1
|
Activin A is a novel chemoattractant for migration of microglial BV2 cells. J Neuroimmunol 2022; 371:577929. [DOI: 10.1016/j.jneuroim.2022.577929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 11/19/2022]
|
2
|
Qi Y, Jiang L, Wu C, Li J, Wang H, Wang S, Chen X, Cui X, Liu Z. Activin A impairs ActRIIA + neutrophil recruitment into infected skin of mice. iScience 2021; 24:102080. [PMID: 33604525 PMCID: PMC7873648 DOI: 10.1016/j.isci.2021.102080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Activin A levels are elevated during multiple severe infections and associated with an increased risk of death. However, the role of activin A in bacterial infection is still unclear. Here, we found that activin A levels were increased during S. aureus skin infection in mice. Administration of activin A increased the bacterial burden and promoted the spread of bacteria in vivo. Moreover, activin A inhibited neutrophil chemotaxis to N-formylmethionine-leucyl-phenylalanine via the type IIA activin receptor (ActRIIA) in vitro and impaired ActRIIA+ neutrophil recruitment to infection foci in vivo. Additionally, we identified a novel subpopulation of neutrophils, ActRIIA+ neutrophils, which exhibit superior phagocytic capacity compared to ActRIIA− neutrophils and possess an N2-like immunoregulatory activity via secreting IL-10 and TGF-β. Taken together, these findings indicate that activin A inhibits the recruitment of ActRIIA+ neutrophils to infected foci, leading to the impairment of bacterial clearance, and thus may hamper early infection control. A novel activin A-responsitive subpopulation of neutrophils (ActRIIA+) was identified ActRIIA+ neutrophils exhibit N2-like immunoregulatory properties Activin A inhibits ActRIIA+ neutrophil recruitment to infected skin
Collapse
Affiliation(s)
- Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lingling Jiang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Oral Comprehensive Therapy, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengdong Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Heyuan Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shiji Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xintong Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Neuroadaptations in the dorsal hippocampus underlie cocaine seeking during prolonged abstinence. Proc Natl Acad Sci U S A 2020; 117:26460-26469. [PMID: 33020308 DOI: 10.1073/pnas.2006133117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Relapse vulnerability in substance use disorder is attributed to persistent cue-induced drug seeking that intensifies (or "incubates") during drug abstinence. Incubated cocaine seeking has been observed in both humans with cocaine use disorder and in preclinical relapse models. This persistent relapse vulnerability is mediated by neuroadaptations in brain regions involved in reward and motivation. The dorsal hippocampus (DH) is involved in context-induced reinstatement of cocaine seeking but the role of the DH in cocaine seeking during prolonged abstinence has not been investigated. Here we found that transforming growth factor-β (TGF-β) superfamily member activin A is increased in the DH on abstinence day (AD) 30 but not AD1 following extended-access cocaine self-administration compared to saline controls. Moreover, activin A does not affect cocaine seeking on AD1 but regulates cocaine seeking on AD30 in a bidirectional manner. Next, we found that activin A regulates phosphorylation of NMDA receptor (NMDAR) subunit GluN2B and that GluN2B-containing NMDARs also regulate expression of cocaine seeking on AD30. Activin A and GluN2B-containing NMDARs have both previously been implicated in hippocampal synaptic plasticity. Therefore, we examined synaptic strength in the DH during prolonged abstinence and observed an increase in moderate long-term potentiation (LTP) in cocaine-treated rats compared to saline controls. Lastly, we examined the role of DH projections to the lateral septum (LS), a brain region implicated in cocaine seeking and found that DH projections to the LS govern cocaine seeking on AD30. Taken together, this study demonstrates a role for the DH in relapse behavior following prolonged abstinence from cocaine self-administration.
Collapse
|
4
|
Activin-A in the regulation of immunity in health and disease. J Autoimmun 2019; 104:102314. [PMID: 31416681 DOI: 10.1016/j.jaut.2019.102314] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/08/2023]
Abstract
The TGF-β superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-β superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.
Collapse
|
5
|
Diesselberg C, Ribes S, Seele J, Kaufmann A, Redlich S, Bunkowski S, Hanisch UK, Michel U, Nau R, Schütze S. Activin A increases phagocytosis of Escherichia coli K1 by primary murine microglial cells activated by toll-like receptor agonists. J Neuroinflammation 2018; 15:175. [PMID: 29880000 PMCID: PMC5992782 DOI: 10.1186/s12974-018-1209-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background Bacterial meningitis is associated with high mortality and long-term neurological sequelae. Increasing the phagocytic activity of microglia could improve the resistance of the CNS against infections. We studied the influence of activin A, a member of the TGF-β family with known immunoregulatory and neuroprotective effects, on the functions of microglial cells in vitro. Methods Primary murine microglial cells were treated with activin A (0.13 ng/ml–13 μg/ml) alone or in combination with agonists of TLR2, 4, and 9. Phagocytosis of Escherichia coli K1 as well as release of TNF-α, IL-6, CXCL1, and NO was assessed. Results Activin A dose-dependently enhanced the phagocytosis of Escherichia coli K1 by microglial cells activated by agonists of TLR2, 4, and 9 without further increasing NO and proinflammatory cytokine release. Cell viability of microglial cells was not affected by activin A. Conclusions Priming of microglial cells with activin A could increase the elimination of bacteria in bacterial CNS infections. This preventive strategy could improve the resistance of the brain to infections, particularly in elderly and immunocompromised patients.
Collapse
Affiliation(s)
- Catharina Diesselberg
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, 37075, Göttingen, Germany
| | - Annika Kaufmann
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sandra Redlich
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Stephanie Bunkowski
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, 37075, Göttingen, Germany
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany. .,Department of Geriatrics, AGAPLESION Frankfurter Diakonie Kliniken, Wilhelm-Epstein-Str. 4, 60431, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Wang ZJ, Martin JA, Gancarz AM, Adank DN, Sim FJ, Dietz DM. Activin A is increased in the nucleus accumbens following a cocaine binge. Sci Rep 2017; 7:43658. [PMID: 28272550 PMCID: PMC5341561 DOI: 10.1038/srep43658] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/26/2017] [Indexed: 11/24/2022] Open
Abstract
Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1+ microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN+ neurons and GFAP+ astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Amy M. Gancarz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, California State University Bakersfield, Bakersfield, CA, USA
| | - Danielle N. Adank
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fraser J. Sim
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
7
|
|
8
|
Jeong J, Ahn M, Sim KB, Moon C, Shin T. Immunohistochemical analysis of activin A expression in spinal cords of rats with clip compression injuries. Acta Histochem 2014; 116:747-52. [PMID: 24529943 DOI: 10.1016/j.acthis.2014.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/25/2022]
Abstract
Activin A, a member of the TGF-β superfamily, plays roles in neuroprotection and immunomodulation. In the present study, activin A expression was investigated on days 1, 4 and 7 post-injury in female adult Sprague-Dawley rats with spinal cord injuries (SCIs). The spinal cord was compressed with a vascular clip for 1 min following laminectomy at T9/T10. Western blot analysis showed that activin A levels peaked in SCI core lesions 4 days post-injury (p<0.01) and fell thereafter until day 7. Immunohistochemically, activin A was constitutively expressed in vascular endothelial cells, astrocytes and neurons of sham-operated controls, and in macrophages and reactive astrocytes of lesional cores and peripheries. As activin A plays an immunomodulatory role in the early stages of SCI and facilitates behavioral improvement, we postulate that transient upregulation of activin A in SCI tissue may contribute to modulation of inflammation development during SCI, thus leading to neuroprotection.
Collapse
|
9
|
Abstract
Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | |
Collapse
|
10
|
Endogenous protection derived from activin A/Smads transduction loop stimulated via ischemic injury in PC12 cells. Molecules 2013; 18:12977-86. [PMID: 24141247 PMCID: PMC6270284 DOI: 10.3390/molecules181012977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023] Open
Abstract
Activin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab). We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.
Collapse
|
11
|
Zysset-Burri DC, Bellac CL, Leib SL, Wittwer M. Vitamin B6 reduces hippocampal apoptosis in experimental pneumococcal meningitis. BMC Infect Dis 2013; 13:393. [PMID: 23977941 PMCID: PMC3765858 DOI: 10.1186/1471-2334-13-393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bacterial meningitis caused by Streptococcus pneumoniae leads to death in up to 30% of patients and leaves up to half of the survivors with neurological sequelae. The inflammatory host reaction initiates the induction of the kynurenine pathway and contributes to hippocampal apoptosis, a form of brain damage that is associated with learning and memory deficits in experimental paradigms. Vitamin B6 is an enzymatic cofactor in the kynurenine pathway and may thus limit the accumulation of neurotoxic metabolites and preserve the cellular energy status. The aim of this study in a pneumococcal meningitis model was to investigate the effect of vitamin B6 on hippocampal apoptosis by histomorphology, by transcriptomics and by measurement of cellular nicotine amide adenine dinucleotide content. METHODS AND RESULTS Eleven day old Wistar rats were infected with 1x10(6) cfu/ml of S. pneumoniae and randomized for treatment with vitamin B6 or saline as controls. Vitamin B6 led to a significant (p > 0.02) reduction of hippocampal apoptosis. According to functional annotation based clustering, vitamin B6 led to down-regulation of genes involved in processes of inflammatory response, while genes encoding for processes related to circadian rhythm, neuronal signaling and apoptotic cell death were mostly up-regulated. CONCLUSIONS Our results provide evidence that attenuation of apoptosis by vitamin B6 is multi-factorial including down-modulation of inflammation, up-regulation of the neuroprotective brain-derived neurotrophic factor and prevention of the exhaustion of cellular energy stores. The neuroprotective effect identifies vitamin B6 as a potential target for the development of strategies to attenuate brain injury in bacterial meningitis.
Collapse
Affiliation(s)
- Denise C Zysset-Burri
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, CH-3700, Spiez, Switzerland.
| | | | | | | |
Collapse
|
12
|
Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013; 2013:480739. [PMID: 23997430 PMCID: PMC3753746 DOI: 10.1155/2013/480739] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/18/2023] Open
Abstract
Cytokines and chemokines are proteins that coordinate the immune response throughout the body. The dysregulation of cytokines and chemokines is a central feature in the development of neuroinflammation, neurodegeneration, and demyelination both in the central and peripheral nervous systems and in conditions of neuropathic pain. Pathological states within the nervous system can lead to activation of microglia. The latter may mediate neuronal and glial cell injury and death through production of proinflammatory factors such as cytokines and chemokines. These then help to mobilize the adaptive immune response. Although inflammation may induce beneficial effects such as pathogen clearance and phagocytosis of apoptotic cells, uncontrolled inflammation can result in detrimental outcomes via the production of neurotoxic factors that exacerbate neurodegenerative pathology. In states of prolonged inflammation, continual activation and recruitment of effector cells can establish a feedback loop that perpetuates inflammation and ultimately results in neuronal injury. A critical balance between repair and proinflammatory factors determines the outcome of a neurodegenerative process. This review will focus on how cytokines and chemokines affect neuroinflammation and disease pathogenesis in bacterial meningitis and brain abscesses, Lyme neuroborreliosis, human immunodeficiency virus encephalitis, and neuropathic pain.
Collapse
Affiliation(s)
- Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | |
Collapse
|
13
|
Li N, Cui X, Ge J, Li J, Niu L, Liu H, Qi Y, Liu Z, Wang Y. Activin A inhibits activities of lipopolysaccharide-activated macrophages via TLR4, not of TLR2. Biochem Biophys Res Commun 2013; 435:222-8. [DOI: 10.1016/j.bbrc.2013.04.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/20/2013] [Indexed: 01/20/2023]
|
14
|
Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev 2013; 24:285-95. [PMID: 23541927 DOI: 10.1016/j.cytogfr.2013.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 02/05/2023]
Abstract
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- M P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
15
|
Activin, neutrophils, and inflammation: just coincidence? Semin Immunopathol 2013; 35:481-99. [PMID: 23385857 PMCID: PMC7101603 DOI: 10.1007/s00281-013-0365-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023]
Abstract
During the 26 years that have elapsed since its discovery, activin-A, a member of the transforming growth factor β super-family originally discovered from its capacity to stimulate follicle-stimulating hormone production by cultured pituitary gonadotropes, has been established as a key regulator of various fundamental biological processes, such as development, homeostasis, inflammation, and tissue remodeling. Deregulated expression of activin-A has been observed in several human diseases characterized by an immuno-inflammatory and/or tissue remodeling component in their pathophysiology. Various cell types have been recognized as sources of activin-A, and plentiful, occasionally contradicting, functions have been described mainly by in vitro studies. Not surprisingly, both harmful and protective roles have been postulated for activin-A in the context of several disorders. Recent findings have further expanded the functional repertoire of this molecule demonstrating that its ectopic overexpression in mouse airways can cause pathology that simulates faithfully human acute respiratory distress syndrome, a disorder characterized by strong involvement of neutrophils. This finding when considered together with the recent discovery that neutrophils constitute an important source of activin-A in vivo and earlier observations of upregulated activin-A expression in diseases characterized by strong activation of neutrophils may collectively imply a more intimate link between activin-A expression and neutrophil reactivity. In this review, we provide an outline of the functional repertoire of activin-A and suggest that this growth factor functions as a guardian of homeostasis, a modulator of immunity and an orchestrator of tissue repair activities. In this context, a relationship between activin-A and neutrophils may be anything but coincidental.
Collapse
|
16
|
Abstract
INTRODUCTION The introduction of protein conjugate vaccines for Haemophilus influenzae type b (Hib), Streptococcus pneumoniae (S. pneumoniae) and Neisseria meningitidis (N. menigitidis) has changed the epidemiology of bacterial meningitis. Bacterial meningitis continues to be an important cause of mortality and morbidity, and our incomplete knowledge of its pathogenesis and emergence of antimicrobial resistant bacteria contribute to such mortality and morbidity. An early empiric antibiotic treatment is critical for the management of patients with bacterial meningitis. AREAS COVERED This article gives an overview on optimal treatment strategies of bacterial meningitis, along with considerations of new insights on epidemiology, clinical and laboratory findings supportive of bacterial meningitis, chemoprophylaxis, selection of initial antimicrobial agents for suspected bacterial meningitis, antimicrobial resistance and utility of new antibiotics, status on anti-inflammatory agents and adjunctive therapy, and pathogenesis of bacterial meningitis. EXPERT OPINION Prompt treatment of bacterial meningitis with an appropriate antibiotic is essential. Optimal antimicrobial treatment of bacterial meningitis requires bactericidal agents able to penetrate the blood-brain barrier (BBB), with efficacy in cerebrospinal fluid (CSF). Several new antibiotics have been introduced for the treatment of meningitis caused by resistant bacteria, but their use in human studies has been limited. More complete understanding of the microbial and host interactions that are involved in the pathogenesis of bacterial meningitis and associated neurologic sequelae is likely to help in developing new strategies for the prevention and therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Seon Hee Shin
- Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, MD 21287, USA
| | | |
Collapse
|
17
|
|
18
|
de Kretser DM, O'Hehir RE, Hardy CL, Hedger MP. The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 2012; 359:101-6. [PMID: 22037168 DOI: 10.1016/j.mce.2011.10.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/15/2023]
Abstract
Activin A, a member of the transforming growth factor-β superfamily of cytokines, is a critical controller of inflammation, immunity and fibrosis. It is rapidly released into the blood following a lipopolysaccharide challenge in experimental animals, through activation of the Toll-like receptor 4 signalling pathway. Blocking activin action by pre-treatment with its binding protein, follistatin, modifies the inflammatory cytokine cascade, and reduces the severity of the subsequent inflammatory response and mortality. Likewise, high serum levels of activin A are predictive of death in patients with septicaemia. However, activin A has complex immunomodulatory actions. It is produced by inflammatory macrophages, but can regulate either pro- or anti-inflammatory responses in these cells, depending on their prior activation status. Activin A is also produced by Th2 cells, and stimulates antibody production by B cells and the development of regulatory T cells. Production of activin A during inflammatory responses stimulates fibrosis and tissue remodelling, and follistatin inhibits these actions of activin A. The modulation of activin by follistatin may represent an important therapeutic target for the modulation and amelioration of inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- David M de Kretser
- Monash Institute of Medical Research and the Department of Immunology and Pathology, Monash University, Clayton Victoria 3800, Australia.
| | | | | | | |
Collapse
|
19
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
20
|
Urshansky N, Mausner-Fainberg K, Auriel E, Regev K, Karni A. Low and dysregulated production of follistatin in immune cells of relapsing-remitting multiple sclerosis patients. J Neuroimmunol 2011; 238:96-103. [PMID: 21880375 DOI: 10.1016/j.jneuroim.2011.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022]
Abstract
One of the mechanisms known to play a key role in neuronal and oligodendroglial fate specification of neural stem cells (NSCs) is restriction of bone morphogenic proteins (BMP) signaling by BMP antagonists. Here, we demonstrate that follistatin mRNA and protein secreted levels in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RR-MS) patients are significantly reduced compared to healthy controls (HC). We also observed a different profile of regulation mechanisms. Follistatin was similarly expressed and secreted by T lymphocytes and monocytes among the PBMCs of HC, and follistatin upregulation of HC was subjected to stimulation with both LPS and TNF-α. Among PBMCs of RR-MS patients, however, follistatin was found to be downregulated in their monocytes and unresponsive to stimulation with either LPS or TNF-α. Our results may shed some light on the mechanisms involved in remyelination failure in MS, which may be related to the inability of RR-MS patients' immune cells to provide a sufficient pro-neurogenic and oligodendrogenic niche, by expressing and secreting follistatin, in addition to the previously described noggin reduced expression. Our results indicate that the low expression of follistatin in immune cells of patients with RR-MS is a result of the altered immunoregulation of monocytes in these patients.
Collapse
Affiliation(s)
- Nataly Urshansky
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
21
|
Hedger MP, Winnall WR, Phillips DJ, de Kretser DM. The regulation and functions of activin and follistatin in inflammation and immunity. VITAMINS AND HORMONES 2011; 85:255-97. [PMID: 21353885 DOI: 10.1016/b978-0-12-385961-7.00013-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activins are members of the transforming growth factor β superfamily with broad and complex effects on cell growth and differentiation. Activin A has long been known to be a critical regulator of inflammation and immunity, and similar roles are now emerging for activin B, with which it shares 65% sequence homology. These molecules and their binding protein, follistatin, are widely expressed, and their production is increased in many acute and chronic inflammatory conditions. Synthesis and release of the activins are stimulated by inflammatory cytokines, Toll-like receptor ligands, and oxidative stress. The activins interact with heterodimeric serine/threonine kinase receptor complexes to activate SMAD transcription factors and the MAP kinase signaling pathways, which mediate inflammation, stress, and immunity. Follistatin binds to the activins with high affinity, thereby obstructing the activin receptor binding site, and targets them to cell surface proteoglycans and lysosomal degradation. Studies on transgenic mice and those with gene knockouts, together with blocking studies using exogenous follistatin, have established that activin A plays critical roles in the onset of cachexia, acute and chronic inflammatory responses such as septicemia, colitis and asthma, and fibrosis. However, activin A also directs the development of monocyte/macrophages, myeloid dendritic cells, and T cell subsets to promote type 2 and regulatory immune responses. The ability of both endogenous and exogenous follistatin to block the proinflammatory and profibrotic actions of activin A has led to interest in this binding protein as a potential therapeutic for limiting the severity of disease and to improve subsequent damage associated with inflammation and fibrosis. However, the ability of activin A to sculpt the subsequent immune response as well means that the full range of effects that might arise from blocking activin bioactivity will need to be considered in any therapeutic applications.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Tumour necrosis factor‐α stimulates human neutrophils to release preformed activin A. Immunol Cell Biol 2011; 89:889-96. [DOI: 10.1038/icb.2011.12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Ebert S, Nau R, Michel U. Role of activin in bacterial infections: a potential target for immunointervention? Immunotherapy 2010; 2:673-84. [DOI: 10.2217/imt.10.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Severe bacterial infections such as sepsis and meningitis still kill or severely injure people despite the use of bactericidal antibiotics. Therefore, new strategies for a better therapy are needed. Activin A, a member of the TGF-β superfamily and its binding protein follistatin (FS) are released by various cell types during acute and chronic inflammatory processes. Until now, a clear definition of conditions in which activin A exerts either its pro- or anti-inflammatory functions is lacking. The activin/FS-system participates in the fine-tuning of the host’s inflammatory response upon infectious stimuli. This response is on the one hand necessary for fighting pathogens, but on the other hand can negatively affect the host. This article focuses on the role of activin A and FS in infection and after acute inflammatory stimuli. The therapeutic potentials of blocking or promoting activin actions are discussed.
Collapse
Affiliation(s)
| | - Roland Nau
- Department of Neuropathology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|