegenerative diseases. Dynamin-related protein 1 (Drp1) possesses specific fission activity in the mitochondria and peroxisomes. Various post-translational modifications of Drp1 are known to modulate complex mitochondrial dynamics. However, the post-transcriptional regulation of Drp1 remains poorly understood. Here, we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) regulates Drp1 expression at the post-transcriptional level. hnRNP A1 directly interacts with Drp1 mRNA at its 3′UTR region, and enhances translation potential without affecting mRNA stability. Down-regulation of hnRNP A1 induces mitochondrial elongation by reducing Drp1 expression. Moreover, depletion of hnRNP A1 suppresses 3-NP-mediated mitochondrial fission and dysfunction. In contrast, over-expression of hnRNP A1 promotes mitochondrial fragmentation by increasing Drp1 expression. Additionally, hnRNP A1 significantly exacerbates 3-NP-induced mitochondrial dysfunction and cell death in neuroblastoma cells. Interestingly, treatment with 3-NP induces subcellular translocation of hnRNP A1 from the nucleus to the cytoplasm, which accelerates the increase in Drp1 expression in hnRNP A1 over-expressing cells. Collectively, our findings suggest that hnRNP A1 controls mitochondrial dynamics by post-transcriptional regulation of Drp1. hnRNP A1 increases Drp1 expression through the interaction with 3′UTR of Drp1 mRNA. Down-regulation of hnRNP A1 increases mitochondrial elongation by reducing drp1 expression. Down-regulation of hnRNPA1 inhibits 3-NP-mediated mitochondrial dysfunction. Over-expression of hnRNP A1 potentiates 3-NP-mediated mitochondrial dysfunction and cell death. Treatment of 3-NP promotes translocation of hnRNP A1 to the cytoplasm and enhances Drp1 expression.
Collapse
|