1
|
Grandhi TSP, Mebrahtu M, Musso R, Fullman A, Nifong B, Wisdom K, Roh TT, Sender M, Poore D, Macdougall CE, Oren R, Griffin S, Cheng AT, Ekert JE. A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing. Biofabrication 2024; 17:015004. [PMID: 39378897 DOI: 10.1088/1758-5090/ad847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complexin-vitromodels allow re-creation ofin-vivotumor complexities in anin-vitrosetting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96-chip 2-lane microfluidic assay system, we present a novel, scalable, complexin vitroMPS assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (∼5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8. chimeric antigen receptor (CAR)-T cells that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Makda Mebrahtu
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Ryan Musso
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Alexis Fullman
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Brady Nifong
- Research Statistics, GSK, Collegeville, PA, United States of America
| | - Katrina Wisdom
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| | - Terrence T Roh
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| | - Matthew Sender
- Chemical Biology, GSK, Collegeville, PA, United States of America
| | - Derek Poore
- Immuno-Oncology and Combinations (IOC), GSK, Collegeville, PA, United States of America
| | | | - Ravit Oren
- Oncology Cell Therapy, GSK, Stevenage, United Kingdom
| | - Sue Griffin
- Oncology Translational Research, GSK, Stevenage, United Kingdom
| | - Aaron T Cheng
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Jason E Ekert
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| |
Collapse
|
2
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
3
|
Ball JB, Green-Fulgham SM, Watkins LR. Mechanisms of Microglia-Mediated Synapse Turnover and Synaptogenesis. Prog Neurobiol 2022; 218:102336. [DOI: 10.1016/j.pneurobio.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
|
4
|
Ganguly U, Singh S, Chakrabarti S, Saini AK, Saini RV. Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:381-433. [PMID: 35305723 DOI: 10.1016/bs.apcsb.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized classically by motor manifestations. However, nonmotor symptoms appear early in the course of the disease progression, making both diagnosis and treatment difficult. The pathology of PD is complicated by the accumulation and aggregation of misfolded proteins in intracellular cytoplasmic inclusions called Lewy bodies (LBs). The main toxic component of LBs is the protein α-Synuclein which plays a pivotal role in PD pathogenesis. α-Synuclein can propagate from cell-to-cell exhibiting prion-like properties and spread PD pathology throughout the central nervous system. Immunotherapeutic interventions in PD, both active and passive immunization, have targeted α-Synuclein in both experimental models and clinical trials. In addition, targeting the hyperactive inflammation in PD also holds promise in designing potential immunotherapeutics. The inflammatory and proteotoxic pathways are interlinked and contribute immensely to the disease pathology. In this chapter, we critically review the targets of immunotherapeutic interventions in PD, focusing on the pathogenetic mechanisms of PD, particularly neuroinflammation and α-Synuclein misfolding, aggregation, and propagation. We thoroughly summarized the various immunotherapeutic strategies designed to treat PD-in vitro, in vivo, and clinical trials. The development of these targeted immunotherapies could open a new avenue in the treatment of patients with PD.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| |
Collapse
|
5
|
Reinehr S, Doerner JD, Mueller-Buehl AM, Koch D, Fuchshofer R, Dick HB, Joachim SC. Cytokine and Complement Response in the Glaucomatous βB1-CTGF Mouse Model. Front Cell Neurosci 2021; 15:718087. [PMID: 34867198 PMCID: PMC8637215 DOI: 10.3389/fncel.2021.718087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a complex neurodegenerative disease leading to a loss of retinal ganglion cells (RGCs) and optic nerve axons. An activation of the complement system seems to contribute to cell loss in this disease. Hence, we investigated a possible initiation of the complement system and the cytokine response in the βB1-CTGF glaucoma model. In these mice, intraocular pressure is elevated, which is the main glaucoma risk factor in patients, and RGC loss occurs at 15 weeks of age. Therefore, quantitative real-time PCR and immunohistological experiments were performed in 5-, 10-, and 15-week-old βB1-CTGF animals and their corresponding wildtypes (WT) to analyze the expression of several complement system factors. We could show that mRNA levels of the terminal complement pathway components C3 and C5 (Hc) were upregulated at 10 weeks. In accordance, more C3+ and membrane attack complex+ cells were observed in transgenic retinae. Further, the C5a receptor anaphylatoxin receptor (C5ar) and the complement component C5a receptor 1 (C5ar1; CD88) mRNA levels were upregulated in 10- and 15-week-old βB1-CTGF mice. Interestingly, all three activation routes of the complement system were elevated in βB1-CTGF mice at some age. Especially C1q, as a marker of the classical pathway, was significantly increased at all investigated ages. Furthermore, mRNA expression levels of interferon-γ (Infg) were upregulated at 5 weeks, while Cxcl1 and Cxcl2 mRNA levels were upregulated at 10 and 15 weeks. The mRNA levels of the chemokines Cxcl10 were increased at all ages in βB1-CTGF mice. These results lead to the assumption that in these transgenic mice, a complement activation mainly through the classical pathway as well as a cytokine response plays a major role in cell death.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Johanna D. Doerner
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ana M. Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Dennis Koch
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University Regensburg, Regensburg, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
7
|
Montay-Gruel P, Markarian M, Allen BD, Baddour JD, Giedzinski E, Jorge PG, Petit B, Bailat C, Vozenin MC, Limoli C, Acharya MM. Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiat Res 2021; 194:636-645. [PMID: 32853387 DOI: 10.1667/rade-20-00067.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Encephalic radiation therapy delivered at a conventional dose rate (CONV, 0.1-2.0 Gy/min) elicits a variety of temporally distinct damage signatures that invariably involve persistent indications of neuroinflammation. Past work has shown an involvement of both the innate and adaptive immune systems in modulating the central nervous system (CNS) radiation injury response, where elevations in astrogliosis, microgliosis and cytokine signaling define a complex pattern of normal tissue toxicities that never completely resolve. These side effects constitute a major limitation in the management of CNS malignancies in both adult and pediatric patients. The advent of a novel ultra-high dose-rate irradiation modality termed FLASH radiotherapy (FLASH-RT, instantaneous dose rates ≥106 Gy/s; 10 Gy delivered in 1-10 pulses of 1.8 µs) has been reported to minimize a range of normal tissue toxicities typically concurrent with CONV exposures, an effect that has been coined the "FLASH effect." Since the FLASH effect has now been found to significantly limit persistent inflammatory signatures in the brain, we sought to further elucidate whether changes in astrogliosis might account for the differential dose-rate response of the irradiated brain. Here we report that markers selected for activated astrogliosis and immune signaling in the brain (glial fibrillary acidic protein, GFAP; toll-like receptor 4, TLR4) are expressed at reduced levels after FLASH irradiation compared to CONV-irradiated animals. Interestingly, while FLASH-RT did not induce astrogliosis and TLR4, the expression level of complement C1q and C3 were found to be elevated in both FLASH and CONV irradiation modalities compared to the control. Although functional outcomes in the CNS remain to be cross-validated in response to the specific changes in protein expression reported, the data provide compelling evidence that distinguishes the dose-rate response of normal tissue injury in the irradiated brain.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Mineh Markarian
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Jabra D Baddour
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Patrik Goncalves Jorge
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoît Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claude Bailat
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| |
Collapse
|
8
|
Winkler A, Wrzos C, Haberl M, Weil MT, Gao M, Möbius W, Odoardi F, Thal DR, Chang M, Opdenakker G, Bennett JL, Nessler S, Stadelmann C. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J Clin Invest 2021; 131:141694. [PMID: 33645550 DOI: 10.1172/jci141694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti-aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated. Using an experimental model of targeted NMOSD lesions in rats, we demonstrate that astrocyte destruction coincides with a transient disruption of the BBB and a selective loss of occludin from tight junctions. It is noteworthy that BBB integrity is reestablished before astrocytes repopulate. Rather than persistent astrocyte loss, polymorphonuclear leukocytes (PMNs) are the main mediators of BBB disruption, and their depletion preserves BBB integrity and prevents astrocyte loss. Inhibition of PMN chemoattraction, activation, and proteolytic function reduces lesion size. In summary, our data support a crucial role for PMNs in BBB disruption and NMOSD lesion development, rendering their recruitment and activation promising therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael Haberl
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Marie-Theres Weil
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Francesca Odoardi
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, and Department of Pathology, UZ Leuven, Leuven, Belgium.,Laboratory of Neuropathology, Institute of Pathology, Ulm University, Ulm, Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Program in Neuroscience, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | |
Collapse
|
9
|
Trojan E, Bryniarska N, Leśkiewicz M, Regulska M, Chamera K, Szuster-Głuszczak M, Leopoldo M, Lacivita E, Basta-Kaim A. The Contribution of Formyl Peptide Receptor Dysfunction to the Course of Neuroinflammation: A Potential Role in the Brain Pathology. Curr Neuropharmacol 2020; 18:229-249. [PMID: 31629396 PMCID: PMC7327951 DOI: 10.2174/1570159x17666191019170244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| |
Collapse
|
10
|
Jin KT, Yao JY, Ying XJ, Lin Y, Chen YF. Nanomedicine and Early Cancer Diagnosis: Molecular Imaging using Fluorescence Nanoparticles. Curr Top Med Chem 2020; 20:2737-2761. [PMID: 32962614 DOI: 10.2174/1568026620666200922112640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Incorporating nanotechnology into fluorescent imaging and magnetic resonance imaging (MRI) has shown promising potential for accurate diagnosis of cancer at an earlier stage than the conventional imaging modalities. Molecular imaging (MI) aims to quantitatively characterize, visualize, and measure the biological processes or living cells at molecular and genetic levels. MI modalities have been exploited in different applications including noninvasive determination and visualization of diseased tissues, cell trafficking visualization, early detection, treatment response monitoring, and in vivo visualization of living cells. High-affinity molecular probe and imaging modality to detect the probe are the two main requirements of MI. Recent advances in nanotechnology and allied modalities have facilitated the use of nanoparticles (NPs) as MI probes. Within the extensive group of NPs, fluorescent NPs play a prominent role in optical molecular imaging. The fluorescent NPs used in molecular and cellular imaging can be categorized into three main groups including quantum dots (QDs), upconversion, and dyedoped NPs. Fluorescent NPs have great potential in targeted theranostics including cancer imaging, immunoassay- based cells, proteins and bacteria detections, imaging-guided surgery, and therapy. Fluorescent NPs have shown promising potentials for drug and gene delivery, detection of the chromosomal abnormalities, labeling of DNA, and visualizing DNA replication dynamics. Multifunctional NPs have been successfully used in a single theranostic modality integrating diagnosis and therapy. The unique characteristics of multifunctional NPs make them potential theranostic agents that can be utilized concurrently for diagnosis and therapy. This review provides the state of the art of the applications of nanotechnologies in early cancer diagnosis focusing on fluorescent NPs, their synthesis methods, and perspectives in clinical theranostics.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jia-Yu Yao
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, P.R. China,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital Hangzhou Medical College), Hangzhou 310014, P.R. China
| | - Xiao-Jiang Ying
- Department of Colorectal Surgery Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, P.R. China
| | - Yan Lin
- Department of Gastroenterology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R China
| | - Yun-Fang Chen
- Department of Stomatology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, P.R. China
| |
Collapse
|
11
|
Lo MW, Woodruff TM. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol 2020; 108:339-351. [PMID: 32182389 DOI: 10.1002/jlb.3mir0220-270r] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The complement system is a collection of soluble and membrane-bound proteins that together act as a powerful amplifier of the innate and adaptive immune systems. Although its role in infection is well established, complement is becoming increasingly recognized as a key contributor to sterile inflammation, a chronic inflammatory process often associated with noncommunicable diseases. In this context, damaged tissues release danger signals and trigger complement, which acts on a range of leukocytes to augment and bridge the innate and adaptive immune systems. Given the detrimental effect of chronic inflammation, the complement system is therefore well placed as an anti-inflammatory drug target. In this review, we provide a general outline of the sterile activators, effectors, and targets of the complement system and a series of examples (i.e., hypertension, cancer, allograft transplant rejection, and neuroinflammation) that highlight complement's ability to bridge the 2 arms of the immune system.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Tenner AJ. Complement-Mediated Events in Alzheimer's Disease: Mechanisms and Potential Therapeutic Targets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:306-315. [PMID: 31907273 PMCID: PMC6951444 DOI: 10.4049/jimmunol.1901068] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
An estimated 5.7 million Americans suffer from Alzheimer's disease in the United States, with no disease-modifying treatments to prevent or treat cognitive deficits associated with the disease. Genome-wide association studies suggest that an enhancement of clearance mechanisms and/or promotion of an anti-inflammatory response may slow or prevent disease progression. Increasing awareness of distinct roles of complement components in normal brain development and function and in neurodegenerative disorders align with complement-mediated responses, and thus, thorough understanding of these molecular pathways is needed to facilitate successful therapeutic design. Both beneficial and detrimental effects of C1q as well as contributions to local inflammation by C5a-C5aR1 signaling in brain highlight the need for precision of therapeutic design. The potential benefit of β-amyloid clearance from the circulation via CR1-mediated mechanisms is also reviewed. Therapies that suppress inflammation while preserving protective effects of complement could be tested now to slow the progression of this debilitating disease.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697;
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697;
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697; and
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
13
|
Tenner AJ, Stevens B, Woodruff TM. New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Mol Immunol 2018; 102:3-13. [PMID: 29958698 DOI: 10.1016/j.molimm.2018.06.264] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
While the mechanisms underlying the functions of the complement system in the central nervous system (CNS) and systemically, namely opsonization, chemotaxis, membrane lysis, and regulation of inflammation are the same, the plethora of functions that complement orchestrates in the central nervous system (CNS) is complex. Strictly controlled expression of complement effector molecules, regulators and receptors across the gamut of life stages (embryogenesis, development and maturation, aging and disease) dictate fascinating contributions for this ancient system. Furthermore, it is becoming apparent that complement functions differ widely across distinct brain regions. This review provides a comprehensive overview of the newly identified roles for complement in the brain, including its roles in CNS development and function, during aging and in the processes of neurodegeneration. The diversity and selectively of beneficial and detrimental activities of complement, while challenging, should lead to precision targeting of specific components to provide disease modifying treatments for devastating psychiatric and neurodegenerative disorders that are still without effective treatment.
Collapse
Affiliation(s)
- Andrea J Tenner
- Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, CA, United States.
| | - Beth Stevens
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Hernandez MX, Namiranian P, Nguyen E, Fonseca MI, Tenner AJ. C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro 2017; 9:1759091416687871. [PMID: 28078911 PMCID: PMC5298486 DOI: 10.1177/1759091416687871] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
C5aR1, the proinflammatory receptor for C5a, is expressed in the central nervous system on microglia, endothelial cells, and neurons. Previous work demonstrated that the C5aR1 antagonist, PMX205, decreased amyloid pathology and suppressed cognitive deficits in two Alzheimer's Disease (AD) mouse models. However, the cellular mechanisms of this protection have not been definitively demonstrated. Here, primary cultured mouse neurons treated with exogenous C5a show reproducible loss of MAP-2 staining in a dose-dependent manner within 24 hr of treatment, indicative of injury to neurons. This injury is prevented by the C5aR1 antagonist PMX53, a close analog of PMX205. Furthermore, primary neurons derived from C5aR1 null mice exhibited no MAP-2 loss after exposure to the highest concentration of C5a tested. Primary mouse neurons treated with both 100 nM C5a and 5 µM fibrillar amyloid beta (fAβ), to model what occurs in the AD brain, showed increased MAP-2 loss relative to either C5a or fAβ alone. Blocking C5aR1 with PMX53 (100 nM) blocked the loss of MAP2 in these primary neurons to the level seen with fAβ alone. Similar experiments with primary neurons derived from C5aR1 null mice showed a loss of MAP-2 due to fAβ treatment. However, the addition of C5a to the cultures did not enhance the loss of MAP-2 and the addition of PMX53 to the cultures did not change the MAP-2 loss in response to fAβ. Thus, at least part of the beneficial effects of C5aR1 antagonist in AD mouse models may be due to protection of neurons from the toxic effects of C5a.
Collapse
Affiliation(s)
- Michael X Hernandez
- 1 Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, USA
| | - Pouya Namiranian
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | - Eric Nguyen
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | - Maria I Fonseca
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | - Andrea J Tenner
- 1 Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, USA.,2 Department of Molecular Biology and Biochemistry, University of California, Irvine, USA.,3 Department of Neurobiology and Behavior, University of California, Irvine, USA
| |
Collapse
|
15
|
Hernandez MX, Jiang S, Cole TA, Chu SH, Fonseca MI, Fang MJ, Hohsfield LA, Torres MD, Green KN, Wetsel RA, Mortazavi A, Tenner AJ. Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Mol Neurodegener 2017; 12:66. [PMID: 28923083 PMCID: PMC5604420 DOI: 10.1186/s13024-017-0210-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pharmacologic inhibition of C5aR1, a receptor for the complement activation proinflammatory fragment, C5a, suppressed pathology and cognitive deficits in Alzheimer's disease (AD) mouse models. To validate that the effect of the antagonist was specifically via C5aR1 inhibition, mice lacking C5aR1 were generated and compared in behavior and pathology. In addition, since C5aR1 is primarily expressed on cells of the myeloid lineage, and only to a lesser extent on endothelial cells and neurons in brain, gene expression in microglia isolated from adult brain at multiple ages was compared across all genotypes. METHODS C5aR1 knock out mice were crossed to the Arctic AD mouse model, and characterized for pathology and for behavior performance in a hippocampal dependent memory task. CX3CR1GFP and CCR2RFP reporter mice were bred to C5aR1 sufficient and knockout wild type and Arctic mice to enable sorting of microglia (GFP-positive, RFP-negative) isolated from adult brain at 2, 5, 7 and 10 months of age followed by RNA-seq analysis. RESULTS A lack of C5aR1 prevented behavior deficits at 10 months, although amyloid plaque load was not altered. Immunohistochemical analysis showed no CCR2+ monocytes/macrophages near the plaques in the Arctic brain with or without C5aR1. Microglia were sorted from infiltrating monocytes (GFP and RFP-positive) for transcriptome analysis. RNA-seq analysis identified inflammation related genes as differentially expressed, with increased expression in the Arctic mice relative to wild type and decreased expression in the Arctic/C5aR1KO relative to Arctic. In addition, phagosomal-lysosomal gene expression was increased in the Arctic mice relative to wild type but further increased in the Arctic/C5aR1KO mice. A decrease in neuronal complexity was seen in hippocampus of 10 month old Arctic mice at the time that correlates with the behavior deficit, both of which were rescued in the Arctic/C5aR1KO. CONCLUSIONS These data are consistent with microglial polarization in the absence of C5aR1 signaling reflecting decreased induction of inflammatory genes and enhancement of degradation/clearance pathways, which is accompanied by preservation of CA1 neuronal complexity and hippocampal dependent cognitive function. These results provide links between microglial responses and loss of cognitive performance and, combined with the previous pharmacological approach to inhibit C5aR1 signaling, support the potential of this receptor as a novel therapeutic target for AD in humans.
Collapse
Affiliation(s)
- Michael X Hernandez
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, CA, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Tracy A Cole
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Present Address: Ionis Pharmaceuticals Inc., Carlsbad, CA, 92010, USA
| | - Shu-Hui Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Maria I Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Melody J Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Maria D Torres
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, Houston, TX, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
16
|
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 2014; 8:380. [PMID: 25426028 PMCID: PMC4224073 DOI: 10.3389/fncel.2014.00380] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023] Open
Abstract
The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier (BBB) damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain) and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury). This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement cascade.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Experimental and Clinical Sciences, University of Chieti Pescara, Italy
| | - Rosalia Zangari
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| |
Collapse
|
17
|
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol 2014; 258:35-47. [PMID: 25017886 DOI: 10.1016/j.expneurol.2014.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022]
Abstract
The pathology associated with spinal cord injury (SCI) is caused not only by primary mechanical trauma, but also by secondary responses of the injured CNS. The inflammatory response to SCI is robust and plays an important but complex role in the progression of many secondary injury-associated pathways. Although recent studies have begun to dissect the beneficial and detrimental roles for inflammatory cells and proteins after SCI, many of these neuroimmune interactions are debated, not well understood, or completely unexplored. In this regard, the complement cascade is a key component of the inflammatory response to SCI, but is largely underappreciated, and our understanding of its diverse interactions and effects in this pathological environment is limited. In this review, we discuss complement in the context of SCI, first in relation to traditional functions for complement cascade activation, and then in relation to novel roles for complement proteins in a variety of models.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
18
|
Bohlson SS, O'Conner SD, Hulsebus HJ, Ho MM, Fraser DA. Complement, c1q, and c1q-related molecules regulate macrophage polarization. Front Immunol 2014; 5:402. [PMID: 25191325 PMCID: PMC4139736 DOI: 10.3389/fimmu.2014.00402] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022] Open
Abstract
Complement is a critical system of enzymes, regulatory proteins, and receptors that regulates both innate and adaptive immune responses. Natural mutations in complement molecules highlight their requirement in regulation of a variety of human conditions including infectious disease and autoimmunity. As sentinels of the immune system, macrophages are specialized to respond to infectious microbes, as well as normal and altered self, and dictate appropriate immune responses. Complement components such as anaphylatoxins (C3a and C5a) and opsonins [C3b, C1q, mannan binding lectin (MBL)] influence macrophage responses. While anaphylatoxins C3a and C5a trigger inflammasome activation, opsonins such as C1q and related molecules (MBL and adiponectin) downregulate inflammasome activation and inflammation, and upregulate engulfment of apoptotic cells consistent with a pro-resolving or M2 macrophage phenotype. This review summarizes our current understanding of the influence of the complement system on macrophage polarization with an emphasis on C1q and related molecules.
Collapse
Affiliation(s)
- Suzanne S Bohlson
- Department of Microbiology and Immunology, Des Moines University , Des Moines, IA , USA
| | - Sean D O'Conner
- Department of Microbiology and Immunology, Des Moines University , Des Moines, IA , USA
| | - Holly Jo Hulsebus
- Department of Microbiology and Immunology, Des Moines University , Des Moines, IA , USA
| | - Minh-Minh Ho
- Department of Biologicial Sciences, California State University Long Beach , Long Beach, CA , USA
| | - Deborah A Fraser
- Department of Biologicial Sciences, California State University Long Beach , Long Beach, CA , USA
| |
Collapse
|
19
|
Molecular Dissection of Cyclosporin A's Neuroprotective Effect Reveals Potential Therapeutics for Ischemic Brain Injury. Brain Sci 2013; 3:1325-56. [PMID: 24961531 PMCID: PMC4061870 DOI: 10.3390/brainsci3031325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022] Open
Abstract
After the onset of brain ischemia, a series of events leads ultimately to the death of neurons. Many molecules can be pharmacologically targeted to protect neurons during these events, which include glutamate release, glutamate receptor activation, excitotoxicity, Ca2+ influx into cells, mitochondrial dysfunction, activation of intracellular enzymes, free radical production, nitric oxide production, and inflammation. There have been a number of attempts to develop neuroprotectants for brain ischemia, but many of these attempts have failed. It was reported that cyclosporin A (CsA) dramatically ameliorates neuronal cell damage during ischemia. Some researchers consider ischemic cell death as a unique process that is distinct from both apoptosis and necrosis, and suggested that mitochondrial dysfunction and Δψ collapse are key steps for ischemic cell death. It was also suggested that CsA has a unique neuroprotective effect that is related to mitochondrial dysfunction. Here, I will exhibit examples of neuroprotectants that are now being developed or in clinical trials, and will discuss previous researches about the mechanism underlying the unique CsA action. I will then introduce the results of our cDNA subtraction experiment with or without CsA administration in the rat brain, along with our hypothesis about the mechanism underlying CsA’s effect on transcriptional regulation.
Collapse
|
20
|
Li Z, Li W, Li Q, Tang M. Extracellular nucleotides and adenosine regulate microglial motility and their role in cerebral ischemia. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
21
|
Ferreira R, Schlichter LC. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca(2+) signaling, store refilling and migration of rat microglial cells. PLoS One 2013; 8:e62345. [PMID: 23620825 PMCID: PMC3631179 DOI: 10.1371/journal.pone.0062345] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Microglial activation involves Ca(2+) signaling, and numerous receptors can evoke elevation of intracellular Ca(2+). ATP released from damaged brain cells can activate ionotropic and metabotropic purinergic receptors, and act as a chemoattractant for microglia. Metabotropic P2Y receptors evoke a Ca(2+) rise through release from intracellular Ca(2+) stores and store-operated Ca(2+) entry, and some have been implicated in microglial migration. This Ca(2+) rise is expected to activate small-conductance Ca(2+)-dependent K(+) (SK) channels, if present. We previously found that SK3 (KCa2.3) and KCa3.1 (SK4/IK1) are expressed in rat microglia and contribute to LPS-mediated activation and neurotoxicity. However, neither current has been studied by elevating Ca(2+) during whole-cell recordings. We hypothesized that, rather than responding only to Ca(2+), each channel type might be coupled to different receptor-mediated pathways. Here, our objective was to determine whether the channels are differentially activated by P2Y receptors, and, if so, whether they play differing roles. We used primary rat microglia and a rat microglial cell line (MLS-9) in which riluzole robustly activates both SK3 and KCa3.1 currents. Using electrophysiological, Ca(2+) imaging and pharmacological approaches, we show selective functional coupling of KCa3.1 to UTP-mediated P2Y2 receptor activation. KCa3.1 current is activated by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC/Orai1) channels, and both CRAC/Orai1 and KCa3.1 channels facilitate refilling of Ca(2+) stores. The Ca(2+) dependence of KCa3.1 channel activation was skewed to abnormally high concentrations, and we present evidence for a close physical association of the two channel types. Finally, migration of primary rat microglia was stimulated by UTP and inhibited by blocking either KCa3.1 or CRAC/Orai1 channels. This is the first report of selective coupling of one type of SK channel to purinergic stimulation of microglia, transactivation of KCa3.1 channels by CRAC/Orai1, and coordinated roles for both channels in store refilling, Ca(2+) signaling and microglial migration.
Collapse
Affiliation(s)
- Roger Ferreira
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lyanne C. Schlichter
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Fonseca MI, McGuire SO, Counts SE, Tenner AJ. Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation 2013; 10:25. [PMID: 23394121 PMCID: PMC3605123 DOI: 10.1186/1742-2094-10-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative dementia characterized by the decline of cognition and the presence of neuropathological changes including neuronal loss, neurofibrillary pathology and extracellular senile plaques. A neuroinflammatory process is also triggered and complement activation has been hypothesized to have a relevant role in this local inflammatory response. C5a, a proinflammatory anaphylatoxin generated after complement activation, exerts its chemotactic and inflammatory functions through the CD88 receptor while the more recently discovered C5L2 receptor has been postulated to have an anti-inflammatory role. Previously, we reported that a CD88 specific antagonist (PMX205) decreased the pathology and improved cognition in transgenic models of AD suggesting that C5a/C5aR interaction has an important role in the progression of the disease. Methods The present study characterizes the expression of the two receptors for C5a in human brain with confirmed post mortem diagnosis of vascular dementia (VD) or AD as well as age matched controls by immunohistochemistry and Western blot analysis using several antibodies against different epitopes of the human receptors. Results The CD88 and C5L2 antibodies revealed increased expression of both receptors in AD samples as compared to age-matched controls or VD brain tissue by Western blot and immunohistochemistry, using multiple antibodies and distinct cohorts of brain tissue. Immunostaining showed that both the C5L2 and CD88 antibodies similarly labeled abundant neurofibrillary tangles, neuropil threads and dystrophic neurites associated with plaques in the hippocampus and frontal cortex of AD cases. In contrast, little or no neuronal staining, tangles or dystrophic neurites associated with plaques were observed in control or VD brains. CD88 and C5L2 receptors are associated with both early (AT8) and mature (PHF1) neurofibrillary tangles and can be found either independently or colocalized with each other. Conclusions The observed association of CD88 and C5L2 with neurofibrillary pathology suggests a common altered pathway of degradation.
Collapse
Affiliation(s)
- Maria I Fonseca
- Dept of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
23
|
Lettiero B, Andersen AJ, Hunter AC, Moghimi SM. Complement system and the brain: Selected pathologies and avenues toward engineering of neurological nanomedicines. J Control Release 2012; 161:283-9. [DOI: 10.1016/j.jconrel.2011.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|
24
|
Guilty molecules, guilty minds? The conflicting roles of the innate immune response to traumatic brain injury. Mediators Inflamm 2012; 2012:356494. [PMID: 22701273 PMCID: PMC3373171 DOI: 10.1155/2012/356494] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/26/2012] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex disease in the most complex organ of the body, whose victims endure lifelong debilitating physical, emotional, and psychosocial consequences. Despite advances in clinical care, there is no effective neuroprotective therapy for TBI, with almost every compound showing promise experimentally having disappointing results in the clinic. The complex and highly interrelated innate immune responses govern both the beneficial and deleterious molecular consequences of TBI and are present as an attractive therapeutic target. This paper discusses the positive, negative, and often conflicting roles of the innate immune response to TBI in both an experimental and clinical settings and highlights recent advances in the search for therapeutic candidates for the treatment of TBI.
Collapse
|
25
|
Koizumi S, Ohsawa K, Inoue K, Kohsaka S. Purinergic receptors in microglia: Functional modal shifts of microglia mediated by P2 and P1 receptors. Glia 2012; 61:47-54. [DOI: 10.1002/glia.22358] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 04/30/2012] [Indexed: 11/09/2022]
|
26
|
Thakur M, Rahman W, Hobbs C, Dickenson AH, Bennett DLH. Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis. PLoS One 2012; 7:e33730. [PMID: 22470467 PMCID: PMC3312347 DOI: 10.1371/journal.pone.0033730] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/16/2012] [Indexed: 12/25/2022] Open
Abstract
Joint degeneration observed in the rat monoiodoacetate (MIA) model of osteoarthritis shares many histological features with the clinical condition. The accompanying pain phenotype has seen the model widely used to investigate the pathophysiology of osteoarthritis pain, and for preclinical screening of analgesic compounds. We have investigated the pathophysiological sequellae of MIA used at low (1 mg) or high (2 mg) dose. Intra-articular 2 mg MIA induced expression of ATF-3, a sensitive marker for peripheral neuron stress/injury, in small and large diameter DRG cell profiles principally at levels L4 and 5 (levels predominated by neurones innervating the hindpaw) rather than L3. At the 7 day timepoint, ATF-3 signal was significantly smaller in 1 mg MIA treated animals than in the 2 mg treated group. 2 mg, but not 1 mg, intra-articular MIA was also associated with a significant reduction in intra-epidermal nerve fibre density in plantar hindpaw skin, and produced spinal cord dorsal and ventral horn microgliosis. The 2 mg treatment evoked mechanical pain-related hypersensitivity of the hindpaw that was significantly greater than the 1 mg treatment. MIA treatment produced weight bearing asymmetry and cold hypersensitivity which was similar at both doses. Additionally, while pregabalin significantly reduced deep dorsal horn evoked neuronal responses in animals treated with 2 mg MIA, this effect was much reduced or absent in the 1 mg or sham treated groups. These data demonstrate that intra-articular 2 mg MIA not only produces joint degeneration, but also evokes significant axonal injury to DRG cells including those innervating targets outside of the knee joint such as hindpaw skin. This significant neuropathic component needs to be taken into account when interpreting studies using this model, particularly at doses greater than 1 mg MIA.
Collapse
Affiliation(s)
- Matthew Thakur
- Neuropharmacology of Pain Group, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Ohsawa K, Kohsaka S. Dynamic motility of microglia: Purinergic modulation of microglial movement in the normal and pathological brain. Glia 2011; 59:1793-9. [DOI: 10.1002/glia.21238] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/02/2011] [Indexed: 01/23/2023]
|
28
|
The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol 2011; 234:271-82. [PMID: 21893056 DOI: 10.1016/j.expneurol.2011.08.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 12/23/2022]
Abstract
Microglia are the resident macrophages in the central nervous system (CNS). Any insult to the CNS homeostasis will induce a rapid change in microglia morphology, gene expression profile and functional behaviour. These responses of microglia have been collectively known as 'microgliosis'. Interestingly, damage to the nervous system outside the CNS, such as axotomy of a peripheral nerve, can lead to microgliosis in the spinal cord. There is a variation in the degree of microgliosis depending on the model of nerve injury employed for instance this response is more marked following traumatic nerve injury than in models of chemotherapy induced neuropathy. Following peripheral nerve injury nociceptive inputs from sensory neurons appear to be critical in triggering the development of spinal microgliosis. A number of signalling pathways including growth factors such as Neuregulin-1, matrix metalloproteases such as MMP-9 and multiple chemokines enable direct communication between injured primary afferents and microglia. In addition, we describe a group of mediators which although not demonstrably shown to be released from neurons are known to modulate microglial phenotype. There is a great functional diversity of the microglial response to peripheral nerve injury which includes: Cellular migration, proliferation, cytokine release, phagocytosis, antigen presentation and recruitment of T cells. It should also be noted that in certain contexts microglia may have a role in the resolution of neuro-inflammation. Although there is still no direct evidence demonstrating that spinal microglia have a role in neuropathic pain in humans, these patients present a pro-inflammatory cytokine profile and it is a reasonable hypothesis that these cells may contribute to this inflammatory response. Modulating microglial functions offers a novel therapeutic opportunity following nerve injury which ideally would involve reducing the pro-inflammatory nature of these cells whilst retaining their potential beneficial functions.
Collapse
|
29
|
Kawakami M, Yoshimoto T, Nakagata N, Yamamura KI, Siesjo BK. Effects of cyclosporin A administration on gene expression in rat brain. Brain Inj 2011; 25:614-23. [PMID: 21534739 DOI: 10.3109/02699052.2011.571229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PRIMARY OBJECTIVE The immunosuppressant cyclosporin A (CsA) is reported to have a strong anti-ischemic effect. Although this neuroprotective effect is speculated to be related to the blockade of a mitochondrial permeability transition pore (mPTP), the underlying molecular mechanism remains to be elucidated. This study focused on the effect of CsA on transcriptional regulation in brain cells. METHODS CsA and a control substance were injected into rat brains and purified extracted mRNA. Both mRNAs were compared using a cDNA subtraction technique. RESULTS Nine significantly up-regulated genes and seven significantly down-regulated genes were detected following CsA administration. All of the up-regulated genes are neurotrophic or reported to have roles in regeneration of brain tissue. Among the down-regulated genes, three are known to be detrimental to neuronal cells and are also reported to facilitate the pathology of Alzheimer's disease (AD) and four genes are related to oxidative metabolism. CONCLUSIONS Strong immunosuppression would present as a side-effect during CsA use as a neuroprotectant. The results of this study will help to discriminate between the CsA immunosuppressive effect and the neuroprotective effect at the molecular level and may lead to the development of new conceptual and pharmacological tools.
Collapse
Affiliation(s)
- Minoru Kawakami
- Laboratory of Phylogeny, Institute of Molecular Embryology and Genetics, Kumamoto University, Japan.
| | | | | | | | | |
Collapse
|
30
|
Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J Neurosci 2011; 31:3459-69. [PMID: 21368058 DOI: 10.1523/jneurosci.3932-10.2011] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activation of the complement cascade, a powerful effector mechanism of the innate immune system, is associated with neuroinflammation but also with elimination of inappropriate synapses during development. Synthesis of C1q, a recognition component of the complement system, occurs in brain during ischemia/reperfusion and Alzheimer's disease, suggesting that C1q may be a response to injury. In vitro, C1q, in the absence of other complement proteins, improves neuronal viability and neurite outgrowth and prevents β-amyloid-induced neuronal death, suggesting that C1q may have a direct neuroprotective role. Here, investigating the molecular basis for this neuroprotection in vitro, addition of C1q to rat primary cortical neurons significantly upregulated expression of genes associated with cholesterol metabolism, such as cholesterol-25-hydroxylase and insulin induced gene 2, and transiently decreased cholesterol levels in neurons, known to facilitate neurite outgrowth. In addition, the expression of syntaxin-3 and its functional association with synaptosomal-associated protein 25 was increased. C1q also increased the nuclear translocation of cAMP response element-binding protein and CCAAT/enhancer-binding protein-δ (C/EBP-δ), two transcription factors involved in nerve growth factor (NGF) expression and downregulated specific microRNAs, including let-7c that is predicted to target (and thus inhibit) NGF and neurotrophin-3 (NT-3) mRNA. Accordingly, C1q increased expression of NGF and NT-3, and small interfering RNA inhibition of C/EBP-δ, NGF, or NT-3 expression prevented the C1q-dependent neurite outgrowth. No such neuroprotective effect is seen in the presence of C3a or C5a. Finally, the induced neuronal gene expression required conformationally intact C1q. These results show that C1q can directly promote neuronal survival, thereby demonstrating new interactions between immune proteins and neuronal cells that may facilitate neuroprotection.
Collapse
|
31
|
Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ. Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation 2011; 8:4. [PMID: 21235806 PMCID: PMC3033336 DOI: 10.1186/1742-2094-8-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 01/15/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Complement proteins and activation products have been found associated with neuropathology in Alzheimer's disease (AD). Recently, a C5a receptor antagonist was shown to suppress neuropathology in two murine models of AD, Tg2576 and 3xTg. Previously, a genetic deficiency of C1q in the Tg2576 mouse model showed an accumulation of fibrillar plaques similar to the complement sufficient Tg2576, but reactive glia were significantly decreased and neuronal integrity was improved suggesting detrimental consequences for complement activation in AD. The goal of this study was to define the role of the classical complement activation pathway in the progression of pathology in the 3xTg mouse that develops tangles in addition to fibrillar plaques (more closely reflecting human AD pathology) and to assess the influence of complement in a model of AD with a higher level of complement hemolytic activity. METHODS 3xTg mice deficient in C1q (3xTgQ-/-) were generated, and both 3xTg and 3xTgQ-/- were backcrossed to the BUB mouse strain which has higher in vitro hemolytic complement activity. Mice were aged and perfused, and brain sections stained for pathological markers or analyzed for proinflammatory marker expression. RESULTS 3xTgQ-/- mice showed similar amounts of fibrillar amyloid, reactive glia and hyperphosphorylated tau as the C1q-sufficient 3xTg at the ages analyzed. However, 3xTg and 3xTgQ-/- on the BUB background developed pathology earlier than on the original 3xTg background, although the presence of C1q had no effect on neuropathological and pro-inflammatory markers. In contrast to that seen in other transgenic models of AD, C1q, C4 and C3 immunoreactivity was undetectable on the plaques of 3xTg in any background, although C3 was associated with reactive astrocytes surrounding the plaques. Importantly, properdin a component of the alternative complement pathway was associated with plaques in all models. CONCLUSIONS In contrast to previously investigated transgenic models of AD, development of neuropathology in 3xTg mice, which progresses much slower than other murine models, may not be influenced by fibrillar amyloid mediated activation of the classical complement pathway, suggesting that the alternative complement pathway activation or a C3-independent cleavage of C5 could account for the detrimental effects in these mice that are prevented by the C5a receptor antagonist. Furthermore, the paucity of complement activation may be a factor in the slower kinetics of progression of pathology in the 3xTg model of this disease.
Collapse
Affiliation(s)
- Maria I Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Shu-Hui Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Alisia M Berci
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Marie E Benoit
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Douglas G Peters
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
| | - Yuko Kimura
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
32
|
CNS-specific expression of C3a and C5a exacerbate demyelination severity in the cuprizone model. Mol Immunol 2010; 48:219-30. [PMID: 20813409 DOI: 10.1016/j.molimm.2010.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/03/2010] [Accepted: 08/10/2010] [Indexed: 12/18/2022]
Abstract
Demyelination in the central nervous system (CNS) is known to involve several immune effector mechanisms, including complement proteins. Local production of complement by glial cells in the brain can be both harmful and protective. To investigate the roles of C3a and C5a in demyelination and remyelination pathology we utilized the cuprizone model. Transgenic mice expressing C3a or C5a under the control of the glial fibrillary acidic protein (GFAP) promoter had exacerbated demyelination and slightly delayed remyelination in the corpus callosum compared to WT mice. C3a and C5a transgenic mice had increased cellularity in the corpus callosum due to increase activation and/or migration of microglia. Oligodendrocytes migrated to the corpus callosum in higher numbers during early remyelination events in C3a and C5a transgenic mice, thus enabling these mice to remyelinate as effectively as WT mice by the end of the 10 week study. To determine the effects of C3a and/or C5a on individual glial subsets, we created murine recombinant C3a and C5a proteins. When microglia and mixed glial cultures were stimulated with C3a and/or C5a, we observed an increase in the production of proinflammatory cytokines and chemokines. In contrast, astrocytes had decreased cytokine and chemokine production in the presence of C3a and/or C5a. We also found that the MAPK pathway proteins JNK and ERK1/2 were activated in glia upon stimulation with C3a and C5a. Overall, our findings show that although C3a and C5a production in the brain play a negative role during demyelination, these proteins may aid in remyelination.
Collapse
|
33
|
Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury. Exp Brain Res 2010; 205:103-14. [PMID: 20602094 DOI: 10.1007/s00221-010-2342-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Secondary brain damage following traumatic brain injury in part depends on neuroinflammation, a process where genetic factors may play an important role. We examined the response to a standardized cortical contusion in two different inbred rat strains, Dark Agouti (DA) and Piebald Virol Glaxo (PVG). Both are well characterized in models of autoimmune neuroinflammation, where DA is susceptible and PVG resistant. We found that infiltration of polymorphonuclear granulocytes (PMN) at 3-day postinjury was more pronounced in PVG. DA was more infiltrated by T cells at 3-day postinjury, showed an enhanced glial activation at 7-day postinjury and higher expression of C3 complement at 7-day postinjury. Neurodegeneration, assessed by Fluoro-Jade, was also more pronounced in the DA strain at 30-day postinjury. These results demonstrate differences in the response to cortical contusion injury attributable to genetic influences and suggest a link between injury-induced inflammation and neurodegeneration. Genetic factors that regulate inflammation elicited by brain trauma may be important for the development of secondary brain damage.
Collapse
|
34
|
Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 2010; 30:5437-50. [PMID: 20392965 DOI: 10.1523/jneurosci.5169-09.2010] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A key component in the response of the nervous system to injury is the proliferation and switch to a "proinflammatory" phenotype by microglia (microgliosis). In situations where the blood-brain barrier is intact, microglial numbers increase via the proliferation and chemotaxis of resident microglia; however, there is limited knowledge regarding the factors mediating this response. After peripheral nerve injury, a dorsal horn microgliosis develops, which directly contributes to the development of neuropathic pain. Neuregulin-1 (NRG-1) is a growth and differentiation factor with a well characterized role in neural and cardiac development. Microglia express the NRG1 receptors erbB2, 3, and 4, and NRG1 signaling via the erbB2 receptor stimulated microglial proliferation, chemotaxis, and survival, as well as interleukin-1beta release in vitro. Intrathecal treatment with NRG1 resulted in microglial proliferation within the dorsal horn, and these cells developed an activated morphology. This microglial response was associated with the development of both mechanical and cold pain-related hypersensitivity. Primary afferents express NRG1, and after spinal nerve ligation (SNL) we observed both an increase in NRG1 within the dorsal horn as well as activation of erbB2 specifically within microglia. Blockade of the erbB2 receptor or sequestration of endogenous NRG after SNL reduced the proliferation, the number of microglia with an activated morphology, and the expression of phospho-P38 by microglia. Furthermore, consequent to such changes, the mechanical pain-related hypersensitivity and cold allodynia were reduced. NRG1-erbB signaling therefore represents a novel pathway regulating the injury response of microglia.
Collapse
|
35
|
Role for complement in the development of seizures following acute viral infection. J Virol 2010; 84:6452-60. [PMID: 20427530 DOI: 10.1128/jvi.00422-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement, part of the innate immune system, acts to remove pathogens and unwanted host material. Complement is known to function in all tissues, including the central nervous system (CNS). In this study, we demonstrated the importance of the complement system within the CNS in the development of behavioral seizures following Theiler's murine encephalomyelitis virus (TMEV) infection. C57BL/6 mice, deficient in complement component C3, developed significantly fewer behavioral seizures following TMEV infection, whereas mice depleted of complement component C3 in the periphery through treatment with cobra venom factor had a seizure rate comparable to that of control mice. These studies indicate that C3 participates in the induction of acute seizures during viral encephalitis.
Collapse
|
36
|
Gyoneva S, Orr AG, Traynelis SF. Differential regulation of microglial motility by ATP/ADP and adenosine. Parkinsonism Relat Disord 2010; 15 Suppl 3:S195-9. [PMID: 20082989 DOI: 10.1016/s1353-8020(09)70813-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microglia are motile immune-competent cells of the central nervous system. They assume a highly branched morphology and monitor the brain parenchyma under physiological conditions. In the presence of injury, microglia retract their branching processes, migrate to the site of injury, and help clear cellular debris by phagocytosis. This response appears to be mediated in part by ATP released at the site of injury. Here, we review the evidence for the involvement of ATP and the purinergic P2Y(12) receptor in microglial process extension and chemoattraction to injury. We subsequently discuss recent findings regarding a switch of this chemotactic response to ATP in activated, or proinflammatory, microglia. Specifically, in LPS-activated microglia, ATP induces process retraction and repulsive migration, effects opposite to those seen in unstimulated cells. These repulsive effects of ATP are mediated by the G(s)-coupled adenosine A(2A) receptor and depend on the breakdown of ATP to adenosine. Thus, ATP-induced repulsion by activated microglia involves upregulation of the adenosine A(2A) receptor and coincident downregulation of the P2Y(12) receptor. The roles of the A(2A) receptor in brain pathologies such as Parkinson's disease and ischemia are also examined. We propose that the effects of A(2A) receptor antagonists on brain injury may be in part due to the inactivation of A(2A) on activated microglia.
Collapse
Affiliation(s)
- Stefka Gyoneva
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
37
|
Ager RR, Fonseca MI, Chu SH, Sanderson SD, Taylor SM, Woodruff TM, Tenner AJ. Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer's disease. J Neurochem 2010; 113:389-401. [PMID: 20132482 DOI: 10.1111/j.1471-4159.2010.06595.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by the accumulation of amyloid-beta protein and neuronal loss, is the leading cause of age-related dementia in the world today. The disease is also associated with neuroinflammation, robust activation of astrocytes and microglia, and evidence of activation of the complement system, localized with both fibrillar amyloid-beta (fAbeta) plaques and tangles. The observations are consistent with a complement-dependent component of AD progression. We have previously shown that inhibition of the major complement receptor for C5a (CD88) with the antagonist PMX205 results in a significant reduction in pathology in two mouse models of AD. To further characterize the role of complement in AD-related neuroinflammation, we examined the age- and disease-associated expression of CD88 in brain of transgenic mouse models of AD and the influence of PMX205 on the presence of various complement activation products using flow cytometry, western blot, and immunohistochemistry. CD88 was found to be up-regulated in microglia, in the immediate vicinity of amyloid plaques. While thioflavine plaque load and glial recruitment is significantly reduced after treatment with PMX205, C1q remains co-localized with fAbeta plaques and C3 is still expressed by the recruited astrocytes. Thus, with PMX205, potentially beneficial activities of these early complement components may remain intact, while detrimental activities resulting from C5a-CD88 interaction are inhibited. This further supports the targeted inhibition of specific complement mediated activities as an approach for AD therapy.
Collapse
Affiliation(s)
- Rahasson R Ager
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Cook WJ, Galakatos N, Boyar WC, Walter RL, Ealick SE. Structure of human desArg-C5a. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:190-7. [PMID: 20124699 DOI: 10.1107/s0907444909049051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022]
Abstract
The anaphylatoxin C5a is derived from the complement component C5 during activation of the complement cascade. It is an important component in the pathogenesis of a number of inflammatory diseases. NMR structures of human and porcine C5a have been reported; these revealed a four-helix bundle stabilized by three disulfide bonds. The crystal structure of human desArg-C5a has now been determined in two crystal forms. Surprisingly, the protein crystallizes as a dimer and each monomer in the dimer has a three-helix core instead of the four-helix bundle noted in the NMR structure determinations. Furthermore, the N-terminal helices of the two monomers occupy different positions relative to the three-helix core and are completely different from the NMR structures. The physiological significance of these structural differences is unknown.
Collapse
Affiliation(s)
- William J Cook
- University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
39
|
Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med 2009; 12:179-92. [PMID: 19763906 DOI: 10.1007/s12017-009-8085-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/25/2009] [Indexed: 12/28/2022]
Abstract
The complement system is a pivotal component of the innate immune system which protects the host from infection and injury. Complement proteins can be induced in all cell types within the central nervous system (CNS), where the pathway seems to play similar roles in host defense. Complement activation produces the C5 cleavage fragment C5a, a potent inflammatory mediator, which recruits and activates immune cells. The primary cellular receptor for C5a, the C5a receptor (CD88), has been reported to be on all CNS cells, including neurons and glia, suggesting a functional role for C5a in the CNS. A second receptor for C5a, the C5a-like receptor 2 (C5L2), is also expressed on these cells; however, little is currently known about its potential role in the CNS. The potent immune and inflammatory actions of complement activation are necessary for host defense. However, if over-activated, or left unchecked it promotes tissue injury and contributes to brain disease pathology. Thus, complement activation, and subsequent C5a generation, is thought to play a significant role in the progression of CNS disease. Paradoxically, complement may also exert a neuroprotective role in these diseases by aiding in the elimination of aggregated and toxic proteins and debris which are a principal hallmark of many of these diseases. This review will discuss the expression and known roles for complement in the CNS, with a particular focus on the pro-inflammatory end-product, C5a. The possible overarching role for C5a in diseases of the CNS is reviewed, and the therapeutic potential of blocking C5a/CD88 interaction is evaluated.
Collapse
Affiliation(s)
- Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, 4072, Australia.
| | | | | | | | | |
Collapse
|
40
|
Benton RL, Maddie MA, Dincman TA, Hagg T, Whittemore SR. Transcriptional activation of endothelial cells by TGFβ coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury. ASN Neuro 2009; 1:e00015. [PMID: 19663807 PMCID: PMC2810814 DOI: 10.1042/an20090008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/17/2022] Open
Abstract
Microvascular dysfunction, loss of vascular support, ischaemia and sub-acute vascular instability in surviving blood vessels contribute to secondary injury following SCI (spinal cord injury). Neither the precise temporal profile of the cellular dynamics of spinal microvasculature nor the potential molecular effectors regulating this plasticity are well understood. TGFβ (transforming growth factor β) isoforms have been shown to be rapidly increased in response to SCI and CNS (central nervous system) ischaemia, but no data exist regarding their contribution to microvascular dysfunction following SCI. To examine these issues, in the present study we used a model of focal spinal cord ischaemia/reperfusion SCI to examine the cellular response(s) of affected microvessels from 30 min to 14 days post-ischaemia. Spinal endothelial cells were isolated from affected tissue and subjected to focused microarray analysis of TGFβ-responsive/related mRNAs 6 and 24 h post-SCI. Immunohistochemical analyses of histopathology show neuronal disruption/loss and astroglial regression from spinal microvessels by 3 h post-ischaemia, with complete dissolution of functional endfeet (loss of aquaporin-4) by 12 h post-ischaemia. Coincident with this microvascular plasticity, results from microarray analyses show 9 out of 22 TGFβ-responsive mRNAs significantly up-regulated by 6 h post-ischaemia. Of these, serpine 1/PAI-1 (plasminogen-activator inhibitor 1) demonstrated the greatest increase (>40-fold). Furthermore, uPA (urokinase-type plasminogen activator), another member of the PAS (plasminogen activator system), was also significantly increased (>7.5-fold). These results, along with other select up-regulated mRNAs, were confirmed biochemically or immunohistochemically. Taken together, these results implicate TGFβ as a potential molecular effector of the anatomical and functional plasticity of microvessels following SCI.
Collapse
Key Words
- endothelin
- insulin-like growth factor binding protein 3 (igfbp-3)
- interleukin-6 (il-6)
- matrix metalloproteinase 9 (mmp-9)
- plasminogen-activator inhibitor 1 (pai-1)
- urokinase-type plasminogen activator (upa)
- aqp-4, aquaporin-4
- bmp, bone morphogenetic protein
- bscb, blood-spinal cord-barrier
- cns, central nervous system
- ec, endothelial cell
- et, endothelin
- gfap, glial fibrillary acidic protein
- huvec, human umbilical vein endothelial cell
- igf, insulin-like growth factor
- igfbp-3, igf-binding protein 3
- il, interleukin
- lea, lycopersicon esculentum agglutinin
- llc, large latent complex
- map2, microtubule-associated protein 2
- mcao, middle cerebral artery occlusion
- mmp, matrix metalloproteinase
- nvu, neurovascular unit
- pa, plasminogen activator
- pai, pa inhibitor
- pas, pa system
- sci, spinal cord injury
- smvec, spinal microvascular ec
- tbs, tris-buffered saline
- tgfβ, transforming growth factor β
- tpa, tissue-type pa
- tsp-1, thrombospondin-1
- upa, urokinase-type pa
- upar, upa receptor
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Richard L Benton
- daggerKentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
41
|
Miller AM, Stella N. Microglial cell migration stimulated by ATP and C5a involve distinct molecular mechanisms: quantification of migration by a novel near-infrared method. Glia 2009; 57:875-83. [PMID: 19053059 DOI: 10.1002/glia.20813] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microglial cells, the macrophages of the brain, play an essential role in the propagation of neuroinflammation. Increased microglial cell migration in response to specific chemoattractants has been documented, but less is known about the differences between these stimuli and the signal transduction pathways that mediate their effects. Current methods to measure cell migration are often labor-intensive and rely on the manual counting of cell number, so more efficient and objective methods are needed. Here we present an improved and higher-throughput Boyden chamber technique that measures microglial cell migration by using DRAQ5, a nuclear dye that emits in the near-infrared. Out of a panel of chemoattractants tested, we found that ATP and C5a potently stimulate the migration of mouse primary microglial cells. The stimulatory effects of ATP and C5a displayed significant additivity, suggesting that each chemoattractant stimulated migration through independent molecular mechanisms. Accordingly, we found key differences in these responses: ATP stimulated a combination of both chemokinesis and chemotaxis, and this response was mediated by the ROCK signaling pathway; whereas C5a stimulated only chemotaxis and this response was mediated by the Rac1 signaling pathway. Finally, we found that functional PI3-kinase is only required for random basal microglial cell migration. Thus, our results show that distinct nonoverlapping signal transduction pathways control different modes of microglial cell migration and suggest that the targeting of these distinct molecular mechanisms should modulate different aspects of neuroinflammation propagation.
Collapse
Affiliation(s)
- Aaron M Miller
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | | |
Collapse
|
42
|
Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, Taylor SM, Woodruff TM, Tenner AJ. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. THE JOURNAL OF IMMUNOLOGY 2009; 183:1375-83. [PMID: 19561098 DOI: 10.4049/jimmunol.0901005] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is an age-related dementia, characterized by amyloid plaques, neurofibrillary tangles, neuroinflammation, and neuronal loss in the brain. Components of the complement system, known to produce a local inflammatory reaction, are associated with the plaques and tangles in AD brain, and thus a role for complement-mediated inflammation in the acceleration or progression of disease has been proposed. A complement activation product, C5a, is known to recruit and activate microglia and astrocytes in vitro by activation of a G protein-coupled cell-surface C5aR. Here, oral delivery of a cyclic hexapeptide C5a receptor antagonist (PMX205) for 2-3 mo resulted in substantial reduction of pathological markers such as fibrillar amyloid deposits (49-62%) and activated glia (42-68%) in two mouse models of AD. The reduction in pathology was correlated with improvements in a passive avoidance behavioral task in Tg2576 mice. In 3xTg mice, PMX205 also significantly reduced hyperphosphorylated tau (69%). These data provide the first evidence that inhibition of a proinflammatory receptor-mediated function of the complement cascade (i.e., C5aR) can interfere with neuroinflammation and neurodegeneration in AD rodent models, suggesting a novel therapeutic target for reducing pathology and improving cognitive function in human AD patients.
Collapse
Affiliation(s)
- Maria I Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol 2009; 46:2753-66. [PMID: 19477527 DOI: 10.1016/j.molimm.2009.04.027] [Citation(s) in RCA: 523] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/28/2009] [Indexed: 12/16/2022]
Abstract
The anaphylatoxin (AT) C3a, C5a and C5a-desArg are generally considered pro-inflammatory polypeptides generated after proteolytic cleavage of C3 and C5 in response to complement activation. Their well-appreciated effector functions include chemotaxis and activation of granulocytes, mast cells and macrophages. Recent evidence suggests that ATs are also generated locally within tissues by pathogen-, cell-, or contact system-derived proteases. This local generation of ATs is important for their pleiotropic biologic effects beyond inflammation. The ATs exert most of the biologic activities through ligation of three cognate receptors, i.e. the C3a receptor, the C5a receptor and the C5a receptor-like, C5L2. Here, we will discuss recent findings suggesting that ATs regulate cell apoptosis, lipid metabolism as well as innate and adaptive immune responses through their impact on antigen-presenting cells and T cells. As we will outline, such regulatory functions of ATs and their receptors play important roles in the pathogenesis of allergy, autoimmunity, neurodegenerative diseases, cancer and infections with intracellular pathogens.
Collapse
Affiliation(s)
- Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, MHH, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Humayun S, Gohar M, Volkening K, Moisse K, Leystra-Lantz C, Mepham J, McLean J, Strong MJ. The complement factor C5a receptor is upregulated in NFL-/- mouse motor neurons. J Neuroimmunol 2009; 210:52-62. [PMID: 19286267 DOI: 10.1016/j.jneuroim.2009.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 11/28/2022]
Abstract
In NFL-/- mice, a model of motor neuron degeneration in ALS, degenerating spinal motor neurons express high levels of the receptor for the C5a anaphylatoxin (C5aR) early in the disease process. C5a is a potent in vitro neurotoxin for both Neuro2A and NGF-differentiated PC12 cells. While no interaction was observed between glutamate and C5a, both C5a and kainate upregulated the expression of activated C5aR. C5aR expression was increased in motor neurons in ALS. This data suggests that the early upregulation of C5aR may contribute to motor neuron damage that potentiates excitotoxicity in ALS.
Collapse
Affiliation(s)
- Saima Humayun
- Department of Pathology, Schulich School of Medicine, University of Western Ontario, London, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hoffmann A, Hofmann F, Just I, Lehnardt S, Hanisch UK, Brück W, Kettenmann H, Ahnert-Hilger G, Höltje M. Inhibition of Rho-dependent pathways by Clostridium botulinum C3 protein induces a proinflammatory profile in microglia. Glia 2008; 56:1162-75. [PMID: 18442097 DOI: 10.1002/glia.20687] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful regeneration in the central nervous system crucially depends on the adequate environment. Microglia as brain immune-competent cells importantly contribute to this task by producing pro- and anti-inflammatory mediators. Any environmental change transforms these cells towards an activated phenotype, leading to major morphological, transcriptional and functional alterations. Rho GTPases affect multiple cellular properties, including the cytoskeleton, and C3 proteins are widely used to study their involvement. Especially C3bot from Clostridium botulinum has been considered to promote neuronal regeneration by changing Rho activity. Yet C3bot may exert cellular influences through alternative mechanisms. To determine the role of Rho-dependent pathways in microglia we investigated the influence of C3bot on functional properties of cultivated primary mouse microglial cells. Nanomolar concentrations of C3bot transformed microglia towards an activated phenotype and triggered the release of nitric oxide and several proinflammatory cyto- and chemokines. These inductions were not mediated by the ROCK-kinase pathway, since its selective inhibitors Y27632 and H1152 had no effect. C3-induced and Rho-mediated NO release was instead found to be under the control of NFkappaB, as revealed by treatment with the NFkappaB inhibitor PDTC. Thus, C3bot induces a proinflammatory response in microglia resembling the classical proinflammatory phenotype elicited by bacterial LPS. The findings are relevant for the use of C3bot in regenerative approaches.
Collapse
Affiliation(s)
- Anja Hoffmann
- Institut für Neuropathologie, Universität Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem 2008; 107:1169-87. [PMID: 18786171 DOI: 10.1111/j.1471-4159.2008.05668.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.
Collapse
|
47
|
Gao X, Hu X, Qian L, Yang S, Zhang W, Zhang D, Wu X, Fraser A, Wilson B, Flood PM, Block M, Hong JS. Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:593-598. [PMID: 18470306 PMCID: PMC2367670 DOI: 10.1289/ehp.11031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/28/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD. OBJECTIVES We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD. METHODS We measured DA neurotoxicity using a DA uptake assay and immunocytochemical staining (ICC) in primary mesencephalic cultures from rodents. Microglial activation was observed via ICC, flow cytometry, and superoxide measurement. RESULTS fMLP can cause selective DA neuronal loss at concentrations as low as 10(-13) M. Further, fMLP (10(-13) M) led to a significant reduction in DA uptake capacity in neuron/glia (N/G) cultures, but not in microglia-depleted cultures, indicating an indispensable role of microglia in fMLP-induced neurotoxicity. Using ICC of a specific microglial marker, OX42, we observed morphologic changes in activated microglia after fMLP treatment. Microglial activation after fMLP treatment was confirmed by flow cytometry analysis of major histocompatibility antigen class II expression on a microglia HAPI cell line. Mechanistic studies revealed that fMLP (10(-13) M)-induced increase in the production of extracellular superoxide from microglia is critical in mediating fMLP-elicited neurotoxicity. Pharmacologic inhibition of NADPH oxidase (PHOX) with diphenylene-iodonium or apocynin abolished the DA neurotoxicity of fMLP. N/G cultures from PHOX-deficient (gp91PHOX-/ -) mice were also insensitive to fMLP-induced DA neurotoxicity. CONCLUSION fMLP (10(-13) M) induces DA neurotoxicity through activation of microglial PHOX and subsequent production of superoxide, suggesting a role of fMLP in the central nervous system inflammatory process.
Collapse
Affiliation(s)
- Xi Gao
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Xiaoming Hu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sufen Yang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Wei Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Dan Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Xuefei Wu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison Fraser
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Belinda Wilson
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Patrick M Flood
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michelle Block
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
48
|
Lee H, Whitfeld PL, Mackay CR. Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2. Immunol Cell Biol 2008; 86:153-60. [PMID: 18227853 DOI: 10.1038/sj.icb.7100166] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complement component C5a is one of the most potent inflammatory chemoattractants and has been implicated in the pathogenesis of numerous inflammatory diseases. C5a binds two receptors, C5aR and C5L2. Most of the C5a functional effects occur through C5aR, and the pharmaceutical industry has focused on this receptor for the development of new anti-inflammatory therapies. We used a novel approach to generate and test therapeutics that target C5aR. We created human C5aR knock-in mice, and used neutrophils from these to immunize wild-type mice. This yielded high-affinity blocking mAbs to human C5aR. We tested these anti-human C5aR mAbs in mouse models of inflammation, using the human C5aR knock-in mice. These antibodies completely prevented disease onset and were also able to reverse established disease in the K/B x N arthritis model. The physiological role of the other C5a receptor, C5L2 is still unclear, and our studies with blocking mAbs to human C5L2 have failed to demonstrate a clear functional role in signaling to C5a. The development of effective mAbs to human C5aR is an alternative approach to drug development, for this highly attractive target.
Collapse
Affiliation(s)
- Hyun Lee
- Immunology and Inflammation Department, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | | | | |
Collapse
|
49
|
Abstract
Recent insights into the function and dysfunction of microglia may inform future therapies to combat neurodegeneration. We hypothesise how different aspects of microglial activity including migration, activation, oxidative response, phagocytosis, proteolysis, and replenishment could be targeted by novel therapeutic approaches. A combined approach is suggested, encompassing opsonization and anti-inflammatory strategies in conjunction with an engineering of microglial precursors. Xenoproteases for bioremediation could be used to enhance intracellular and extracellular proteolytic capacity. The capacity of microglial precursors to cross the blood-brain barrier and to home in on sites of neural damage and inflammation might prove to be particularly useful for future therapeutic strategies.
Collapse
Affiliation(s)
- John Schloendorn
- Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | |
Collapse
|
50
|
Monk PN, Scola AM, Madala P, Fairlie DP. Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol 2007; 152:429-48. [PMID: 17603557 PMCID: PMC2050825 DOI: 10.1038/sj.bjp.0707332] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Complement fragment (C)5a is a 74 residue pro-inflammatory polypeptide produced during activation of the complement cascade of serum proteins in response to foreign surfaces such as microorganisms and tissue damaged by physical or chemical injury. C5a binds to at least two seven-transmembrane domain receptors, C5aR (C5R1, CD88) and C5L2 (gpr77), expressed ubiquitously on a wide variety of cells but particularly on the surface of immune cells like macrophages, neutrophils and T cells. C5aR is a classical G protein-coupled receptor that signals through G alpha i and G alpha 16, whereas C5L2 does not appear to couple to G proteins and has no known signalling activity. Although C5a was first described as an anaphylatoxin and later as a leukocyte chemoattractant, the widespread expression of C5aR suggested more general functionality. Our understanding of the physiology of C5a has improved significantly in recent years through exploitation of receptor knockout and knocking mice, C5 and C5a antibodies, soluble recombinant C5a and C5a analogues and newly developed receptor antagonists. C5a is now also implicated in non-immunological functions associated with developmental biology, CNS development and neurodegeneration, tissue regeneration, and haematopoiesis. Combined receptor mutagenesis, molecular modelling, structure-activity relationship studies and species dependence for ligand potency on C5aR have been helpful for identifying ligand binding sites on the receptor and for defining mechanisms of receptor activation and inactivation. This review will highlight major developments in C5a receptor research that support C5aR as an important therapeutic target. The intriguing possibilities raised by the existence of a non-signalling C5a receptor are also discussed.
Collapse
Affiliation(s)
- P N Monk
- Academic Neurology Unit, School of Medicine and Biomedical Science, University of Sheffield, Sheffield, UK.
| | | | | | | |
Collapse
|