1
|
Bonneau N, Potey A, Blond F, Guerin C, Baudouin C, Peyrin JM, Brignole-Baudouin F, Réaux-Le Goazigo A. Assessment of corneal nerve regeneration after axotomy in a compartmentalized microfluidic chip model with automated 3D high resolution live-imaging. Front Cell Neurosci 2024; 18:1417653. [PMID: 39076204 PMCID: PMC11285198 DOI: 10.3389/fncel.2024.1417653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Damage to the corneal nerves can result in discomfort and chronic pain, profoundly impacting the quality of life of patients. Development of novel in vitro method is crucial to better understand corneal nerve regeneration and to find new treatments for the patients. Existing in vitro models often overlook the physiology of primary sensory neurons, for which the soma is separated from the nerve endings. Methods To overcome this limitation, our novel model combines a compartmentalized microfluidic culture of trigeminal ganglion neurons from adult mice with live-imaging and automated 3D image analysis offering robust way to assess axonal regrowth after axotomy. Results Physical axotomy performed by a two-second aspiration led to a reproducible 70% axonal loss and altered the phenotype of the neurons, increasing the number of substance P-positive neurons 72 h post-axotomy. To validate our new model, we investigated axonal regeneration after exposure to pharmacological compounds. We selected various targets known to enhance or inhibit axonal regrowth and analyzed their basal expression in trigeminal ganglion cells by scRNAseq. NGF/GDNF, insulin, and Dooku-1 (Piezo1 antagonist) enhanced regrowth by 81, 74 and 157%, respectively, while Yoda-1 (Piezo1 agonist) had no effect. Furthermore, SARM1-IN-2 (Sarm1 inhibitor) inhibited axonal regrowth, leading to only 6% regrowth after 72 h of exposure (versus 34% regrowth without any compound). Discussion Combining compartmentalized trigeminal neuronal culture with advanced imaging and analysis allowed a thorough evaluation of the extent of the axotomy and subsequent axonal regrowth. This innovative approach holds great promise for advancing our understanding of corneal nerve injuries and regeneration and ultimately improving the quality of life for patients suffering from sensory abnormalities, and related conditions.
Collapse
Affiliation(s)
- Noémie Bonneau
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, Paris, France
| | - Anaïs Potey
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
| | - Camille Guerin
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Inserm-DGOS CIC 1423, IHU Foresight, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
- Hôpital Ambroise Paré, APHP, Université Versailles-Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Jean-Michel Peyrin
- UMR8246, Inserm U1130, IBPS, UPMC, Neurosciences Paris Seine, Sorbonne Université, Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Inserm-DGOS CIC 1423, IHU Foresight, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
- Faculté de Pharmacie de Paris, Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
de Oliveira ME, Da Silva JT, Brioschi ML, Chacur M. Effects of photobiomodulation therapy on neuropathic pain in rats: evaluation of nociceptive mediators and infrared thermography. Lasers Med Sci 2020; 36:1461-1467. [PMID: 33155161 DOI: 10.1007/s10103-020-03187-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 11/26/2022]
Abstract
Nerve injury induces release of peptides and upregulation of receptors such as substance P and transient receptor potential receptor V1 (TRPV1), which contribute to the development and maintenance of chronic pain. Photobiomodulation therapy (PBMT) is a nonpharmacological strategy that promotes tissue repair and reduces pain and inflammation. However, the molecular basis for PBMT effects on neuropathic pain is still unclear. We investigated the effects of PBMT on substance P, TRPV1, and superficial temperature change in a rodent model of neuropathic pain. We evaluated substance P and TRPV1 in dorsal root ganglia (DRG L4 to L6) at baseline, 14 days after chronic constriction injury (CCI) and after PBMT. We also assessed the superficial temperature of tarsal, metatarsal, tibia, and fibula regions before and after PBMT using infrared thermography. Substance P and TRPV1 levels increased in DRG of CCI rats compared to naive and sham rats and decreased after PBMT. Infrared thermography showed increased temperature of tarsal, metatarsal, tibia, and fibula regions in CCI rats, which was decreased after PBMT. There were no statistical differences between CCI rats with PBMT, sham, and naive rats in any assay. PBMT reduces nociceptive mediators and hind paw and leg's temperature in a rodent model of neuropathic pain, suggesting that PBMT may play a modulatory role in thermoregulation, neurogenic inflammation, and thermal sensitivity in peripheral nerve injuries. Therefore, PBMT appears to be a valuable strategy for neuropathic pain treatment in clinical settings.
Collapse
Affiliation(s)
- Mara Evany de Oliveira
- Laboratório de Neuroanatomia Funcional da dor, Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-900, Brazil
| | - Joyce Teixeira Da Silva
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marcos Leal Brioschi
- Divisao de Neurologia, Hospital das Clinicas, Escola de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marucia Chacur
- Laboratório de Neuroanatomia Funcional da dor, Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
4
|
|
5
|
Sliwinski C, Nees TA, Puttagunta R, Weidner N, Blesch A. Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. J Neurotrauma 2018; 35:2222-2238. [PMID: 29706124 DOI: 10.1089/neu.2017.5431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large proportion of patients suffering from spinal cord injury (SCI) develop chronic central neuropathic pain. Previously, we and others have shown that sensorimotor training early after SCI can prevent the development of mechanical allodynia. To determine whether training initiated in the subchronic/chronic phase remains effective, correlates of below-level neuropathic pain were analyzed in the hindpaws 5-10 weeks after a moderate T11 contusion SCI (50 kDyn) in adult female C57BL/6 mice. In a comparison of SCI and sham mice 5 weeks post-injury, about 80% of injured animals developed mechanical hypersensitivity to light mechanical stimuli, whereas testing of noxious stimuli revealed hypo-responsiveness. Thermal sensitivity testing showed a decreased response latency after injury. Without intervention, mechanical and thermal hyper-responsiveness were evident until the end of the experiment (10 weeks). In contrast, treadmill training (2 × 15 min/day; 5 × /week) initiated 6 weeks post-injury resulted in partial amelioration of pain behavior and this effect remained stable. Analysis of calcitonin gene-related peptide (CGRP)-labeled fibers in lamina III-IV of the lumbar dorsal horn revealed an increase in labeling density after SCI. This was not due to changes in the number or size distribution of CGRP-labeled lumbar dorsal root ganglion neurons. Treadmill training reduced the CGRP-labeling density in the spinal cord of injured mice, whereas the density of non-peptidergic isolectin-B4 (IB4)+ fibers showed no changes in lamina IIi and a slight reduction of sparse IB4 labeling in laminae III-IV. Thus, sensorimotor activity initiated in the subchronic/chronic phase of SCI remains effective in ameliorating pain behavior and influencing structural changes of the nociceptive system.
Collapse
Affiliation(s)
| | - Timo A Nees
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,2 Center for Orthopedic and Trauma Surgery, Heidelberg University Hospital , Heidelberg, Germany
| | - Radhika Puttagunta
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Norbert Weidner
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Armin Blesch
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,3 Department of Neurological Surgery and Goodman Campbell Brain and Spine, Stark Neurosciences Research Institute, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
6
|
Tseng TJ, Yang ML, Hsieh YL, Ko MH, Hsieh ST. Nerve Decompression Improves Spinal Synaptic Plasticity of Opioid Receptors for Pain Relief. Neurotox Res 2017; 33:362-376. [PMID: 28836121 DOI: 10.1007/s12640-017-9799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023]
Abstract
Nerve decompression is an essential therapeutic strategy for pain relief clinically; however, its potential mechanism remains poorly understood. Opioid analgesics acting on opioid receptors (OR) within the various regions of the nervous system have been used widely for pain management. We therefore hypothesized that nerve decompression in a neuropathic pain model of chronic constriction injury (CCI) improves the synaptic OR plasticity in the dorsal horn, which is in response to alleviate pain hypersensitivity. After CCI, the Sprague-Dawley rats were assigned into Decompression group, in which the ligatures around the sciatic nerve were removed at post-operative week 4 (POW 4), and a CCI group, in which the ligatures remained. Pain hypersensitivity, including thermal hyperalgesia and mechanical allodynia, was entirely normalized in Decompression group within the following 4 weeks. Substantial reversal of mu- and delta-OR immunoreactive (IR) expressions in Decompression group was detected in primary afferent terminals in the dorsal horn. In Decompression group, mu-OR antagonist (CTOP, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 [Disulfide Bridge: 2-7]) and delta-OR antagonist (NTI, 17-(cyclopropylmethyl)-6,7-dehydro-4,5α-epoxy-3,14-dihydroxy-6,7-2',3'-indolomorphinan hydrochloride) re-induced pain hypersensitivity by intrathecal administration in a dose-responsive manner. Additionally, mu-OR agonist (DAMGO, [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin) and delta-OR agonist (SNC80, ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide) were administrated intrathecally to attenuating CCI-induced chronic and acute pain hypersensitivity dose-dependently. Our current results strongly suggested that nerve decompression provides the opportunity for improving the synaptic OR plasticity in the dorsal horn and pharmacological blockade presents a novel insight into the therapeutic strategy for pain hypersensitivity.
Collapse
Affiliation(s)
- To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Miau-Hwa Ko
- Department of Anatomy, China Medical University, Taichung, 40402, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Sec 1, Taipei, 10051, Taiwan. .,Department of Neurology, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
7
|
Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury. Pain 2016; 157:687-697. [PMID: 26588690 DOI: 10.1097/j.pain.0000000000000422] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Below-level central neuropathic pain (CNP) affects a large proportion of spinal cord injured individuals. To better define the dynamic changes of the spinal cord neural network contributing to the development of CNP after spinal cord injury (SCI), we characterized the morphological and behavioral correlates of CNP in female C57BL/6 mice after a moderate T11 contusion SCI (50 kdyn) and the influence of moderate physical activity. Compared with sham-operated animals, injured mice developed mechanical allodynia 2 weeks post injury when tested with small-diameter von Frey hair filaments (0.16 g and 0.4 g filament), but presented hyporesponsiveness to noxious mechanical stimuli (1.4 g filament). The mechano-sensory alterations lasted up to 35 days post injury, the longest time point examined. The response latency to heat stimuli already decreased significantly 10 days post injury reaching a plateau 2 weeks later. In contrast, injured mice developed remarkable hyposensitivity to cold stimuli. Animals that underwent moderate treadmill training (2 × 15 minutes; 5 d/wk) showed a significant reduction in the response rate to light mechanical stimuli as early as 6 days after training. Calcitonin gene-related peptide (CGRP) labeling in lamina III-IV of the dorsal horn revealed significant increases in CGRP-labeling density in injured animals compared with sham control animals. Importantly, treadmill training reduced CGRP-labeling density by about 50% (P < 0.01), partially reducing the injury-induced increases. Analysis of IB4-labeled nonpeptidergic sensory fibers revealed no differences between experimental groups. Abnormalities in temperature sensation were not influenced by physical activity. Thus, treadmill training partially resolves signs of below-level CNP after SCI and modulates the density of CGRP-labeled fibers.
Collapse
|
8
|
|
9
|
Pap K, Berta Á, Szőke G, Dunay M, Németh T, Hornok K, Marosfői L, Réthelyi M, Kozsurek M, Puskár Z. Nerve stretch injury induced pain pattern and changes in sensory ganglia in a clinically relevant model of limb-lengthening in rabbits. Physiol Res 2014; 64:571-81. [PMID: 25470524 DOI: 10.33549/physiolres.932752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used a model of tibial lengthening in rabbits to study the postoperative pain pattern during limb-lengthening and morphological changes in the dorsal root ganglia (DRG), including alteration of substance P (SP) expression. Four groups of animals (naive; OG: osteotomized only group; SDG/FDG: slow/fast distraction groups, with 1 mm/3 mm lengthening a day, respectively) were used. Signs of increasing postoperative pain were detected until the 10(th) postoperative day in OG/SDG/FDG, then they decreased in OG but remained higher in SDG/FDG until the distraction finished, suggesting that the pain response is based mainly on surgical trauma until the 10(th) day, while the lengthening extended its duration and increased its intensity. The only morphological change observed in the DRGs was the presence of large vacuoles in some large neurons of OG/SDG/FDG. Cell size analysis of the S1 DRGs showed no cell loss in any of the three groups; a significant increase in the number of SP-positive large DRG cells in the OG; and a significant decrease in the number of SP-immunoreactive small DRG neurons in the SDG/FDG. Faster and larger distraction resulted in more severe signs of pain sensation, and further reduced the number of SP-positive small cells, compared to slow distraction.
Collapse
Affiliation(s)
- K Pap
- Department of Traumatology, Semmelweis University & Department of Orthopedics and Traumatology, Uzsoki Hospital, Budapest, Hungary, Szentágothai János Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Neuropathic pain often fails to respond to conventional pain management procedures. here we review the aetiology of neuropathic pain as would result from peripheral neuropathy or injury. We show that inflammatory mediators released from damaged nerves and tissue are responsible for triggering ectopic activity in primary afferents and that this, in turn, provokes increased spinal cord activity and the development of ‘central sensitization’. Although evidence is mounting to support the role of interleukin-1β, prostaglandins and other cytokines in the onset of neuropathic pain, the clinical efficacy of drugs which antagonize or prevent the actions of these mediators is yet to be determined. basic science findings do, however, support the use of pre-emptive analgesia during procedures which involve nerve manipulation and the use of anti-inflammatory steroids as soon as possible following traumatic nerve injury.
Collapse
|
11
|
μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain. Neuroscience 2014; 267:67-82. [PMID: 24583035 DOI: 10.1016/j.neuroscience.2014.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/27/2022]
Abstract
Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund's adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms.
Collapse
|
12
|
Shehab SADS. Fifth lumbar spinal nerve injury causes neurochemical changes in corresponding as well as adjacent spinal segments: a possible mechanism underlying neuropathic pain. J Chem Neuroanat 2014; 55:38-50. [PMID: 24394408 DOI: 10.1016/j.jchemneu.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 01/19/2023]
Abstract
Previous investigations of the anatomical basis of the neuropathic-like manifestations in the spinal nerve ligation animal model have shown that the central terminations of the unmyelinated primary afferents of L5 spinal nerve are not restricted to the corresponding L5 spinal segment, and rather extend to two spinal segments rostrally and one segment caudally where they intermingle with primary afferents of the adjacent L4 spinal nerve. The aim of the present study was to investigate the neurochemical changes in the dorsal horn of the spinal cord and DRGs after L5 nerve injury in rats. In the first experiment, the right L5 nerve was ligated and sectioned for 14 days, and isolectin B4 (IB4, a tracer for unmyelinated primary afferents) was injected into the left L5 nerve. The results showed that the vasoactive intestinal peptide (VIP) was up-regulated in laminae I-II of L3-L6 spinal segments on the right side in exactly the same areas where IB4 labelled terminals were revealed on the left side. In the second experiment, L5 was ligated and sectioned and the spinal cord and DRGs were stained immunocytochemically with antibodies raised against various peptides known to be involved in pain transmission and hyperalgesia. The results showed that L5 nerve lesion caused down-regulation of substance P, calcitonin-gene related peptide and IB4 binding and up-regulation of neuropeptide Y and neurokinin-1 receptor in the dorsal horn of L4 and L5 spinal segments. Similar neurochemical changes were observed only in the corresponding L5 DRG with minimal effects observed in L3, L4 and L6 DRGs. Although, L5 nerve injury caused an up-regulation in NPY, no change in SP and CGRP immunoreactivity was observed in ipsilateral garcile nucleus. These neuroplastic changes in the dorsal horn of the spinal cord, in the adjacent uninjured territories of the central terminations of the adjacent uninjured nerves, might explain the mechanism of hyperalgesia after peripheral nerve injury.
Collapse
Affiliation(s)
- Safa Al-Deen Saudi Shehab
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, PO BOX 16777, United Arab Emirates.
| |
Collapse
|
13
|
Suzuki I, Tsuboi Y, Shinoda M, Shibuta K, Honda K, Katagiri A, Kiyomoto M, Sessle BJ, Matsuura S, Ohara K, Urata K, Iwata K. Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury. PLoS One 2013; 8:e57278. [PMID: 23451198 PMCID: PMC3579857 DOI: 10.1371/journal.pone.0057278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/23/2013] [Indexed: 01/19/2023] Open
Abstract
To evaluate the involvement of the mitogen-activated protein kinase (MAPK) cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK) in trigeminal spinal subnucleus caudalis (Vc) neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI). The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR) cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.
Collapse
Affiliation(s)
- Ikuko Suzuki
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Yoshiyuki Tsuboi
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Kazuo Shibuta
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Kuniya Honda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Masaaki Kiyomoto
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Barry J. Sessle
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Shingo Matsuura
- Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Kentaro Urata
- Department of Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Division of Applied System Neuroscience Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| |
Collapse
|
14
|
Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. J Neurosci 2013. [PMID: 23197740 DOI: 10.1523/jneurosci.3561-12.2012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic neuropathic pain affects millions of individuals worldwide, is typically long-lasting, and remains poorly treated with existing therapies. Neuropathic pain arising from peripheral nerve lesions is known to be dependent on the emergence of spontaneous and evoked hyperexcitability in damaged nerves. Here, we report that the potassium channel subunit Kv9.1 is expressed in myelinated sensory neurons, but is absent from small unmyelinated neurons. Kv9.1 expression was strongly and rapidly downregulated following axotomy, with a time course that matches the development of spontaneous activity and pain hypersensitivity in animal models. Interestingly, siRNA-mediated knock-down of Kv9.1 in naive rats led to neuropathic pain behaviors. Diminished Kv9.1 function also augmented myelinated sensory neuron excitability, manifested as spontaneous firing, hyper-responsiveness to stimulation, and persistent after-discharge. Intracellular recordings from ex vivo dorsal root ganglion preparations revealed that Kv9.1 knock-down was linked to lowered firing thresholds and increased firing rates under physiologically relevant conditions of extracellular potassium accumulation during prolonged activity. Similar neurophysiological changes were detected in animals subjected to traumatic nerve injury and provide an explanation for neuropathic pain symptoms, including poorly understood conditions such as hyperpathia and paresthesias. In summary, our results demonstrate that Kv9.1 dysfunction leads to spontaneous and evoked neuronal hyperexcitability in myelinated fibers, coupled with development of neuropathic pain behaviors.
Collapse
|
15
|
Zakir HM, Mostafeezur RM, Suzuki A, Hitomi S, Suzuki I, Maeda T, Seo K, Yamada Y, Yamamura K, Lev S, Binshtok AM, Iwata K, Kitagawa J. Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation. PLoS One 2012; 7:e44023. [PMID: 22962595 PMCID: PMC3433461 DOI: 10.1371/journal.pone.0044023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/01/2012] [Indexed: 01/06/2023] Open
Abstract
Increased expression of the transient receptor potential vanilloid 1 (TRPV1) channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level of QX-314/capsaicin (QX-CAP) - induced blockade of nocifensive behavior could be used as an indirect in-vivo measurement of functional expression of TRPV1 channels. We used the QX-CAP combination to monitor the functional expression of TRPV1 in regenerated neurons after inferior alveolar nerve (IAN) transection in rats. We evaluated the effect of this combination on pain threshold at different time points after IAN transection by analyzing the escape thresholds to mechanical stimulation of lateral mental skin. At 2 weeks after IAN transection, there was no QX-CAP mediated block of mechanical hyperalgesia, implying that there was no functional expression of TRPV1 channels. These results were confirmed immunohistochemically by staining of regenerated trigeminal ganglion (TG) neurons. This suggests that TRPV1 channel expression is an essential necessity for the QX-CAP mediated blockade. Furthermore, we show that 3 and 4 weeks after IAN transection, application of QX-CAP produced a gradual increase in escape threshold, which paralleled the increased levels of TRPV1 channels that were detected in regenerated TG neurons. Immunohistochemical analysis also revealed that non-myelinated neurons regenerated slowly compared to myelinated neurons following IAN transection. We also show that TRPV1 expression shifted towards myelinated neurons. Our findings suggest that nerve injury modulates the TRPV1 expression pattern in regenerated neurons and that the effectiveness of QX-CAP induced blockade depends on the availability of functional TRPV1 receptors in regenerated neurons. The results of this study also suggest that the QX-CAP based approach can be used as a new behavioral tool to detect dynamic changes in TRPV1 expression, in various pathological conditions.
Collapse
Affiliation(s)
- Hossain Md. Zakir
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rahman Md. Mostafeezur
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akiko Suzuki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ikuko Suzuki
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kenji Seo
- Division of Dental Anesthesiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiaki Yamada
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| | - Alexander M. Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Junichi Kitagawa
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|
16
|
Costa AC, Becker LK, Moraes ÉR, Romero TR, Guzzo L, Santos RA, Duarte ID. Angiotensin-(1–7) Induces Peripheral Antinociception through Mas Receptor Activation in an Opioid-Independent Pathway. Pharmacology 2012; 89:137-44. [DOI: 10.1159/000336340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/06/2012] [Indexed: 12/21/2022]
|
17
|
Abstract
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region.
Collapse
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
18
|
Zhang G, Chen W, Marvizón JCG. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABA(B) receptors, but not α2 adrenergic receptors. Eur J Neurosci 2010; 32:963-73. [PMID: 20726886 DOI: 10.1111/j.1460-9568.2010.07335.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GABA(B) , μ-opioid and adrenergic α(2) receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABA(B) receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high-frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABA(B) agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low-frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α(2) adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low-frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABA(B) receptors, but not by α(2) receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels.
Collapse
Affiliation(s)
- Guohua Zhang
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
19
|
|
20
|
Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol 2009; 68:1229-43. [PMID: 19816194 DOI: 10.1097/nen.0b013e3181bef710] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
C57BLKS db/db (db/db) mice develop a neuropathy with features of human type 2 diabetic neuropathy. Here, we demonstrate that these mice develop transient mechanical allodynia at the early stage of diabetes. We hypothesized that nerve growth factor (NGF), which enhances the expression of key mediators of nociception (i.e. substance P [SP] and calcitonin gene-related peptide), contributes to the development of mechanical allodynia in these mice. We found that NGF, SP, and calcitonin gene-related peptide gene expression is upregulated in the dorsal root ganglion (DRG) of db/db mice before or during the period that they develop mechanical allodynia. There were more small- to medium-sized NGF-immunopositive DRG neurons in db/db mice than in control db+ mice; these neurons also expressed SP, consistent with its role in nociception. Nerve growth factor expression in the hind paw skin was also increased in a variety of dermal cell types and nerve fibers, suggesting the contribution of a peripheral source of NGF to mechanical allodynia. The upregulation of NGF coincided with enhanced tropomyosin-related kinase A receptor phosphorylation in the DRG. Finally, an antibody against NGF inhibited mechanical allodynia and decreased the numbers of SP-positive DRG neurons in db/db mice. These results suggest that inhibition of NGF action is a potential strategy for treating painful diabetic neuropathy.
Collapse
|
21
|
Price TJ, Géranton SM. Translating nociceptor sensitivity: the role of axonal protein synthesis in nociceptor physiology. Eur J Neurosci 2009; 29:2253-63. [PMID: 19490023 DOI: 10.1111/j.1460-9568.2009.06786.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The increased sensitivity of peripheral pain-sensing neurons, or nociceptors, is a major cause of the sensation of pain that follows injury. This plasticity is thought to contribute to the maintenance of chronic pain states. Although we have a broad knowledge of the factors that stimulate changes in nociceptor sensitivity, the cellular mechanisms that underlie this plasticity are still poorly understood; however, they are likely to involve changes in gene expression required for the phenotypic and functional changes seen in nociceptive neurons after injury. While the regulation of gene expression at the transcriptional level has been studied extensively, the regulation of protein synthesis, which is also a tightly controlled process, has only recently received more attention. Despite the established role of protein synthesis in the plasticity of neuronal cell bodies and dendrites, little attention has been paid to the role of translation control in mature undamaged axons. In this regard, several recent studies have demonstrated that the control of protein synthesis within the axonal compartment is crucial for the normal function and regulation of sensitivity of nociceptors. Pathways and proteins regulating this process, such as the mammalian target of rapamycin signaling cascade and the fragile X mental retardation protein, have recently been identified. We review here recent evidence for the regulation of protein synthesis within a nociceptor's axonal compartment and its contribution to this neuron's plasticity. We believe that an increased understanding of this process will lead to the identification of novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- The University of Arizona, School of Medicine, Department of Pharmacology, 1501 N Campbell Ave, Tucson, AZ 85724, USA.
| | | |
Collapse
|
22
|
Abstract
Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Pavel J, Tang H, Brimijoin S, Moughamian A, Nishioku T, Benicky J, Saavedra JM. Expression and transport of Angiotensin II AT1 receptors in spinal cord, dorsal root ganglia and sciatic nerve of the rat. Brain Res 2008; 1246:111-22. [PMID: 18976642 DOI: 10.1016/j.brainres.2008.09.099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/23/2008] [Accepted: 09/28/2008] [Indexed: 11/16/2022]
Abstract
To clarify the role of Angiotensin II in the regulation of peripheral sensory and motor systems, we initiated a study of the expression, localization and transport of Angiotensin II receptor types in the rat sciatic nerve pathway, including L(4)-L(5) spinal cord segments, the corresponding dorsal root ganglia (DRGs) and the sciatic nerve. We used quantitative autoradiography for AT(1) and AT(2) receptors, and in situ hybridization to detect AT(1A), AT(1B) and AT(2) mRNAs. We found substantial expression and discrete localization of Angiotensin II AT(1) receptors, with much higher numbers in the grey than in the white matter. A very high AT(1) receptor expression was detected in the superficial dorsal horns and in neuronal clusters of the DRGs. Expression of AT(1A) mRNA was significantly higher than that of AT(1B). AT(1) receptor binding and AT(1A) and AT(1B) mRNAs were especially prominent in ventral horn motor neurons, and in the DRG neuronal cells. Unilateral dorsal rhizotomy significantly reduced AT(1) receptor binding in the ipsilateral side of the superficial dorsal horn, indicating that a substantial number of dorsal horn AT(1) receptors have their origin in the DRGs. After ligation of the sciatic nerve, there was a high accumulation of AT(1) receptors proximal to the ligature, a demonstration of anterograde receptor transport. We found inconsistent levels of AT(2) receptor binding and mRNA. Our results suggest multiple roles of Angiotensin II AT(1) receptors in the regulation of sensory and motor functions.
Collapse
Affiliation(s)
- Jaroslav Pavel
- Section on Pharmacology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Contribution of activated interleukin receptors in trigeminal ganglion neurons to hyperalgesia via satellite glial interleukin-1beta paracrine mechanism. Brain Behav Immun 2008; 22:1016-1023. [PMID: 18440198 DOI: 10.1016/j.bbi.2008.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022] Open
Abstract
The present study investigated whether under in vivo conditions, inflammation alters the excitability of nociceptive Adelta-trigeminal ganglion (TRG) neurons innervating the facial skin via a cytokine paracrine mechanism. We used extracellular electrophysiological recording with multibarrel-electrodes in this study, and complete Freund's adjuvant (CFA) was injected into the rat facial skin. The threshold for escape from mechanical stimulation applied to the whisker pad area in inflamed rats (2 days after CFA injection) was significantly lower than that in control rats. A total of 45 Adelta-nociceptive-TRG neurons responding to electrical stimulation of the whisker pad were recorded in pentobarbital-anesthetized rats. The number of Adelta-TRG neurons with spontaneous firings and their firing rate in inflamed rats were significantly larger than those in control rats. The firing rates of the Adelta-TRG neuronal spontaneous activity were current-dependently decreased by local iontophoretic application of an interleukin I receptor type I antagonist (IL-1ra) in inflamed rats, but not in controls, and current-dependently increased by iontophoretic application of interleukin 1beta (IL-1beta) in both control and inflamed rats. IL-1ra also inhibited Adelta-TRG neuron activity evoked by mechanical stimulation in the inflamed rats. The mechanical threshold of nociceptive-TRG neurons in inflamed rats was significantly lower than that in control rats, but was not significantly different between control and inflamed rats after application of an IL-1ra. These results suggested that inflammation modulates the excitability of nociceptive Adelta-TRG neurons innervating the facial skin via IL-1beta paracrine action within trigeminal ganglia. Such an IL-1beta release could be important in determining trigeminal inflammatory hyperalgesia.
Collapse
|
25
|
Saito K, Hitomi S, Suzuki I, Masuda Y, Kitagawa J, Tsuboi Y, Kondo M, Sessle BJ, Iwata K. Modulation of Trigeminal Spinal Subnucleus Caudalis Neuronal Activity Following Regeneration of Transected Inferior Alveolar Nerve in Rats. J Neurophysiol 2008; 99:2251-63. [DOI: 10.1152/jn.00794.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats. To clarify the neuronal mechanisms of abnormal pain in the face innervated by the regenerated inferior alveolar nerve (IAN), nocifensive behavior, trigeminal ganglion neuronal labeling following Fluorogold (FG) injection into the mental skin, and trigeminal spinal subnucleus caudalis (Vc) neuronal properties were examined in rats with IAN transection. The mechanical escape threshold was significantly higher at 3 days and lower at 14 days after IAN transection, whereas head withdrawal latency to heat was significantly longer at 3, 14, and 60 days after IAN transection. The number of FG-labeled ganglion neurons was significantly reduced at 3 days after IAN transection but increased at 14 and 60 days. The number of wide dynamic range (WDR) neurons with background (BG) activity was significantly higher at 14 and 60 days after IAN transection compared with naïve rats, and the number of WDR and low-threshold mechanoreceptive (LTM) neurons with irregularly bursting BG activity was increased at these two time points. Mechanically evoked responses were significantly larger in WDR and LTM neurons 14 days after IAN transection compared with naïve rats. Heat- and cold-evoked responses in WDR neurons were significantly lower at 14 days after transection compared with naïve rats. Mechanoreceptive fields were also significantly larger in WDR and LTM neurons at 14 and 60 days after IAN transection. These findings suggest that these alterations may be involved in the development of mechanical allodynia in the cutaneous region innervated by the regenerated IAN.
Collapse
|
26
|
Garcia-Larrea L, Magnin M. Physiopathologie de la douleur neuropathique : revue des modèles expérimentaux et des mécanismes proposés. Presse Med 2008; 37:315-40. [DOI: 10.1016/j.lpm.2007.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 01/22/2023] Open
|
27
|
|
28
|
Hughes DI, Scott DT, Riddell JS, Todd AJ. Upregulation of substance P in low-threshold myelinated afferents is not required for tactile allodynia in the chronic constriction injury and spinal nerve ligation models. J Neurosci 2007; 27:2035-44. [PMID: 17314299 PMCID: PMC1828212 DOI: 10.1523/jneurosci.5401-06.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It has been proposed that substance P and calcitonin gene-related peptide (CGRP) are upregulated in low-threshold myelinated primary afferents after certain types of nerve injury, and that release of substance P from these afferents contributes to the resulting tactile allodynia. To test this hypothesis, we looked for neuropeptides in Abeta primary afferent terminals in the ipsilateral gracile nucleus and spinal dorsal horn in three nerve injury models: sciatic nerve transection (SNT), spinal nerve ligation (SNL), and chronic constriction injury (CCI). We also looked for evidence of neurokinin 1 (NK1) receptor internalization in the dorsal horn after electrical stimulation of Abeta afferents. We found no evidence of either substance P or CGRP expression in injured Abeta terminals in the spinal cord in any of the models. Although substance P was not detected in terminals of injured afferents in the gracile nucleus, CGRP was expressed in between 32 and 68% of these terminals, with a significantly higher proportion in the SNL and CCI models, compared with SNT. In addition, we did not detect any Abeta-evoked NK1 receptor internalization in neurons from laminas I, III, or IV of the dorsal horn in the CCI or SNL models. These results do not support the proposal that substance P is present at significant levels in the terminals of injured Abeta primary afferents in neuropathic models. They also suggest that any release of substance P from injured Abeta afferents is unlikely to activate NK1 receptors in the dorsal horn or contribute to neuropathic pain.
Collapse
Affiliation(s)
- David I Hughes
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Ruscheweyh R, Forsthuber L, Schoffnegger D, Sandkühler J. Modification of classical neurochemical markers in identified primary afferent neurons with Aβ-, Aδ-, and C-fibers after chronic constriction injury in mice. J Comp Neurol 2007; 502:325-36. [PMID: 17348016 DOI: 10.1002/cne.21311] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is functionally important to differentiate between primary afferent neurons with A-fibers, which are nociceptive or nonnociceptive, and C-fibers, which are mainly nociceptive. Neurochemical markers such as neurofilament 200 (NF200), substance P (SP), and isolectin B4 (IB4) have been useful to distinguish between A- and C-fiber neurons. However, the expression patterns of these markers change after peripheral nerve injury, so that it is not clear whether they still distinguish between fiber types in models of neuropathic pain. We identified neurons with Abeta-, Adelta-, and C-fibers by their conduction velocity (corrected for utilization time) in dorsal root ganglia taken from mice after a chronic constriction injury (CCI) of the sciatic nerve and control mice, and later stained them for IB4, SP, calcitonin gene-related peptide (CGRP), NF200, and neuropeptide Y (NPY). NF200 remained a good marker for A-fiber neurons, and IB4 and SP remained good markers for C-fiber neurons after CCI. NPY was absent in controls but was expressed in A-fiber neurons after CCI. After CCI, a group of C-fiber neurons emerged that expressed none of the tested markers. The size distribution of the markers was investigated in larger samples of unidentified dorsal root ganglion neurons and, together with the results from the identified neurons, provided only limited evidence for the expression of SP in Abeta-fiber neurons after CCI. The extent of up-regulation of NPY showed a strong inverse correlation with the degree of heat hyperalgesia.
Collapse
MESH Headings
- Action Potentials
- Animals
- Behavior, Animal
- Biomarkers
- Cell Count/methods
- Constriction
- Disease Models, Animal
- Electric Stimulation/methods
- Ganglia, Spinal/pathology
- Male
- Mice
- Nerve Fibers, Myelinated/classification
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Unmyelinated/pathology
- Nerve Tissue Proteins/metabolism
- Neural Conduction/physiology
- Neurons, Afferent/classification
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/physiology
- Reaction Time/radiation effects
- Sciatic Neuropathy/metabolism
- Sciatic Neuropathy/pathology
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Abstract
Neuropathic pain refers to pain that originates from pathology of the nervous system. Diabetes, infection (herpes zoster), nerve compression, nerve trauma, "channelopathies," and autoimmune disease are examples of diseases that may cause neuropathic pain. The development of both animal models and newer pharmacological strategies has led to an explosion of interest in the underlying mechanisms. Neuropathic pain reflects both peripheral and central sensitization mechanisms. Abnormal signals arise not only from injured axons but also from the intact nociceptors that share the innervation territory of the injured nerve. This review focuses on how both human studies and animal models are helping to elucidate the mechanisms underlying these surprisingly common disorders. The rapid gain in knowledge about abnormal signaling promises breakthroughs in the treatment of these often debilitating disorders.
Collapse
Affiliation(s)
- James N Campbell
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
31
|
Kitagawa J, Takeda M, Suzuki I, Kadoi J, Tsuboi Y, Honda K, Matsumoto S, Nakagawa H, Tanabe A, Iwata K. Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy. Eur J Neurosci 2006; 24:1976-86. [PMID: 17040479 DOI: 10.1111/j.1460-9568.2006.05065.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In order to clarify the mechanisms underlying the changes in primary afferent neurons in trigeminal neuropathic pain, a chronic constriction nerve injury model of the infraorbital nerve (ION-CCI) was developed in rats. Mechanical allodynia was observed at 3 days after ION-CCI and lasted more than 14 days. Single-unit activities were recorded from the ION of anesthetized rats. C-, Abeta- and Adelta-units were identified on the basis of their conduction velocity. Adelta-units were frequently encountered at a later period after ION-CCI. The highest Adelta-spontaneous activity was recorded at 3 days after ION-CCI and progressively decreased after that, but spontaneous activity was still higher at 14 days after ION-CCI than that of naïve rats. Mechanical-evoked responses of Adelta-units were also highest at 3 days after ION-CCI and then gradually decreased. In consideration of these data, patch-clamp recordings were performed on medium to large size neurons of the dissociated trigeminal ganglion (TRG). Patch-clamp recordings revealed that the IK (sustained) and IA (transient) in rats with ION-CCI were significantly smaller than those of naïve rats, and correlated with an increase in duration of repolarization phase and a decrease in duration of depolarization phase, respectively. The hyperpolarization-activated current (Ih) was significantly larger in TRG neurons of rats with ION-CCI as compared with those of naïve rats. The present results suggest that Ih, IK and IA in Adelta-afferent neurons in TRG are significantly involved in the changes in afferent spontaneous activity and mechanically evoked activity that accompany mechanical allodynia produced by trigeminal nerve injury.
Collapse
Affiliation(s)
- Junichi Kitagawa
- Department of Physiology, School of Dentistry, Nihon University, 1-8-13 Kandasurugadai, Chiyoda-ku Tokyo, 101-8310, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sah DY, Porreca F, Ossipov MH. Modulation of neurotrophic growth factors as a therapeutic strategy for neuropathic pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Weissner W, Winterson BJ, Stuart-Tilley A, Devor M, Bove GM. Time course of substance P expression in dorsal root ganglia following complete spinal nerve transection. J Comp Neurol 2006; 497:78-87. [PMID: 16680762 PMCID: PMC2571959 DOI: 10.1002/cne.20981] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence suggests that substance P (SP) is up-regulated in primary sensory neurons following axotomy and that this change occurs in larger neurons that do not usually produce SP. If this is so, then the up-regulation may allow normally neighboring, uninjured, and nonnociceptive dorsal root ganglion (DRG) neurons to become effective in activating pain pathways. By using immunohistochemistry, we performed a unilateral L5 spinal nerve transection on male Wistar rats and measured SP expression in ipsilateral L4 and L5 DRGs and contralateral L5 DRGs at 1-14 days postoperatively (dpo) and in control and sham-operated rats. In normal and sham-operated DRGs, SP was detectable almost exclusively in small neurons (< or =800 microm2). After surgery, the mean size of SP-positive neurons from the axotomized L5 ganglia was greater at 2, 4, 7, and 14 dpo. Among large neurons (>800 microm2) from the axotomized L5, the percentage of SP-positive neurons increased at 2, 4, 7, and 14 dpo. Among small neurons from the axotomized L5, the percentage of SP-positive neurons was increased at 1 and 3 dpo but was decreased at 7 and 14 dpo. Thus, SP expression is affected by axonal damage, and the time course of the expression is different between large and small DRG neurons. These data support a role for SP-producing, large DRG neurons in persistent sensory changes resulting from nerve injury.
Collapse
Affiliation(s)
- Wendy Weissner
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
34
|
Noguchi K. Chapter 20 Central sensitization following nerve injury: molecular mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:277-291. [PMID: 18808842 DOI: 10.1016/s0072-9752(06)80024-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
35
|
Takeda M, Tanimoto T, Ikeda M, Nasu M, Kadoi J, Shima Y, Ohta H, Matsumoto S. Temporomandibular Joint Inflammation Potentiates the Excitability of Trigeminal Root Ganglion Neurons Innervating the Facial Skin in Rats. J Neurophysiol 2005; 93:2723-38. [PMID: 15625101 DOI: 10.1152/jn.00631.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to test the hypothesis that temporomandibular joint (TMJ) inflammation alters the excitability of trigeminal root ganglion (TRG) neurons innervating the facial skin, by using behavioral, electrophysiological, molecular, and immunohistochemical approaches. Complete Freund’s adjuvant (CFA) was injected into the rat TMJ to produce inflammation. The threshold for escape from mechanical stimulation applied to the orofacial area in TMJ-inflamed rats was significantly lower than that in naïve rats. The TRG neurons innervating the inflamed TMJ were labeled by 2% Fluorogold (FG) injection into the TMJ. The number of FG-labeled substance P (SP)-immunoreactive neurons in the inflamed rats was significantly increased compared with that in the naïve rats. On the other hand, medium- and large-diameter TRG neurons (>30 μm) innervating the facial skin were labeled by FG injection into the facial skin. In the FG-labeled cutaneous TRG neurons, the occurrence of SP (100 nM) induced membrane depolarization in inflamed rats (medium: 73.3%, large : 85.7%) was larger than that in the naïve rats (medium: 29.4%, large : 0%). In addition, SP application significantly increased the firing rate evoked by depolarizing pulses in the neurons of inflamed rats compared with those of naïve rats. Quantitative single-cell RT-PCR analysis showed the increased expression of mRNA for the NK1 receptor in FG-labeled TRG neurons in inflamed rats compared with that in naïve rats. The numbers of SP and NK1 receptors/neurofilament 200 positive immunoreactive TRG neurons innervating the facial skin (FG-labeled) in the inflamed rats were significantly increased compared with those seen in naïve rats. These results suggest that TMJ inflammation can alter the excitability of medium- and large-diameter TRG neurons innervating the facial skin and that an increase in SP/NK1 receptors in their soma may contribute to the mechanism underlying the trigeminal inflammatory allodynia in the TMJ disorder.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Vogelaar CF, Vrinten DH, Hoekman MFM, Brakkee JH, Burbach JPH, Hamers FPT. Sciatic nerve regeneration in mice and rats: recovery of sensory innervation is followed by a slowly retreating neuropathic pain-like syndrome. Brain Res 2004; 1027:67-72. [PMID: 15494158 DOI: 10.1016/j.brainres.2004.08.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
Peripheral nerve regeneration has been studied extensively in the sciatic nerve crush model, at the level of both function and gene expression. The crush injury allows full recovery of sensory and motor function in about 3 weeks as assessed by the foot reflex withdrawal test and De Medinacelli walking patterns. We used the recently developed CatWalk paradigm to study walking patterns in more detail in mice and rats. We found that, following the recovery of sensory function, the animals developed a state of mechanical allodynia, which retreated slowly over time. The motor function, although fully recovered with the conventional methods, was revealed to be still impaired because the animals did not put weight on their previously injured paw. The development of neuropathic pain following successful sensory recovery has not been described before in crush-lesioned animals and may provide an important new parameter to assess full sensory recovery.
Collapse
Affiliation(s)
- Christina F Vogelaar
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Damage to the nervous system can cause neuropathic pain, which is in general poorly treated and involves mechanisms that are incompletely known. Currently available animal models for neuropathic pain mainly involve partial injury of peripheral nerves. Multiple inflammatory mediators released from damaged tissue not only acutely excite primary sensory neurons in the peripheral nervous system, producing ectopic discharge, but also lead to a sustained increase in their excitability. Hyperexcitability also develops in the central nervous system (for instance, in dorsal horn neurons), and both peripheral and spinal elements contribute to neuropathic pain, so that spontaneous pain may occur or normally innocuous stimuli may produce pain. Inflammatory mediators and aberrant neuronal activity activate several signaling pathways [including protein kinases A and C, calcium/calmodulin-dependent protein kinase, and mitogen-activated protein kinases (MAPKs)] in primary sensory and dorsal horn neurons that mediate the induction and maintenance of neuropathic pain through both posttranslational and transcriptional mechanisms. In particular, peripheral nerve lesions result in activation of MAPKs (p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase) in microglia or astrocytes in the spinal cord, or both, leading to the production of inflammatory mediators that sensitize dorsal horn neurons. Activity of dorsal horn neurons, in turn, enhances activation of spinal glia. This neuron-glia interaction involves positive feedback mechanisms and is likely to enhance and prolong neuropathic pain even in the absence of ongoing peripheral external stimulation or injury. The goal of this review is to present evidence for signaling cascades in these cell types that not only will deepen our understanding of the genesis of neuropathic pain but also may help to identify new targets for pharmacological intervention.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
38
|
Pitcher GM, Henry JL. Nociceptive response to innocuous mechanical stimulation is mediated via myelinated afferents and NK-1 receptor activation in a rat model of neuropathic pain. Exp Neurol 2004; 186:173-97. [PMID: 15026255 DOI: 10.1016/j.expneurol.2003.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 10/08/2003] [Accepted: 10/16/2003] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injury in humans can produce a persistent pain state characterized by spontaneous pain and painful responses to normally innocuous stimuli (allodynia). Here we attempt to identify some of the neurophysiological and neurochemical mechanisms underlying neuropathic pain using an animal model of peripheral neuropathy induced in male Sprague-Dawley rats by placing a 2-mm polyethylene cuff around the left sciatic nerve according to the method of Mosconi and Kruger. von Frey hair testing confirmed tactile allodynia in all cuff-implanted rats before electrophysiological testing. Rats were anesthetized and spinalized for extracellular recording from single spinal wide dynamic range neurons (L(3-4)). In neuropathic rats (days 11-14 and 42-52 after cuff implantation), ongoing discharge was greater and hind paw receptive field size was expanded compared to control rats. Activation of low-threshold sensory afferents by innocuous mechanical stimulation (0.2 N for 3 s) in the hind paw receptive field evoked the typical brief excitation in control rats. However, in neuropathic rats, innocuous stimulation also induced a nociceptive-like afterdischarge that persisted 2-3 min. This afterdischarge was never observed in control rats, and, in this model, is the distinguishing feature of the spinal neural correlate of tactile allodynia. Electrical stimulation of the sciatic nerve at 4 and at 20 Hz each produced an initial discharge that was identical in control and in neuropathic rats. This stimulation also produced an afterdischarge that was similar at the two frequencies in control rats. However, in neuropathic rats, the afterdischarge produced by 20-Hz stimulation was greater than that produced by 4-Hz stimulation. Given that acutely spinalized rats were studied, only peripheral and/or spinal mechanisms can account for the data obtained; as synaptic responses from C fibers begin to fail above approximately 5-Hz stimulation [Pain 46 (1991) 327], the afterdischarge in response to 20-Hz stimulation suggests a change mainly in myelinated afferents and a predominant role of these fibers in eliciting this afterdischarge. These data are consistent with the suggestion that peripheral neuropathy induces phenotypic changes predominantly in myelinated afferents, the sensory neurons that normally respond to mechanical stimulation. The NK-1 receptor antagonist, CP-99,994 (0.5 mg/kg, i.v.), depressed the innocuous pressure-evoked afterdischarge but not the brief initial discharge of wide dynamic range neurons, and decreased the elevated ongoing rate of discharge in neuropathic rats. These results support the concept that following peripheral neuropathy, myelinated afferents may now synthesize and release substance P. A result of this is that tonic release of substance P from the central terminals of these phenotypically altered neurons would lead to ongoing excitation of NK-1-expressing nociceptive spinal neurons. In addition, these spinal neurons would also exhibit exaggerated responses to innocuous pressure stimulation. The data in this study put forth a possible neurophysiological and neurochemical basis of neuropathic pain and identify substance P and the NK-1 receptor as potential neurochemical targets for its management.
Collapse
Affiliation(s)
- Graham M Pitcher
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
39
|
Abstract
To determine whether peripheral nerve injury has similar effects on all functional types of afferent neuron, we retrogradely labeled populations of neurons projecting to skin and to muscle with FluoroGold and lesioned various peripheral nerves in the rat. Labeled neurons were counted after different periods and related to immunohistochemically identified ectopic terminals and satellite cells in lumbar dorsal root ganglia. After 10 weeks, 30% of cutaneous afferent somata labeled from transected sural nerves had disappeared but, if all other branches of the sciatic nerve had also been cut, 60% of cutaneous neurons were lost. Small-diameter sural neurons preferentially disappeared. In contrast, the number of muscle afferent somata was not affected by transection of various nerves. p75 was downregulated in axotomized cutaneous neurons but in not axotomized muscle neurons. Conversely, p75 was upregulated in satellite cells around cutaneous but not muscle neurons. Consistent with this, perineuronal rings containing tyrosine hydroxylase, calcitonin gene-related peptide, galanin, or synaptophysin were formed preferentially around cutaneous neurons. Selective lesions of predominantly cutaneous nerves triggered the formation of rings, but none were detected after selective lesions of muscle nerves. We conclude that cutaneous neurons are both more vulnerable and more associated with ectopic nerve terminals than muscle neurons in dorsal root ganglia after transection and ligation of peripheral nerves.
Collapse
|
40
|
Vogelaar CF, Hoekman MFM, Gispen WH, Burbach JPH. Homeobox gene expression in adult dorsal root ganglia during sciatic nerve regeneration: is regeneration a recapitulation of development? Eur J Pharmacol 2003; 480:233-50. [PMID: 14623366 DOI: 10.1016/j.ejphar.2003.08.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
After damage of the sciatic nerve, a regeneration process is initiated. Neurons in the dorsal root ganglion regrow their axons and functional connections. The molecular mechanisms of this neuronal regenerative process have remained elusive, but a relationship with developmental processes has been conceived. This chapter discusses the applicability of the developmental hypothesis of regeneration to the dorsal root ganglion; this hypothesis states that regeneration of dorsal root ganglion neurons is a recapitulation of development. We present data on changes in gene expression upon sciatic nerve damage, and the expression and function of homeobox genes. This class of transcription factors plays a role in neuronal development. Based on these data, it is concluded that the hypothesis does not hold for dorsal root ganglion neurons, and that regeneration-specific mechanisms exist. Cytokines and the associated Jak/STAT (janus kinase/signal transducer and activator of transcription) signal transduction pathway emerge as constituents of a regeneration-specific mechanism. This mechanism may be the basis of pharmacological strategies to stimulate regeneration.
Collapse
Affiliation(s)
- Christina F Vogelaar
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
41
|
Gratto KA, Verge VMK. Neurotrophin-3 down-regulates trkA mRNA, NGF high-affinity binding sites, and associated phenotype in adult DRG neurons. Eur J Neurosci 2003; 18:1535-48. [PMID: 14511333 DOI: 10.1046/j.1460-9568.2003.02881.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurotrophin-3 (NT-3) binds to multiple trks, not only its initially identified receptor trkC. Recent studies in our laboratory show that NT-3 negatively regulates nociceptive phenotype associated with the trkA subpopulation. Due to the extensive overlap in trkA and trkC expression it is uncertain whether there is a direct influence of NT-3 on trkA in adult sensory neurons. Thus, the aim of this study was to examine whether NT-3 might alter trkA and associated neuronal phenotype outside of the trkC subpopulation. The effect of a seven-day intrathecal infusion of NT-3 on intact, uninjured adult rat dorsal root ganglion neurons was investigated. Serial sections were processed for receptor radioautography or in situ hybridization to identify and colocalize neurons expressing high-affinity nerve growth factor (NGF) binding sites, substance P (SP), trkC, or trkA mRNAs and to examine the influence of NT-3 on these populations. NT-3 does not appear to alter trkC expression, but evokes a notable reduction in trkA, high-affinity NGF binding sites, and SP levels. It is unlikely that signalling by trkC greatly influences this response because the down-regulation of SP occurs most notably in trkA neurons that lack trkC. Moreover, we have shown here that message levels of two trkA isoforms are differentially modulated by NT-3; infusion results in greater down-regulation of the noninsert containing isoform. These findings suggest a clinically relevant role for NT-3 as an antagonist to NGF, but also raise the caution that not just trkC-positive neurons are influenced following exposure to the neurotrophin.
Collapse
Affiliation(s)
- Kelly A Gratto
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | |
Collapse
|
42
|
Kayser V, Farré A, Hamon M, Bourgoin S. Effects of the novel analgesic, cizolirtine, in a rat model of neuropathic pain. Pain 2003; 104:169-77. [PMID: 12855326 DOI: 10.1016/s0304-3959(02)00497-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cizolirtine (5-9[(N,N-dimethylaminoethoxy)phenyl]methyl0-1-methyl-1H-pyrazol citrate) is a centrally acting analgesic with a currently unknown mechanism of action, whose efficacy has been demonstrated in various models of acute and inflammatory pain in rodents. Further studies were performed in order to assess its potential antinociceptive action in a well-validated model of neuropathic pain, i.e. that produced by unilateral sciatic nerve constriction in rats. Animals were subjected to relevant behavioural tests based on mechanical (vocalization threshold to paw pressure) and thermal (struggle latency to paw immersion in a cold (10 degrees C) water bath) stimuli, 2 weeks after sciatic nerve constriction, when pain-related behaviour was fully developed. Acute pretreatment with 2.5-10 mg/kg p.o. of cizolirtine reversed both mechanical and thermal allodynia. These effects were antagonized by prior injection of the alpha(2)-adrenoceptor antagonist idazoxan (0.5 mg/kg i.v.), but not the opioid receptor antagonist naloxone (0.1 mg/kg i.v.). On the other hand, cizolirtine (10 mg/kg p.o.) produced no motor deficits in animals using the rotarod test. Our study showed that cizolirtine suppressed pain-related behavioural responses to mechanical and cold stimuli in neuropathic rats, probably via an alpha(2)-adrenoceptor-dependent mechanism. These results suggest that cizolirtine may be useful for alleviating some neuropathic somatosensory disorders, in particular cold allodynia, with a reduced risk of undesirable side effects.
Collapse
Affiliation(s)
- Valérie Kayser
- INSERM U288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, 75634 Paris Cedex 13, France.
| | | | | | | |
Collapse
|
43
|
Lukácová N, Cízková D, Krizanová O, Pavel J, Marsala M, Marsala J. Peripheral axotomy affects nicotinamide adenine dinucleotide phosphate diaphorase and nitric oxide synthases in the spinal cord of the rabbit. J Neurosci Res 2003; 71:300-13. [PMID: 12503094 DOI: 10.1002/jnr.10470] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and nitric oxide synthase (NOS) immunocytochemistry combined with radioassay of calcium-dependent NOS activity, we examined the occurrence of NADPHd staining and NOS immunoreactivity (NOS-IR) in the dorsal root ganglia (DRG) neurons, dorsal root afferents, and axons projecting via gracile fascicle to gracile nucleus 14 days after unilateral sciatic nerve transection in the rabbit. Mild to moderate NADPHd staining and NOS-IR appeared in a large number of small and medium-sized to large neurons in the ipsilateral L4-L6 DRG, accompanied by enhanced NOS-IR of thick myelinated fibers in the ipsilateral L4-L6 dorsal roots. A noticeable increase in the density of punctate NADPHd staining occurred throughout laminae I-IV in the ipsilateral medial part of the dorsal horn in L4-L6 segments. Concurrently, a statistically significant decrease in the number of small NADPHd-exhibiting neurons in laminae I-II and, in contrast to this, a statistically significant increase of medium-sized to large NADPHd-stained somata in the ipsilateral laminae III-VI of L4-L6 segments were found. A detailed compartmentalization of L4-L6 segments into gray and white matter regions disclosed substantially increased catalytic NOS activity and inducible NOS mRNA levels in the dorsal horn and dorsal column ipsilaterally to the peripheral injury. A noticeable increase in the number of thick myelinated NADPHd-exhibiting and NOS-IR axons was noted in the ipsilateral gracile fascicle, terminating in dense, punctate NADPHd staining in the neuropil of the gracile nucleus. These observations indicate that the de novo-synthesized NOS in the lesioned primary afferent neurons resulting after sciatic nerve transection may be involved in an increase in NADPHd staining and NOS-IR in the ipsilateral dorsal roots and dorsal horn of L4-L6 segments, whence NOS could be supplied to ascending axons of the gracile fascicle.
Collapse
Affiliation(s)
- Nadezda Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
44
|
Su Y, Ganea D, Peng X, Jonakait GM. Galanin down-regulates microglial tumor necrosis factor-alpha production by a post-transcriptional mechanism. J Neuroimmunol 2003; 134:52-60. [PMID: 12507772 DOI: 10.1016/s0165-5728(02)00397-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neuropeptide galanin (GAL) is up-regulated following neuronal axotomy or inflammation. Since other neuropeptides act as immunomodulatory agents, we sought to determine whether GAL might affect the murine microglial cell line BV2, which expresses the GAL2 receptor. Even at very low concentrations, GAL inhibited tumor necrosis factor-alpha (TNF alpha) release but not TNF alpha mRNA levels in LPS-stimulated BV2 cells. Northern blot analysis showed that GAL inhibited the addition of a poly(A) tail, and stability assays showed that it also destabilized TNF alpha mRNA. Thus, GAL inhibits TNF alpha production by a post-transcriptional mechanism that both prevents the efficient addition of the poly(A) tail and accelerates TNF alpha mRNA degradation.
Collapse
Affiliation(s)
- Yaming Su
- Department of Biological Sciences, Rutgers University and New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Spinal microdialysis was used to study the potassium induced in vivo release of substance P (SP) in the rat dorsal horn at different time points (3, 14, and 60 days) following partial sciatic nerve ligation (PNL) or sciatic nerve axotomy. The withdrawal threshold to innocuous mechanical stimuli was investigated with von Frey filaments in the PNL rats prior to microdialysis. The release of SP was significantly elevated at 60 days following PNL but not following complete nerve injury. However, the PNL rats in all time groups displayed mechanical hypersensitivity, which implies that this late change in SP release seems to be unrelated to the development of neuropathy. The present results indicate that there is an increase of the releasable pool of SP in the dorsal horn at late post-operative times after PNL. This change in SP release may reflect an altered sensory processing or may instead relate to adaptive responses to promote recovery.
Collapse
Affiliation(s)
- J Wallin
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, S-171 76 Stockholm, Sweden.
| | | |
Collapse
|
46
|
Cízková D, Lukácová N, Marsala M, Marsala J. Neuropathic pain is associated with alterations of nitric oxide synthase immunoreactivity and catalytic activity in dorsal root ganglia and spinal dorsal horn. Brain Res Bull 2002; 58:161-71. [PMID: 12127013 DOI: 10.1016/s0361-9230(02)00761-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous experiments have suggested that nitric oxide may play an important role in nociceptive transmission in the spinal cord. To assess the possible roles of neuronal nitric oxide synthase (nNOS) in spinal sensitization after nerve injury, we examined the distribution of nNOS immunoreactivity in dorsal root ganglia (DRGs) and dorsal horn of the corresponding spinal segments. NOS catalytic activity was also determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the lumbar (L4-L6) spinal cord segments and DRGs in rats 21 days after unilateral loose ligation of the sciatic nerve. Behavioral signs of tactile and cold allodynia developed in the nerve-ligated rats within 1 week after surgery and lasted up to 21 days. Immunocytochemical staining revealed a significant increase (approximately 6.7-fold) of nNOS-immunoreactive neurons and fibers in the DRGs L4-L6. No significant changes were detected in the number of nNOS-positive neurons in laminae I-II of the spinal segments L4-L6 ipsilateral to nerve ligation. However, an increased number of large stellate or elongated somata in deep laminae III-V of the L5 segment expressed high nNOS immunoreactivity. The alterations of NOS catalytic activity in the spinal segments L4-L6 and corresponding DRGs closely correlated with nNOS distribution detected by immunocytochemistry. No such changes were detected in the contralateral DRGs or spinal cord of sham-operated rats. The results indicate that marked alterations of nNOS in the DRG cells and in the spinal cord may contribute to spinal sensory processing as well as to the development of neuronal plasticity phenomena in the dorsal horn.
Collapse
Affiliation(s)
- Dása Cízková
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
47
|
Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat 2002; 184:235-40. [PMID: 12056753 DOI: 10.1016/s0940-9602(02)80113-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rat L5/6 disc is innervated from T13 to L6 dorsal root ganglia (DRGs) multisegmentally. Sensory fibers from T13, L1 and L2 DRGs have been reported to innervate through the paravertebral sympathetic trunks, whereas those from L3 to L6 DRGs innervate directly through sinuvertebral nerves on the posterior longitudinal ligament (PLL). The presence of substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive (ir) nerve fibers has been demonstrated in the lumbar intervertebral discs, but their percentages in DRG neurons have not been studied. Fluoro-gold (F-G) labeled neurons innervating the L5/6 disc were distributed throughout DRGs from T13 to L6 levels. Of F-G labeled neurons innervating the L5/6 disc, the percentage of SP-ir T13 to L6 DRG neurons was 30%, and that of CGRP-ir neurons was 47%. The mean cross-sectional area of the cell of SP-ir neurons was 696+/-66 microm2 (mean +/- S. E.), and that of CGRP-ir neurons was 695+/-72 microm2 (mean +/- S. E.). SP- and CGRP-ir were mainly observed in small neurons. The percentages of SP- or CGRP-ir neurons in L1 and L2 DRGs innervating the L5/6 disc were not different from those in L3, L4 or L5 DRGs. In the physiological condition in rats, DRG neurons at all levels may have the same significant role in pain sensation of the disc.
Collapse
Affiliation(s)
- Seiji Ohtori
- The Department of Orthopaedic Surgery, School of Medicine, Chiba University, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Cahill CM, Coderre TJ. Attenuation of hyperalgesia in a rat model of neuropathic pain after intrathecal pre- or post-treatment with a neurokinin-1 antagonist. Pain 2002; 95:277-285. [PMID: 11839427 DOI: 10.1016/s0304-3959(01)00410-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although many studies have demonstrated a role for substance P in pain, there have been conflicting reports implicating the involvement of substance P in neuropathic pain models. In this study, the non-peptide neurokinin-1 (NK-1) receptor antagonist, L-732,138 was chronically administered by intrathecal (i.t.) injection to rats with mono-neuropathy produced by sciatic nerve constriction. Rats exhibited tactile allodynia and cold hyperalgesia over a 16-day testing period. L-732,138 (5-200 nmol) administered i.t. prior to and for 3 consecutive days post-surgery attenuated the mechanical allodynia and cold hyperalgesia on days 4 and 8 post-surgery. The effects of i.t. L-732,138 were also determined in rats with established nerve injury-induced neuropathy. The NK-1 receptor antagonist was injected for 4 consecutive days starting on day 8 post-sciatic nerve injury. Administration of L-732,138 (5-200 nmol) i.t. produced both anti-allodynic and anti-hyperalgesic effects on day 12, but the effect was not permanent, as nociceptive thresholds were similar to controls by day 16. These results demonstrate that substance P is involved both in the induction and the maintenance of neuropathic pain and provides justification for the development and administration of substance P antagonists for the management of clinical neuropathic pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, Montreal, Quebec, Canada Anesthesia Research Unit, Department of Anesthesia, McGill University, McIntyre Medical Sciences Building, Room 1203, 3655 Dummond Street, Montreal, Quebec, Canada H3G 1Y6 Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
49
|
Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 2002; 66:19-59. [PMID: 11897404 DOI: 10.1016/s0301-0082(01)00021-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A characteristic peculiarity of the trigeminal sensory system is the presence of two distinct populations of primary afferent neurons. Most of their cell bodies are located in the trigeminal ganglion (TG) but part of them lie in the mesencephalic trigeminal nucleus (MTN). This review compares the neurochemical content of central versus peripheral trigeminal primary afferent neurons. In the TG, two subpopulations of primary sensory neurons, containing immunoreactive (IR) material, are identified: a number of glutamate (Glu)-, substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)-, cholecystokinin (CCK)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and galanin (GAL)-IR ganglion cells with small and medium-sized somata, and relatively less numerous larger-sized neuropeptide Y (NPY)- and peptide 19 (PEP 19)-IR trigeminal neurons. In addition, many nitric oxide synthase (NOS)- and parvalbumin (PV)-IR cells of all sizes as well as fewer, mostly large, calbindin D-28k (CB)-containing neurons are seen. The majority of the large ganglion cells are surrounded by SP-, CGRP-, SOM-, CCK-, VIP-, NOS- and serotonin (SER)-IR perisomatic networks. In the MTN, the main subpopulation of large-sized neurons display Glu-immunoreactivity. Additionally, numerous large MTN neurons exhibit PV- and CB-immunostaining. On the other hand, certain small MTN neurons, most likely interneurons, are found to be GABAergic. Furthermore, NOS-containing neurons can be detected in the caudal and the mesencephalic-pontine junction portions of the nucleus. Conversely, no immunoreactivity to any of the examined neuropeptides is observed in the cell bodies of MTN neurons but these are encircled by peptidergic, catecholaminergic, serotonergic and nitrergic perineuronal arborizations in a basket-like manner. Such a discrepancy in the neurochemical features suggests that the differently fated embryonic migration, synaptogenesis, and peripheral and central target field innervation can possibly affect the individual neurochemical phenotypes of trigeminal primary afferent neurons.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy, Faculty of Medicine, Thracian University, 11 Armejska Street, BG-6003 Stara Zagora, Bulgaria.
| |
Collapse
|
50
|
Smith PA, Stebbing MJ, Moran TD, Tarkkila P, Abdulla FA. Neuropathic pain and the electrophysiology and pharmacology of nerve injury. Drug Dev Res 2002. [DOI: 10.1002/ddr.10013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|