1
|
Tang H, Li J, Wang H, Ren J, Ding H, Shang J, Wang M, Wei Z, Feng S. Human umbilical cord mesenchymal stem cell-derived exosomes loaded into a composite conduit promote functional recovery after peripheral nerve injury in rats. Neural Regen Res 2024; 19:900-907. [PMID: 37843227 PMCID: PMC10664107 DOI: 10.4103/1673-5374.380911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 10/17/2023] Open
Abstract
Complete transverse injury of peripheral nerves is challenging to treat. Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration. In previous studies, a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration. This three-dimensional (3D) composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly (lactic-co-glycolic acid) tube. However, whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown. In this study, we tested a comprehensive strategy for repairing long-gap (10 mm) peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes. Repair effectiveness was evaluated by sciatic functional index, sciatic nerve compound muscle action potential recording, recovery of muscle mass, measuring the cross-sectional area of the muscle fiber, Masson trichrome staining, and transmission electron microscopy of the regenerated nerve in rats. The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function, similar to autograft transplantation. More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes, which may have contributed to the observed increase in axon regeneration and distal nerve reconnection. Therefore, the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Haoshuai Tang
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junjin Li
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongda Wang
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Shang
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Othopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Othopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, China
- Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shiqing Feng
- Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Othopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Othopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, China
- Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Myint SS, Laomeephol C, Thamnium S, Chamni S, Luckanagul JA. Hyaluronic Acid Nanogels: A Promising Platform for Therapeutic and Theranostic Applications. Pharmaceutics 2023; 15:2671. [PMID: 38140012 PMCID: PMC10747897 DOI: 10.3390/pharmaceutics15122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Hyaluronic acid (HA) nanogels are a versatile class of nanomaterials with specific properties, such as biocompatibility, hygroscopicity, and biodegradability. HA nanogels exhibit excellent colloidal stability and high encapsulation capacity, making them promising tools for a wide range of biomedical applications. HA nanogels can be fabricated using various methods, including polyelectrolyte complexation, self-assembly, and chemical crosslinking. The fabrication parameters can be tailored to control the physicochemical properties of HA nanogels, such as size, shape, surface charge, and porosity, enabling the rational design of HA nanogels for specific applications. Stimulus-responsive nanogels are a type of HA nanogels that can respond to external stimuli, such as pH, temperature, enzyme, and redox potential. This property allows the controlled release of encapsulated therapeutic agents in response to specific physiological conditions. HA nanogels can be engineered to encapsulate a variety of therapeutic agents, such as conventional drugs, genes, and proteins. They can then be delivered to target tissues with high efficiency. HA nanogels are still under development, but they have the potential to become powerful tools for a wide range of theranostic or solely therapeutic applications, including anticancer therapy, gene therapy, drug delivery, and bioimaging.
Collapse
Affiliation(s)
- Su Sundee Myint
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.M.); (S.C.)
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirikool Thamnium
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.M.); (S.C.)
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Celik S, Kilic O, Zenginkinet T, Tuysuz O, Kalcioglu MT. The Effect of Platelet-Rich Fibrin and Hyaluronic Acid on Perforation of Nasal Septum. Am J Rhinol Allergy 2022; 36:719-726. [PMID: 35635128 DOI: 10.1177/19458924221104547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Conservative approaches and surgical methods have been tried for the treatment of nasal septum perforations (NSPs), but a satisfactory method has not yet been determined. OBJECTIVE Our study aimed to investigate the effect of platelet-rich fibrin (PRF) and hyaluronic acid (HA) in repairing NSPs, which were experimentally created in rabbit septum. METHODS A total of 36 white New Zealand rabbits were included in the study. Perforations measuring 0.7 × 0.7 cm were created in their nasal septa. No additional intervention was made to the control group, which was the first group. For the second, third, and fourth groups, respectively, HA, PRF, and HA + PRF were used in the NSP region. Macroscopic and histopathological evaluations were performed after 40 days. RESULTS In the first group, closure was observed in none of the rabbits' NSPs. In the second group, 6 rabbits (66.7%) had full closure in their NSPs. In the third group, the NSP of 6 rabbits (66.7%) was completely closed. In the fourth group, the NSP of 7 rabbits (77.8%) had full closure. CONCLUSION Statistically significant closure was achieved with PRF and/or HA in rabbits in which NSP was established. These materials can be used to increase the likelihood of perforations closing.
Collapse
Affiliation(s)
- Serdal Celik
- 485544Istanbul Medeniyet University Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Osman Kilic
- 485544Istanbul Medeniyet University Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Tulay Zenginkinet
- Istanbul Medeniyet University Faculty of Medicine, Department of Pathology, Istanbul, Turkey
| | - Ozan Tuysuz
- 485544Istanbul Medeniyet University Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey
| | - M Tayyar Kalcioglu
- 485544Istanbul Medeniyet University Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey
| |
Collapse
|
4
|
Carboxymethylchitosan hydrogel manufactured by radiation-induced crosslinking as potential nerve regeneration guide scaffold. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Shahi M, Mohammadnejad D, Karimipour M, Rasta SH, Rahbarghazi R, Abedelahi A. Hyaluronic Acid and Regenerative Medicine: New Insights into the Stroke Therapy. Curr Mol Med 2020; 20:675-691. [PMID: 32213158 DOI: 10.2174/1566524020666200326095837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022]
Abstract
Stroke is known as one of the very important public health problems that are related to societal burden and tremendous economic losses. It has been shown that there are few therapeutic approaches for the treatment of this disease. In this regard, the present therapeutic platforms aim to obtain neuroprotection, reperfusion, and neuro recovery. Among these therapies, regenerative medicine-based therapies have appeared as new ways of stroke therapy. Hyaluronic acid (HA) is a new candidate, which could be applied as a regenerative medicine-based therapy in the treatment of stroke. HA is a glycosaminoglycan composed of disaccharide repeating elements (N-acetyl-Dglucosamine and D-glucuronic acid). Multiple lines of evidence demonstrated that HA has critical roles in normal tissues. It can be a key player in different physiological and pathophysiological conditions such as water homeostasis, multiple drug resistance, inflammatory processes, tumorigenesis, angiogenesis, and changed viscoelasticity of the extracellular matrix. HA has very important physicochemical properties i.e., availability of reactive functional groups and its solubility, which make it a biocompatible material for application in regenerative medicine. Given that HAbased bioscaffolds and biomaterials do not induce inflammation or allergies and are hydrophilic, they are used as soft tissue fillers and injectable dermal fillers. Several studies indicated that HA could be employed as a new therapeutic candidate in the treatment of stroke. These studies documented that HA and HA-based therapies exert their pharmacological effects via affecting stroke-related processes. Herein, we summarized the role of the extracellular matrix in stroke pathogenesis. Moreover, we highlighted the HA-based therapies for the treatment of stroke.
Collapse
Affiliation(s)
- Maryam Shahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Bioengineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Spearman BS, Agrawal NK, Rubiano A, Simmons CS, Mobini S, Schmidt CE. Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. J Biomed Mater Res A 2020; 108:279-291. [PMID: 31606936 PMCID: PMC8591545 DOI: 10.1002/jbm.a.36814] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023]
Abstract
Hyaluronic acid (HA)-based biomaterials have been explored for a number of applications in biomedical engineering, particularly as tissue regeneration scaffolds. Crosslinked forms of HA are more robust and provide tunable mechanical properties and degradation rates that are critical in regenerative medicine; however, crosslinking modalities reported in the literature vary and there are few comparisons of different scaffold properties for various crosslinking approaches. In this study, we offer direct comparison of two methacrylation techniques for HA (glycidyl methacrylate HA [GMHA] or methacrylic anhydride HA [MAHA]). The two methods for methacrylating HA provide degrees of methacrylation ranging from 2.4 to 86%, reflecting a wider range of properties than is possible using only a single methacrylation technique. We have also characterized mechanical properties for nine different tissues isolated from rat (ranging from lung at the softest to muscle at the stiffest) using indentation techniques and show that we can match the full range of mechanical properties (0.35-6.13 kPa) using either GMHA or MAHA. To illustrate utility for neural tissue engineering applications, functional hydrogels with adhesive proteins (either GMHA or MAHA base hydrogels with collagen I and laminin) were designed with effective moduli mechanically matched to rat sciatic nerve (2.47 ± 0.31 kPa). We demonstrated ability of these hydrogels to support three-dimensional axonal elongation from dorsal root ganglia cultures. Overall, we have shown that methacrylated HA provides a tunable platform with a wide range of properties for use in soft tissue engineering.
Collapse
Affiliation(s)
- Benjamin S. Spearman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nikunj K. Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Andrés Rubiano
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL
| | - Chelsey S. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL
| | - Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain
- Departamento de Biología Molecular and Centro de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Barakat-Walter I, Kraftsik R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy. Neural Regen Res 2018; 13:599-608. [PMID: 29722302 PMCID: PMC5950660 DOI: 10.4103/1673-5374.230274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.
Collapse
Affiliation(s)
- I Barakat-Walter
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - R Kraftsik
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Aregueta-Robles UA, Martens PJ, Poole-Warren LA, Green RA. Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Penny J. Martens
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Laura A. Poole-Warren
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Rylie A. Green
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Bioengineering; Imperial College London; London SW7 2AZ United Kingdom
| |
Collapse
|
9
|
Lan SM, Yang CC, Lee CL, Lee JS, Jou IM. The effect of molecular weight and concentration of hyaluronan on the recovery of the rat sciatic nerve sustaining acute traumatic injury. ACTA ACUST UNITED AC 2017; 12:045024. [PMID: 28812542 DOI: 10.1088/1748-605x/aa6f1a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acute traumatic peripheral nerve injury remains a significant clinical issue affecting mostly young individuals and their productivity in spite of advances in current medicine. Hyaluronan has been explored in this scenario for its anti-adhesive and high biocompatibility properties for decades. The molecular weight and concentration of the locally applied hyaluronan has been overlooked and not optimized. We used different molecular weights and concentrations of hyaluronan in a rat sciatic nerve crush injury model and found better overall outcomes with high molecular weight (3000 kDa) hyaluronan. The anti-inflammatory effect of the higher molecular weight hyaluronan may have a more favorable effect. We conclude that the optimization of hyaluronan is necessary when incorporating hyaluronan in the engineering of biomaterials for use in acute traumatic peripheral nerve injury.
Collapse
Affiliation(s)
- Sheng-Min Lan
- Department of Orthopedics, National Cheng-Kung University Hospital, Dou-Liou Branch, Yunlin 640, Taiwan. Department of Orthopaedics, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Zhang T, Yan Y, Wang X, Xiong Z, Lin F, Wu R, Zhang R. Three-dimensional Gelatin and Gelatin/Hyaluronan Hydrogel Structures for Traumatic Brain Injury. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506074025] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brain tissue engineering has now emerged as one of the most promising treatments for the traumatic brain injury. In this article, two groups of three-dimensional (3D) hydrogel structures composed of gelatin and gelatin/hyaluronan have been formed using our 3D cell assembly technique for in vivo study in rats, in order to investigate their effects in reparation of injury in the central nervous system (CNS). The structures were implanted into cortical defects created in rat brains, and their abilities to improve the brain tissue reconstruction were then evaluated. After 4, 8, 10, and 13 weeks of implantation, sections of brains were processed with NISSL staining for observing the immigration of host neural cells into the implanted materials and the degradation property of the materials. The results showed that simplex gelatin and gelatin/hyaluronan (20:1) with 3D structures both have good biocompatibility with brain tissue while gelatin/hyaluronan has a better contiguity with the surrounding tissue. Through our primary study, it seems that 3D gelatin/hyaluronan structures may be useful in brain tissue repair.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Yongnian Yan
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaohong Wang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China,
| | - Zhuo Xiong
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Feng Lin
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Rendong Wu
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Renji Zhang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
11
|
Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 2015; 131:87-104. [DOI: 10.1016/j.pneurobio.2015.06.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
|
12
|
McMurtrey RJ. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control. J Neural Eng 2014; 11:066009. [PMID: 25358624 DOI: 10.1088/1741-2560/11/6/066009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. APPROACH A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. MAIN RESULTS Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA constructs, which was a 65% relative increase in neurite tracking compared to plain PCL fibers in the same 3D HA constructs and a 213% relative increase over laminin-coated fibers on 2D laminin-coated surfaces. SIGNIFICANCE This work demonstrates the ability to create unique 3D neural tissue constructs using a combined system of hydrogel and nanofiber scaffolding. Importantly, patterned and biofunctionalized nanofiber scaffolds that can control direction and increase length of neurite outgrowth in three-dimensions hold much potential for neural tissue engineering. This approach offers advancements in the development of implantable neural tissue constructs that enable control of neural development and reproduction of neuroanatomical pathways, with the ultimate goal being the achievement of functional neural regeneration.
Collapse
Affiliation(s)
- Richard J McMurtrey
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK. Institute of Neural Regeneration and Tissue Engineering, Highland, UT 84003, US
| |
Collapse
|
13
|
Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. J Tissue Eng Regen Med 2014; 11:197-208. [PMID: 24737714 DOI: 10.1002/term.1902] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 02/04/2014] [Accepted: 03/17/2014] [Indexed: 01/30/2023]
Abstract
Injectable hydrogels are becoming of increasing interest in the field of tissue engineering thanks to their versatile properties and to the possibility of being injected into tissues or devices during surgery. In peripheral nerve tissue engineering, injectable hydrogels having shear-thinning properties are advantageous as filler of nerve guidance channels (NGCs) to improve the regeneration process. In the present work, gelatin-based hydrogels were developed and specifically designed for the insertion into the lumen of hollow NGCs through a syringe during surgery. Injectable hydrogels were obtained using an agar-gelatin 20:80 weight ratio, (wt/wt) blend crosslinked by the addition of genipin (A/GL_GP). The physicochemical properties of the A/GL_GP hydrogels were analysed, including their injectability, rheological, swelling and dissolution behaviour, and their mechanical properties under compression. The hydrogel developed showed shear-thinning properties and was applied as filler of NGCs. The A/GL_GP hydrogel was tested in vitro using different cell lines, among them Schwann cells which have been used because they have an important role in peripheral nerve regeneration. Viability assays demonstrated the lack of cytotoxicity. In vitro experiments showed that the hydrogel is able to promote cell adhesion and proliferation. Two- and three-dimensional migration assays confirmed the capability of the cells to migrate both on the surface and within the internal framework of the hydrogel. These data show that A/GL_GP hydrogel has characteristics that make it a promising scaffold material for tissue engineering and nerve regeneration. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - S Gnavi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, (Turin), Italy.,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - F Ruini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - G Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, (Turin), Italy
| | - E Gioffredi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - V Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - I Perroteau
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, (Turin), Italy
| | - G Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy.,CNR-IPCF UOS, Pisa, Italy
| |
Collapse
|
14
|
Ezra M, Bushman J, Shreiber D, Schachner M, Kohn J. Enhanced femoral nerve regeneration after tubulization with a tyrosine-derived polycarbonate terpolymer: effects of protein adsorption and independence of conduit porosity. Tissue Eng Part A 2013; 20:518-28. [PMID: 24011026 DOI: 10.1089/ten.tea.2013.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Following complete nerve transection, entubulation of the nerve stumps helps guide axons to reconnect distally. In this study, a biodegradable and noncytotoxic tyrosine-derived polycarbonate terpolymer composed of 89.5 mol% desaminotyrosyl tyrosine ethyl ester (DTE), 10 mol% desaminotyrosyl tyrosine (DT), and 0.5 mol% poly(ethylene glycol) (PEG, molecular weight [Mw]=1 kDa) [designated as E10-0.5(1K)] was used to fabricate conduits for peripheral nerve regeneration. These conduits were evaluated against commercially available nonporous polyethylene (PE) tubes. The two materials are characterized in vitro for differences in surface properties, and the conduits are then evaluated in vivo in a critical-sized nerve defect in the mouse femoral nerve model. Conduits were fabricated from E10-0.5(1K) in both porous [P-E10-0.5(1K)] and nonporous [NP-E10-0.5(1K)] configurations. The results illustrate that adsorption of laminin, fibronectin, and collagen type I was enhanced on E10-0.5(1K) compared to PE. In addition, in vivo the E10-0.5(1K) conduits improved functional recovery over PE conduits, producing regenerated nerves with a fivefold increase in the number of axons, and an eightfold increase in the percentage of myelinated axons. These increases were observed for both P-E10-0.5(1K) and NP-E10-0.5(1K) after 15 weeks. When conduits were removed at 7 or 14 days following implantation, an increase in Schwann cell proteins and fibrin matrix formation was observed in E10-0.5(1K) conduits over PE conduits. These results indicate that E10-0.5(1K) is a pro-regenerative material for peripheral nerves and that the porosity of P-E10-0.5(1K) conduits was inconsequential in this model of nerve injury.
Collapse
Affiliation(s)
- Mindy Ezra
- 1 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
15
|
Myckatyn TM, Hunter DA, Mackinnon SE. The effects of cold preservation and subimmunosuppressive doses of FK506 on axonal regeneration in murine peripheral nerve isografts. THE CANADIAN JOURNAL OF PLASTIC SURGERY = JOURNAL CANADIEN DE CHIRURGIE PLASTIQUE 2013; 11:15-22. [PMID: 24115844 DOI: 10.1177/229255030301100110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND FK506 is a frequently used immunosuppressant with neuroregenerative effects. The neuroregenerative and immunosuppressive mechanisms of FK506, however, are distinct, suggesting that FK506 may stimulate nerve regeneration at lower doses than are needed to induce immunosuppression. The effects of cold preservation, a technique known to improve axonal regeneration through nerve allografts, are not well studied in nerve isografts and are also reported here. OBJECTIVES To determine the effects of subimmunosuppressive doses of FK506 and cold preservation on nerve regeneration in isografts. METHODS The neuroregenerative properties of immunosuppressive and subimmunosuppressive doses of FK506 were compared in a murine model receiving either fresh or cold preserved nerve isografts. Sixty female BALB/cJ mice were randomized into six groups. Animals in groups I, III and V received fresh nerve isografts. Animals in groups II, IV and VI received cold-preserved nerve isografts. Mice in groups I and II received no medical therapy, while those in groups III and IV received subimmunosuppressive doses of FK506, and those in groups V and VI received immunosuppressive doses as confirmed by mixed lymphocyte reactivity assays. Nerve regeneration was evaluated with histomorphometry and functional recovery was evaluated with walking track analysis. RESULTS Pretreatment with cold preservation did not significantly affect neural regeneration. The potent neuroregenerative effect of immunosuppressive doses of FK506 was confirmed, and the ability of subimmunosuppressive doses of FK506 to stimulate axonal regeneration in murine nerve isografts is reported. CONCLUSIONS Less toxic subimmunosuppressive doses of FK506 retaining some neuroregenerative properties may have a clinical role in treating extensive nerve injuries.
Collapse
Affiliation(s)
- Terence M Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
16
|
Arslantunali D, Budak G, Hasirci V. Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair. J Biomed Mater Res A 2013; 102:828-41. [PMID: 23554154 DOI: 10.1002/jbm.a.34727] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 11/08/2022]
Abstract
A nerve conduit is designed to improve peripheral nerve regeneration by providing guidance to the nerve cells. Conductivity of such guides is reported to enhance this process. In the current study, a nerve guide was constructed from poly(2-hydroxyethyl methacrylate) (pHEMA), which was loaded with multiwalled carbon nanotubes (mwCNT) to introduce conductivity. PHEMA hydrogels were designed to have a porous structure to facilitate the transportation of the compounds needed for cell nutrition and growth and also for waste removal. We showed that when loaded with relatively high concentrations of mwCNTs (6%, w/w in hydrogels), the pHEMA guide was more conductive and more hydrophobic than pristine pHEMA hydrogel. The mechanical properties of the composites were better when they carried mwCNT. Elastic modulus of 6% mwCNT loaded pHEMA was twofold higher (0.32 ± 0.06 MPa) and similar to that of the soft tissues. Electrical conductivity was significantly improved (11.4-fold) from 7 × 10(-3) Ω(-1).cm(-1) (pHEMA) to 8.0 × 10(-2) Ω(-1).cm(-1) (6% mwCNT loaded pHEMA). On application of electrical potential, the SHSY5Y neuroblastoma cells seeded on mwCNTs carrying pHEMA maintained their viability, whereas those on pure pHEMA could not, indicating that mwCNT helped conduct electricity and make them more suitable as nerve conduits.
Collapse
Affiliation(s)
- D Arslantunali
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey; Department of Biotechnology, METU, Ankara, Turkey; Department of Bioengineering, Gümüşhane University, Gümüşhane, Turkey
| | | | | |
Collapse
|
17
|
Moshayedi P, Carmichael ST. Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. BIOMATTER 2013; 3:23863. [PMID: 23507922 PMCID: PMC3732322 DOI: 10.4161/biom.23863] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Focal stroke is a disabling disease with lifelong sensory, motor and cognitive impairments. Given the paucity of effective clinical treatments, basic scientists are developing novel options for protection of the affected brain and regeneration of lost tissue. Tissue bioengineering and stem/progenitor cell treatments have both been individually pursued for stroke neural repair therapies, with some benefit in tissue recovery. Emerging directions in stroke neural repair approaches combine these two therapies to use biopolymers with stem/progenitor transplants to promote greater cell survival in the transplant and directed delivery of bioactive molecules to the transplanted cells and the adjacent injured tissue. In this review the background literature on a combined use of neural stem/progenitor cells encapsulated in hyaluronan gels is discussed and the way this therapeutic approach can affect the important processes involved in brain tissue reconstruction, such as angiogenesis, axon regeneration, neural differentiation and inflammation is clarified. The glycosaminoglycan hyaluronan can optimize those processes and be employed in a successful neural tissue engineering approach.
Collapse
Affiliation(s)
- Pouria Moshayedi
- Department of Neurology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| | - S Thomas Carmichael
- Department of Neurology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| |
Collapse
|
18
|
Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 2012; 519:103-14. [DOI: 10.1016/j.neulet.2012.02.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 12/22/2022]
|
19
|
HUANG YICHENG, HUANG YIYOU. TISSUE ENGINEERING FOR NERVE REPAIR. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s101623720600018x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nerve regeneration is a complex biological phenomenon. Once the nervous system is impaired, its recovery is difficult and malfunctions in other parts of the body may occur because mature neurons don't undergo cell division. To increase the prospects of axonal regeneration and functional recovery, researches have focused on designing “nerve guidance channels” or “nerve conduits”. For developing tissue engineered nerve conduits, four components come to mind, including a scaffold for axonal proliferation, supporting cells such as Schwann cells, growth factors, and extracelluar matrix. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the advanced technologies that are explored to fabricate nerve conduits. Furthermore, we also introduce a new method we developed to create longitudinally oriented channels within biodegradable polymers, Chitosan and PLGA, using a combined lyophilizing and wire-heating process. This innovative method using Ni-Cr wires as mandrels to create nerve guidance channels. The process is easy, straightforward, highly reproducible, and could easily be tailored to other polymer and solvent systems. These scaffolds could be useful for guided regeneration after transection injury in either the peripheral nerve or spinal cord.
Collapse
Affiliation(s)
- YI-CHENG HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| | - YI-YOU HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Lin YC, Marra KG. Injectable systems and implantable conduits for peripheral nerve repair. Biomed Mater 2012; 7:024102. [DOI: 10.1088/1748-6041/7/2/024102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Chimutengwende-Gordon M, Khan W. Recent advances and developments in neural repair and regeneration for hand surgery. Open Orthop J 2012; 6:103-7. [PMID: 22431954 PMCID: PMC3293168 DOI: 10.2174/1874325001206010103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/30/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022] Open
Abstract
End-to-end suture of nerves and autologous nerve grafts are the 'gold standard' for repair and reconstruction of peripheral nerves. However, techniques such as sutureless nerve repair with tissue glues, end-to-side nerve repair and allografts exist as alternatives. Biological and synthetic nerve conduits have had some success in early clinical studies on reconstruction of nerve defects in the hand. The effectiveness of nerve regeneration could potentially be increased by using these nerve conduits as scaffolds for delivery of Schwann cells, stem cells, neurotrophic and neurotropic factors or extracellular matrix proteins. There has been extensive in vitro and in vivo research conducted on these techniques. The clinical applicability and efficacy of these techniques needs to be investigated fully.
Collapse
Affiliation(s)
- Mukai Chimutengwende-Gordon
- University College London Institute of Orthopaedic and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | | |
Collapse
|
22
|
Huang W, Begum R, Barber T, Ibba V, Tee N, Hussain M, Arastoo M, Yang Q, Robson L, Lesage S, Gheysens T, Skaer NJ, Knight D, Priestley J. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 2012; 33:59-71. [DOI: 10.1016/j.biomaterials.2011.09.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/13/2011] [Indexed: 01/03/2023]
|
23
|
Lee YS, Collins G, Arinzeh TL. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater 2011; 7:3877-86. [PMID: 21810489 DOI: 10.1016/j.actbio.2011.07.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 01/09/2023]
Abstract
Neural tissue engineering may be a promising option for neural repair treatment, for which a well-designed scaffold is essential. Smart materials that can stimulate neurite extension and outgrowth have been investigated as potential scaffolding materials. A piezoelectric polymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) was used to fabricate electrospun aligned and random scaffolds having nano- or micron-sized fiber dimensions. The advantage of using a piezoelectric polymer is its intrinsic electrical properties. The piezoelectric characteristics of PVDF-TrFE scaffolds were shown to be enhanced by annealing. Dorsal root ganglion (DRG) neurons attached to all fibrous scaffolds. Neurites extended radially on random scaffolds, whereas aligned scaffolds directed neurite outgrowth for all fiber dimensions. Neurite extension was greatest on aligned, annealed PVDF-TrFE having micron-sized fiber dimensions in comparison with annealed and as-spun random PVDF-TrFE scaffolds. DRG on micron-sized aligned, as-spun and annealed PVDF-TrFE also had the lowest aspect ratio amongst all scaffolds, including non-piezoelectric PVDF and collagen-coated substrates. Findings from this study demonstrate the potential use of a piezoelectric fibrous scaffold for neural repair applications.
Collapse
Affiliation(s)
- Yee-Shuan Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | | | | |
Collapse
|
24
|
Magnaghi V, Conte V, Procacci P, Pivato G, Cortese P, Cavalli E, Pajardi G, Ranucci E, Fenili F, Manfredi A, Ferruti P. Biological performance of a novel biodegradable polyamidoamine hydrogel as guide for peripheral nerve regeneration. J Biomed Mater Res A 2011; 98:19-30. [DOI: 10.1002/jbm.a.33091] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/13/2011] [Accepted: 02/22/2011] [Indexed: 12/28/2022]
|
25
|
Yang CL, Chen HW, Wang TC, Wang YJ. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen. Biomed Mater 2011; 6:025009. [DOI: 10.1088/1748-6041/6/2/025009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Wei YT, He Y, Xu CL, Wang Y, Liu BF, Wang XM, Sun XD, Cui FZ, Xu QY. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. J Biomed Mater Res B Appl Biomater 2010; 95:110-7. [DOI: 10.1002/jbm.b.31689] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Abstract
Peripheral nerve regeneration is a complicated and long-term medical challenge that requires suitable guides for bridging nerve injury gaps and restoring nerve functions. Many natural and synthetic polymers have been used to fabricate nerve conduits as well as luminal fillers for achieving desired nerve regenerative functions. It is important to understand the intrinsic properties of these polymers and techniques that have been used for fabricating nerve conduits. Previously extensive reviews have been focused on the biological functions and in vivo performance of polymeric nerve conduits. In this paper, we emphasize on the structures, thermal and mechanical properties of these naturally derived synthetic polymers, and their fabrication methods. These aspects are critical for the performance of fabricated nerve conduits. By learning from the existing candidates, we can advance the strategies for designing novel polymeric systems with better properties for nerve regeneration.
Collapse
|
28
|
Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2009; 223:86-101. [PMID: 19769967 DOI: 10.1016/j.expneurol.2009.09.009] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/27/2022]
Abstract
Artificial nerve guide conduits have the advantage over autografts in terms of their availability and ease of fabrication. However, clinical outcomes associated with the use of artificial nerve conduits are often inferior to that of autografts, particularly over long lesion gaps. There have been significant advances in the designs of artificial nerve conduits over the years. In terms of materials selection and design, a wide variety of new synthetic polymers and biopolymers have been evaluated. The inclusion of nerve conduit lumen fillers has also been demonstrated as essential to enable nerve regeneration across large defect gaps. These lumen filler designs have involved the integration of physical cues for contact guidance and biochemical signals to control cellular function and differentiation. Novel conduit architectural designs using porous and fibrous substrates have also been developed. This review highlights the recent advances in synthetic nerve guide designs for peripheral nerve regeneration, and the in vivo applicability and future prospects of these nerve guide conduits.
Collapse
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Block N1.2-B2-20, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
29
|
Basics and Current Approaches to Tissue Engineering in Peripheral Nerve Reconstruction. ACTA ACUST UNITED AC 2009. [DOI: 10.1097/wnq.0b013e3181a361c6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Wei YT, Sun XD, Xue Xia, Cui FZ, Yu He, Liu BF, Xu QY. Hyaluronic Acid Hydrogel Modified with Nogo-66 Receptor Antibody and Poly(L-Lysine) Enhancement of Adherence and Survival of Primary Hippocampal Neurons. J BIOACT COMPAT POL 2009. [DOI: 10.1177/0883911509102266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hyaluronic acid (HA) hydrogel was modified with poly(L-lysine) (PLL) and Nogo-66 Receptor antibody (antiNgR) to enhance the repair of central nervous system (CNS) injuries. The immobilization of PLL was characterized by X-ray photoelectron spectroscopy (XPS) and the immobilization of antiNgR was studied by immunofluorescence. The cytocompatibility of this modified hydrogel was analyzed by culturing primary hippocampal neurons. The quantity and morphology of the neurons were influenced by different modifications; the primary hippocampal neurons cultured with modified HA hydrogel exhibited multipolar and bipolar morphology were compared with unmodified hydrogel cultures. The number of neurons obtained by culturing with HA hydrogel modified with both PLL and antiNgR was almost twice the number of neurons cultured with HA modified with only PLL or antiNgR. This phenomenon was attributed to the collaborative effect of PLL and antiNgR on the neurons. The characteristics of this new hydrogel system, including pore structure, water absorption, hydrolysis degradation did not change much when compared with the hydrogel modified with PLL or antiNgR, respectively. It is expected that this modified HA hydrogel has potential as a CNS tissue engineering material.
Collapse
Affiliation(s)
- Yue-Teng Wei
- Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Xiao-Dan Sun
- Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Xue Xia
- Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Fu-Zhai Cui
- Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China,
| | - Yu He
- Beijing Institute for Neuroscience, Beijing Center for Neural Regeneration and Repairing, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, P.R. China
| | - Bing-Fang Liu
- Beijing Institute for Neuroscience, Beijing Center for Neural Regeneration and Repairing, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, P.R. China
| | - Qun-Yuan Xu
- Beijing Institute for Neuroscience, Beijing Center for Neural Regeneration and Repairing, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
31
|
Ren YJ, Zhou ZY, Liu BF, Xu QY, Cui FZ. Preparation and characterization of fibroin/hyaluronic acid composite scaffold. Int J Biol Macromol 2009; 44:372-8. [PMID: 19428469 DOI: 10.1016/j.ijbiomac.2009.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 01/27/2023]
Abstract
Hyaluronic acid (HA) was added into fibroin solution to prepare fibroin-based porous composite scaffolds. HA exhibited important effects on pore formation and hydrophilicity of fibroin-based scaffold. The aqueous-fibroin/HA scaffolds had highly homogeneous and interconnected pores with porosity of above 90% and controllable pore size ranging from 123 to 253 microm. The water take-up of fibroin/HA scaffolds increased significantly with the increase of HA content. Containing HA at a defined content range, such as 3-6%, fibroin-based scaffolds' affinity to primary neural cells was improved. In 6%HA/fibroin scaffolds, neurosphere-forming cell migrated from their original aggregate and adhered tightly to the surface of scaffolds.
Collapse
Affiliation(s)
- Yong-Juan Ren
- Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Chapter 21: Use of stem cells for improving nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:393-403. [PMID: 19682650 DOI: 10.1016/s0074-7742(09)87021-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A clear need exists for new surgical approaches to enhance the recuperation of functions after peripheral nerve injury and repair. At present, advances in the regenerative medicine fields of biomaterials, cellular engineering, and molecular biology are all contributing to the development of a bioengineered nerve implant, which could be used clinically as an alternative to nerve autograft. In this review we examine the recent progress in this field, looking in particular at the applicability of Schwann cells and stem cell transplantation to enhance nerve regeneration.
Collapse
|
33
|
Yan H, Zhang F, Chen MB, Lineaweaver WC. Chapter 10 Conduit Luminal Additives for Peripheral Nerve Repair. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:199-225. [DOI: 10.1016/s0074-7742(09)87010-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS. Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 2008; 87:251-63. [DOI: 10.1002/jbm.b.31000] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Xie F, Li QF, Gu B, Liu K, Shen GX. In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material. Microsurgery 2008; 28:471-9. [DOI: 10.1002/micr.20514] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Vleggeert-Lankamp CLAM. The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. J Neurosurg 2007; 107:1168-89. [DOI: 10.3171/jns-07/12/1168] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
A number of evaluation methods that are currently used to compare peripheral nerve regeneration with alternative repair methods and to judge the outcome of a new paradigm were hypothesized to lack resolving power. This would too often lead to the conclusion that the outcome of a new paradigm could not be discerned from the outcome of the current gold standard, the autograft. As a consequence, the new paradigm would incorrectly be judged as successful.
Methods
An overview of the methods that were used to evaluate peripheral nerve regeneration after grafting of the rat sciatic nerve was prepared. All articles that were published between January 1975 and December 2004 and concerned grafting of the rat sciatic nerve (minimum graft length 5 mm) and in which the experimental method was compared with an untreated or another grafted nerve were included. The author scored the presence of statistically significant differences between paradigms.
Results
Evaluation of nerve fiber count, nerve fiber density, N-ratio, nerve histological success ratio, compound muscle action potential, muscle weight, and muscle tetanic force are methods that were demonstrated to have resolving power.
Conclusions
A number of evaluation methods are not suitable to demonstrate a significant difference between experimental paradigms in peripheral nerve regeneration. It is preferable to apply a combination of evaluation methods with resolving power to evaluate nerve regeneration properly.
Collapse
|
37
|
Halasi G, Wolf E, Bácskai T, Székely G, Módis L, Szigeti ZM, Mészár Z, Felszeghy S, Matesz C. The effect of vestibular nerve section on the expression of the hyaluronan in the frog, Rana esculenta. Brain Struct Funct 2007; 212:321-34. [PMID: 17912549 DOI: 10.1007/s00429-007-0162-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 09/14/2007] [Indexed: 01/03/2023]
Abstract
Following postganglionic lesion of the eighth cranial nerve, the changes in the expression of hyaluronan (HA), one of the extracellular matrix macromolecules, were examined in the medial (MVN) and lateral (LVN) vestibular nuclei and in the entry or transitional zone (TZ) of the nerve in the frog. HA was detected in different survival times by using a specific biotinylated hyaluronan-binding probe. HA expression was defined by the area-integrated optical density (AIOD), calculated from pixel intensities of digitally captured images. During the first postoperative days the perineuronal net (PN), a HA-rich area around the neurons, was not distinguishable from the surrounding neuropil in the MVN and LVN, characterized by a bilateral drop of AIOD specifically on the operated side. From postoperative day 14 onwards AIOD increased whilst the PN reorganized. In contrast, the AIOD wobbled up and down bilaterally without any trend in the TZ. Statistical analysis indicated that AIOD changes in the structures studied ran parallel bilaterally presumably because of the operation. Our results demonstrated for the first time that (1) the lesion of the eighth cranial nerve is accompanied by the modification of AIOD reflected HA expression in the MVN, LVN and TZ, (2) different tendencies exist in the time course of AIOD in the structures studied and (3) these tendencies are similar on the intact and operated sides. Our findings may suggest an area dependent molecular mechanism of HA in the restoration of vestibular function.
Collapse
Affiliation(s)
- Gábor Halasi
- Department of Anatomy, Histology and Embryology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4012, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev 2007; 59:325-38. [PMID: 17482308 PMCID: PMC1976339 DOI: 10.1016/j.addr.2007.03.014] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 03/28/2007] [Indexed: 02/07/2023]
Abstract
This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and drawbacks given. Finally, common methods of drug delivery, including degradable/diffusion-based delivery systems, affinity-based delivery systems, immobilized drug delivery systems, and electrically controlled drug delivery systems, are examined and critiqued. Based on the current body of work, suggestions for future directions of research in the field of neural tissue engineering are presented.
Collapse
Affiliation(s)
| | - Shelly E. Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University in St. Louis
- Center for Materials Innovation, Washington University in St. Louis
- * To whom correspondence should be addressed: Shelly Sakiyama-Elbert, Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130,
| |
Collapse
|
39
|
Abstract
The use of nerve conduits as an alternative for nerve grafting has a long experimental and clinical history. Luminal fillers, factors introduced into these nerve conduits, were later developed to enhance the nerve regeneration through conduits. Though many luminal fillers have been reported to improve nerve regeneration, their use has not been subjected to systematic review. This review categorizes the types of fillers used, the conduits associated with fillers, and the reported performance of luminal fillers in conduits to present a preference list for the most effective fillers to use over specific distances of nerve defect.
Collapse
Affiliation(s)
- Michael B Chen
- Division of Plastic Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
40
|
Lee KS, Baek JR, Lee GH, Choi GW. Comparative Study of Scar Formation at the Site of Sciatic Nerve Repair in Rats. ACTA ACUST UNITED AC 2007. [DOI: 10.4055/jkoa.2007.42.2.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kwang Suk Lee
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| | - Jong Ryoon Baek
- Department of Orthopaedic Surgery, Gil Medical Center, Gachon Medical College, Incheon, Korea
| | - Gyou Hyuk Lee
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| | - Gi Won Choi
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| |
Collapse
|
41
|
Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:1393-401. [PMID: 17143772 DOI: 10.1007/s10856-006-0615-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 10/21/2005] [Indexed: 05/12/2023]
Abstract
In this paper, hyaluronic acid hydrogels with open porous structure have been developed for scaffold of brain tissue engineering. A short peptide sequence of arginine-glycine-aspartic acid (RGD) was immobilized on the backbone of the hydrogels. Both unmodified hydrogels and those modified with RGD were implanted into the defects of cortex in rats and evaluated for their ability to improve tissue reconstruction. After 6 and 12 weeks, sections of brains were processed for DAB and Glees staining. They were also labeled with GFAP and ED1 antibodies, and observed under the SEM for ultrastructral examination. After implanting into the lesion of cortex, the porous hydrogels functioned as a scaffold to support cells infiltration and angiogenesis, simultaneously inhibiting the formation of glial scar. In addition, HA hydrogels modified with RGD were able to promote neurites extension. Our experiments showed that the hyaluronic acid-RGD hydrogel provided a structural, three-dimensional continuity across the defect and favoured reorganization of local wound-repair cells, angiogenesis and axonal growth into the hydrogel scaffold, while there was little evidence of axons regeneration in unmodified hydrogel.
Collapse
Affiliation(s)
- F Z Cui
- Biomaterials Laboratory, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
42
|
Jansen K, Ludwig Y, van Luyn MJA, Gramsbergen AA, Meek MF. Evaluation of morphological and functional nerve recovery of rat sciatic nerve with a Hyaff11-based nerve guide. Appl Bionics Biomech 2006. [DOI: 10.1533/abbi.2005.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Dam-Hieu P, Lacroix C, Said G, Devanz P, Liu S, Tadie M. Reduction of postoperative perineural adhesions by Hyaloglide gel: an experimental study in the rat sciatic nerve. Neurosurgery 2006; 56:425-33; discussion 425-33. [PMID: 15794840 DOI: 10.1227/01.neu.0000156845.41626.e9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 04/26/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To assess the effects of Hyaloglide gel (or auto-cross-linked polysaccharide [ACP] gel; Fidia Advanced Biopolymers, Abano Terme, Italy), a hyaluronan-derivative polymer, on peripheral nerve scarring and nerve regeneration. METHODS We performed two surgical procedures in adult rats: 1) neurolysis of the sciatic nerve and separation of its tibial and peroneal branches, and 2) transection and immediate suture of the sciatic nerve. After nerve manipulation, ACP gel was applied onto the site of operation. We tested two solutions of ACP gel having different viscosities. Additional animals received Adcon-T/N (Gliatech, Inc., Cleveland, OH), an antiadhesive agent currently available for clinical use. No gel was applied on the contralateral side, which served as a control side. Four weeks later, the animals underwent reoperation. We assessed the quality of wound healing, the presence of perineural adherences, and the separability of nerves from surrounding tissues. RESULTS Significantly fewer perineural adhesions were found in animals treated with ACP gel (high viscosity) and Adcon-T/N compared with controls. Quantitative histological analysis revealed a statistically significant reduction in the amount of scar tissue surrounding the nerves treated with ACP gel. No evidence of toxicity was found, and the gel did not interfere with nerve regeneration (counts of regenerating myelinated axons). CONCLUSION ACP gel with high viscosity seems to be safe and effective in reducing perineural adhesions and scar formation after peripheral nerve surgery.
Collapse
Affiliation(s)
- Phong Dam-Hieu
- Experimental Neurosurgery Laboratory, Centre Hospitalier Universitaire de Bicêtre, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France.
| | | | | | | | | | | |
Collapse
|
44
|
Iwata A, Browne KD, Pfister BJ, Gruner JA, Smith DH. Long-Term Survival and Outgrowth of Mechanically Engineered Nervous Tissue Constructs Implanted Into Spinal Cord Lesions. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/ten.2006.12.ft-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Szigeti ZM, Matesz C, Szekely G, Felszeghy S, Bácskai T, Halasi G, Mészár Z, Módis L. Distribution of hyaluronan in the central nervous system of the frog. J Comp Neurol 2006; 496:819-31. [PMID: 16628618 DOI: 10.1002/cne.20960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The qualitative and quantitative distribution pattern of hyaluronan (HA), a component of the extracellular matrix (ECM), was studied in the frog central nervous system by using a highly specific HA probe and digital image analysis. HA reaction was observed in both the white and the gray matter, showing a very intense staining around the perikarya and dendrites in the perineuronal net (PN). In the telencephalon, strong reaction was found in different parts of the olfactory system, in the pallium, and in the amygdala. In the diencephalon, intensive staining was found in the nucleus of Bellonci, the dorsal habenula, the lateral and central thalamic nuclei, and the subependymal zone of the third ventricle. In the mesencephalon, layers of optic tectum displayed different intensities, with the strongest reaction in layers B, D, F, 3, and 5. Other structures of the mesencephalon showed regional differences. The PN was especially intensively stained around the perikarya of the toral nuclei, the oculomotor and trochlear nuclei, and the basal optic nucleus. In the rhombencephalon, the granular layer of cerebellum, the vestibulocochlear nuclei, the superior olive, the spinal tract of the trigeminal nerve, and parts of the reticular formation showed the most intense reaction in the PN. In the spinal cord, considerable HA staining was found in the white matter and around the perikarya of motoneurons. The present study is the first description of the HA-positive areas of frog brain and spinal cord demonstrating the heterogeneity of HA distribution in the frog central nervous system.
Collapse
Affiliation(s)
- Zsuzsa M Szigeti
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Center, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Iwata A, Browne KD, Pfister BJ, Gruner JA, Smith DH. Long-Term Survival and Outgrowth of Mechanically Engineered Nervous Tissue Constructs Implanted Into Spinal Cord Lesions. ACTA ACUST UNITED AC 2006; 12:101-10. [PMID: 16499447 DOI: 10.1089/ten.2006.12.101] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While most approaches to repair spinal cord injury (SCI) rely on promoting axon outgrowth, the extensive distance that axons would have to grow to bridge SCI lesions remains an enormous challenge. In this study, we used a new tissue-engineering technique to create long nervous tissue constructs spanned by living axon tracts to repair long SCI lesions. Exploiting the newfound process of extreme axon stretch growth, integrated axon tracts from dorsal root ganglia (DRG) neurons were mechanically elongated in vitro to 10 mm over 7 days and encased in a collagen hydrogel to form a nervous tissue construct. In addition, a modified lateral hemisection SCI model in the rat was developed to create a 1 cm long cavity in the spinal cord. Ten days following SCI, constructs were transplanted into the lesion and the animals were euthanized 4 weeks post-transplantation for histological analyses. Through cell tracking methods and immunohistochemistry, the transplanted elongated cultures were consistently found to survive 4 weeks in the injured spinal cord. In addition, DRG axons were observed extending out of the transplanted construct into the host spinal cord tissue. These results demonstrate the promise of nervous tissue constructs consisting of stretch-grown axons to bridge even extensive spinal cord lesions.
Collapse
Affiliation(s)
- Akira Iwata
- Department of Neurosurgery, Center for Brain Injury Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
47
|
Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ. Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. ACTA ACUST UNITED AC 2005; 11:513-25. [PMID: 15869430 DOI: 10.1089/ten.2005.11.513] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain tissue engineering in the postinjury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. In this article, a hyaluronic acid (HA)-poly-D-lysine (PDL) copolymer hydrogel with an open porous structure and viscoelastic properties similar to neural tissue has been developed for brain tissue engineering. The chemicophysical properties of the hydrogel with HA:PDL ratios of 10:1, 5:1, and 4:1 were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectrometry. Neural cells cultured in the hydrogel were studied by phase-contrast microscope and SEM. The incorporation of PDL peptides into the HA-PDL hydrogel allowed for the modulation of neuronal cell adhesion and neural network formation. Macrophages and multinucleated foreign body giant cells found at the site of implantation of the hydrogel in the rat brain within the first weeks postimplantation decreased in numbers after 6 weeks, consistent with the host response to inert implants in numerous tissues. Of importance was the infiltration of the hydrogel by glial fibrillary acidic protein-positive cells-reactive astrocytes-by immunohistochemistry and the contiguity between the hydrogel and the surrounding tissue demonstrated by SEM. These findings indicated the compatibility of this hydrogel with brain tissue. Collectively, the results demonstrate the promise of an HA-PDL hydrogel as a scaffold material for the repair of defects in the brain.
Collapse
Affiliation(s)
- W M Tian
- Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bini TB, Gao S, Wang S, Ramakrishna S. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:367-375. [PMID: 15803283 DOI: 10.1007/s10856-005-0637-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 07/19/2004] [Indexed: 05/24/2023]
Abstract
The technique of microbraiding with modification was employed as a novel method for the fabrication of fibrous tubular scaffolds for nerve tissue engineering purposes. The biodegradable polymers used in this study were poly(L-lactide-co-glycolide) (10:90) and chitosan. The polymeric fibers were microbraided around a Teflon mandrel to make it as a tubular construct. The conduits were then studied for their surface morphology, swelling behaviour and biocompatibility. The surface morphology was analysed by scanning electron microscope, swelling behaviour by weight increase due to water uptake and biocompatibility by in vitro cytotoxicity assessment in terms of cell morphology and cell viability by the MTT assay of polymer extract treated cells. These conduits may also be used for regeneration of tissues, which require tubular scaffolds such as blood vessel, spinal cord, intestine etc.
Collapse
Affiliation(s)
- T B Bini
- Bioengineering Division, Mechanical Engineering Department, National University of Singapore, Singapore 119260
| | | | | | | |
Collapse
|
49
|
Cen L, Neoh KG, Li Y, Kang ET. Assessment of in Vitro Bioactivity of Hyaluronic Acid and Sulfated Hyaluronic Acid Functionalized Electroactive Polymer†. Biomacromolecules 2004; 5:2238-46. [PMID: 15530038 DOI: 10.1021/bm040048v] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrically conductive polypyrrole (PPY) was surface functionalized with hyaluronic acid (HA) and sulfated hyaluronic acid (SHA) to improve its surface biocompatibility. The immobilization of HA on the PPY film was facilitated by the use of a cross-linker having the appropriate functional groups. The biological activity of the HA functionalized PPY film was assessed by means of an in vitro PC12 cell culture. The cell attachment on different substrates was studied and determined by bicinchoninic acid protein analysis. Cell attachment on the HA functionalized PPY film surface was significantly enhanced in the presence of nerve growth factor. The SHA functionalized PPY film was obtained by the sulfonation of the immobilized HA using pyridinesulfonate. The retention of the biological activity of the immobilized HA after sulfonation was evaluated by the in vitro assessment of the plasma recalcification time (PRT) and platelet adhesion on the substrate. The PRT observed from the SHA functionalized PPY film was significantly prolonged compared with the HA functionalized PPY. Some reduction of platelet adhesion was observed for the SHA functionalized PPY film, compared with that of the HA functionalized PPY film.
Collapse
Affiliation(s)
- Lian Cen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | | | | | | |
Collapse
|
50
|
Bini TB, Gao S, Xu X, Wang S, Ramakrishna S, Leong KW. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. J Biomed Mater Res A 2004; 68:286-95. [PMID: 14704970 DOI: 10.1002/jbm.a.20050] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tiny tubes with fiber architecture were developed by a novel method of fabrication upon introducing some modification to the microbraiding technique, to function as nerve guide conduit and the feasibility of in vivo nerve regeneration was investigated through several of these conduits. Poly(L-lactide-co-glycolide) (10:90) polymer fibers being biocompatible and biodegradable were used for the fabrication of the conduits. The microbraided nerve guide conduits (MNGCs) were characterized using scanning electron microscopy to study the surface morphology and fiber arrangement. Degradation tests were performed and the micrographs of the conduit showed that the degradation of the conduit is by fiber breakage indicating bulk hydrolysis of the polymer. Biological performances of the conduits were examined in the rat sciatic nerve model with a 12-mm gap. After implantation of the MNGC to the right sciatic nerve of the rat, there was no inflammatory response. One week after implantation, a thin tissue capsule was formed on the outer surface of the conduit, indicating good biological response of the conduit. Fibrin matrix cable formation was seen inside the MNGC after 1 week implantation. One month after implantation, 9 of 10 rats showed successful nerve regeneration. None of the implanted tubes showed tube breakage. The MNGCs were flexible, permeable, and showed no swelling apart from its other advantages. Thus, these new poly(L-lactide-co-glycolide) microbraided conduits can be effective aids for nerve regeneration and repair and may lead to clinical applications.
Collapse
Affiliation(s)
- T B Bini
- Bioengineering Division, Mechanical Engineering Department, National University of Singapore, Singapore 119260.
| | | | | | | | | | | |
Collapse
|