1
|
Wei SL, Yang Y, Si WY, Zhou Y, Li T, Du T, Zhang P, Li XL, Duan RN, Duan RS, Yang CL. Methylglyoxal suppresses microglia inflammatory response through NRF2-IκBζ pathway. Redox Biol 2023; 65:102843. [PMID: 37573838 PMCID: PMC10440576 DOI: 10.1016/j.redox.2023.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Methylglyoxal (MGO) is a highly reactive metabolite generated by glycolysis. Although abnormal accumulation of MGO has been reported in several autoimmune diseases such as multiple sclerosis and rheumatoid arthritis, the role of MGO in autoimmune diseases has not yet been fully investigated. In this study, we found that the intracellular MGO levels increased in activated immune cells, such as microglia and lymphocytes. Treatment with MGO inhibited inflammatory cell accumulation in the spinal cord and ameliorated the clinical symptoms in EAE mice. Further analysis indicated that MGO suppressed M1-polarization of microglia cells and diminished their inflammatory cytokine production. MGO also inhibited the ability of microglial cells to recruit and activate lymphocytes by decreasing chemokine secretion and expression of co-stimulatory molecules. Furthermore, MGO negatively regulated glycolysis by suppressing glucose transporter 1 expression. Mechanically, we found that MGO could activate nuclear factor erythroid 2-related factor 2 (NRF2) pathway and NRF2 could bind to the promoter of IκBζ gene and suppressed its transcription and subsequently pro-inflammatory cytokine production. In conclusion, our results showed that MGO acts as an immunosuppressive metabolite by activating the NRF2-IκBζ.
Collapse
Affiliation(s)
- Shu-Li Wei
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250011, PR China
| | - Ying Yang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250011, PR China
| | - Yang Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China
| | - Tao Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China
| | - Ruo-Nan Duan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250011, PR China; Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China.
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China.
| |
Collapse
|
2
|
Chandley MJ, Szebeni A, Szebeni K, Wang-Heaton H, Garst J, Stockmeier CA, Lewis NH, Ordway GA. Markers of elevated oxidative stress in oligodendrocytes captured from the brainstem and occipital cortex in major depressive disorder and suicide. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110559. [PMID: 35452747 DOI: 10.1016/j.pnpbp.2022.110559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Major depressive disorder (MDD) and suicide have been associated with elevated indices of oxidative damage in the brain, as well as white matter pathology including reduced myelination by oligodendrocytes. Oligodendrocytes highly populate white matter and are inherently susceptible to oxidative damage. Pathology of white matter oligodendrocytes has been reported to occur in brain regions that process behaviors that are disrupted in MDD and that may contribute to suicidal behavior. The present study was designed to determine whether oligodendrocyte pathology related to oxidative damage extends to brain areas outside of those that are traditionally considered to contribute to the psychopathology of MDD and suicide. Relative telomere lengths and the gene expression of five antioxidant-related genes, SOD1, SOD2, GPX1, CAT, and AGPS were measured in oligodendrocytes laser captured from two non-limbic brain areas: occipital cortical white matter and the brainstem locus coeruleus. Postmortem brain tissues were obtained from brain donors that died by suicide and had an active MDD at the time of death, and from psychiatrically normal control donors. Relative telomere lengths were significantly reduced in oligodendrocytes of both brain regions in MDD donors as compared to control donors. Three antioxidant-related genes (SOD1, SOD2, GPX1) were significantly reduced and one was significantly elevated (AGPS) in oligodendrocytes from both brain regions in MDD as compared to control donors. These findings suggest that oligodendrocyte pathology in MDD and suicide is widespread in the brain and not restricted to brain areas commonly associated with depression psychopathology.
Collapse
Affiliation(s)
- Michelle J Chandley
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America.
| | - Attila Szebeni
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Katalin Szebeni
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Hui Wang-Heaton
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Jacob Garst
- Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, United States of America
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Nicole H Lewis
- Department of Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Gregory A Ordway
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
3
|
Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019; 74:230-241. [PMID: 31377220 DOI: 10.1016/j.neuro.2019.07.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/16/2023]
Abstract
Metals are involved in different pathophysiological mechanisms associated with neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS). The aim of this study was to review the effects of the essential metals zinc (Zn), copper (Cu), manganese (Mn) and iron (Fe) on the central nervous system (CNS), as well as the mechanisms involved in their neurotoxicity. Low levels of Zn as well as high levels of Cu, Mn, and Fe participate in the activation of signaling pathways of the inflammatory, oxidative and nitrosative stress (IO&NS) response, including nuclear factor kappa B and activator protein-1. The imbalance of these metals impairs the structural, regulatory, and catalytic functions of different enzymes, proteins, receptors, and transporters. Neurodegeneration occurs via association of metals with proteins and subsequent induction of aggregate formation creating a vicious cycle by disrupting mitochondrial function, which depletes adenosine triphosphate and induces IO&NS, cell death by apoptotic and/or necrotic mechanisms. In AD, at low levels, Zn suppresses β-amyloid-induced neurotoxicity by selectively precipitating aggregation intermediates; however, at high levels, the binding of Zn to β-amyloid may enhance formation of fibrillar β-amyloid aggregation, leading to neurodegeneration. High levels of Cu, Mn and Fe participate in the formation α-synuclein aggregates in intracellular inclusions, called Lewy Body, that result in synaptic dysfunction and interruption of axonal transport. In PD, there is focal accumulation of Fe in the substantia nigra, while in AD a diffuse accumulation of Fe occurs in various regions, such as cortex and hippocampus, with Fe marginally increased in the senile plaques. Zn deficiency induces an imbalance between T helper (Th)1 and Th2 cell functions and a failure of Th17 down-regulation, contributing to the pathogenesis of MS. In MS, elevated levels of Fe occur in certain brain regions, such as thalamus and striatum, which may be due to inflammatory processes disrupting the blood-brain barrier and attracting Fe-rich macrophages. Delineating the specific mechanisms by which metals alter redox homeostasis is essential to understand the pathophysiology of AD, PD, and MS and may provide possible new targets for their prevention and treatment of the patients affected by these NDDs.
Collapse
Affiliation(s)
- Leda Mezzaroba
- Laboratory of Applied Immunology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Zip Code 86.038-440 Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Zip Code 86.038-440 Brazil
| | - Daniela Frizon Alfieri
- Laboratory of Applied Immunology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Zip Code 86.038-440 Brazil
| | - Andrea Name Colado Simão
- Laboratory of Applied Immunology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Zip Code 86.038-440 Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Zip Code 86.038-440 Brazil
| | - Edna Maria Vissoci Reiche
- Laboratory of Applied Immunology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Zip Code 86.038-440 Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Zip Code 86.038-440 Brazil.
| |
Collapse
|
4
|
Ordway GA, Szebeni A, Hernandez LJ, Crawford JD, Szebeni K, Chandley MJ, Burgess KC, Miller C, Bakkalbasi E, Brown RW. Antidepressant-Like Actions of Inhibitors of Poly(ADP-Ribose) Polymerase in Rodent Models. Int J Neuropsychopharmacol 2017; 20:994-1004. [PMID: 29016792 PMCID: PMC5716178 DOI: 10.1093/ijnp/pyx068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Many patients suffering from depressive disorders are refractory to treatment with currently available antidepressant medications, while many more exhibit only a partial response. These factors drive research to discover new pharmacological approaches to treat depression. Numerous studies demonstrate evidence of inflammation and elevated oxidative stress in major depression. Recently, major depression has been shown to be associated with elevated levels of DNA oxidation in brain cells, accompanied by increased gene expression of the nuclear base excision repair enzyme, poly(ADP-ribose) polymerase-1. Given these findings and evidence that drugs that inhibit poly(ADP-ribose) polymerase-1 activity have antiinflammatory and neuroprotective properties, the present study was undertaken to examine the potential antidepressant properties of poly(ADP-ribose) polymerase inhibitors. METHODS Two rodent models, the Porsolt swim test and repeated exposure to psychological stressors, were used to test the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, for potential antidepressant activity. Another poly(ADP-ribose) polymerase inhibitor, 5-aminoisoquinolinone, was also tested. RESULTS Poly(ADP-ribose) polymerase inhibitors produced antidepressant-like effects in the Porsolt swim test, decreasing immobility time, and increasing latency to immobility, similar to the effects of fluoxetine. In addition, 3-aminobenzamide treatment increased sucrose preference and social interaction times relative to vehicle-treated control rats following repeated exposure to combined social defeat and unpredictable stress, mediating effects similar to fluoxetine treatment. CONCLUSIONS The poly(ADP-ribose) polymerase inhibitors 3-aminobenzamide and 5-aminoisoquinolinone exhibit antidepressant-like activity in 2 rodent stress models and uncover poly(ADP-ribose) polymerase as a unique molecular target for the potential development of a novel class of antidepressants.
Collapse
Affiliation(s)
- Gregory A Ordway
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi),Correspondence: Gregory A. Ordway, PhD, East Tennessee State University, PO Box 70577, Johnson City, 37614 ()
| | - Attila Szebeni
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Liza J Hernandez
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Jessica D Crawford
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Katalin Szebeni
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Michelle J Chandley
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Katherine C Burgess
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Corwin Miller
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Erol Bakkalbasi
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Russell W Brown
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| |
Collapse
|
5
|
Szebeni A, Szebeni K, DiPeri TP, Johnson LA, Stockmeier CA, Crawford JD, Chandley MJ, Hernandez LJ, Burgess KC, Brown RW, Ordway GA. Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White Matter in Major Depressive Disorder. Int J Neuropsychopharmacol 2016; 20:363-373. [PMID: 28034960 PMCID: PMC5412018 DOI: 10.1093/ijnp/pyw114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pathology of white matter in brains of patients with major depressive disorder (MDD) is well-documented, but the cellular and molecular basis of this pathology are poorly understood. METHODS Levels of DNA oxidation and gene expression of DNA damage repair enzymes were measured in Brodmann area 10 (BA10) and/or amygdala (uncinate fasciculus) white matter tissue from brains of MDD (n=10) and psychiatrically normal control donors (n=13). DNA oxidation was also measured in BA10 white matter of schizophrenia donors (n=10) and in prefrontal cortical white matter from control rats (n=8) and rats with repeated stress-induced anhedonia (n=8). RESULTS DNA oxidation in BA10 white matter was robustly elevated in MDD as compared to control donors, with a smaller elevation occurring in schizophrenia donors. DNA oxidation levels in psychiatrically affected donors that died by suicide did not significantly differ from DNA oxidation levels in psychiatrically affected donors dying by other causes (non-suicide). Gene expression levels of two base excision repair enzymes, PARP1 and OGG1, were robustly elevated in oligodendrocytes laser captured from BA10 and amygdala white matter of MDD donors, with smaller but significant elevations of these gene expressions in astrocytes. In rats, repeated stress-induced anhedonia, as measured by a reduction in sucrose preference, was associated with increased DNA oxidation in white, but not gray, matter. CONCLUSIONS Cellular residents of brain white matter demonstrate markers of oxidative damage in MDD. Medications that interfere with oxidative damage or pathways activated by oxidative damage have potential to improve treatment for MDD.
Collapse
Affiliation(s)
- Attila Szebeni
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Katalin Szebeni
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Timothy P. DiPeri
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Luke A. Johnson
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Craig A. Stockmeier
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Jessica D. Crawford
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Michelle J. Chandley
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Liza J. Hernandez
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Katherine C. Burgess
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Russell W. Brown
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Gregory A. Ordway
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
6
|
Exposure to Hyperbaric Oxygen Intensified Vancomycin-Induced Nephrotoxicity in Rats. PLoS One 2016; 11:e0152554. [PMID: 27092557 PMCID: PMC4836689 DOI: 10.1371/journal.pone.0152554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 11/19/2022] Open
Abstract
It has been suggested that oxidative stress is a potential mechanism for vancomycin-induced nephrotoxicity and hyperbaric oxygen therapy (HBO) has been shown to be effective in treating renal toxicity that has been pharmacologically induced in animal models. The aim of this study was to investigate the effect of HBO therapy on vancomycin-induced nephrotoxicity in rats. The study group comprised 36 Sprague Dawley male rats. We treated 30 with 500 mg/kg of intraperitoneal vancomycin once a day for 7 days. Half of these rats received a daily 1-hour treatment with HBO at 2 Atmospheres (ATM) on the same 7 days and formed the HBO+ group. The other 15 subjects received no HBO treatment (HBO- group). The remaining six rats served as the control group, three received HBO treatments alone and no treatment was administered to the other three rats. Laboratory results were obtained on day 8 and the intervention and control groups were compared. Rats in the HBO+ group gained less weight than the HBO- group (11.6 grams vs 22.6 grams; P = 0,008) and had significantly higher serum blood urea nitrogen (99.6 vs 52.6 mg/dL; P<0.001), serum creatinine (0.42 vs 0.16 mg/dL; P = 0.001) and magnesium (3.6 vs 3.1 mg/dL; P = 0.014). The vancomycin blood levels were also higher in the HBO+ group (27.8 vs 6.7 μg/mL; P = 0.078). There were no pathological kidney changes in the control group. All the kidneys from the treated groups (vancomycin +HBO and vancomycin HBO-) showed moderate to severe histopathological changes with no statistical significance between them. This study demonstrated that exposure to hyperbaric oxygen intensified vancomycin-induced nephrotoxicity in rats.
Collapse
|
7
|
Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress. Int J Neuropsychopharmacol 2014; 17:1579-89. [PMID: 24967945 DOI: 10.1017/s1461145714000698] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder (MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere shortening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-matched psychiatrically normal control donors (N = 12 donor pairs). Relative telomere lengths in white matter oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as compared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly lower in white matter oligodendrocytes from MDD as compared to control donors. Likewise, the gene expression of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione peroxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that attenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities previously described in MDD.
Collapse
|
8
|
Lu X, Chen Z, Guo Y, Gao L, Jiang L, Li Z, Fang J. Blood-letting punctures at twelve Jing-Well points of the hand can treat cerebral ischemia in a similar manner to mannitol. Neural Regen Res 2014; 8:532-9. [PMID: 25206696 PMCID: PMC4146051 DOI: 10.3969/j.issn.1673-5374.2013.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/10/2013] [Indexed: 12/25/2022] Open
Abstract
A rat model of middle cerebral artery permanent occlusion was established using the modified Longa method. Successfully established model animals were treated by blood-letting puncture at twelve Jing-Well points of the hand, and/or by injecting mannitol into the caudal vein twice daily. Brain tissue was collected at 24, 48 and 72 hours after modeling, and blood was collected through the retinal vein before Evans blue was injected, approximately 1 hour prior to harvesting of brain tissue. Results showed that Evans blue leakage into brain tissue and serum nitric oxide synthase activity were significantly increased in model rats. Treatment with blood-letting punctures at twelve Jing-Well points of the hand and/or injection of mannitol into the caudal vein reduced the amount of Evans blue leakage into the brain tissue and serum nitric oxide synthase activity to varying degrees. There was no significant difference between single treatment and combined treatment. Experimental findings indicate that blood-letting punctures at twelve Jing-Well points of the hand can decrease blood-brain barrier permeability and serum nitric oxide synthase activity in rats following middle cerebral artery occlusion, and its effect is similar to that of mannitol injection alone and Jing-Well points plus mannitol injection.
Collapse
Affiliation(s)
- Xuan Lu
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zelin Chen
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yi Guo
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Liang Gao
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Liyuan Jiang
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhongzheng Li
- Experimental Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jianqiao Fang
- Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| |
Collapse
|
9
|
The effect of hyperbaric oxygen therapy on kidneys in a rat model. ScientificWorldJournal 2014; 2014:105069. [PMID: 25177712 PMCID: PMC4142719 DOI: 10.1155/2014/105069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Hyperbaric oxygen therapy (HBOT) is used for treating various medical conditions. As far as known yet, HBOT is safe with few major side effects that are easy to avoid using a proper protocol. Renal tubular damage was observed in rats exposed to HBOT in a preliminary study conducted in our institution. Aim. We aim to assess whether HBOT causes renal damage and, if so, whether this is dose dependent. Methods. Thirty-one rats were randomly assigned to three groups. The first group received 10-days HBOT, 100% oxygen at a pressure of 2 atmospheres absolute (2 ATA) for 60 minutes/day, the second received the same treatment for 5 days and the third served as the control. Rat weight, survival, renal function tests, and renal histopathology were analyzed. Results. There were no significant changes in renal function tests in the plasma (cystatin C, urea, creatinine, and electrolytes) between the groups. No significant differences were observed in weight gain or renal histopathological evaluation between all groups. Conclusion. HBOT in this protocol does not cause renal impairment in a rat model, which reinforces the assumption that HBOT is safe in healthy rats, regarding renal function. Further research should be focused on the effect/safety of HBOT on nonhealthy kidneys.
Collapse
|
10
|
van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis--time for an individualised approach. Metab Brain Dis 2012; 27:239-53. [PMID: 22422107 PMCID: PMC3402663 DOI: 10.1007/s11011-012-9290-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/23/2012] [Indexed: 11/21/2022]
Abstract
Although the involvement of immune mechanisms in multiple sclerosis (MS) is undisputed, some argue that there is insufficient evidence to support the hypothesis that MS is an autoimmune disease, and that the difference between immune- and autoimmune disease mechanisms has yet to be clearly delineated. Uncertainties surrounding MS disease pathogenesis and the modest efficacy of currently used disease modifying treatments (DMTs) in the prevention of disability, warrant the need to explore other possibilities. It is evident from the literature that people diagnosed with MS differ widely in symptoms and clinical outcome--some patients have a benign disease course over many years without requiring any DMTs. Attempting to include all patients into a single entity is an oversimplification and may obscure important observations with therapeutic consequences. In this review we advocate an individualised approach named Pathology Supported Genetic Testing (PSGT), in which genetic tests are combined with biochemical measurements in order to identify subgroups of patients requiring different treatments. Iron dysregulation in MS is used as an example of how this approach may benefit patients. The theory that iron deposition in the brain contributes to MS pathogenesis has caused uncertainty among patients as to whether they should avoid iron. However, the fact that a subgroup of people diagnosed with MS show clinical improvement when they are on iron supplementation emphasises the importance of individualised therapy, based on genetic and biochemical determinations.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Division of Chemical Pathology, National Health Laboratory Service and University of Stellenbosch, Tygerberg Hospital, PO Box 19113, 7505 Tygerberg, South Africa.
| | | | | |
Collapse
|
11
|
αB-Crystallin is Expressed in Myelinating Oligodendrocytes of the Developing and Adult Avian Retina. Neurochem Res 2012; 37:2135-42. [DOI: 10.1007/s11064-012-0835-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/14/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
|
12
|
Abramov JP, Wells PG. Embryoprotective Role of Endogenous Catalase in Acatalasemic and Human Catalase-Expressing Mouse Embryos Exposed in Culture to Developmental and Phenytoin-Enhanced Oxidative Stress. Toxicol Sci 2011; 120:428-38. [DOI: 10.1093/toxsci/kfr007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009; 31:13-29. [PMID: 18763202 DOI: 10.1080/08923970802331943] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) play an important role in various events underlying multiple sclerosis pathology. In the initial phase of lesion formation, ROS are known to mediate the transendothelial migration of monocytes and induce a dysfunction in the blood-brain barrier. Although the pathogenesis of MS is not completely understood, various studies suggest that reactive oxygen species contribute to the formation and persistence of multiple sclerosis lesions by acting on distinct pathological processes. The detrimental effects of ROS in the central nervous system are endowed with a protective mechanism consisting of enzymatic and non-enzymatic antioxidant. Antioxidant therapy may therefore represent an attractive treatment of MS. Several studies have shown that antioxidant therapy is beneficial in vitro and in vivo in animal models for MS. Since oxidative damage has been known to be involved in inflammatory and autoimmune-mediated tissue destruction in which, modulation of oxygen free radical production represents a new approach to the treatment of inflammatory and autoimmune diseases. Several experimental studies have been performed to see whether dietary intake of several antioxidants can prevent and or reduce the progression of EAE or not. Although a few antioxidants showed some efficacy in these studies, little information is available on the effect of treatments with such compounds in patients with MS. In this review, our aim is to clarify the therapeutic efficacy of antioxidants in MS disease.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, Tehran University of Medical Sciences, Iran.
| | | |
Collapse
|
14
|
Bando Y, Takakusaki K, Ito S, Terayama R, Kashiwayanagi M, Yoshida S. Differential changes in axonal conduction following CNS demyelination in two mouse models. Eur J Neurosci 2009; 28:1731-42. [PMID: 18973589 DOI: 10.1111/j.1460-9568.2008.06474.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transgenic and disease model mice have been used to investigate the molecular mechanisms of demyelinating diseases. However, less attention has been given to elucidating changes in nerve conduction in these mice. We established an experimental system to measure the response latency of cortical neurons and examined changes in nerve conduction in cuprizone-induced demyelinating mice and in myelin basic protein-deficient shiverer mice. Stimulating and recording electrodes were placed in the right and left sensori-motor cortices, respectively. Electrical stimulation of the right cortex evoked antidromic responses in left cortical neurons with a latency of 9.38 +/- 0.31 ms (n = 107; mean +/- SEM). While response latency was longer in mice at 7 days and 4 weeks of cuprizone treatment (12.35 +/- 0.35 ms, n = 102; 11.72 +/- 0.29 ms, n = 103, respectively), response latency at 7 days and 4 weeks after removal of cuprizone was partially restored (10.72 +/- 0.45 ms, n = 106; 10.27 +/- 0.34 ms, n = 107, respectively). Likewise, electron microscopy showed cuprizone-induced demyelination in the corpus callosum and nearly complete remyelination after cuprizone removal. We also examined whether the myelin abnormalities in shiverer mice affected their response latencies. But there were no significant differences in response latencies in shiverer (9.83 +/- 0.24 ms, n = 103) and wild-type (9.33 +/- 0.22 ms, n = 112) mice. The results of these electrophysiological assessments imply that different demyelinating mechanisms, differentially affecting axon conduction, are present in the cuprizone-treated and shiverer mice, and may provide new insights to understanding the pathophysiology of demyelination in animal models in the CNS.
Collapse
Affiliation(s)
- Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Avila-Costa MR, Colín-Barenque L, Zepeda-Rodríguez A, Antuna SB, Saldivar O L, Espejel-Maya G, Mussali-Galante P, del Carmen Avila-Casado M, Reyes-Olivera A, Anaya-Martinez V, Fortoul TI. Ependymal epithelium disruption after vanadium pentoxide inhalation. A mice experimental model. Neurosci Lett 2005; 381:21-5. [PMID: 15882783 DOI: 10.1016/j.neulet.2005.01.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 01/03/2005] [Accepted: 01/25/2005] [Indexed: 11/20/2022]
Abstract
The blood-brain barrier (BBB) protects the CNS against chemical insults. Regulation of blood-brain tissue exchange is accomplished by ependymal cells, which possess intercellular tight junctions. Loss of BBB function is an etiologic component of many neurological disorders. Vanadium (V) is a metalloid widely distributed in the environment and exerts potent toxic effects on a wide variety of biological systems. The current study examines the effects of Vanadium pentoxide (V2O5) inhalation in mice ependymal epithelium, through the analysis of the brain metal concentrations and the morphological modifications in the ependymal cells identified by scanning and transmission electron microscopy after 8 weeks of inhalation, in order to obtain a possible explanation about the mechanisms that V uses to enter and alter the CNS. Our results showed that V2O5 concentrations increase from the first week of study, stabilizing its values during the rest of the experiment. The morphological effects included cilia loss, cell sloughing and ependymal cell layer detachment. This damage can allow toxicants to modify the permeability of the epithelium and promote access of inflammatory mediators to the underlying neuronal tissue causing injury and neuronal death. Thus, understanding the mechanisms of BBB disruption would allow planning strategies to protect the brain from toxicants such as metals, which have increased in the atmosphere during the last decades and constitute an important health problem.
Collapse
Affiliation(s)
- María Rosa Avila-Costa
- Department of Neuroscience, National University of Mexico (UNAM) Iztacala, A.P. 314 Los Reyes, C.P. 54040 Edo., México, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 2004; 24:1531-40. [PMID: 14973232 PMCID: PMC6730475 DOI: 10.1523/jneurosci.3989-03.2004] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative mechanisms of injury are important in many neurological disorders, including hypoxic-ischemic brain damage. Cerebral palsy after preterm birth is hypothesized to be caused by hypoxic-ischemic injury of developing oligodendrocytes (OLs). Here we examined the developmental sensitivity of OLs to exogenous hydrogen peroxide (H2O2) with stage-specific rat oligodendrocyte cultures. We found that H2O2 itself or that generated by glucose oxidase was more toxic to developing than to mature OLs. Mature OLs were able to degrade H2O2 faster than developing OLs, suggesting that higher antioxidant enzyme activity might be the basis for their resistance. Catalase expression and activity were relatively constant during oligodendrocyte maturation, whereas glutathione peroxidase (GPx) was upregulated with a twofold to threefold increase in its expression and activity. Thus, it appeared that the developmental change in resistance to H2O2 was caused by modulation of GPx but not by catalase expression. To test the relative roles of catalase and GPx in the setting of oxidative stress, we measured enzyme activity in cells exposed to H2O2 and found that H2O2 induced a decrease in catalase activity in developing but not in mature OLs. Inhibition of GPx by mercaptosuccinate led to an increase in the vulnerability of mature OLs to H2O2 as well as a reduction in catalase activity. Finally, H2O2-dependent inactivation of catalase in developing OLs was prevented by the GPx mimic ebselen. These data provide evidence for a key role for GPx-catalase cooperativity in the resistance of mature OLs to H2O2-induced cell death.
Collapse
Affiliation(s)
- Olivier Baud
- Department of Neurology, Division of Neuroscience, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
17
|
DeKosky ST, Taffe KM, Abrahamson EE, Dixon CE, Kochanek PM, Ikonomovic MD. Time Course Analysis of Hippocampal Nerve Growth Factor and Antioxidant Enzyme Activity following Lateral Controlled Cortical Impact Brain Injury in the Rat. J Neurotrauma 2004; 21:491-500. [PMID: 15165358 DOI: 10.1089/089771504774129838] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gradual secondary injury processes, including the release of toxic reactive oxygen species, are important components of the pathogenesis of traumatic brain injury (TBI). The extent of oxidative stress is determined in part by the effectiveness of the antioxidant response, involving the enzymes glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Since nerve growth factor (NGF) may be involved in the initiation of antioxidant activity, we employed a controlled cortical impact injury model in rats to produce secondary hippocampal damage and determined the subsequent time course of changes in NGF production and GPx, CAT, and SOD activity in this brain region. Hippocampal NGF production showed a rapid increase with a biphasic response after TBI. NGF protein was increased at 6 h, plateaued at 12 h, declined by 7 days, and exhibited a second rise at 14 days after injury. Similar to NGF, hippocampal GPx activity also showed a biphasic response, increasing by 12 h, declining at 24 h, and exhibiting a second peak at 7 days. In contrast, increased CAT activity occured steadily from 1 day through 7 days after injury. SOD activity was decreased at 6 h after injury, and continued to decline through 14 days. The initial rise in NGF preceded that of CAT, and coincided with an increase in GPX and a drop in SOD activity. These data demonstrate a complex temporal spectrum of antioxidant enzyme activation following secondary brain injury in the hippocampus, and suggest a selective regulatory role for NGF in this response.
Collapse
Affiliation(s)
- Steven T DeKosky
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Lin S, Rhodes PG, Lei M, Zhang F, Cai Z. α-Phenyl-n-tert-butyl-nitrone attenuates hypoxic–ischemic white matter injury in the neonatal rat brain. Brain Res 2004; 1007:132-41. [PMID: 15064144 DOI: 10.1016/j.brainres.2004.01.074] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2004] [Indexed: 11/16/2022]
Abstract
White matter of the neonatal brain is highly sensitive to hypoxic-ischemic insult. The susceptibility of premature oligodendrocytes (OLs) to free radicals (FRs) produced during hypoxia-ischemia (HI) has been proposed as one of the mechanisms involved. To test this hypothesis, and to further investigate if the FR scavenger alpha-phenyl-N-tert-butyl-nitrone (PBN) attenuates hypoxic-ischemic white matter damage (WMD), postnatal day 4 (P4) SD rats were subjected to bilateral common carotid artery ligation (BCAL), followed by 8% oxygen exposure for 20 min. Pathological changes were evaluated on P6 and P9, 2 and 5 days after the HI insult. HI caused severe WMD including rarefaction, necrosis and cavity formation in the corpus callosum, external and internal capsule areas. OL injury was evidenced by degeneration of O4 positive OLs on P6. Disrupted myelination was verified by decreased immunostaining of myelin basic protein (MBP) on P9. Axonal injury was demonstrated by increased amyloid precursor protein (APP) immunostaining on both P6 and P9. Two lipid peroxidation end products, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), showed a one-fold elevation within 1-24 h following HI. 4-HNE immunostaining was found to specifically localize in the white matter area. Furthermore, pyknotic O4+ OLs were double-labeled with 4-HNE. These findings suggest that FRs are involved in the pathogenesis of neonatal WMD. PBN (100 mg/kg, i.p.) treatment alleviated the pathological changes of WMD following HI. It improved the survival of O4 positive OLs, attenuated hypomyelination and reduced axonal damage. PBN treatment also decreased the brain concentration of MDA/4-HNE and positive 4-HNE staining in the white matter area. These findings indicate that in the current WMD model, PBN protects both OLs and axons, the two main components in the white matter, from neonatal HI insult. FR scavenging appears to be the primary mechanism underlying its neuroprotective effect.
Collapse
Affiliation(s)
- Shuying Lin
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
19
|
FitzGerald UF, Gilbey T, Brodie S, Barnett SC. Transcription factor expression and cellular redox in immature oligodendrocyte cell death: effect of Bcl-2. Mol Cell Neurosci 2003; 22:516-29. [PMID: 12727447 DOI: 10.1016/s1044-7431(02)00040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by the progressive damage or loss of oligodendrocytes. In an effort to better understand the causes of oligodendrocyte destruction in MS plaques, we treated immature oligodendrocytes with glucose oxidase, ceramide, or brefeldin A. These treatments model the different mechanisms by which oligodendrocytes are thought to die. We report that the AP-1 and Egr-1 transcription factors are induced within an hour of treatment. Of the AP-1 proteins studied, c-Jun was expressed at the highest level, followed by JunD, c-Fos, and Fra-2, although different treatments induced slightly different levels of expression. Bcl-2 overexpression protects against all treatments, to differing degrees. Although Bcl-2 did not have a dramatic effect on AP-1 or Egr-1 induction within the first 3 h, it caused a lowering of steady-state redox levels with a concomitant increase in cellular glutathione. We propose that the lowering of cellular redox and the upregulation of glutathione are responsible in part for the protective properties of Bcl-2.
Collapse
Affiliation(s)
- Una F FitzGerald
- Department of Neurology and Department of Medical Oncology, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland
| | | | | | | |
Collapse
|
20
|
Hendriks JJA, de Vries HE, van der Pol SMA, van den Berg TK, van Tol EAF, Dijkstra CD. Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study. Biochem Pharmacol 2003; 65:877-85. [PMID: 12628496 DOI: 10.1016/s0006-2952(02)01609-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Demyelination is a characteristic hallmark of the neuro-inflammatory disease multiple sclerosis. During demyelination, macrophages phagocytose myelin and secrete inflammatory mediators that worsen the disease. Here, we investigated whether flavonoids, naturally occurring immunomodulating compounds, are able to influence myelin phagocytosis by macrophages in vitro. The flavonoids luteolin, quercetin and fisetin most significantly decreased the amount of myelin phagocytosed by a macrophage cell line without affecting its viability. IC(50) values for these compounds ranged from 20 to 80 microM. The flavonoid structure appeared to be essential for observed effects as flavonoids containing hydroxyl groups at the B-3 and B-4 positions in combination with a C-2,3 double bond were most effective. The capacity of the various flavonoids to inhibit phagocytosis correlated well with their potency as antioxidant, which is in line with the requirement of reactive oxygen species for the phagocytosis of myelin by macrophages. Our results implicate that flavonoids may be able to limit the demyelination process during multiple sclerosis.
Collapse
Affiliation(s)
- Jerome J A Hendriks
- Department of Molecular Cell Biology, VU Medical Centre, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Oligodendrocytes, myelin-forming glial cells of the central nervous system, are vulnerable to damage in a variety of neurologic diseases. Much is known of primary myelin injury, which occurs in settings of genetic dysmyelination or demyelinating disease. There is growing awareness that oligodendrocytes are also targets of injury in acute ischemia. Recognition of oligodendrocyte damage in animal models of ischemia requires attention to their distinct histologic features or use of specific immunocytochemical markers. Like neurons, oligodendrocytes are highly sensitive to injury by oxidative stress, excitatory amino acids, trophic factor deprivation, and activation of apoptotic pathways. Understanding mechanisms of oligodendrocyte death may suggest new therapeutic strategies to preserve or restore white matter function and structure after ischemic insults.
Collapse
Affiliation(s)
- Deborah Dewar
- Division of Clinical Neuroscience, University of Glasgow, Wellcome Surgical Institute, Garscube Estate, Bearsden Road, Glasgow C61 1QH, Scotland, UK.
| | | | | |
Collapse
|
22
|
|
23
|
Scott GS, Virág L, Szabó C, Hooper DC. Peroxynitrite-induced oligodendrocyte toxicity is not dependent on poly(ADP-ribose) polymerase activation. Glia 2003; 41:105-16. [PMID: 12509801 DOI: 10.1002/glia.10137] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligodendrocyte loss is a characteristic feature of several CNS disorders, including multiple sclerosis (MS) and spinal cord injury. However, the mechanisms responsible for oligodendrocyte destruction remain undefined. As recent studies have implicated peroxynitrite in the pathogenesis of both spinal cord injury and MS, we have examined whether peroxynitrite may mediate at least some of the oligodendrocyte damage and demyelination observed in these conditions. Primary rat oligodendrocytes were exposed to authentic peroxynitrite in vitro and assessed for cytotoxicity. Mitochondrial function, measured by the reduction of MTT to formazan, and mitochondrial membrane potential were used as indicators of cell viability. Cell death was quantitated by measuring either the release of lactate dehydrogenase from, or the uptake of propidium iodide into, damaged and dying cells. Peroxynitrite dose-dependently reduced the viability of primary oligodendrocytes and induced cell death. Furthermore, peroxynitrite significantly increased DNA strand breakage and the activity of poly(ADP-ribose) polymerase (PARP) in oligodendrocyte cultures. To identify whether PARP activation plays a role in peroxynitrite-induced oligodendrocyte toxicity, we examined the effects of the PARP inhibitors 3-aminobenzamide (3AB) and 5-iodo-6-amino-1,2-benzopyrone (INH(2)BP) on mitochondrial function and cell death in oligodendrocytes. The presence of 3AB and INH(2)BP did not protect oligodendrocytes from peroxynitrite-induced cytotoxicity. However, both compounds significantly reduced PARP activity in these cells. Primary oligodendrocytes generated from PARP-deficient mice were also highly susceptible to peroxynitrite-induced cell death. Therefore, our results show that peroxynitrite exerts cytotoxic effects on oligodendrocytes in vitro independently of PARP activation.
Collapse
Affiliation(s)
- Gwen S Scott
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Nitric oxide (NO) is a free radical found at higher than normal concentrations within inflammatory multiple sclerosis (MS) lesions. These high concentrations are due to the appearance of the inducible form of nitric oxide synthase (iNOS) in cells such as macrophages and astrocytes. Indeed, the concentrations of markers of NO production (eg, nitrate and nitrite) are raised in the CSF, blood, and urine of patients with MS. Circumstantial evidence suggests that NO has a role in several features of the disease, including disruption of the blood-brain barrier, oligodendrocyte injury and demyelination, axonal degeneration, and that it contributes to the loss of function by impairment of axonal conduction. However, despite these considerations, the net effect of NO production in MS is not necessarily deleterious because it also has several beneficial immunomodulatory effects. These dual effects may help to explain why iNOS inhibition has not provided reliable and encouraging results in animal models of MS, but alternative approaches based on the inhibition of superoxide production, partial sodium-channel blockade, or the replacement of lost immunomodulatory function, may prove beneficial.
Collapse
Affiliation(s)
- Kenneth J Smith
- Neuroinflammation Research Group, Guy's, King's, and St Thomas' School of Medicine, King's College, London SE1 1UL, UK.
| | | |
Collapse
|
25
|
Hirrlinger J, Resch A, Gutterer JM, Dringen R. Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. J Neurochem 2002; 82:635-44. [PMID: 12153487 DOI: 10.1046/j.1471-4159.2002.00999.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the antioxidative capacities of oligodendrocytes, rat brain cultures enriched for oligodendroglial cells were prepared and characterized. These cultures contained predominantly oligodendroglial cells as determined by immunocytochemical staining for the markers galactocerebroside and myelin basic protein. If oligodendroglial cultures were exposed to exogenous hydrogen peroxide (100 micro m), the peroxide disappeared from the incubation medium following first order kinetics with a half-time of approximately 18 min. Normalization of the disposal rate to the protein content of the cultures by calculation of the specific hydrogen peroxide detoxification rate constant revealed that the cells in oligodendroglial cultures have a 60% to 120% higher specific capacity to dispose of hydrogen peroxide than cultures enriched for astroglial cells, microglial cells or neurones. Oligodendroglial cultures contained specific activities of 133.5 +/- 30.4 nmol x min(-1) x mg protein(-1) and 27.5 +/- 5.4 nmol x min(-1) x mg protein(-1) of glutathione peroxidase and glutathione reductase, respectively. The specific rate constant of catalase in these cultures was 1.61 +/- 0.54 min(-1) x mg protein(-1). Comparison with data obtained by identical methods for cultures of astroglial cells, microglial cells and neurones revealed that all three of the enzymes which are involved in hydrogen peroxide disposal were present in oligodendroglial cultures in the highest specific activities. These results demonstrate that oligodendroglial cells in culture have a prominent machinery for the disposal of hydrogen peroxide, which is likely to support the protection of these cells in brain against peroxides when produced by these or by surrounding brain cells.
Collapse
|
26
|
Abstract
Oligodendrocytes and Schwann cells are the glia principally responsible for the synthesis and maintenance of myelin. Damage may occur to these cells in a number of conditions, but perhaps the most studied are the idiopathic inflammatory demyelinating diseases, multiple sclerosis in the CNS, and Guillain-Barré syndrome and its variants in the peripheral nervous system (PNS). This article explores the effects on these cells of cytotoxic immunological and inflammatory mediators: similarities are revealed, of which perhaps the most important is the sensitivity of both Schwann cells and oligodendrocytes to many such agents. This area of research is, however, characterised and complicated by numerous and often very substantial inter-observer discrepancies. Marked variability in cell culture techniques, and in assays of cell damage and death, provide artifactual explanations for some of this variability; true inter-species differences also contribute. Not the least important conclusion centres on the limited capacity of in vitro studies to reveal disease mechanisms: cell culture findings merely illustrate possibilities which must then be tested ex vivo using human tissue samples affected by the relevant disease.
Collapse
Affiliation(s)
- T Benn
- Department of Neurology, Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
27
|
Penkowa M, Espejo C, Martínez-Cáceres EM, Poulsen CB, Montalban X, Hidalgo J. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol 2001; 119:248-60. [PMID: 11585628 DOI: 10.1016/s0165-5728(01)00357-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mice relatively to wild-type mice, and that the inflammatory responses elicited by EAE in the central nervous system (CNS) are significantly altered by MT-I+II deficiency. Thus, during EAE the MTKO mice showed increased macrophage and T-lymphocytes infiltration in the CNS, while their reactive astrogliosis was significantly decreased. In addition, the expression of the proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha elicited by EAE was further increased in the MTKO mice, and oxidative stress and apoptosis were also significantly increased in MTKO mice compared to normal mice. The present results strongly suggest that MT-I+II are major factors involved in the inflammatory response of the CNS during EAE and that they play a neuroprotective role in this scenario.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- S A Back
- Department of Pediatrics, NRC-5, Oregon Health Sciences University and Doernbecher Children's Hospital, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA.
| |
Collapse
|
29
|
Stariha RL, Kim SU. Mitogen‐activated protein kinase signalling in oligodendrocytes: a comparison of primary cultures and CG‐4. Int J Dev Neurosci 2001; 19:427-37. [PMID: 11378302 DOI: 10.1016/s0736-5748(01)00025-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocytes play a significant role in the central nervous system, as these cells are responsible for myelinating axons and allowing for the efficient conduction of nerve impulses. Therefore, any understanding we can gain about the functional biology of oligodendrocytes will give us important insights into demyelinating diseases such as multiple sclerosis, where oligodendrocytes and myelin are damaged or destroyed. Currently, much attention has focussed on the role of a family of mitogen-activated protein kinases in OL. This kinase family includes the extracellular signal-regulated protein kinases (ERKs), the stress-activated c-Jun N-terminal kinase (JNK), and the 38 kDa high osmolarity glycerol response kinase (p38). The actions of mitogen-activated protein kinases in oligodendrocytes appear to range from proliferation and cell survival to differentiation and cell death. In the past, studies on oligodendrocytes have been hampered by the difficulties inherent in producing large enough quantities of these cells for experimentation. This problem arises in large part due to the post-mitotic nature of mature oligodendrocytes. Over the years, a cell line known as Central Glia-4 (CG-4) has become a popular oligodendrocyte model due to its potentially unlimited capacity for self-renewal. In this review, we will look at the suitability of the Central Glia-4 cell line as an oligodendrocyte model, specifically in respect to studies on mitogen-activated protein kinase signalling in oligodendrocytes.
Collapse
Affiliation(s)
- R L Stariha
- Department of Medicine, Division of Neurology, UBC Hospital, University of British Columbia, 2211 Wesbrook Mall, BC, V6T 2B5, Vancouver, Canada
| | | |
Collapse
|
30
|
Abstract
The tripeptide glutathione is the thiol compound present in the highest concentration in cells of all organs. Glutathione has many physiological functions including its involvement in the defense against reactive oxygen species. The cells of the human brain consume about 20% of the oxygen utilized by the body but constitute only 2% of the body weight. Consequently, reactive oxygen species which are continuously generated during oxidative metabolism will be generated in high rates within the brain. Therefore, the detoxification of reactive oxygen species is an essential task within the brain and the involvement of the antioxidant glutathione in such processes is very important. The main focus of this review article will be recent results on glutathione metabolism of different brain cell types in culture. The glutathione content of brain cells depends strongly on the availability of precursors for glutathione. Different types of brain cells prefer different extracellular glutathione precursors. Glutathione is involved in the disposal of peroxides by brain cells and in the protection against reactive oxygen species. In coculture astroglial cells protect other neural cell types against the toxicity of various compounds. One mechanism for this interaction is the supply by astroglial cells of glutathione precursors to neighboring cells. Recent results confirm the prominent role of astrocytes in glutathione metabolism and the defense against reactive oxygen species in brain. These results also suggest an involvement of a compromised astroglial glutathione system in the oxidative stress reported for neurological disorders.
Collapse
Affiliation(s)
- R Dringen
- Physiologisch-chemisches Institut der Universität, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany.
| |
Collapse
|
31
|
Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 2000; 177:95-103. [PMID: 10980305 DOI: 10.1016/s0022-510x(00)00343-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soluble products of activated immune cells include reactive oxygen species (ROS) and nitric oxide (NO) with a high potential to induce biochemical modifications and degenerative changes in areas of inflammation in the central nervous system (CNS). Previously, we demonstrated an increased production of ROS by activated mononuclear cells (MNC) of patients with multiple sclerosis (MS) compared to those of controls, and development of oxidative damage to total DNA in association with inflammation in chronic active plaques. The current study aimed to determine whether mitochondrial (mt)DNA is affected by oxidative damage, and whether oxidative damage to mitochondrial macromolecules (including mtDNA) is associated with a decline in the activity of mitochondrial enzyme complexes. Using molecular and biochemical methods we demonstrate a trend for impaired NADH dehydrogenase (DH) activity and a possible compensatory increase in complex IV activity in association with oxidative damage to mtDNA in chronic active plaques. Immunohistochemistry confirms the increase of oxidative damage to DNA predominantly located in the cytoplasmic compartment of cells in chronic active plaques. These observations suggest that oxidative damage to macromolecules develops in association with inflammation in the CNS, and may contribute to a decline of energy metabolism in affected cells. As observed in neurodegenerative diseases of non-inflammatory origin, decreased ATP synthesis can ultimately lead to cell death or degeneration. Therefore, elucidation of this pathway in MS deserves further studies which may identify neuroprotective strategies to prevent tissue degeneration and the associated clinical disability.
Collapse
Affiliation(s)
- F Lu
- Department of Neurology, MS 406 MCP-Hahnemann University, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Valeriani V, Dewar D, McCulloch J. Quantitative assessment of ischemic pathology in axons, oligodendrocytes, and neurons: attenuation of damage after transient ischemia. J Cereb Blood Flow Metab 2000; 20:765-71. [PMID: 10826526 DOI: 10.1097/00004647-200005000-00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Axons and oligodendrocytes are vulnerable to cerebral ischemia. The absence of quantitative methods for assessment of white matter pathology in ischemia has precluded in vivo evaluation of therapeutic interventions directed at axons and oligodendrocytes. The authors demonstrate here that the quantitative extent of white matter pathology was reduced by restoration of cerebral blood flow after 2 hours of middle cerebral artery occlusion. Focal ischemia was induced in anesthetized rats by intraluminal thread placement, either transiently (for 2 hours) or permanently. At 24 hours after induction of ischemia, axonal damage was determined by amyloid precursor protein (APP) immunohistochemistry, and the ischemic insult to oligodendrocytes was assessed by Tau-1 immunostaining in the same sections. In adjacent sections, ischemic damage to neuronal perikarya was defined histologically. The hemispheric extent of axonal damage was reduced by 70% in the transiently occluded animals from that in permanently occluded animals. The volumes of oligodendrocyte pathology and of neuronal perikaryal damage were reduced by 62% and 58%, respectively, in the transiently occluded animals. These results demonstrate that this methodologic approach for assessing ischemic damage in axons and oligodendrocytes can detect relative alterations in gray and white matter pathology with intervention strategies.
Collapse
Affiliation(s)
- V Valeriani
- Wellcome Surgical Institute, University of Glasgow, Scotland, United Kingdom
| | | | | |
Collapse
|
33
|
Merrill JE, Scolding NJ. Mechanisms of damage to myelin and oligodendrocytes and their relevance to disease. Neuropathol Appl Neurobiol 1999; 25:435-58. [PMID: 10632895 DOI: 10.1046/j.1365-2990.1999.00200.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oligodendrocytes synthesize and maintain myelin in the central nervous system (CNS). Damage may occur to these cells in a number of conditions, including infections, exposure to toxins, injury, degeneration, or autoimmune disease, arising both in the course of human disease and in experimental animal models of demyelination and dysmyelination; multiple sclerosis is the commonest human demyelinating disorder. Conventional classical accounts of the pathology of this and other myelin diseases have given great insights into their core features, but there remain considerable uncertainties concerning the timing, means and cause(s) of oligodendrocyte and myelin damage. At present, therapeutic efforts largely concentrate on immune manipulation and damage limitation, an approach that has produced only modest effects in multiple sclerosis. One reason for this must be the limited understanding of the mechanisms underlying cell damage - clearly, successful therapeutic strategies for preserving the oligodendrocyte-myelin unit must depend on knowledge of how oligodendrocyte damage and death occurs. In this review, mechanisms of oligodendrocyte and myelin damage are considered, and attempts made to relate them to disease processes, clinical and experimental. The hallmarks of different cell death processes are described, and oligodendrocyte-myelin injury by cellular and soluble mediators is discussed, both in vitro and invivo. Recent developments concerning the pathological involvement of oligodendrocytes in neurodegenerative disease are summarized. Finally, these neuropathological and applied neurobiological observations are drawn together in the context of multiple sclerosis.
Collapse
Affiliation(s)
- J E Merrill
- CNS Division, Hoechst Marion Rousse, Bridgewater, NJ, USA
| | | |
Collapse
|
34
|
Abstract
Multiple sclerosis (MS) is characterized by multifocal areas within the CNS of demyelination with relative but not absolute axonal sparing. Initial lesion development appears dependent on T cell infiltration into the CNS; however, lesion expansion may reflect tissue injury induced by additional effector mechanisms derived from cells of the immune system and endogenous CNS cells (glial cells). This relative susceptibility to injury in MS of myelin and its cell of origin, the oligodendrocyte (OL), could reflect either the properties of the effectors or the targets. Effector-determined susceptibility could relate to presence of OL/myelin-restricted T cells or antibody. OLs, at least in vitro, express MHC class I molecules and are susceptible to CD8(+)T cell-mediated cytotoxicity. OL/myelin-specific antibodies are identified in MS lesions and could induce injury via complement- or ADCC-dependent mechanisms. OLs are susceptible to injury-mediated by non-specific cell effectors including NK cells, NK-like T cells (CD56(+)), and gamma/delta T cells via perforin/granzyme-dependent mechanisms. In vitro studies of OL injury mediated via tumor necrosis factor (TNF) and CD95 indicate that differential glial cell susceptibility to injury can depend on cell surface receptor expression and intracellular signaling pathways that are activated. These target-determined susceptibility factors may be amenable to neuroprotective therapies.
Collapse
Affiliation(s)
- S Pouly
- Neuroimmunology Unit, Montréal Neurological Institute, 3801 University Street, Montréal, Québec, H3A 2B4, Canada
| | | |
Collapse
|
35
|
Atkins CM, Yon M, Groome NP, Sweatt JD. Regulation of myelin basic protein phosphorylation by mitogen-activated protein kinase during increased action potential firing in the hippocampus. J Neurochem 1999; 73:1090-7. [PMID: 10461899 DOI: 10.1046/j.1471-4159.1999.0731090.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelin basic protein (MBP) phosphorylation is a complex regulatory process that modulates the contribution of MBP to the stability of the myelin sheath. Recent research has demonstrated the modulation of MBP phosphorylation by mitogen-activated protein kinase (MAPK) during myelinogenesis and in the demyelinating disease multiple sclerosis. Here we investigated the physiological regulation of MBP phosphorylation by MAPK during neuronal activity in the alveus, the myelinated output fibers of the hippocampus. Using a phosphospecific antibody that recognizes the predominant MAPK phosphorylation site in MBP, Thr95, we found that MBP phosphorylation is regulated by high-frequency stimulation but not low-frequency stimulation of the alveus. This change was blocked by application of tetrodotoxin, indicating that action potential propagation in axons is required. It is interesting that the change in MBP phosphorylation was attenuated by the reactive oxygen species scavengers superoxide dismutase and catalase and the nitric oxide synthase inhibitor N-nitro-L-arginine. Removal of extracellular calcium also blocked the changes in MBP phosphorylation. Thus, we propose that during periods of increased neuronal activity, calcium activates axonal nitric oxide synthase, which generates the intercellular messengers nitric oxide and superoxide and regulates the phosphorylation state of MBP by MAPK.
Collapse
Affiliation(s)
- C M Atkins
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
36
|
Dewar D, Yam P, McCulloch J. Drug development for stroke: importance of protecting cerebral white matter. Eur J Pharmacol 1999; 375:41-50. [PMID: 10443563 DOI: 10.1016/s0014-2999(99)00280-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiple pharmacological mechanisms have been identified over the last decade which can protect grey matter from ischaemic damage in experimental models. A large number of drugs targeted at neurotransmitter receptors and related mechanisms involved in ischaemic damage have advanced to clinical trials in stroke and head injury based on their proven ability to reduce grey matter damage in animal models. The outcome to date of the clinical trials of neuroprotective drugs has been disappointing. Although the failure to translate preclinical pharmacological insight into therapy is multifactorial, we propose that the failure to ameliorate ischaemic damage to white matter has been a major factor. The recent development of quantitative techniques to assess ischaemic damage to cellular elements in white matter, both axons and oligodendrocytes, allows rigorous evaluation of pharmacologic mechanisms which may protect white matter in ischaemia. Such pharmacological approaches provide therapeutic opportunities which are both additional or alternatives to those currently being evaluated in man.
Collapse
Affiliation(s)
- D Dewar
- Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories, University of Glasgow, Garscube Estate, UK
| | | | | |
Collapse
|
37
|
Kameshwar-Rao AS, Gil S, Richter-Landsberg C, Givol D, Yavin E. H2O2-induced apoptotic death in serum-deprived cultures of oligodendroglia origin is linked to cell differentiation. J Neurosci Res 1999; 56:447-56. [PMID: 10369212 DOI: 10.1002/(sici)1097-4547(19990601)56:5<447::aid-jnr1>3.0.co;2-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When deprived of serum, oligodendroglialike (OLN 93) cells grown on poly-L-lysine-coated culture dishes cease to proliferate after 3 days and morphologically extend many fibers resembling morphologically differentiated, immature oligodendrocytes. At this time no cell death is apparent unless serum deprivation is extended for a period longer than 1 week. After 3 days in serum-deprived medium, treatment of cells with 1 mM H2O2 for 30 min facilitates apoptotic cell death, even when serum is added during the recovery period. Both serum-deprived, differentiated cells, and proliferating cells, respond to H2O2 by an initial growth arrest followed by growth resumption after 48 hr. However proliferating cells show resistance to the apoptotic effect of H2O2. This is correlated with growth arrest in the S phase at different stages of DNA replication, as well as with different timing of induced p21Waf1 expression. Thus, cells grown in serum, express elevated p21Waf1 protein levels after 4 hr, whereas serum-deprived, differentiated cells, only after 24 hr. The mRNA levels of p21Waf1 follow a similar timed pattern. Hence p21Waf1 may protect OLN 93 cells against the genotoxic effect of H2O2. The data suggest an intimate relationship between G1-arrest, morphological differentiation, and H2O2-mediated apoptosis.
Collapse
Affiliation(s)
- A S Kameshwar-Rao
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
38
|
Uberti D, Yavin E, Gil S, Ayasola KR, Goldfinger N, Rotter V. Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:167-75. [PMID: 10064887 DOI: 10.1016/s0169-328x(98)00339-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The observation that apoptosis is an inherent pathway in oligodendrocytes development coupled with the notion that wild-type p53 is expressed in these cells, prompted us to investigate the interrelationship between the two phenomena. Using a permanent oligodendroglia-like cell line (OLN 93), we examined the role of p53 protein in apoptosis following a DNA insult induced by a brief exposure to H2O2. A marked translocation of p53 from the cytosolic to the nuclear compartment was notable by 20 min, following a 5 min treatment with 1 mM H2O2 as identified by cell immunostaining. By 48 h following H2O2 addition, nearly 60% of the cells exhibited p53 in the nuclei. At this time, a large proportion of the cells underwent apoptosis as identified by DAPI nuclear staining. The genotoxic-induced p53 relocalization appeared to be cell cycle phase specific; thus OLN 93 cultures enriched for cells in the G0/G1 stage by serum starvation, and abundant in nuclear-associated p53, were more susceptible to H2O2-induced apoptosis than their untreated counterparts and than double thymidine block, G1/S enriched, cultures. Analysis of the expression of p53 downstream genes indicated that p21 and mdm2 were upregulated following p53 nuclear translocation. From the kinetics of protein accumulation, it appears that mdm2 enhancement accelerated the exit of p53 from the nucleus to the cytosol. Our results suggest that following stress, oligodendroglia-like cells are induced to undergo p53-dependent apoptosis, an event that coincides with p53 nuclear translocation and is cell-cycle related.
Collapse
Affiliation(s)
- D Uberti
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
39
|
Laszkiewicz I, Mouzannar R, Wiggins RC, Konat GW. Delayed oligodendrocyte degeneration induced by brief exposure to hydrogen peroxide. J Neurosci Res 1999; 55:303-10. [PMID: 10348661 DOI: 10.1002/(sici)1097-4547(19990201)55:3<303::aid-jnr5>3.0.co;2-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An in vitro model system of cultured oligodendrocytes was used to determine the susceptibility of these cells to oxidative stress induced by 15 min exposure to millimolar concentrations of hydrogen peroxide (H2O2). Following the exposure, the cells were incubated in normal growth medium, and analyzed at different time points. Although no cell loss was observed during the exposure period, there was a progressive depletion of adherent cells during the postexposure period as seen from either the number of recoverable nuclei, or from total RNA content of the cultures. Both the rate and the extent of cell deletion was directly dependent on H2O2 concentration. Cell death was preceded by structural alterations in the nuclear envelope resulting in "fragile" nuclei which disintegrated during isolation. Northern blot analysis showed that the expression of myelin-specific genes was rapidly downregulated in H2O2-treated cells. On the other hand, the expression of antiapoptotic gene, bcl-2 featured massive but transient upregulation. Oligodendrocyte degeneration also featured genomic DNA degradation into high molecular weight fragments, which are likely to represent cleaved chromosomal loops. The results demonstrate vulnerability of oligodendrocytes to oxidative stress that induces rapid degeneration and ultimately leads to delayed cell death. This feature is highly relevant to oligodendrocyte damage and depletion following ischemic, traumatic, or inflammatory insults to the central nervous system (CNS).
Collapse
Affiliation(s)
- I Laszkiewicz
- Department of Anatomy, West Virginia University School of Medicine, Morgantown 26505-9128, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Embryonic bioactivation and formation of reactive oxygen species (ROS) are implicated in the mechanism of phenytoin teratogenicity. This in vivo study in pregnant CD-1 mice evaluated whether maternal administration of the antioxidative enzymes superoxide dismutase (SOD) and/or catalase conjugated with polyethylene glycol (PEG) could reduce phenytoin teratogenicity. Initial studies showed that pretreatment with PEG-SOD alone (0.5-20 KU/kg i.p. 4 or 8 h before phenytoin) actually increased the teratogenicity of phenytoin (65 mg/kg i.p. on gestational days [GD] 11 and 12, or 12 and 13) (p < .05), and appeared to increase embryonic protein oxidation. Combined pretreatment with PEG-SOD and PEG-catalase (10 KU/kg 8 or 12 h before phenytoin) was not embryo-protective, nor was PEG-catalase alone, although PEG-catalase alone reduced phenytoin-initiated protein oxidation in maternal liver (p < .05). However, time-response studies with PEG-catalase (10 KU/kg) on GDs 11, or 11 and 12, showed maximal 50-100% increases in embryonic activity sustained for 8-24 h after maternal injection (p < .05), and dose-response studies (10-50 KU/kg) at 8 h showed maximal respective 4-fold and 2-fold increases in maternal and embryonic activities with a 50 KU/kg dose (p < .05). In controls, embryonic catalase activity was about 4% of that in maternal liver, although with catalase treatment, enhanced embryonic activity was about 2% of enhanced maternal activity (p < .05). PEG-catalase pretreatment (10-50 KU/kg 8 h before phenytoin) also produced a dose-dependent inhibition of phenytoin teratogenicity, with maximal decreases in fetal cleft palates, resorptions and postpartum lethality at a 50 KU/kg dose (p < .05). This is the first evidence that maternal administration of PEG-catalase can substantially enhance embryonic activity, and that in vivo phenytoin teratogenicity can be modulated by antioxidative enzymes. Both the SOD-mediated enhancement of phenytoin teratogenicity, and the inhibition of phenytoin teratogenicity by catalase, indicate a critical role for ROS in the teratologic mechanism, and the teratologic importance of antioxidative balance.
Collapse
Affiliation(s)
- L M Winn
- Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Bhat NR, Zhang P. Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 1999; 72:112-9. [PMID: 9886061 DOI: 10.1046/j.1471-4159.1999.0720112.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. In this study, we have examined the activation of mitogen-activated protein kinase (MAPK) cascades in relation to oxidant-induced cell death in an oligodendrocyte cell line, central glia-4 (CG4). Exposure of CG4 cells to hydrogen peroxide (H2O2) resulted in an increased tyrosine phosphorylation of several protein species, including the abundantly expressed platelet-derived growth factor (PDGF) receptor and the activation of the three MAPK subgroups, i.e., extracellular signal-regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK). Dose-response studies showed differential sensitivities of PDGF receptor phosphorylation (>1 mM) and ERK/p38 MAPK (>0.5 mM) and JNK (>0.1 mM) activation by H2O2. The activation of ERK was inhibited by PD98059, a specific inhibitor of the upstream kinase, MAPK or ERK kinase (MEK). H2O2 also activated MAPK-activated protein kinase-2, and this activation was blocked by SB203580, a specific inhibitor of p38 MAPK. The oxidant-induced cell death was indicated by morphological changes, decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, and DNA fragmentation. These effects were suppressed dose-dependently by the MEK inhibitor PD98059. The results demonstrate that H2O2 induces the activation of multiple MAPKs in oligodendrocyte progenitors and that the activation of ERK is associated with oxidant-mediated cytotoxicity.
Collapse
Affiliation(s)
- N R Bhat
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
42
|
Abstract
This review summarises the role that reactive oxygen and nitrogen species play in demyelination, such as that occurring in the inflammatory demyelinating disorders multiple sclerosis and Guillain-Barré syndrome. The concentrations of reactive oxygen and nitrogen species (e.g. superoxide, nitric oxide and peroxynitrite) can increase dramatically under conditions such as inflammation, and this can overwhelm the inherent antioxidant defences within lesions. Such oxidative and/or nitrative stress can damage the lipids, proteins and nucleic acids of cells and mitochondria, potentially causing cell death. Oligodendrocytes are more sensitive to oxidative and nitrative stress in vitro than are astrocytes and microglia, seemingly due to a diminished capacity for antioxidant defence, and the presence of raised risk factors, including a high iron content. Oxidative and nitrative stress might therefore result in vivo in selective oligodendrocyte death, and thereby demyelination. The reactive species may also damage the myelin sheath, promoting its attack by macrophages. Damage can occur directly by lipid peroxidation, and indirectly by the activation of proteases and phospholipase A2. Evidence for the existence of oxidative and nitrative stress within inflammatory demyelinating lesions includes the presence of both lipid and protein peroxides, and nitrotyrosine (a marker for peroxynitrite formation). The neurological deficit resulting from experimental autoimmune demyelinating disease has generally been reduced by trial therapies intended to diminish the concentration of reactive oxygen species. However, therapies aimed at diminishing reactive nitrogen species have had a more variable outcome, sometimes exacerbating disease.
Collapse
Affiliation(s)
- K J Smith
- Department of Clinical Neurological Sciences, Guy's, King's and St. Thomas' School of Medicine, London.
| | | | | |
Collapse
|
43
|
Guy J, Qi X, Hauswirth WW. Adeno-associated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 1998; 95:13847-52. [PMID: 9811889 PMCID: PMC24923 DOI: 10.1073/pnas.95.23.13847] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.
Collapse
Affiliation(s)
- J Guy
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
44
|
Richter-Landsberg C, Vollgraf U. Mode of cell injury and death after hydrogen peroxide exposure in cultured oligodendroglia cells. Exp Cell Res 1998; 244:218-29. [PMID: 9770364 DOI: 10.1006/excr.1998.4188] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress has been implicated as a causal factor in a wide variety of neurodegenerative diseases. To investigate the direct consequences of oxidative damage on myelin-forming cells, we have exposed oligodendrocytes to hydrogen peroxide. Cytotoxicity was assessed in glial cultures by neutral red (NR) and MTT assay, and half-maximal cytotoxicity was reached after a 30-min application with 100-200 microM H2O2 during a 16-24-h recovery period. The cytotoxic effect could be partly abolished by the simultaneous incubation with N-acetyl-l-cysteine, an antioxidant and precursor of glutathione. In purified mature oligodendroglia cultures (7 div), metabolic activity as determined by the MTT assay, was impaired directly after the treatment with H2O2, and only slightly further enhanced during the 24-h recovery period. Morphological inspection revealed that oligodendrocytes in either the presence or the absence of astrocytes were specifically susceptible to free radical damage, the membranous sheets were disrupted, membranous blebs appeared, and fragmented nuclei were seen. Similar changes were induced by treatment with menadione or staurosporine. The data show that brief exposure to H2O2 induced cell death via apoptosis. This death occurred over a period of 24 h and was accompanied by the appearance of fragmented and condensed DAPI-stained nuclei and internucleosomal DNA cleavage. Concomitantly, as investigated by RT-PCR analysis, the transcriptional activity of c-fos and c-jun was stimulated, without altering mRNA expression of the myelin-specific genes MBP, MAG, and PLP. Thus, oxidative stress in oligodendrocytes leads to the onset of programmed cell death, involving the transcriptional activation of the immediate-early genes c-fos and c-jun.
Collapse
Affiliation(s)
- C Richter-Landsberg
- Department of Biology, University of Oldenburg, Oldenburg, D-26111, Germany.
| | | |
Collapse
|
45
|
Vladimirova O, O'Connor J, Cahill A, Alder H, Butunoi C, Kalman B. Oxidative damage to DNA in plaques of MS brains. Mult Scler 1998; 4:413-8. [PMID: 9839301 DOI: 10.1177/135245859800400503] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major cause of clinical disability in multiple sclerosis (MS) is related to a degenerative process in the central nervous system (CNS) which ultimately develops from a potentially reversible inflammation and demyelination. The mechanism of this degenerative process within MS lesions is not completely understood. We hypothesize that oxidative damage to DNA secondary to inflammation may contribute to irreversible tissue alterations in a plaque. To test this assumption, we determined the level of a DNA oxidative marker, 8-hydroxy-deoxy-guanosine (8-OH-dG) in the normal appearing white matter (NAWM), plaque and cortical regions of cerebella from MS patients who suffered from severe cerebellar symptoms during the course of the disease, and in NAWM and cortical regions of cerebella from non-neurological controls. We found a significant increase in DNA oxidation within plaques compared to NAWM specimens in MS cerebella. A tendency for increase of oxidative markers in normal appearing cortical tissues located in the proximity of MS plaques was also observed when compared to those in control cortical specimens. Oxidative damage to DNA in MS lesions, and in neuron rich areas located in the proximity of these lesions is likely related to the release of reactive oxygen species (ROS) and nitric oxide (NO) during inflammation in the brain. This biochemical impairment of DNA and of other macromolecules may contribute to the development of severe clinical disability through the induction of degenerative changes within and outside of plaques in MS brains.
Collapse
Affiliation(s)
- O Vladimirova
- Center for Neurovirology, Allegheny University of the Health Sciences, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kinney HC, Back SA. Human oligodendroglial development: relationship to periventricular leukomalacia. Semin Pediatr Neurol 1998; 5:180-9. [PMID: 9777676 DOI: 10.1016/s1071-9091(98)80033-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Periventricular leukomalacia in the premature infant is a lesion of cerebral white matter with its greatest period of risk when white matter is immature, that is, when oligodendrocyte precursors are proliferating and differentiating, and before myelin sheaths are actively synthesized. Although the pathogenesis of perinatal cerebral white matter damage involves multiple factors, the correlation of the timing of the lesion with dominance of oligodendrocyte precursors in cerebral white matter suggests that intrinsic factors related to oligodendrocyte precursors are critical. Ischemia and infection have both been implicated as causes of perinatal white matter damage. Major mechanisms underlying oligodendrocyte injury in ischemia include glutamate toxicity, free-radical injury, and cytokine damage mediated by macrophages accompanying ischemia-induced inflammation. Factors related to a vulnerability of immature oligodendrocytes to ischemia potentially include a developmental lack of antioxidant enzymes to mediate oxidative stress. Cytokine-mediated injury to oligodendrocytes is also potentially important. A complete understanding of the role of immature white matter in the pathogenesis of periventricular leukomalacia is essential for developing strategies to prevent it.
Collapse
Affiliation(s)
- H C Kinney
- Department of Neurology, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Xiao BG, Bail XF, Zhang GX, Hedlund G, Link H. Linomide-mediated protection of oligodendrocytes is associated with inhibition of nitric oxide production and IL-1beta expression in Lewis rat glial cells. Neurosci Lett 1998; 249:17-20. [PMID: 9672378 DOI: 10.1016/s0304-3940(98)00371-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Linomide is a synthetic immunomodulator that down-regulates autoimmune response without inducing systemic immunosuppression. Linomide effectively inhibits severe experimental autoimmune diseases, like experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis (MS). Here we report that Linomide suppresses nitric oxide (NO) production by microglia and astrocytes derived from newborn rats and prevented oligodendrocyte damage. Linomide strongly inhibited interleukin (IL) 1 betamRNA expression on glial cells, suggesting a potential mechanism for inhibition of NO production by Linomide. These results demonstrate that Linomide-mediated inhibition of NO production by glial cells could explain the preventive and therapeutic effects of Linomide in EAE and perhaps also MS. However, Linomide at higher dose [correction of doss] (10(-5) M) resulted in direct oligodendrocyte damage.
Collapse
Affiliation(s)
- B G Xiao
- Division of Neurology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
48
|
Abstract
Previous work showed that the susceptibility of oligodendroglial progenitors to oxidative stress is related to their low reduced-glutathione (GSH) and high iron contents. This suggests that these cells have a poor ability to scavenge peroxides. All peroxides are scavenged by glutathione peroxidase. Glutathione peroxidase activity requires GSH as an electron donor resulting in the formation of oxidized-glutathione. Cellular GSH content is dependent upon synthesis as well as reduction of oxidized-glutathione. The objectives of the present study were to compare several parameters important in the ability to scavenge peroxides between astrocytes and oligodendroglia. Three stages of oligodendroglial differentiation were examined: the proliferative oligodendrocyte progenitor, the proliferative oligodendroblast, and the post-mitotic oligodendrocyte. We demonstrate that oligodendroglia at all stages of differentiation have less than one-half the content of GSH compared to astrocytes. This low level of GSH is due in part to a lower rate of GSH synthesis in oligodendroglia compared to astrocytes and in part to their having only one-half of the glutathione reductase activity of astrocytes. Glutathione peroxidase activity of oligodendroglia is less than 15% of that found in astrocytes. The low GSH and concomitant low glutathione peroxidase activity would tend to maintain peroxides at levels that are dangerously high if iron is released from iron stores. Oligodendroglia have high iron stores, and thus these findings emphasize how vulnerable the oligodendroglial lineage is to perturbations that result in oxidative stress.
Collapse
Affiliation(s)
- B H Juurlink
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | | | | |
Collapse
|
49
|
Vela JM, González B, Castellano B. Understanding glial abnormalities associated with myelin deficiency in the jimpy mutant mouse. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:29-42. [PMID: 9600623 DOI: 10.1016/s0165-0173(97)00055-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Jimpy is a shortened life-span murine mutant showing recessive sex-linked inheritance. The genetic defect consists of a point mutation in the PLP gene and produces a severe CNS myelin deficiency that is associated with a variety of complex abnormalities affecting all glial populations. The myelin deficiency is primarily due to a failure to produce the normal amount of myelin during development. However, myelin destruction and oligodendrocyte death also account for the drastic myelin deficit observed in jimpy. The oligodendroglial cell line shows complex abnormalities in its differentiation pattern, including the degeneration of oligodendrocytes through an apoptotic mechanism. Oligodendrocytes seem to be the most likely candidate to be primarily altered in a disorder affecting myelination, but disturbances affecting astrocytes and microglia are also remarkable and may have a crucial significance in the development of the jimpy disorder. In fact, the jimpy phenotype may not be attributed to a defect in a single cell but rather to a deficiency in the normal relations between glial cells. Evidences from a variety of sources indicate that the jimpy mutant could be a model for disturbed glial development in the CNS. The accurate knowledge of the significance of PLP and its regulation during development must be of vital importance in order to understand glial abnormalities in jimpy.
Collapse
Affiliation(s)
- J M Vela
- Department of Cell Biology and Physiology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
50
|
Mann H, McCoy MT, Subramaniam J, Van Remmen H, Cadet JL. Overexpression of superoxide dismutase and catalase in immortalized neural cells: toxic effects of hydrogen peroxide. Brain Res 1997; 770:163-8. [PMID: 9372215 DOI: 10.1016/s0006-8993(97)00768-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogen peroxide (H2O2) is a known toxicant which causes its damage via the production of hydroxyl radicals. It has been reported to cause both necrotic and apoptotic cell death. The present study was undertaken to evaluate the mode of H2O2-induced cell death and to assess if overexpression of catalase could protect against its toxicity. H2O2 causes cell death of immortalized CSM 14.1 neural cells in a dose-dependent manner. H2O2-induced death was associated with DNA laddering as shown by agarose gel electrophoresis. Stable overexpression of catalase by transfection of a vector containing human cDNA into these cells markedly attenuated H2O2-induced toxic effects. Transfection of a vector containing a SOD cDNA afforded no protection. These results indicate that H2O2 can lead to the activation of endonuclease enzyme that breaks DNA into oligosomes. These cells which overexpress catalase or SOD will help to determine the specific role of H2O2 or O2- in the deleterious effects of a number of toxins.
Collapse
Affiliation(s)
- H Mann
- Molecular Neuropsychiatry Section, NIH/NIDA/IRP, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|