1
|
Abdyeva A, Kurtova E, Savinkova I, Galkov M, Gorbacheva L. Long-Term Exposure of Cultured Astrocytes to High Glucose Impact on Their LPS-Induced Activation. Int J Mol Sci 2024; 25:1122. [PMID: 38256196 PMCID: PMC10816293 DOI: 10.3390/ijms25021122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus is associated with various complications, mainly caused by the chronic exposure of the cells to high glucose (HG) concentrations. The effects of long-term HG exposure in vitro accompanied by lipopolysaccharide (LPS) application on astrocytes are relatively unknown. We used cell medium with normal (NG, 5.5 mM) or high glucose (HG, 25 mM) for rat astrocyte cultures and measured the release of NO, IL-6, β-hexosaminidase and cell survival in response to LPS. We first demonstrated that HG long-term incubation of astrocytes increased the release of β-hexosaminidase without decreasing MTT-detected cell survival, suggesting that there is no cell membrane damage or astrocyte death but could be lysosome exocytosis. Different from what was observed for NG, all LPS concentrations tested at HG resulted in an increase in IL-6, and this was detected for both 6 h and 48 h treatments. Interestingly, β-hexosaminidase level increased after 48 h of LPS and only at HG. The NO release from astrocytes also increased with LPS application at HG but was less significant. These data endorsed the original hypothesis that long-term hyperglycemia increases proinflammatory activation of astrocytes, and β-hexosaminidase could be a specific marker of excessive activation of astrocytes associated with exocytosis.
Collapse
Affiliation(s)
- Ayna Abdyeva
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Ekaterina Kurtova
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Irina Savinkova
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Maksim Galkov
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Liubov Gorbacheva
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Wątroba M, Grabowska AD, Szukiewicz D. Effects of Diabetes Mellitus-Related Dysglycemia on the Functions of Blood-Brain Barrier and the Risk of Dementia. Int J Mol Sci 2023; 24:10069. [PMID: 37373216 DOI: 10.3390/ijms241210069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aβ aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.
Collapse
Affiliation(s)
- Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Anna D Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Li J, Xu S, Wang L, Wang X. PHPB Attenuated Cognitive Impairment in Type 2 Diabetic KK-Ay Mice by Modulating SIRT1/Insulin Signaling Pathway and Inhibiting Generation of AGEs. Pharmaceuticals (Basel) 2023; 16:305. [PMID: 37259448 PMCID: PMC9960127 DOI: 10.3390/ph16020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 10/08/2024] Open
Abstract
Diabetes mellitus (DM) has been recognized as an increased risk factor for cognitive impairment, known as diabetic encephalopathy (DE). Hyperglycemia and insulin resistance are the main initiators of DE, which is related to the accumulation of advanced glycation end products (AGEs). Potassium 2-(1-hydroxypentyl)-benzoate (PHPB), a derivative of 3-n-butylphthalide (dl-NBP), has emerged various properties including improved mitochondrial function, antioxidant, anti-neuroinflammation, and neuroprotective effects. The present study aimed to investigate the neuroprotective effect of PHPB against AGEs accumulation in type 2 diabetic KK-Ay mice model with DE and further explore the underlying mechanisms. The results showed that PHPB markedly ameliorated the spatial learning ability of KK-Ay mice in the Morris water maze and decreased AD-like pathologic changes (Tau hyperphosphorylation) in the cortex. Furthermore, we found that PHPB treatment significantly reduced AGEs generation via up-regulation of glyoxalase-1 (GLO1) protein and enhancement of methylglyoxal (MG) trapping, while there was no obvious difference in levels of glucose in plasma or brain, contents of total cholesterol (TC), triglycerides (TG), and plasma insulin. Also, PHPB treatment improved the insulin signaling pathway by increasing sirtuin1 (SIRT1) deacetylase activity and attenuated oxidative stress evidenced by elevating glucose-6-phosphate dehydrogenase (G-6-PD) protein expression, promoting the production of reduced glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), restoring mitochondrial membrane potential, increasing adenosine triphosphate (ATP) generation, and reducing malondialdehyde (MDA) levels in the brain. Taken together, PHPB exhibited a beneficial effect on DE, which involved modulating the SIRT1/insulin signaling pathway and reducing oxidative stress by inhibiting the generation of AGEs.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
5
|
The distribution pattern of M2 and Adrenergic α2 receptors on inferior colliculi in male newborns of diabetic rats. Neurosci Lett 2022; 787:136820. [PMID: 35917839 DOI: 10.1016/j.neulet.2022.136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
AIMS Despite the high prevalence of diabetes in the world, its possible effects throughut pregnancy on neonatal auditory nervous system development are still unknown. In the present research, maternal diabetes' impact on the M2 and Adrenergicα2 receptors expression in the inferior colliculus (IC) of male newborn rats was investigated. Main methods Female rats were grouped into three: sham, insulin-treated diabetic, and diabetic. Diabetes was induced through streptozotocin (STZ) injection as one dose intraperitoneally (65 mg/kg). After mating and delivery, male rats were euthanized on P0, P7, and P14. Immunohistochemistry (IHC) was used to study the distribution pattern of receptors. Key findings The present study indicated that the expression of M2 receptors in the diabetic group was significantly increased in pairwise comparisons in the sham and diabetic treated with insulin groups (P<0.001, each). The highest M2 expression was for the diabetic group on P14 and the lowest one was for the sham group on P0. The Adrenergicα2a receptors expression in the diabetic group was significantly reduced in pairwise comparisons in the sham and diabetic treated with insulin groups (P <0.001, each). The highest Adrenergicα2a expression was for the sham group on P14 and the lowest one was for the diabetic group on P0. There was no significant difference between the sham and insulin groups regarding all receptors expression. SIGNIFICANCE This study demonstrated a time-dependent significant decrease in Adrenergicα2a but a time-dependent significant increase in M2 receptors expression.
Collapse
|
6
|
Garvin J, Semenikhina M, Liu Q, Rarick K, Isaeva E, Levchenko V, Staruschenko A, Palygin O, Harder D, Cohen S. Astrocytic responses to high glucose impair barrier formation in cerebral microvessel endothelial cells. Am J Physiol Regul Integr Comp Physiol 2022; 322:R571-R580. [PMID: 35412389 PMCID: PMC9109795 DOI: 10.1152/ajpregu.00315.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/27/2022]
Abstract
Hyperglycemic conditions are prodromal to blood-brain barrier (BBB) impairment. The BBB comprises cerebral microvessel endothelial cells (CMECs) that are surrounded by astrocytic foot processes. Astrocytes express high levels of gap junction connexin 43 (Cx43), which play an important role in autocrine and paracrine signaling interactions that mediate gliovascular cross talk through secreted products. One of the key factors of the astrocytic "secretome" is vascular endothelial growth factor (VEGF), a potent angiogenic factor that can disrupt BBB integrity. We hypothesize that high-glucose conditions change the astrocytic expression of Cx43 and increase VEGF secretion leading to impairment of CMEC barrier properties in vitro and in vivo. Using coculture of neonatal rat astrocytes and CMEC, we mimic hyperglycemic conditions using high-glucose (HG) feeding media and show a significant decrease in Cx43 expression and the corresponding increase in secreted VEGF. This result was confirmed by the analyses of Cx43 and VEGF protein levels in the brain cortex samples from the type 2 diabetic rat (T2DN). To further characterize inducible changes in BBB, we measured transendothelial cell electrical resistance (TEER) and tight junction protein levels in cocultured conditioned astrocytes with isolated rat CMEC. The coculture monolayer's integrity and permeability were significantly compromised by HG media exposure, which was indicated by decreased TEER without a change in tight junction protein levels in CMEC. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross talk between astrocytes and CMEC, which could be one explanation for cerebral BBB disruption in diabetic conditions.
Collapse
Affiliation(s)
- Jodi Garvin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marharyta Semenikhina
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Qiuli Liu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Rarick
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan Cohen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Chen R, Zeng J, Li C, Xiao H, Li S, Lin Z, Huang K, Shen J, Huang H. Fraxin Promotes the Activation of Nrf2/ARE Pathway via Increasing the Expression of Connexin43 to Ameliorate Diabetic Renal Fibrosis. Front Pharmacol 2022; 13:853383. [PMID: 35401165 PMCID: PMC8987976 DOI: 10.3389/fphar.2022.853383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is quickly becoming the largest cause of end-stage renal disease (ESRD) in diabetic patients, as well as a major source of morbidity and mortality. Our previous studies indicated that the activation of Nrf2/ARE pathway via Connexin43 (Cx43) considerably contribute to the prevention of oxidative stress in the procession of DN. Fraxin (Fr), the main active glycoside of Fraxinus rhynchophylla Hance, has been demonstrated to possess many potential pharmacological activities. Whereas, whether Fr could alleviate renal fibrosis through regulating Cx43 and consequently facilitating the activation of Nrf2/ARE pathway needs further investigation. The in vitro results showed that: 1) Fr increased the expression of antioxidant enzymes including SOD1 and HO-1 to inhibit high glucose (HG)-induced fibronectin (FN) and inflammatory cell adhesion molecule (ICAM-1) overexpression; 2) Fr exerted antioxidant effect through activating the Nrf2/ARE pathway; 3) Fr significantly up-regulated the expression of Cx43 in HG-induced glomerular mesangial cells (GMCs), while the knock down of Cx43 largely impaired the activation of Nrf2/ARE pathway induced by Fr; 4) Fr promoted the activation of Nrf2/ARE pathway via regulating the interaction between Cx43 and AKT. Moreover, in accordance with the results in vitro, elevated levels of Cx43, phosphorylated-AKT, Nrf2 and downstream antioxidant enzymes related to Nrf2 were observed in the kidneys of Fr-treated group compared with model group. Importantly, Fr significantly improved renal dysfunction pathological changes of renal fibrosis in diabetic db/db mice. Collectively, Fr could increase the Cx43-AKT-Nrf2/ARE pathway activation to postpone the diabetic renal fibrosis and the up-regulation of Cx43 is probably a novel mechanism in this process.
Collapse
Affiliation(s)
- Rui Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingran Zeng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chuting Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zeyuan Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kaipeng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| |
Collapse
|
8
|
Ahmad R, Chowdhury K, Kumar S, Irfan M, Reddy GS, Akter F, Jahan D, Haque M. Diabetes Mellitus: A Path to Amnesia, Personality, and Behavior Change. BIOLOGY 2022; 11:biology11030382. [PMID: 35336756 PMCID: PMC8945557 DOI: 10.3390/biology11030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diabetes Mellitus (DM) is a metabolic disorder resulting from a disturbance of insulin secretion, action, or both. Hyperglycemia and overproduction of superoxide induce the development and progression of chronic complications of DM. The impact of DM and its complication on the central nervous system (CNS) such as dementia and Alzheimer’s Disease (AD) still remain obscure. In dementia, there is a gradual decline in cognitive function. The incidence of dementia increases with age, and patient become socially, physically, and mentally more vulnerable and dependent. The symptoms often emerge decades after the onset of pathophysiology, thus impairing early therapeutic intervention. Most diabetic subjects who develop dementia are above the age of 65, but diabetes may also cause an increased risk of developing dementia before 65 years. Vascular dementia is the second most common form of dementia after AD. Type 2 DM (T2DM) increases the incidence of vascular dementia (since its covers the vascular system) and AD. The functional and structural integrity of the CNS is altered in T2DM due to increased synthesis of Aβ. Additionally, hyperphosphorylation of Tau protein also results from dysregulation of various signaling cascades in T2DM, thereby causing neuronal damage and AD. There is the prospect for development of a therapy that may help prevent or halt the progress of dementia resulting from T2DM. Abstract Type 2 diabetes mellitus is increasingly being associated with cognition dysfunction. Dementia, including vascular dementia and Alzheimer’s Disease, is being recognized as comorbidities of this metabolic disorder. The progressive hallmarks of this cognitive dysfunction include mild impairment of cognition and cognitive decline. Dementia and mild impairment of cognition appear primarily in older patients. Studies on risk factors, neuropathology, and brain imaging have provided important suggestions for mechanisms that lie behind the development of dementia. It is a significant challenge to understand the disease processes related to diabetes that affect the brain and lead to dementia development. The connection between diabetes mellitus and dysfunction of cognition has been observed in many human and animal studies that have noted that mechanisms related to diabetes mellitus are possibly responsible for aggravating cognitive dysfunction. This article attempts to narrate the possible association between Type 2 diabetes and dementia, reviewing studies that have noted this association in vascular dementia and Alzheimer’s Disease and helping to explain the potential mechanisms behind the disease process. A Google search for “Diabetes Mellitus and Dementia” was carried out. Search was also done for “Diabetes Mellitus”, “Vascular Dementia”, and “Alzheimer’s Disease”. The literature search was done using Google Scholar, Pubmed, Embase, ScienceDirect, and MEDLINE. Keeping in mind the increasing rate of Diabetes Mellitus, it is important to establish the Type 2 diabetes’ effect on the brain and diseases of neurodegeneration. This narrative review aims to build awareness regarding the different types of dementia and their relationship with diabetes.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Uvarsad Gandhinagar, Gujarat 382422, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, Pelotas 96020-010, RS, Brazil;
| | - Govindool Sharaschandra Reddy
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
9
|
Li CH, Hao ML, Sun Y, Wang ZJ, Li JL. Ultrastructure of gap junction and Cx43 expression in gastric cancer tissues of the patients. Arch Med Sci 2020; 16:352-358. [PMID: 32190146 PMCID: PMC7069450 DOI: 10.5114/aoms.2020.92859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Gap junctions are intercellular channels formed by connexin facilitating communication between cells by allowing transfer of ions and small signaling molecules. Connexin 43 (Cx43) is the most ubiquitous connexin in human tissues. Ample evidence suggests the role of gap junction and its connexins such as connexin 43 in human cancers including gastric cancer, which has an important place in the worldwide incidence of cancer and cancer-related deaths. Due to a number of contradictory studies and insufficient detailed examination in specific cancers, such as gastric cancer, more data on the role of gap junctions and their connexins such as Cx43 involved in gastric cancer remain necessary. MATERIAL AND METHODS Transmission electron microscopy, Western blotting and RT-PCR were used to show the ultrastructure damage of the gap junction in the gastric carcinoma tissue as well as the expression of Cx43 protein and mRNA, respectively. RESULTS Ultrastructure damage of the gap junction in gastric carcinoma tissue was shown while poorly differentiated tissue experienced greater damage. The expression of Cx43 protein and mRNA was higher in healthy gastric tissue than in carcinomatous gastric tissue (p < 0.05). There was higher expression of Cx43 protein and mRNA in high-medium differentiation than in poor differentiation (p < 0.05). Cx43 protein and mRNA expression is not statistically significant for different ages and sex (such as for > 56 and ≤ 56 years) (p > 0.05). CONCLUSIONS Ultrastructural changes of gap junctions with abnormal Cx43 expression are associated with occurrence and development of gastric cancer, which provides a new research direction for gastric cancer pathogenesis and targeted therapy.
Collapse
Affiliation(s)
- Chun-Hui Li
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Mei-Ling Hao
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yu Sun
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhu-Jun Wang
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Jian-Ling Li
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
10
|
Dienel GA. The “protected” glucose transport through the astrocytic endoplasmic reticulum is too slow to serve as a quantitatively‐important highway for nutrient delivery. J Neurosci Res 2019; 97:854-862. [DOI: 10.1002/jnr.24432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas
- Department of Cell Biology and Physiology University of New Mexico Albuquerque New Mexico
| |
Collapse
|
11
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
12
|
Redox-mediated regulation of connexin proteins; focus on nitric oxide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:91-95. [DOI: 10.1016/j.bbamem.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/25/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
|
13
|
Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9574201. [PMID: 28685011 PMCID: PMC5480050 DOI: 10.1155/2017/9574201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022]
Abstract
The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.
Collapse
|
14
|
Roy S, Jiang JX, Li AF, Kim D. Connexin channel and its role in diabetic retinopathy. Prog Retin Eye Res 2017; 61:35-59. [PMID: 28602949 DOI: 10.1016/j.preteyeres.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness in the working age population. Unfortunately, there is no cure for this devastating ocular complication. The early stage of diabetic retinopathy is characterized by the loss of various cell types in the retina, namely endothelial cells and pericytes. As the disease progresses, vascular leakage, a clinical hallmark of diabetic retinopathy, becomes evident and may eventually lead to diabetic macular edema, the most common cause of vision loss in diabetic retinopathy. Substantial evidence indicates that the disruption of connexin-mediated cellular communication plays a critical role in the pathogenesis of diabetic retinopathy. Yet, it is unclear how altered communication via connexin channel mediated cell-to-cell and cell-to-extracellular microenvironment is linked to the development of diabetic retinopathy. Recent observations suggest the possibility that connexin hemichannels may play a role in the pathogenesis of diabetic retinopathy by allowing communication between cells and the microenvironment. Interestingly, recent studies suggest that connexin channels may be involved in regulating retinal vascular permeability. These cellular events are coordinated at least in part via connexin-mediated intercellular communication and the maintenance of retinal vascular homeostasis. This review highlights the effect of high glucose and diabetic condition on connexin channels and their impact on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - An-Fei Li
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Dongjoon Kim
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
15
|
Targeted deletion of Aqp4 promotes the formation of astrocytic gap junctions. Brain Struct Funct 2017; 222:3959-3972. [DOI: 10.1007/s00429-017-1448-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
16
|
Pogoda K, Kameritsch P, Retamal MA, Vega JL. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision. BMC Cell Biol 2016; 17 Suppl 1:11. [PMID: 27229925 PMCID: PMC4896245 DOI: 10.1186/s12860-016-0099-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.
Collapse
Affiliation(s)
- Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, München, Germany.
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, München, Germany
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - José L Vega
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
17
|
Lee CY, Dallérac G, Ezan P, Anderova M, Rouach N. Glucose Tightly Controls Morphological and Functional Properties of Astrocytes. Front Aging Neurosci 2016; 8:82. [PMID: 27148048 PMCID: PMC4834307 DOI: 10.3389/fnagi.2016.00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
The main energy source powering the brain is glucose. Strong energy needs of our nervous system are fulfilled by conveying this essential metabolite through blood via an extensive vascular network. Glucose then reaches brain tissues by cell uptake, diffusion and metabolization, processes primarily undertaken by astrocytes. Deprivation of glucose can however occur in various circumstances. In particular, ageing is associated with cognitive disturbances that are partly attributable to metabolic deficiency leading to brain glycopenia. Despite the crucial role of glucose and its metabolites in sustaining neuronal activity, little is known about its moment-to-moment contribution to astroglial physiology. We thus here investigated the early structural and functional alterations induced in astrocytes by a transient metabolic challenge consisting in glucose deprivation. Electrophysiological recordings of hippocampal astroglial cells of the stratum radiatumin situ revealed that shortage of glucose specifically increases astrocyte membrane capacitance, whilst it has no impact on other passive membrane properties. Consistent with this change, morphometric analysis unraveled a prompt increase in astrocyte volume upon glucose deprivation. Furthermore, characteristic functional properties of astrocytes are also affected by transient glucose deficiency. We indeed found that glucoprivation decreases their gap junction-mediated coupling, while it progressively and reversibly increases their intracellular calcium levels during the slow depression of synaptic transmission occurring simultaneously, as assessed by dual electrophysiological and calcium imaging recordings. Together, these data indicate that astrocytes rapidly respond to metabolic dysfunctions, and are therefore central to the neuroglial dialog at play in brain adaptation to glycopenia.
Collapse
Affiliation(s)
- Chun-Yao Lee
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech RepublicPrague, Czech Republic; Department of Neuroscience, 2nd Faculty of Medicine, Charles UniversityPrague, Czech Republic
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| |
Collapse
|
18
|
Glucose and hypothalamic astrocytes: More than a fueling role? Neuroscience 2015; 323:110-20. [PMID: 26071958 DOI: 10.1016/j.neuroscience.2015.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023]
Abstract
Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states.
Collapse
|
19
|
Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 2014; 10:e1003964. [PMID: 25521344 PMCID: PMC4270452 DOI: 10.1371/journal.pcbi.1003964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023] Open
Abstract
Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.
Collapse
|
20
|
Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion. J Cereb Blood Flow Metab 2014; 34:339-46. [PMID: 24301293 PMCID: PMC3915215 DOI: 10.1038/jcbfm.2013.206] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/12/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023]
Abstract
Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we hypothesized that hypothalamic glucose sensitivity requires these connexins. First, we showed that both Cxs are enriched in the rat hypothalamus, with highly concentrated Cx43 expression around blood vessels of the mediobasal hypothalamus (MBH). Both fasting and high glycemic levels rapidly altered the protein levels of MBH astroglial connexins, suggesting cross talk within the MBH between glycemic status and the connexins' ability to dispatch glucose. Finally, the inhibition of MBH Cx43 (by transient RNA interference) attenuated hypothalamic glucose sensitivity in rats, which was demonstrated by a pronounced decreased insulin secretion in response to a brain glucose challenge. These results illustrate that astroglial connexins contribute to hypothalamic GS.
Collapse
|
21
|
Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. ACTA ACUST UNITED AC 2014; 2:125. [PMID: 25632404 DOI: 10.4172/2329-6887.1000125] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A host of diabetes-related insults to the central nervous system (CNS) have been clearly documented in type-1 and -2 diabetic patients as well as experimental animal models. These host of neurological disorders encompass hemodynamic impairments (e.g., stroke), vascular dementia, cognitive deficits (mild to moderate), as well as a number of neurochemical, electrophysiological and behavioral alterations. The underlying causes of diabetes-induced CNS complications are multifactorial and are relatively little understood although it is now evident that blood-brain barrier (BBB) damage plays a significant role in diabetes-dependent CNS disorders. Changes in plasma glucose levels (hyper- or hypoglycemia) have been associated with altered BBB transport functions (e.g., glucose, insulin, choline, amino acids, etc.), integrity (tight junction disruption), and oxidative stress in the CNS microcapillaries. Last two implicating a potential causal role for upregulation and activation of the receptor for advanced glycation end products (RAGE). This type I membrane-protein also transports amyloid-beta (Aβ) from the blood into the brain across the BBB thus, establishing a link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD, also referred to as "type 3 diabetes"). Hyperglycemia has been associated with progression of cerebral ischemia and the consequent enhancement of secondary brain injury. Difficulty in detecting vascular impairments in the large, heterogeneous brain microvascular bed and dissecting out the impact of hyper- and hypoglycemia in vivo has led to controversial results especially with regard to the effects of diabetes on BBB. In this article, we review the major findings and current knowledge with regard to the impact of diabetes on BBB integrity and function as well as specific brain microvascular effects of hyper- and hypoglycemia.
Collapse
Affiliation(s)
- Shikha Prasad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Ravi K Sajja
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Pooja Naik
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health, Texas, USA ; Vascular Drug research Center, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
22
|
Stančić A, Otašević V, Janković A, Vučetić M, Ivanović-Burmazović I, Filipović MR, Korać A, Markelić M, Veličković K, Golić I, Buzadžić B, Korać B. Molecular basis of hippocampal energy metabolism in diabetic rats: the effects of SOD mimic. Brain Res Bull 2013; 99:27-33. [PMID: 24084255 DOI: 10.1016/j.brainresbull.2013.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/23/2013] [Indexed: 01/22/2023]
Abstract
Hippocampal structural changes associated with diabetes-related cognitive impairments are well described, but their molecular background remained vague. We examined whether/how diabetes alters molecular basis of energy metabolism in hippocampus readily after diabetes onset, with special emphasis on its redox-sensitivity. To induce diabetes, adult Mill Hill hybrid hooded rats received a single alloxan dose (120 mg/kg). Both non-diabetic and diabetic groups were further divided in two subgroups receiving (i) or not (ii) superoxide dismutase (SOD) mimic, [Mn(II)(pyane)Cl2] for 7 days, i.p. Treatment of the diabetic animals started after blood glucose level ≥12 mM. Diabetes decreased protein levels of oxidative phosphorylation components: complex III and ATP synthase. In contrast, protein amounts of glyceraldehyde-3-phosphate dehydrogenase, pyruvate dehydrogenase, and hypoxia-inducible factor-1α - the key regulator of energy metabolism in stress conditions, were higher in diabetic animals. Treatment with SOD mimic restored/increased the levels of oxidative phosphorylation components and returned hypoxia-inducible factor-1α to control level, while diabetes-induced up-regulation of glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, was additionally stimulated. To conclude, our results provide insight into the earliest molecular changes of energy-producing pathways in diabetes that may account for structural/functional disturbance of hippocampus, seen during disease progression. Also, data suggest [Mn(II)(pyane)Cl2] as potential therapeutic agent in cutting-edge approaches to threat this widespread metabolic disorder.
Collapse
Affiliation(s)
- Ana Stančić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Physiology, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wong DPK, Chu JMT, Hung VKL, Lee DKM, Cheng CHK, Yung KKL, Yue KKM. Modulation of endoplasmic reticulum chaperone GRP78 by high glucose in hippocampus of streptozotocin-induced diabetic mice and C6 astrocytic cells. Neurochem Int 2013; 63:551-60. [PMID: 24056253 DOI: 10.1016/j.neuint.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is known to increase the risk of neurodegeneration, and both diseases are reported to be linked to dysfunction of endoplasmic reticulum (ER). Astrocytes are important in the defense mechanism of central nervous system (CNS), with great ability of tolerating accumulation of toxic substances and sensitivity in Ca(2+) homeostasis which are two key functions of ER. Here, we investigated the modulation of the glucose-regulated protein 78 (GRP78) in streptozotocin (STZ)-induced diabetic mice and C6 cells cultured in high glucose condition. Our results showed that more reactive astrocytes were presented in the hippocampus of STZ-induced diabetic mice. Simultaneously, decrease of GRP78 expression was found in the astrocytes of diabetic mice hippocampus. In in vitro study, C6 cells were treated with high glucose to investigate the role of high glucose in GRP78 modulation in astrocytic cells. GRP78 as well as other chaperones like GRP94, calreticulin and calnexin, transcription levels were down-regulated after high glucose treatment. Also C6 cells challenged with 48h high glucose were activated, as indicated by increased level of glial fibrillary acidic protein (GFAP). Activated C6 cells simultaneously exhibited significant decrease of GRP78 level and was followed by reduced phosphorylation of Akt. Moreover, unfolded protein response was induced as an early event, which was marked by the induction of CHOP with high glucose treatment, followed by the reduction of GRP78 after 48h. Finally, the upsurge of ROS production was found in high glucose treated C6 cells and chelation of ROS could partially restore the GRP78 expression. Taken together, these data provide evidences that high glucose induced astrocytic activation in both in vivo and in vitro diabetic models, in which modulation of GRP78 would be an important event in this activation.
Collapse
Affiliation(s)
| | - John M T Chu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Victor K L Hung
- Department of Anaestheiology, The University of Hong Kong, Hong Kong
| | - Dicky K M Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | | | - Ken K L Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Kevin K M Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
24
|
Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis? Neurochem Int 2013; 63:244-58. [PMID: 23838211 DOI: 10.1016/j.neuint.2013.06.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022]
Abstract
Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during brain activation. Furthermore, glutamate uptake into cultured astrocytes stimulates glutamate oxidation and oxygen consumption, and glutamate maintains respiration as well as glucose. The neurotransmitter pool of glutamate is associated with the faster component of total glutamate turnover in vivo, and use of neurotransmitter glutamate to fuel its own uptake by oxidation-competent perisynaptic processes has two advantages, substrate is supplied concomitant with demand, and glutamate spares glucose for use by neurons and astrocytes. Some, but not all, perisynaptic processes of astrocytes in adult rodent brain contain mitochondria, and oxidation of only a small fraction of the neurotransmitter glutamate taken up into these structures would be sufficient to supply the ATP required for sodium extrusion and conversion of glutamate to glutamine. Glycolysis would, however, be required in perisynaptic processes lacking oxidative capacity. Three lines of evidence indicate that critical cornerstones of the astrocyte-to-neuron lactate shuttle model are not established and normal brain does not need lactate as supplemental fuel: (i) rapid onset of hemodynamic responses to activation delivers oxygen and glucose in excess of demand, (ii) total glucose utilization greatly exceeds glucose oxidation in awake rodents during activation, indicating that the lactate generated is released, not locally oxidized, and (iii) glutamate-induced glycolysis is not a robust phenotype of all astrocyte cultures. Various metabolic pathways, including glutamate oxidation and glycolysis with lactate release, contribute to cellular energy demands of excitatory neurotransmission.
Collapse
|
25
|
Manasson J, Tien T, Moore C, Kumar NM, Roy S. High glucose-induced downregulation of connexin 30.2 promotes retinal vascular lesions: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 2013; 54:2361-6. [PMID: 23385797 DOI: 10.1167/iovs.12-10815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To investigate whether high glucose (HG) alters expression of connexin 30.2 (Cx30.2) and influences gap junction intercellular communication (GJIC) in retinal endothelial cells and promotes vascular lesions characteristic of diabetic retinopathy (DR). METHODS Western blot analysis and immunostaining were performed to determine Cx30.2 protein expression and localization in rat retinal endothelial cells (RRECs) grown in normal (N; 5 mM) or HG (30 mM) medium for 7 days. Concurrently, GJIC was assessed in cells grown in N or HG medium and in cells transfected with Cx30.2 siRNA. Similarly, retinal Cx30.2 expression was assessed in nondiabetic and diabetic rats. Additionally, the effect of reduced Cx30.2 on development of acellular capillaries (ACs) and pericyte loss (PL) was studied in retinas of Cx30.2 knockout mice. RESULTS Cx30.2 was identified in RRECs in vitro and in vascular cells of retinal capillaries. RRECs grown in HG exhibited significantly reduced Cx30.2 protein levels consistent with decreased Cx30.2 immunostaining compared with those grown in N medium. Cells grown in HG and cells transfected with Cx30.2 siRNA exhibited significantly diminished dye transfer compared with N or nontransfected cells. Importantly, Cx30.2 protein level and immunostaining were decreased in diabetic retinas compared with nondiabetic retinas. Retinal capillaries of Cx30.2 knockout mice exhibited increased numbers of ACs and PL compared with those of wild-type mice. CONCLUSIONS These results indicate that HG- or diabetes-induced downregulation of Cx30.2 expression and decrease in GJIC activity play a critical role in the development of retinal vascular lesions in early DR.
Collapse
Affiliation(s)
- Julia Manasson
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
26
|
Mansour H, McColm JR, Cole L, Weible M, Korlimbinis A, Chan-Ling T. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina. PLoS One 2013; 8:e57038. [PMID: 23516399 PMCID: PMC3597639 DOI: 10.1371/journal.pone.0057038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/16/2013] [Indexed: 11/24/2022] Open
Abstract
We investigated age-associated changes in retinal astrocyte connexins (Cx) by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC). We compared Wistar rat retinal wholemounts in animals aged 3 (young adult), 9 (middle-aged) and 22 months (aged). We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05) but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05). With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein Mansour
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Janet R. McColm
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Louise Cole
- Advanced Microscopy Facility, School of Medical Sciences, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Michael Weible
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Anastasia Korlimbinis
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Tailoi Chan-Ling
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
27
|
Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology 2013; 75:567-82. [PMID: 23499663 DOI: 10.1016/j.neuropharm.2013.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/08/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Coordinated interaction among cells is critical to develop the extremely complex and dynamic tasks performed by the central nervous system (CNS). Cell synchronization is in part mediated by connexins and pannexins; two different protein families that form gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activities, hemichannels communicate intra- and extra-cellular compartments and serve as diffusional pathways for ions and small molecules. Cells in the CNS depend on paracrine/autocrine communication via several extracellular signaling molecules, such as, cytokines, growth factors, transmitters and free radical species to sense changes in microenvironment as well as to adapt to them. These signaling molecules modulate crucial processes of the CNS, including, cellular migration and differentiation, synaptic transmission and plasticity, glial activation, cell viability and microvascular blood flow. Gap junction channels and hemichannels are affected by different signaling transduction pathways triggered by these paracrine/autocrine signaling molecules. Most of the modulatory effects induced by these signaling molecules are specific to the cell type and the connexin and pannexin subtype expressed in different brain areas. In this review, we summarized and discussed most of the relevant and recently published information on the effects of signaling molecules on connexin or pannexin based channels and their possible relevance in CNS physiology and pathology. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
|
28
|
The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes. Neurochem Int 2013; 62:784-95. [PMID: 23411409 DOI: 10.1016/j.neuint.2013.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/21/2022]
Abstract
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25mmol/L glucose for up to 4weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1-7months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4months, and p-IRE levels were transiently elevated at 3months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.
Collapse
|
29
|
Quintanilla RA, Orellana JA, von Bernhardi R. Understanding Risk Factors for Alzheimer's Disease: Interplay of Neuroinflammation, Connexin-based Communication and Oxidative Stress. Arch Med Res 2012; 43:632-44. [DOI: 10.1016/j.arcmed.2012.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 12/11/2022]
|
30
|
Takahashi S, Izawa Y, Suzuki N. [Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia]. Rinsho Shinkeigaku 2012; 52:41-51. [PMID: 22260979 DOI: 10.5692/clinicalneurol.52.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reactive oxygen species (ROS) derived from mitochondria play an essential role in stroke as well as in neurodegenerative disorders. Although hyperglycemia associated with diabetes mellitus is well known to enhance ROS production in vascular endothelial cells, the effects of either acute or chronic high glucose environments on neurons and glial cells remain unclear. Astroglia play a pivotal role in glucose metabolism. Thus, the astroglial metabolic response to high glucose environments is an interesting subject. In particular, the glutathione/pentose phosphate pathway (PPP) system, which is a major defense mechanism against ROS in the brain, contributes to glucose metabolism and is more active in astroglia. We propose that high glucose environments activate PPP through an increased flux to the hexosamine biosynthetic pathway (HBP). HBP is known to induce endoplasmic reticulum (ER) stress under hyperglycemia, resulting in the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2), a master regulator of phase 2 detoxifying enzymes including glucose-6-phosphate dehydrogenase that regulates PPP activity, as Nrf2 is reported to be a direct substrate of protein kinase RNA (PKR)-like ER kinase (PERK), a transducer of ER stress. Therefore, the phosphorylation of Nrf2 by hyperglycemia-induced ER stress facilitates Nrf2 translocation through PERK, thus activating the PPP. If acute or chronic hyperglycemia induces PPP activation in astroglia to reduce ROS, reducing the glucose concentration may be accompanied by a risk, which may explain the lack of evidence that strict glycemic control during the acute phase of stroke conveys no beneficial effect.
Collapse
|
31
|
Abstract
ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke.
Collapse
|
32
|
Grab DJ, Chakravorty SJ, van der Heyde H, Stins MF. How can microbial interactions with the blood-brain barrier modulate astroglial and neuronal function? Cell Microbiol 2011; 13:1470-8. [DOI: 10.1111/j.1462-5822.2011.01661.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|