1
|
Itoh N, Itoh Y, Stiles L, Voskuhl R. Sex differences in the neuronal transcriptome and synaptic mitochondrial function in the cerebral cortex of a multiple sclerosis model. Front Neurol 2023; 14:1268411. [PMID: 38020654 PMCID: PMC10654219 DOI: 10.3389/fneur.2023.1268411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Multiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE). Methods Neurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes. Results RNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays. Discussion Cortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Department of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Murray SB, Diaz-Fong JP, Duval CJ, Balkchyan AA, Nagata JM, Lee DJ, Ganson KT, Toga AW, Siegel SJ, Jann K. Sex differences in regional gray matter density in pre-adolescent binge eating disorder: a voxel-based morphometry study. Psychol Med 2023; 53:6077-6089. [PMID: 36305572 DOI: 10.1017/s0033291722003269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Binge eating disorder (BED) is a pernicious psychiatric disorder which is linked with broad medical and psychiatric morbidity, and obesity. While BED may be characterized by altered cortical morphometry, no evidence to date examined possible sex-differences in regional gray matter characteristics among those with BED. This is especially important to consider in children, where BED symptoms often emerge coincident with rapid gray matter maturation. METHODS Pre-adolescent, 9-10-year old boys (N = 38) and girls (N = 33) with BED were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development Study. We investigated sex differences in gray matter density (GMD) via voxel-based morphometry. Control sex differences were also assessed in age and body mass index and developmentally matched control children (boys N = 36; girls N = 38). Among children with BED, we additionally assessed the association between dorsolateral prefrontal (dlPFC) GMD and parent-reported behavioral approach and inhibition tendencies. RESULTS Girls with BED uniquely demonstrate diffuse clusters of greater GMD (p < 0.05, Threshold Free Cluster Enhancement corrected) in the (i) left dlPFC (p = 0.003), (ii) bilateral dmPFC (p = 0.004), (iii) bilateral primary motor and somatosensory cortex (p = 0.0003) and (iv) bilateral precuneus (p = 0.007). Brain-behavioral associations suggest a unique negative correlation between GMD in the left dlPFC and behavioral approach tendencies among girls with BED. CONCLUSIONS Early-onset BED may be characterized by regional sex differences in terms of its underlying gray matter morphometry.
Collapse
Affiliation(s)
- Stuart B Murray
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Joel P Diaz-Fong
- Department of Psychiatry & Behavioral Sciences, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, CA, USA
| | - Christina J Duval
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Ane A Balkchyan
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jason M Nagata
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Darrin J Lee
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Kyle T Ganson
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, ON, Canada
| | - Arthur W Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Steven J Siegel
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Wu CY, Hsieh HH, Huang SM, Chiu SC, Peng SL. Brain alterations in ovariohysterectomized rats revealed by diffusion tensor imaging. Neuroreport 2023; 34:649-654. [PMID: 37506310 DOI: 10.1097/wnr.0000000000001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Women undergoing hysterectomy with oophorectomy have an increased risk of Alzheimer's disease and Parkinson's disease. However, postoperative neuroimaging data on pathogenic processes in the brain are limited. The aim of this study was to investigate the potential effect of ovariohysterectomy on brain integrity in rat model using diffusion tensor imaging (DTI) technique for the first time. METHODS We enrolled 13 rats each in the control and ovariohysterectomy groups. Rats in the ovariohysterectomy group underwent the ovariohysterectomy at 7 weeks of age, and all rats underwent DTI scans at 9 weeks of age. The DTI-derived parameters, such as fractional anisotropy and mean diffusivity, were compared between the control and ovariohysterectomy groups. RESULTS Compared to the control group, the ovariohysterectomy group showed significantly lower fractional anisotropy in various brain regions, including the corpus callosum, bilateral striatum, and bilateral cortex (all P < 0.05), suggesting neuronal injury in ovariohysterectomized rats. Mean diffusivity did not differ significantly between groups (all P > 0.05). CONCLUSION Rats undergoing ovariohysterectomy had lower fractional anisotropy compared to control in widespread brain regions, suggesting neuronal injury and demyelination. Therefore, neuroimaging should be performed to monitor brain alterations in women after hysterectomy with bilateral oophorectomy in clinical settings.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Meyer CE, Smith AW, Padilla-Requerey AA, Farkhondeh V, Itoh N, Itoh Y, Gao JL, Herbig PD, Nguyen Q, Ngo KH, Oberoi MR, Siddarth P, Voskuhl RR, MacKenzie-Graham A. Neuroprotection in Cerebral Cortex Induced by the Pregnancy Hormone Estriol. J Transl Med 2023; 103:100189. [PMID: 37245852 DOI: 10.1016/j.labinv.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
In multiple sclerosis (MS), demyelination occurs in the cerebral cortex, and cerebral cortex atrophy correlates with clinical disabilities. Treatments are needed in MS to induce remyelination. Pregnancy is protective in MS. Estriol is made by the fetoplacental unit, and maternal serum estriol levels temporally align with fetal myelination. Here, we determined the effect of estriol treatment on the cerebral cortex in the preclinical model of MS, experimental autoimmune encephalomyelitis (EAE). Estriol treatment initiated after disease onset decreased cerebral cortex atrophy. Neuropathology of the cerebral cortex showed increased cholesterol synthesis proteins in oligodendrocytes, more newly formed remyelinating oligodendrocytes, and increased myelin in estriol-treated EAE mice. Estriol treatment also decreased the loss of cortical layer V pyramidal neurons and their apical dendrites and preserved synapses. Together, estriol treatment after EAE onset reduced atrophy and was neuroprotective in the cerebral cortex.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Andrew W Smith
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Aitana A Padilla-Requerey
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Vista Farkhondeh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Noriko Itoh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Yuichiro Itoh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Josephine L Gao
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Patrick D Herbig
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Quynhanh Nguyen
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Katelyn H Ngo
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Mandavi R Oberoi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Prabha Siddarth
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Rhonda R Voskuhl
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Allan MacKenzie-Graham
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California.
| |
Collapse
|
5
|
Ago Y, Van C, Condro MC, Hrncir H, Diep AL, Rajbhandari AK, Fanselow MS, Hashimoto H, MacKenzie-Graham AJ, Waschek JA. Overexpression of VIPR2 in mice results in microencephaly with paradoxical increased white matter volume. Exp Neurol 2023; 362:114339. [PMID: 36717013 DOI: 10.1016/j.expneurol.2023.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.
Collapse
Affiliation(s)
- Yukio Ago
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan.
| | - Christina Van
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Doctoral Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Haley Hrncir
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Abha K Rajbhandari
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA; Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Fanselow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Staglin Center for Brain and Behavioral Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Allan J MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Lorefice L, D’Alterio MN, Firinu D, Fenu G, Cocco E. Impact of Menopause in Patients with Multiple Sclerosis: Current Perspectives. Int J Womens Health 2023; 15:103-109. [PMID: 36721498 PMCID: PMC9884461 DOI: 10.2147/ijwh.s334719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Given the aging population, with a peak age-specific prevalence that is shifting beyond the age of 50, several women currently living with MS are very close to menopause. Menopause is usually characterized by several specific symptoms with adverse impacts on different aspects of a woman's quality of life, such as fatigue, and cognitive, mood and bladder disorders, which overlap with symptoms of MS. Generally, after this biological transition, women with MS appear to be subject to less inflammatory activity. However, several studies have reported an increase of disability accumulation after menopause, suggesting that it is a turning point to a more progressive phase of the disease. This may be attributable to the hormonal and immunological changes associated with menopause, with several effects on neuroinflammation and neurodegeneration increasing due to the immunosenescence of aging. This review summarizes the hormonal and immunological changes associated with menopause, detailing the effects on MS symptoms, outcomes, and the aging process. Furthermore, possible interventions to improve patients' quality of life are evaluated. In fact, it is increasingly necessary to improve the global management of MS women, as well as their lives, at this multifaceted turning point.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy,Correspondence: Lorena Lorefice, Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, via Is Guadazzonis 2, Cagliari, 09126, Italy, Email
| | - Maurizio Nicola D’Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Davide Firinu
- Clinical Immunology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
8
|
Gholizadeh N, Sadeghi A, Mirzaii-Dizgah I, Sheykhbahaei N. Serum level of estrogen in Iranian patients with oral lichen planus. ASIAN BIOMED 2021; 15:145-150. [PMID: 37551371 PMCID: PMC10388772 DOI: 10.2478/abm-2021-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Oral lichen planus (OLP) is one of the most common diseases in the oral cavity and has a chronic inflammatory nature. The etiology of this disease remains unclear. OLP is more prevalent in women, but to our knowledge, no study yet evaluated estrogen levels in women with OLP. Objectives To determine the serum level of estrogen in female patients with OLP. Methods This case-control observational study was conducted in patients who were referred to the Department of Oral and Maxillofacial Medicine at the Tehran University of Medical Sciences. After clinical and histopathological confirmation of OLP diagnosis, and according to exclusion and inclusion criteria, 47 women with OLP and 47 healthy women (10 premenopausal and 37 postmenopausal) were included, as case and control groups, respectively. We obtained blood samples (5 mL) from each participant to measure the serum level of 17β-estradiol. Data were analyzed by Spearman rank correlation coefficients and a two-way analysis of variance with Bonferroni post hoc tests. Results Serum estrogen level in women with OLP was significantly higher than that in healthy women (P = 0.002), and it was also significantly higher in premenopausal women than postmenopausal women (P < 0.001). The severity of OLP lesions correlated with estrogen level in postmenopausal women (r = 0.650; P < 0.001); in premenopausal women (r = 0.618; P = 0.008), and in all women with OLP (r = 0.535; P < 0.001). Conclusion OLP, like other autoimmune diseases, is affected by the serum level of sex hormones such as estrogen.
Collapse
Affiliation(s)
- Narges Gholizadeh
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, Tehran14399-55991, Iran
| | - Azadeh Sadeghi
- Department of Prosthetics, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran19839-69411, Iran
| | - Iraj Mirzaii-Dizgah
- Department of Physiology, School of Medicine, Aja University of Medical Sciences, Tehran14117-18541, Iran
| | - Nafiseh Sheykhbahaei
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, Tehran14399-55991, Iran
| |
Collapse
|
9
|
Kim YJ, Soto M, Branigan GL, Rodgers K, Brinton RD. Association between menopausal hormone therapy and risk of neurodegenerative diseases: Implications for precision hormone therapy. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12174. [PMID: 34027024 PMCID: PMC8118114 DOI: 10.1002/trc2.12174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The impact of menopausal hormone therapy (HT) on age-associated Alzheimer's and neurodegenerative diseases (NDDs) remains unresolved. To determine the effect of HT, formulation, type, and duration on risk of NDDs, a retrospective analysis was performed using a 10-year Humana claims dataset. METHODS Study population included women aged 45 years or older with or without claim records of HT medications. Patients diagnosed with NDDs including Alzheimer's disease (AD), Parkinson's disease (PD), dementia, multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) were identified. Relative risk (RR) ratios and 95% confidence intervals (CI) for combined NDDs, or AD, PD, dementia, MS, and ALS were determined. Cumulative hazard ratios were determined to investigate the association between HT and NDDs at different age groups. RESULTS In 379,352 women with or without claim records of HT, use of HT was associated with significantly reduced risk for combined NDDs (RR 0.42, 95% CI 0.40-0.43, P < 0.001). Average follow-up time was 5.1 [2.3] years. Formulations containing natural steroids 17β-estradiol and/or progesterone were associated with greater reduction in NDD risk. Oral- HT users showed significantly reduced RRs (0.42, 0.41-0.44, P < 0.001) for combined NDDs compared to non-HT users. The RRs for transdermal-HT users were significantly decreased for all-cause dementia (0.73, 0.60-0.88, P = 0.001) and MS (0.55, 0.36-0.84, P = 0.005). Greatest reduction in risk of NDD, AD, and dementia emerged in patients aged 65 years or older. Further, the protective effect of long-term therapy (>1 year) on combined NDDs, AD, PD, and dementia was greater compared to short-term therapy (≤1 year). DISCUSSION HT was associated with reduced risk of all NDDs including AD and dementia, with greater duration of therapy and natural steroid formulations associated with greater efficacy. These findings advance precision HT to prevent NDDs including AD.
Collapse
Affiliation(s)
- Yu Jin Kim
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Maira Soto
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| | - Gregory L Branigan
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
- College of MedicineMD‐PhD Training ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Kathleen Rodgers
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of NeurologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
10
|
Bove R, Okai A, Houtchens M, Elias-Hamp B, Lugaresi A, Hellwig K, Kubala Havrdová E. Effects of Menopause in Women With Multiple Sclerosis: An Evidence-Based Review. Front Neurol 2021; 12:554375. [PMID: 33815241 PMCID: PMC8017266 DOI: 10.3389/fneur.2021.554375] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Over two thirds of all individuals who develop multiple sclerosis (MS) will be women prior to the age of menopause. Further, an estimated 30% of the current MS population consists of peri- or postmenopausal women. The presence of MS does not appear to influence age of menopausal onset. In clinical practice, symptoms of MS and menopause can frequently overlap, including disturbances in cognition, mood, sleep, and bladder function, which can create challenges in ascertaining the likely cause of symptoms to be treated. A holistic and comprehensive approach to address these common physical and psychological changes is often suggested to patients during menopause. Although some studies have suggested that women with MS experience reduced relapse rates and increased disability progression post menopause, the data are not consistent enough for firm conclusions to be drawn. Mechanisms through which postmenopausal women with MS may experience disability progression include neuroinflammation and neurodegeneration from age-associated phenomena such as immunosenescence and inflammaging. Additional effects are likely to result from reduced levels of estrogen, which affects MS disease course. Following early retrospective studies of women with MS receiving steroid hormones, more recent interventional trials of exogenous hormone use, albeit as oral contraceptive, have provided some indications of potential benefit on MS outcomes. This review summarizes current research on the effects of menopause in women with MS, including the psychological impact and symptoms of menopause on disease worsening, and the treatment options. Finally, we highlight the need for more inclusion of MS patients from underrepresented racial and geographic groups in clinical trials, including among menopausal women.
Collapse
Affiliation(s)
- Riley Bove
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Annette Okai
- Multiple Sclerosis Treatment Center of Dallas, Dallas, TX, United States
| | - Maria Houtchens
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, United States
| | - Birte Elias-Hamp
- Neurological Private Practice, Institute of Neuroimmunology and Multiple Sclerosis, Hamburg, Germany
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Kerstin Hellwig
- Department of Neurology, Ruhr University Bochum and St. Josef-Hospital, Bochum, Germany
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Medical Faculty, General University Hospital, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Cavaliere C, Vilades E, Alonso-Rodríguez MC, Rodrigo MJ, Pablo LE, Miguel JM, López-Guillén E, Morla EMS, Boquete L, Garcia-Martin E. Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features. SENSORS 2019; 19:s19235323. [PMID: 31816925 PMCID: PMC6928765 DOI: 10.3390/s19235323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
The purpose of this paper is to evaluate the feasibility of diagnosing multiple sclerosis (MS) using optical coherence tomography (OCT) data and a support vector machine (SVM) as an automatic classifier. Forty-eight MS patients without symptoms of optic neuritis and forty-eight healthy control subjects were selected. Swept-source optical coherence tomography (SS-OCT) was performed using a DRI (deep-range imaging) Triton OCT device (Topcon Corp., Tokyo, Japan). Mean values (right and left eye) for macular thickness (retinal and choroidal layers) and peripapillary area (retinal nerve fibre layer, retinal, ganglion cell layer—GCL, and choroidal layers) were compared between both groups. Based on the analysis of the area under the receiver operator characteristic curve (AUC), the 3 variables with the greatest discriminant capacity were selected to form the feature vector. A SVM was used as an automatic classifier, obtaining the confusion matrix using leave-one-out cross-validation. Classification performance was assessed with Matthew’s correlation coefficient (MCC) and the AUCCLASSIFIER. The most discriminant variables were found to be the total GCL++ thickness (between inner limiting membrane to inner nuclear layer boundaries), evaluated in the peripapillary area and macular retina thickness in the nasal quadrant of the outer and inner rings. Using the SVM classifier, we obtained the following values: MCC = 0.81, sensitivity = 0.89, specificity = 0.92, accuracy = 0.91, and AUCCLASSIFIER = 0.97. Our findings suggest that it is possible to classify control subjects and MS patients without previous optic neuritis by applying machine-learning techniques to study the structural neurodegeneration in the retina.
Collapse
Affiliation(s)
- Carlo Cavaliere
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
| | - Elisa Vilades
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
| | - Mª C. Alonso-Rodríguez
- Department of Physics and Mathematics, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - María Jesús Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
- Correspondence: (M.J.R.); (L.B.); (E.G.-M.); Tel.: +34-976765558 (E.G.-M.); Fax: +34-97656623 (E.G.-M.)
| | - Luis Emilio Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
| | - Juan Manuel Miguel
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
| | - Elena López-Guillén
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
| | - Eva Mª Sánchez Morla
- Department of Psychiatry, 12 Octubre University Hospital Research Institute (i+12), 28041 Madrid, Spain;
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERSAM: Biomedical Research Networking Centre in Mental Health, 28029 Madrid, Spain
| | - Luciano Boquete
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
- Correspondence: (M.J.R.); (L.B.); (E.G.-M.); Tel.: +34-976765558 (E.G.-M.); Fax: +34-97656623 (E.G.-M.)
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
- Correspondence: (M.J.R.); (L.B.); (E.G.-M.); Tel.: +34-976765558 (E.G.-M.); Fax: +34-97656623 (E.G.-M.)
| |
Collapse
|
12
|
Kim RY, Mangu D, Hoffman AS, Kavosh R, Jung E, Itoh N, Voskuhl R. Oestrogen receptor β ligand acts on CD11c+ cells to mediate protection in experimental autoimmune encephalomyelitis. Brain 2019; 141:132-147. [PMID: 29228214 PMCID: PMC5837360 DOI: 10.1093/brain/awx315] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/14/2017] [Indexed: 11/12/2022] Open
Abstract
Oestrogen treatments are neuroprotective in a variety of neurodegenerative disease models. Selective oestrogen receptor modifiers are needed to optimize beneficial effects while minimizing adverse effects to achieve neuroprotection in chronic diseases. Oestrogen receptor beta (ERβ) ligands are potential candidates. In the multiple sclerosis model chronic experimental autoimmune encephalomyelitis, ERβ-ligand treatment is neuroprotective, but mechanisms underlying this neuroprotection remain unclear. Specifically, whether there are direct effects of ERβ-ligand on CD11c+ microglia, myeloid dendritic cells or macrophages in vivo during disease is unknown. Here, we generated mice with ERβ deleted from CD11c+ cells to show direct effects of ERβ-ligand treatment in vivo on these cells to mediate neuroprotection during experimental autoimmune encephalomyelitis. Further, we use bone marrow chimeras to show that ERβ in peripherally derived myeloid cells, not resident microglia, are the CD11c+ cells mediating this protection. CD11c+ dendritic cell and macrophages isolated from the central nervous system of wild-type experimental autoimmune encephalomyelitis mice treated with ERβ-ligand expressed less iNOS and T-bet, but more IL-10, and this treatment effect was lost in mice with specific deletion of ERβ in CD11c+ cells. Also, we extend previous reports of ERβ-ligand’s ability to enhance remyelination through a direct effect on oligodendrocytes by showing that the immunomodulatory effect of ERβ-ligand acting on CD11c+ cells is necessary to permit the maturation of oligodendrocytes. Together these results demonstrate that targeting ERβ signalling pathways in CD11c+ myeloid cells is a novel strategy for regulation of the innate immune system in neurodegenerative diseases. To our knowledge, this is the first report showing how direct effects of a candidate neuroprotective treatment on two distinct cell lineages (bone marrow derived myeloid cells and oligodendrocytes) can have complementary neuroprotective effects in vivo.awx315media15688130498001.
Collapse
Affiliation(s)
- Roy Y Kim
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Molecular, Cellular and Integrative Physiology Ph.D. Program, University of California, Los Angeles, CA 90095, USA
| | - Darian Mangu
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexandria S Hoffman
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rojan Kavosh
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Eunice Jung
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Noriko Itoh
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rhonda Voskuhl
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder, affects the central nervous system (CNS). It affects the brain, spinal cord, and optic nerve, leading to problems with vision, balance, muscle control, and other basic bodily functions. MS relapse (MSR) involves an acute inflammatory demyelinating reaction within the CNS. This review focuses on the main factors involved in MSR based on a detailed literature search. Evidence suggests that MSR is influenced by age, sex, pregnancy, serum levels of Vitamin D, interactions between genetic and environmental factors, and infectious diseases. Many of these factors are modifiable and require the attention of patients and health-care providers if favorable outcomes are to be realized. Identification of MSR risk factors can help in the development of therapies that could be used to manage MS and MSR.
Collapse
Affiliation(s)
- Fatemah Omar Kamel
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
MacKenzie‐Graham A, Brook J, Kurth F, Itoh Y, Meyer C, Montag MJ, Wang H, Elashoff R, Voskuhl RR. Estriol-mediated neuroprotection in multiple sclerosis localized by voxel-based morphometry. Brain Behav 2018; 8:e01086. [PMID: 30144306 PMCID: PMC6160650 DOI: 10.1002/brb3.1086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Progressive gray matter (GM) atrophy is a hallmark of multiple sclerosis (MS). Cognitive impairment has been observed in 40%-70% of MS patients and has been linked to GM atrophy. In a phase 2 trial of estriol treatment in women with relapsing-remitting MS (RRMS), higher estriol levels correlated with greater improvement on the paced auditory serial addition test (PASAT) and imaging revealed sparing of localized GM in estriol-treated compared to placebo-treated patients. To better understand the significance of this GM sparing, the current study explored the relationships between the GM sparing and traditional MRI measures and clinical outcomes. METHODS Sixty-two estriol- and forty-nine placebo-treated RRMS patients underwent clinical evaluations and brain MRI. Voxel-based morphometry (VBM) was used to evaluate voxelwise GM sparing from high-resolution T1-weighted scans. RESULTS A region of treatment-induced sparing (TIS) was defined as the areas where GM was spared in estriol- as compared to placebo-treated groups, localized primarily within the frontal and parietal cortices. We observed that TIS volume was directly correlated with improvement on the PASAT. Next, a longitudinal cognitive disability-specific atlas (DSA) was defined by correlating voxelwise GM volumes with PASAT scores, that is, areas where less GM correlated with less improvement in PASAT scores. Finally, overlap between the TIS and the longitudinal cognitive DSA revealed a specific region of cortical GM that was preserved in estriol-treated subjects that was associated with better performance on the PASAT. CONCLUSIONS Discovery of this region of overlap was biology driven, not based on an a priori structure of interest. It included the medial frontal cortex, an area previously implicated in problem solving and attention. These findings indicate that localized GM sparing during estriol treatment was associated with improvement in cognitive testing, suggesting a clinically relevant, disability-specific biomarker for clinical trials of candidate neuroprotective treatments in MS.
Collapse
Affiliation(s)
- Allan MacKenzie‐Graham
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Jenny Brook
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Florian Kurth
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Yuichiro Itoh
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Cassandra Meyer
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Michael J. Montag
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - He‐Jing Wang
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Robert Elashoff
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Rhonda R. Voskuhl
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| |
Collapse
|
15
|
Massa MG, David C, Jörg S, Berg J, Gisevius B, Hirschberg S, Linker RA, Gold R, Haghikia A. Testosterone Differentially Affects T Cells and Neurons in Murine and Human Models of Neuroinflammation and Neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28634006 DOI: 10.1016/j.ajpath.2017.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high female-to-male sex ratio of multiple sclerosis (MS) prevalence has continuously confounded researchers, especially in light of male patients' accelerated disease course at later stages of MS. Although multiple studies have concentrated on estrogenic mechanisms of disease modulation, fairly little attention has been paid to androgenic effects in a female system, and even fewer studies have attempted to dissociate hormonal effects on the neurodegenerative and neuroinflammatory processes of MS. Herein, we demonstrate the differential effects of hormone treatment on the acute inflammatory and chronic neurodegenerative phases of murine experimental autoimmune encephalomyelitis. Although s.c. treatment with testosterone and aromatase inhibitor applied beginning on the day of immunization ameliorated initial course of disease, similar treatment administered therapeutically exacerbated chronic disease course. Spinal cord analyses of axonal densities reflected the clinical scores of the chronic phase. In vitro, testosterone treatment not only decreased Th1 and Th17 differentiation in an aromatase-independent fashion, but also exacerbated cell death in induced pluripotent stem cell-derived primary human neurons under oxidative stress conditions in an aromatase inhibitor-dependent manner. Thus, through the alleviation of inflammatory processes and the exacerbation of neurodegenerative processes, androgens may contribute to the epidemiologic sex differentials observed in MS prevalence and course.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Christina David
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Stefanie Jörg
- Department of Neurology, Friedrich-Alexander University-Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Berg
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Barbara Gisevius
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Sarah Hirschberg
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander University-Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany.
| |
Collapse
|
16
|
Itoh N, Kim R, Peng M, DiFilippo E, Johnsonbaugh H, MacKenzie-Graham A, Voskuhl RR. Bedside to bench to bedside research: Estrogen receptor beta ligand as a candidate neuroprotective treatment for multiple sclerosis. J Neuroimmunol 2016; 304:63-71. [PMID: 27771018 DOI: 10.1016/j.jneuroim.2016.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
Protective effects of pregnancy during MS have led to clinical trials of estriol, the pregnancy estrogen, in MS. Since estriol binds to estrogen receptor (ER) beta, ER beta ligand could represent a "next generation estriol" treatment. Here, ER beta ligand treatment was protective in EAE in both sexes and across genetic backgrounds. Neuroprotection was shown in spinal cord, sparing myelin and axons, and in brain, sparing neurons and synapses. Longitudinal in vivo MRIs showed decreased brain atrophy in cerebral cortex gray matter and cerebellum during EAE. Investigation of ER beta ligand as a neuroprotective treatment for MS is warranted.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Roy Kim
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Mavis Peng
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Emma DiFilippo
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Hadley Johnsonbaugh
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Allan MacKenzie-Graham
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Rhonda R Voskuhl
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA.
| |
Collapse
|
17
|
Aggelakopoulou M, Kourepini E, Paschalidis N, Panoutsakopoulou V. ERβ in CD4+ T Cells Is Crucial for Ligand-Mediated Suppression of Central Nervous System Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:4947-56. [PMID: 27183630 DOI: 10.4049/jimmunol.1600246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022]
Abstract
The development of therapies for multiple sclerosis targeting pathogenic T cell responses remains imperative. Previous studies have shown that estrogen receptor (ER) β ligands could inhibit experimental autoimmune encephalomyelitis. However, the effects of ERβ-specific ligands on human or murine pathogenic immune cells, such as Th17, were not investigated. In this article, we show that the synthetic ERβ-specific ligand 4-(2-phenyl-5,7-bis[trifluoromethyl]pyrazolo[1,5-a]pyrimidin-3-yl)phenol (PHTPP) reversed established paralysis and CNS inflammation, characterized by a dramatic suppression of pathogenic Th responses as well as induction of IL-10-producing regulatory CD4(+) T cell subsets in vivo. Moreover, administration of PHTPP in symptomatic mice induced regulatory CD4(+) T cells that were suppressive in vivo. PHTPP-mediated experimental autoimmune encephalomyelitis amelioration was canceled in mice with ERβ-deficient CD4(+) T cells only, indicating that expression of ERβ by these cells is crucial for the observed therapeutic effect. Importantly, synthetic ERβ-specific ligands acting directly on CD4(+) T cells suppressed human and mouse Th17 cells, downregulating Th17 cell signature gene expression and expanding IL-10-producing T cells among them. TGF-β1 and aryl hydrocarbon receptor activation enhanced the ERβ ligand-mediated expansion of IL-10-producing T cells among Th17 cells. In addition, these ERβ-specific ligands promoted the induction and maintenance of Foxp3(+) T regulatory cells, as well as their in vitro suppressive function. Thus, ERβ-specific ligands targeting pathogenic Th17 cells and inducing functional regulatory cells represent a promising subset of therapeutic agents for multiple sclerosis.
Collapse
Affiliation(s)
- Maria Aggelakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Evangelia Kourepini
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| |
Collapse
|
18
|
Khan D, Ansar Ahmed S. The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Front Immunol 2016; 6:635. [PMID: 26779182 PMCID: PMC4701921 DOI: 10.3389/fimmu.2015.00635] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Analogous to other physiological systems, the immune system also demonstrates remarkable sex differences. Although the reasons for sex differences in immune responses are not precisely understood, it potentially involves differences in sex hormones (estrogens, androgens, and differential sex hormone receptor-mediated events), X-chromosomes, microbiome, epigenetics among others. Overall, females tend to have more responsive and robust immune system compared to their male counterparts. It is therefore not surprising that females respond more aggressively to self-antigens and are more susceptible to autoimmune diseases. Female hormone (estrogen or 17β-estradiol) can potentially act on all cellular subsets of the immune system through estrogen receptor-dependent and -independent mechanisms. This minireview highlights differential expression of estrogen receptors on immune cells, major estrogen-mediated signaling pathways, and their effect on immune cells. Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, we will mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
19
|
Dunn SE, Gunde E, Lee H. Sex-Based Differences in Multiple Sclerosis (MS): Part II: Rising Incidence of Multiple Sclerosis in Women and the Vulnerability of Men to Progression of this Disease. Curr Top Behav Neurosci 2015; 26:57-86. [PMID: 25690592 DOI: 10.1007/7854_2015_370] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well known that a number of autoimmune diseases including multiple sclerosis (MS) predominantly affect women and there has been much attention directed toward understanding why this is the case. Past research has revealed a number of sex differences in autoimmune responses that can account for the female bias in MS. However, much less is known about why the incidence of MS has increased exclusively in women over the past half century. The recency of this increase suggests that changing environmental or lifestyle factors are interacting with biological sex to increase MS risk predominantly in females. Indeed, a number of recent studies have identified sex-specific differences in the effect of environmental factors on MS incidence. The first part of this chapter will overview this evidence and will discuss the possible scenarios of how the environment may be interacting with autoimmune mechanisms to contribute to the preferential rise in MS incidence in women. Despite the strong female bias in MS incidence, culminating evidence from natural history studies, and imaging and pathology studies suggests that males who develop MS may exhibit a more rapid decline in disability and cognitive functioning than women. Very little is known about the biological basis of this more rapid deterioration, but some insights have been provided by studies in rodent models of demyelination/remyelination. The second part of this chapter will overview the evidence that males with relapsing-onset MS undergo a more rapid progression of disease than females and will discuss potential biological mechanisms that account for this sex difference.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON, Canada. .,General Research Institute, University Health Network, Women's College Research Institute, Toronto, ON, Canada.
| | - Eva Gunde
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.
| | - Hyunwoo Lee
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
20
|
Bove R, Healy BC, Secor E, Vaughan T, Katic B, Chitnis T, Wicks P, De Jager PL. Patients report worse MS symptoms after menopause: findings from an online cohort. Mult Scler Relat Disord 2014; 4:18-24. [PMID: 25787049 DOI: 10.1016/j.msard.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/17/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Many women with multiple sclerosis (MS) are postmenopausal, yet the impact of menopause on MS symptoms is unknown. OBJECTIVE To investigate patient-reported impact of menopause in a large online research platform, PatientsLikeMe (PLM). METHODS A detailed reproductive history survey was deployed to PLM members, and responses were linked to PLM׳s prospectively collected patient-reported severity score (MS Rating Scale, MSRS). The MSRS has previously shown good correlation with physician-derived EDSS scores. RESULTS Of the 513 respondents, 55% were postmenopausal; 54% of these reported induced menopause. Median age at natural menopause was 51. Surgical menopause occurred at an earlier age (p<0.001) and was associated with more hormone replacement therapy use (p=0.02) than natural menopause. Postmenopausal status, surgical menopause, and earlier age at menopause were all associated with worse MSRS scores (p≤0.01) in regressions adjusting for age, disease type and duration. CONCLUSION Postmenopausal patients in this study reported worse MS disease severity. Further, this study highlights a utility for online research platforms, which allow for rapid generation of hypotheses that then require validation in clinical settings.
Collapse
Affiliation(s)
- R Bove
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women׳s Hospital, Brookline, MA 02445, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Neurologic Diseases, Harvard Medical School, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.
| | - B C Healy
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women׳s Hospital, Brookline, MA 02445, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Neurologic Diseases, Harvard Medical School, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA; Massachusetts General Hospital Biostatistics Center, Boston, MA 02114, USA.
| | - E Secor
- Center for Neurologic Diseases, Harvard Medical School, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.
| | - T Vaughan
- PatientsLikeMe, Inc., Cambridge, MA, USA.
| | - B Katic
- PatientsLikeMe, Inc., Cambridge, MA, USA.
| | - T Chitnis
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women׳s Hospital, Brookline, MA 02445, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Neurologic Diseases, Harvard Medical School, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.
| | - P Wicks
- PatientsLikeMe, Inc., Cambridge, MA, USA.
| | - P L De Jager
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women׳s Hospital, Brookline, MA 02445, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Neurologic Diseases, Harvard Medical School, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Brocca M, Pietranera L, Roig P, Lima A, De Nicola A. Effects of 17β-estradiol on the cytoarchitecture of pyramidal CA1 neurons in normoglycemic and diabetic male spontaneously hypertensive rats. Neuroscience 2014; 280:243-53. [DOI: 10.1016/j.neuroscience.2014.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
|
22
|
Lin TH, Kim JH, Perez-Torres C, Chiang CW, Trinkaus K, Cross AH, Song SK. Axonal transport rate decreased at the onset of optic neuritis in EAE mice. Neuroimage 2014; 100:244-53. [PMID: 24936685 DOI: 10.1016/j.neuroimage.2014.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
Optic neuritis is frequently the first symptom of multiple sclerosis (MS), an inflammatory demyelinating neurodegenerative disease. Impaired axonal transport has been considered as an early event of neurodegenerative diseases. However, few studies have assessed the integrity of axonal transport in MS or its animal models. We hypothesize that axonal transport impairment occurs at the onset of optic neuritis in experimental autoimmune encephalomyelitis (EAE) mice. In this study, we employed manganese-enhanced MRI (MEMRI) to assess axonal transport in optic nerves in EAE mice at the onset of optic neuritis. Axonal transport was assessed as (a) optic nerve Mn(2+) accumulation rate (in % signal change/h) by measuring the rate of increased total optic nerve signal enhancement, and (b) Mn(2+) transport rate (in mm/h) by measuring the rate of change in optic nerve length enhanced by Mn(2+). Compared to sham-treated healthy mice, Mn(2+) accumulation rate was significantly decreased by 19% and 38% for EAE mice with moderate and severe optic neuritis, respectively. The axonal transport rate of Mn(2+) was significantly decreased by 43% and 65% for EAE mice with moderate and severe optic neuritis, respectively. The degree of axonal transport deficit correlated with the extent of impaired visual function and diminished microtubule-associated tubulins, as well as the severity of inflammation, demyelination, and axonal injury at the onset of optic neuritis.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - Joong Hee Kim
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Perez-Torres
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chia-Wen Chiang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Kathryn Trinkaus
- Divison of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
van der Leeuw C, Habets P, Gronenschild E, Domen P, Michielse S, van Kroonenburgh M, van Os J, Marcelis M. Testing the estrogen hypothesis of schizophrenia: associations between cumulative estrogen exposure and cerebral structural measures. Schizophr Res 2013; 150:114-20. [PMID: 23938177 DOI: 10.1016/j.schres.2013.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/27/2013] [Accepted: 07/14/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bone mineral density (BMD), as an indicator of cumulative estrogen exposure, may be reduced in female patients with psychotic disorder (van der Leeuw et al., 2013), possibly reflecting reduced cerebral exposure to estrogen and alterations in neuroprotective effects. To the degree that BMD is a marker of cumulative (endogenous) estrogen exposure, we hypothesized that BMD would be positively associated with cerebral gray and white matter indices. METHODS Dual X-ray absorptiometry (DEXA) and magnetic resonance (MRI) scans were acquired in fourteen female patients diagnosed with a psychotic disorder. BMD was expressed in total BMD (g/cm(2)), Z- and T-scores. Cerebral cortical thickness (CT) (as indicator of gray matter status) and fractional anisotropy (FA) (as indicator of white matter integrity) were measured and served as the dependent variables in multilevel random regression models. BMD measures were the independent variables. RESULTS Femoral BMD measures were positively associated with CT at trend significance (total BMD: B=0.266, 95% CI: -0.019-0.552, p=0.067; Z-score: B=0.034, 95% CI: 0.001-0.067, p=0.046; T-score: B=0.034, 95% CI: 0.000-0.068, p=0.052). There were no significant associations between femoral BMD measures and FA. CONCLUSIONS The data suggest that in women with psychotic disorder, alterations in the neuroprotective effect of estrogen (as measured by BMD) impact cortical gray matter, but not white matter integrity. These findings merit further investigation and, if replicated, would lend support to the estrogen hypothesis of schizophrenia.
Collapse
Affiliation(s)
- C van der Leeuw
- Department of Psychiatry & Psychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Multiple sclerosis (MS) is universally found to be more prevalent in women than men. This has led to extensive studies of differences in the immune system or nervous system between women and men, which might be caused by the effects of gonadal hormones, genetic differences, and different environmental exposures and modern lifestyle in men and women. We review the effects of sex and gender from a genetic, immunological and clinical point of view. We discuss the effects of sex on the clinical expression of MS and responses to therapy, as well as issues concerning pregnancy.
Collapse
Affiliation(s)
- Hanne F Harbo
- Department of Neurology, Oslo University Hospital, Ullevål and University of Oslo, 0407 Oslo, Norway
| | | | | |
Collapse
|
25
|
Hu X, Qin X. Lentivirus-mediated estrogen receptor α overexpression in the central nervous system ameliorates experimental autoimmune encephalomyelitis in mice. Int J Mol Med 2013; 31:1209-21. [PMID: 23525227 DOI: 10.3892/ijmm.2013.1306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/05/2013] [Indexed: 11/05/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory cell infiltration of the central nervous system (CNS) and multifocal demyelination. Clinical data and clinical indicators demonstrate that estrogen improves the relapse-remittance of MS patients. This study aimed to investigate the anti-inflammatory effects and the underlying mechanism(s) of action of estrogen and estrogen receptor α (ERα) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. An ERα recombinant lentivirus was constructed. Mouse neurons were cultured in serum-free culture medium, and ERα recombinant lentivirus with a multiplicity of infection (MOI) of 5 was used to infect the neurons. Furthermore, neuronal ERα mRNA and protein expression were detected using real-time quantitative PCR and western blot analysis. We sterotaxically injected ERα recombinant lentivirus into the lateral ventricle of mouse brains, and successfully identified infected neurons using Flag immunofluorescence staining to determine the optimal dose. A total of 75 C57BL/6 mice were ovariectomized. After 2 weeks, EAE was induced with myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide. The EAE mice were divided into 5 groups: the estrogen group (treatment with estradiol), the ERα agonist group (treatment with raloxifene), the ERα recombinant lentivirus group (ERα group, treatment with ERα recombinant lentivirus), the empty virus group and the normal saline (NS) group; clinical symptoms and body weight were compared among the groups. We assessed EAE-related parameters, detected pathological changes with immunohistochemistry and quantified the expression of myelin basic protein (MBP), matrix metalloproteinase-9 (MMP-9), and a subset of EAE-related cytokines using enzyme-linked immunosorbent assay (ELISA). We successfully constructed an ERα recombinant lentivirus. C57BL/6 mouse neurons can survive in culture for at least 8 weeks. During that period, the recombinant lentivirus was able to infect the neurons, while sustaining green fluorescence protein (GFP) expression. ERα recombinant lentivirus also infected the neurons at a MOI of 5. The ERα mRNA and protein expression levels were higher in the infected neurons compared to the uninfected ones. We successfully infected the CNS of C57BL/6 mice by stereotaxically injecting ERα recombinant lentivirus into the lateral ventricle of the mouse brains and induced EAE. The lentivirus-mediated overexpression of ERα reduced the incidence of EAE, ameliorated the clinical symptoms, inhibited inflammatory cell CNS infiltration, and reduced nerve fiber demyelination. MMP-9, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-17 and IL-23 expression levels were decreased, while those of MBP and IL-4 were increased. These data demonstrate that it is possible to induce the overexpression of ERα using a recombinant lentivirus, and that this novel intervention ameliorates EAE in a mouse model. Mechanistically, estrogen and ERα inhibit inflammatory responses, and ERα alleviates damage to the myelin sheath. Collectively, our findings support the potential use of ERα as a therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | | |
Collapse
|
26
|
Expression of FSH and its co-localization with FSH receptor and GnRH receptor in rat cerebellar cortex. J Mol Histol 2012; 44:19-26. [PMID: 22972435 DOI: 10.1007/s10735-012-9449-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/27/2023]
Abstract
The expression of follicle-stimulating hormone (FSH) and its receptor in extrapituitary and non-HPG axis tissues has been demonstrated and their non-reproductive functions in these tissues have been found. However, there have been no reports concerning the expression and function of FSH and its receptor in the cerebellum. In our study, immunofluorescence staining and in situ hybridization were used to detect the expression of FSH, double-labeled immunofluorescence staining was used to detect co-localization of FSH and its receptor and co-localization of FSH and gonadotropin-releasing hormone (GnRH) receptor in the rat cerebellar cortex. Results showed that some cells of the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex showed both FSH immunoreactivity and FSH mRNA positive signals; not only for FSH and FSH receptor, but also for FSH and GnRH receptor co-localized in some cells throughout the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex. These suggested that rat cerebellum could express FSH; cerebellum is a target tissue of FSH; FSH may exert certain functions through FSH receptor in a paracrine or autocrine manner; GnRH may regulate FSH positive cells through GnRH receptor in the cerebellum. Our study provides morphological evidence for further functional research on FSH and related hormones in the cerebellum.
Collapse
|