1
|
Ferluga M, Avesani M, Lorenzini M, Zapparoli G. Assessing variability among culturable phylloplane basidiomycetous yeasts from Italian agroecosystems. World J Microbiol Biotechnol 2024; 40:335. [PMID: 39358571 PMCID: PMC11446951 DOI: 10.1007/s11274-024-04147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
This study analysed basidiomycetous yeasts isolated from the phylloplane of crops and spontaneous plants in Italian agroecosystems. A total of 25 species belonging to 17 genera were recognized by analysing 83 isolates from vineyards and orchards, that are not treated with synthetic fungicides, and adjacent natural areas. Rhodotorula graminis and Filobasidium magnum were the most frequent species but 13 others were represented by a single isolate (e.g., Buckleyzyma salicina, Pseudozyma prolifica, and Moniliella megachiliensis). Preliminary analysis of (GTG)5-PCR fingerprinting revealed high genetic intraspecific heterogeneity. All isolates were characterized by their production of extracellular hydrolytic enzymes and their sensitivity to six commercial fungicides used in Italy. The isolates displayed great variability in these phenotypic traits, which play an important role in the survival of yeast populations in agroecosystems. Most of them exhibited lipolytic, proteolytic, β-glucosidase and pectinolytic activities, but only three (F. magnum, Kwoniella mangroviensis and Ps. prolifica) also had cellulolytic and amylolytic activity. Most isolates were sensitive to four fungicides, and one R. graminis isolate was resistant to all six. This heterogeneity was not related to the geographical origin of the isolates. The lack of selective factors (i.e. pesticide treatments) in the sampling fields and the presence of adjacent natural areas may have favored the maintenance of an elevated level of strain diversity. This study provides new information on phylloplane basidiomycetous yeasts in agroecosystems and opens the way to further investigations into the impact of agricultural practices on the microbial diversity of these natural habitats.
Collapse
Affiliation(s)
- Matteo Ferluga
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Michele Avesani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | | | - Giacomo Zapparoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy.
| |
Collapse
|
2
|
Elhalis H, Chin XH, Chow Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit Rev Food Sci Nutr 2024; 64:7648-7670. [PMID: 36916137 DOI: 10.1080/10408398.2023.2188951] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Fermented soybean products, including Soya sauce, Tempeh, Miso, and Natto have been consumed for decades, mainly in Asian countries. Beans are processed using either solid-state fermentation, submerged fermentation, or a sequential of both methods. Traditional ways are still used to conduct the fermentation processes, which, depending on the fermented products, might take a few days or even years to complete. Diverse microorganisms were detected during fermentation in various processes with Bacillus species or filamentous fungi being the two main dominant functional groups. Microbial activities were essential to increase the bean's digestibility, nutritional value, and sensory quality, as well as lower its antinutritive factors. The scientific understanding of fermentation microbial communities, their enzymes, and their metabolic activities, however, still requires further development. The use of a starter culture is crucial, to control the fermentation process and ensure product consistency. A broad understanding of the spontaneous fermentation ecology, biochemistry, and the current starter culture technology is essential to facilitate further improvement and meet the needs of the current extending and sustainable economy. This review covers what is currently known about these aspects and reveals the limited available information, along with the possible directions for future starter culture design in soybean fermentation.
Collapse
Affiliation(s)
- Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| |
Collapse
|
3
|
Llanos-Gómez KJ, Aime MC, Díaz-Valderrama JR. The surface of leaves and fruits of Peruvian cacao is home for several Hannaella yeast species, including the new species Hannaella theobromatis sp. nov. Antonie Van Leeuwenhoek 2024; 117:43. [PMID: 38413427 DOI: 10.1007/s10482-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
As part of a long-term study aiming to isolate and identify yeast species that inhabit the surface of leaves and fruits of native fine-aroma cacao in the department of Amazonas, Peru, we obtained multiple isolates of Hannaella species. Yeasts of the genus Hannaella are common inhabitants of the phyllosphere of natural and crop plants. On the basis of morphological, and physiological characteristics, and sequence analysis of the D1/D2 domains of the large subunit rRNA gene (LSU) and the internal transcribed spacer region (ITS), we identified five species of Hannaella from the phyllosphere of Peruvian cacao. Four have been previously described: H. phyllophila (isolates KLG-073, KLG-091), H. pagnoccae (KLG-076), H. sinensis (KLG-121), and H. taiwanensis (KLG-021). A fifth, represented by eight isolates (KLG-034, KLG-063, KLG-074, KLG-078, KLG-79, KLG-082, KLG-084, KLG-085), is not conspecific with any previously described Hannaella species, and forms the sister clade to H. surugaensis in the phylogenetic analysis. It has 2.6-3.9% (18-27 substitutions, 2-4 deletions, and 1-3 insertions in 610-938 bp-long alignments), and 9.8-10.0% nucleotide differences (37 substitutions and 14 insertions in 511-520 bp-long alignments) in the LSU and ITS regions, respectively, to H. surugaensis type strain, CBS 9426. Herein, the new species Hannaella theobromatis sp. nov. is described and characterised. The species epithet refers to its epiphytic ecology on its host Theobroma cacao.
Collapse
Affiliation(s)
- Kelvin J Llanos-Gómez
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jorge R Díaz-Valderrama
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú.
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú.
| |
Collapse
|
4
|
Iqbal M, Broberg A, Andreasson E, Stenberg JA. Biocontrol Potential of Beneficial Fungus Aureobasidium pullulans Against Botrytis cinerea and Colletotrichum acutatum. PHYTOPATHOLOGY 2023; 113:1428-1438. [PMID: 36945727 DOI: 10.1094/phyto-02-23-0067-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biological control is a promising approach to reduce plant diseases caused by fungal pathogens and ensure high productivity in horticultural production. In the present study, we evaluated the biocontrol potential and underlying mechanisms of the beneficial fungus Aureobasidium pullulans against Botrytis cinerea and Colletotrichum acutatum, casual agents of gray mold and anthracnose diseases in strawberry. Notably, this is the first time that A. pullulans has been tested against C. acutatum in strawberry. A. pullulans strains (AP-30044, AP-30273, AP-53383, and AP-SLU6) showed significant variation in terms of growth and conidia production. An inverse relationship was found between the growth and conidiation rate, suggesting a trade-off between resource allocation for growth and conidial production. Dual plate co-culturing assays showed that mycelial growth of B. cinerea and C. acutatum was reduced by up to 35 and 18%, respectively, when challenged with A. pullulans compared with control treatments. Likewise, culture filtrates of A. pullulans showed varying levels of antifungal activity against B. cinerea and C. acutatum, reducing the mycelial biomass by up to 90 and 72%, respectively. Furthermore, milk powder plate assays showed that A. pullulans produced substantial amounts of extracellular proteases, which are known to degrade fungal cuticle. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analyses revealed that A. pullulans produced exophilins, liamocins, and free fatty acids known to have antifungal properties. A. pullulans shows high potential for successful biological control of strawberry diseases and discuss opportunities for further optimization of this beneficial fungus.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| |
Collapse
|
5
|
Oskay M. Production, Partial Purification, and Characterization of Polygalacturonase from Aureobasidium pullulans P56 under Submerged Fermentation Using Agro-Industrial Wastes. Curr Microbiol 2022; 79:296. [PMID: 35994212 DOI: 10.1007/s00284-022-02991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
Abstract
Polygalacturonase (PGase) production by Aureobasidium pullulans P56 under submerged fermentation was investigated using agro-industrial wastes and commercial carbon and nitrogen sources. The maximum PGase concentration was equivalent to 8.6 U/mL that was obtained in presence of citrus pectin at 150 rpm, 30 °C, pH = 5.5, and 60 h of fermentation conditions. However, a significant amount of enzyme production was also recorded upon the utilization of corncob (5.3 U/mL) and wheat bran (4.4 U/mL) as carbon sources. Amongst the different nitrogen sources, the highest enzyme production (8.2 U/mL) was obtained in presence of ammonium sulphate and yeast extract simultaneously at a ratio of 1:1. The enzyme was partially purified by gel filtration using Sephadex G50 equilibrated and washed with 50 mM-sodium acetate buffer. The obtained yield and specific activity were determined equivalent to 17% and 9.53 U/mg, respectively. The molecular weight of the partially purified enzyme was estimated as 54 kDa on SDS-PAGE. The conditions affecting the enzyme activity were determined and the highest enzyme activity was recorded at 40 °C and 4.5 pH. Amongst the tested metal ions, 2 and 5 mM of CaCl2 concentrations increased the enzymatic activity by 30%. Overall, the use of corncob (2.5%) to produce PGase by A. pullulans represents an attractive agro-industrial substrate.
Collapse
Affiliation(s)
- Mustafa Oskay
- Faculty of Sciences and Letters, Department of Biology, Section of Basic and Industrial Microbiology, Manisa Celal Bayar University, 45030, Manisa, Turkey.
| |
Collapse
|
6
|
|
7
|
Fernández-Pacheco P, Rosa IZ, Arévalo-Villena M, Gomes E, Pérez AB. Study of potential probiotic and biotechnological properties of non-Saccharomyces yeasts from fruit Brazilian ecosystems. Braz J Microbiol 2021; 52:2129-2144. [PMID: 34595728 DOI: 10.1007/s42770-021-00541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Yeast isolates from flowers and fruits from a Brazilian forest were studied. The yeasts were identified at species and strain level by PCR-RFLP and PCR-RAPD, respectively. The 46 isolated yeasts were classified into 11 different species belonging to the genera Candida, Diutina, Hanseniaspora, Meyerozyma, Pichia, Rhodotorula, and Torulaspora. A total of 20 different strains were found. In order to ascertain the probiotic potential, the resistance to gastrointestinal conditions, autoaggregation, and hydrophobicity assays were studied, along with the capacity to form biofilm. The results indicate that, although most of the strains presented better results than Saccharomyces boulardii (the only strain recognized as a probiotic yeast), four strains were the most promising, namely, Rhodotorula mucilaginosa 32, Meyerozyma caribbica 35, and Diutina rugosa 12 and 45, according to the Duncan test. Several biotechnological properties were evaluated. D. rugosa inhibited Dekkera bruxellensis. The assimilation or fermentation of seven sugars was tested, and only five of the yeasts did not show a capacity to assimilate any of the sugars under aerobic conditions. However, all strains were able to ferment at least one of the sugars under anaerobic conditions. As far as enzyme production is concerned, positive results were only found for the enzymes' amylase, pectinase, and protease. D. rugosa 42 and Hanseniaspora opuntiae 18, followed of Pichia kluyveri 26, showed high values for the production of melatonin. In conclusion, the results of this study show that several non-Saccharomyces present probiotic characteristics, and these have good potential for industrial applications in the food or biotechnology industries.
Collapse
Affiliation(s)
- Pilar Fernández-Pacheco
- Food Science and Technology Department, Castilla-La Mancha University, Av. Camilo José Cela S/N, Edificio Marie Curie, 13071, Ciudad Real, Spain
| | - Isabel Zaparoli Rosa
- Microbiology Department, Instituto de Biociências, Letras e Ciências Exatas - Ibilce Jardim Nazareth, Rua Cristóvão Colombo, Universidade Estadual Paulista, 15054-000 - São José do Rio Preto, São Paulo, Brazil
| | - María Arévalo-Villena
- Food Science and Technology Department, Castilla-La Mancha University, Av. Camilo José Cela S/N, Edificio Marie Curie, 13071, Ciudad Real, Spain.
| | - Eleni Gomes
- Microbiology Department, Instituto de Biociências, Letras e Ciências Exatas - Ibilce Jardim Nazareth, Rua Cristóvão Colombo, Universidade Estadual Paulista, 15054-000 - São José do Rio Preto, São Paulo, Brazil
| | - Ana Briones Pérez
- Food Science and Technology Department, Castilla-La Mancha University, Av. Camilo José Cela S/N, Edificio Marie Curie, 13071, Ciudad Real, Spain
| |
Collapse
|
8
|
Li Q, Li L, Feng H, Tu W, Bao Z, Xiong C, Wang X, Qing Y, Huang W. Characterization of the Complete Mitochondrial Genome of Basidiomycete Yeast Hannaella oryzae: Intron Evolution, Gene Rearrangement, and Its Phylogeny. Front Microbiol 2021; 12:646567. [PMID: 34122362 PMCID: PMC8193148 DOI: 10.3389/fmicb.2021.646567] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, the mitogenome of Hannaella oryzae was sequenced by next-generation sequencing (NGS) and successfully assembled. The H. oryzae mitogenome comprised circular DNA molecules with a total size of 26,444 bp. We found that the mitogenome of H. oryzae partially deleted the tRNA gene transferring cysteine. Comparative mitogenomic analyses showed that intronic regions were the main factors contributing to the size variations of mitogenomes in Tremellales. Introns of the cox1 gene in Tremellales species were found to have undergone intron loss/gain events, and introns of the H. oryzae cox1 gene may have different origins. Gene arrangement analysis revealed that H. oryzae contained a unique gene order different from other Tremellales species. Phylogenetic analysis based on a combined mitochondrial gene set resulted in identical and well-supported topologies, wherein H. oryzae was closely related to Tremella fuciformis. This study represents the first report of mitogenome for the Hannaella genus, which will allow further study of the population genetics, taxonomy, and evolutionary biology of this important phylloplane yeast and other related species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yuan Qing
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
9
|
Vale HMMD, Reis JBAD, Oliveira MD, Moreira GAM, Bomfim CA. Yeasts in native fruits from Brazilian neotropical savannah: occurrence, diversity and enzymatic potential. BIOTA NEOTROPICA 2021. [DOI: 10.1590/1676-0611-bn-2020-1184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Cerrado is the second largest phytogeographic domain in Brazil, with a huge ethnobotany variety, including fruit species that stand out for their economic, industrial, biotechnological and medicinal potential. The objective of this study was to characterize the diversity of culturable yeasts and their potential for the production of hydrolytic enzymes in fruits of 13 species of native plants of the Cerrado in Brazil. Sequencing the 26S rRNA gene identified the isolates. The enzymatic potential was evaluated using specific substrates for the enzymes amylases, cellulases, proteases, and pectinases. Nine of the 13 fruit species analyzed showed yeast growth, totaling 82 isolates, identified in 26 species. The phylum Ascomycota predominated over Basidiomycota. The fruits of Butia capitata presented the highest species richness. Candida and Meyerozyma were the most frequent genera. About 57% of the isolates were able to produce at least one of the enzymes analyzed. The species Papiliotrema flavescens, Hanseniaspora meyeri, Meyerozyma guilliermondii, and Rhodotorula mucilaginosa produced all the enzymes tested. The results were found to expand the knowledge about the yeast communities present in fruits of the Cerrado native plants, evidencing the presence of species shared among the plants, and their potential for biotechnological use in the future.
Collapse
Affiliation(s)
| | | | - Marcos de Oliveira
- Universidade de Brasilia, Brasil; Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Brasil
| | | | | |
Collapse
|
10
|
Yi T, Lei L, He L, Yi J, Li L, Dai L, Hong Y. Symbiotic Fungus Affected the Asian Citrus Psyllid (ACP) Resistance to Imidacloprid and Thiamethoxam. Front Microbiol 2020; 11:522164. [PMID: 33391190 PMCID: PMC7772971 DOI: 10.3389/fmicb.2020.522164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama) (Hemiptera: Liviidae), is a notorious Rutaceae plant pest. Frequent and extensive use of pesticides has resulted in severe insecticide resistance in ACP populations. Fully understanding the mechanism of ACP resistance to pesticides is vital for us to control or delay the development of resistance. Therefore, we compared the difference in resistance to imidacloprid and thiamethoxam between Hunan (Yongzhou, Chenzhou) and Guangdong (Guangzhou) ACP populations and analyzed the correlations between the resistance level and genes and symbiotic fungi. The results showed that the resistance of the Guangdong ACP population to imidacloprid and thiamethoxam was lower than that of Hunan ACP population, and the relative expression of genes associated with P450 mono-oxygenase and acetylcholinesterase was significantly lower in the Guangdong ACP population than in Hunan ACP population. The differences of mean relative abundances of four symbiotic bacteria among three populations were marginally significant; however, the mean relative abundance of 16 fungi among three populations was significantly different, and positive linear correlations were observed between the resistance level and two fungi (Aspergillus niger and Aureobasidium pullulans) and two genes (CYP4C70 and CYP4DB1). Negative correlations were only observed between the resistance level and two fungi (Golubevia pallescens and Acremonium sclerotigenum). Moreover, four fungi were unique to the Chenzhou population which was the highest resistance to imidacloprid and thiamethoxam. These findings suggested the P450 mono-oxygenase and symbiotic fungi together affected ACP resistance to imidacloprid and thiamethoxam. In the future, we may use environmental G. pallescens and A. sclerotigenum to control or delay ACP resistance.
Collapse
Affiliation(s)
- Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ling Lei
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ling He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jianglan Yi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lingguo Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yanyun Hong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae. Sci Rep 2020; 10:16550. [PMID: 33024226 PMCID: PMC7538879 DOI: 10.1038/s41598-020-73649-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bactrocera tryoni (Froggatt), the Queensland fruit fly (Qfly), is a highly polyphagous tephritid fly that is widespread in Eastern Australia. Qfly physiology is closely linked with its fungal associates, with particular relationship between Qfly nutrition and yeast or yeast-like fungi. Despite animal-associated fungi typically occurring in multi-species communities, Qfly studies have predominately involved the culture and characterisation of single fungal isolates. Further, only two studies have investigated the fungal communities associated with Qfly, and both have used culture-dependant techniques that overlook non-culturable fungi and hence under-represent, and provide a biased interpretation of, the overall fungal community. In order to explore a potentially hidden fungal diversity and complexity within the Qfly mycobiome, we used culture-independent, high-throughput Illumina sequencing techniques to comprehensively, and holistically characterized the fungal community of Qfly larvae and overcome the culture bias. We collected larvae from a range of fruit hosts along the east coast of Australia, and all had a mycobiome dominated by ascomycetes. The most abundant fungal taxa belonged to the genera Pichia (43%), Candida (20%), Hanseniaspora (10%), Zygosaccharomyces (11%) and Penicillium (7%). We also characterized the fungal communities of fruit hosts, and found a strong degree of overlap between larvae and fruit host communities, suggesting that these communities are intimately inter-connected. Our data suggests that larval fungal communities are acquired from surrounding fruit flesh. It is likely that the physiological benefits of Qfly exposure to fungal communities is primarily due to consumption of these fungi, not through syntrophy/symbiosis between fungi and insect ‘host’.
Collapse
|
12
|
Vegas C, Zavaleta AI, Canales PE, Esteve-Zarzoso B. Yeasts Associated with Various Amazonian Native Fruits. Pol J Microbiol 2020; 69:1-11. [PMID: 32735105 PMCID: PMC7810117 DOI: 10.33073/pjm-2020-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/05/2022] Open
Abstract
Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits. Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits.
Collapse
Affiliation(s)
- Carlos Vegas
- Laboratory of Molecular Biology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos , Lima , Peru
| | - Amparo I Zavaleta
- Laboratory of Molecular Biology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos , Lima , Peru
| | - Pamela E Canales
- Laboratory of Molecular Biology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos , Lima , Peru
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili , Tarragona , Spain
| |
Collapse
|
13
|
Barrilli ÉT, Tadioto V, Milani LM, Deoti JR, Fogolari O, Müller C, Barros KO, Rosa CA, Dos Santos AA, Stambuk BU, Treichel H, Alves SL. Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Arch Microbiol 2020; 202:1729-1739. [PMID: 32328754 DOI: 10.1007/s00203-020-01884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
We isolated two Candida pseudointermedia strains from the Atlantic rain forest in Brazil, and analyzed cellobiose metabolization in their cells. After growth in cellobiose medium, both strains had high intracellular β-glucosidase activity [~ 200 U (g cells)-1 for 200 mM cellobiose and ~ 100 U (g cells)-1 for 2 mM pNPβG] and negligible periplasmic cellobiase activity. During batch fermentation, the strain with the best performance consumed all the available cellobiose in the first 18 h of the assay, producing 2.7 g L-1 of ethanol. Kinetics of its cellobiase activity demonstrated a high-affinity hydrolytic system inside cells, with Km of 12.4 mM. Our data suggest that, unlike other fungal species that hydrolyze cellobiose extracellularly, both analyzed strains transport it to the cytoplasm, where it is then hydrolyzed by high-affinity intracellular β-glucosidases. We believe this study increases the fund of knowledge regarding yeasts from Brazilian microbiomes.
Collapse
Affiliation(s)
- Évelyn T Barrilli
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Viviani Tadioto
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Letícia M Milani
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Junior R Deoti
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Katharina O Barros
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Angela A Dos Santos
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil.,Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Boris U Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim, RS, Brazil
| | - Sérgio L Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
14
|
Gostinčar C, Turk M, Zajc J, Gunde‐Cimerman N. Fifty Aureobasidium pullulans genomes reveal a recombining polyextremotolerant generalist. Environ Microbiol 2019; 21:3638-3652. [PMID: 31112354 PMCID: PMC6852026 DOI: 10.1111/1462-2920.14693] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023]
Abstract
The black yeast Aureobasidium pullulans is a textbook example of a generalistic and ubiquitous fungus thriving in a wide variety of environments. To investigate whether A. pullulans is a true generalist, or alternatively, whether part of its versatility can be attributed to intraspecific specialization masked by cryptic diversification undetectable by traditional phylogenetic analyses, we sequenced and analysed the genomes of 50 strains of A. pullulans from different habitats and geographic locations. No population structure was observed in the sequenced strains. Decay of linkage disequilibrium over shorter physical distances (<100 bp) than in many sexually reproducing fungi indicates a high level of recombination in the species. A homothallic mating locus was found in all of the sequenced genomes. Aureobasidium pullulans appears to have a homogeneous population genetics structure, which is best explained by good dispersal and high levels of recombination. This means that A. pullulans is a true generalist that can inhabit different habitats without substantial specialization to any of these habitats at the genomic level. Furthermore, in the future, the high level of A. pullulans recombination can be exploited for the identification of genomic loci that are involved in the many biotechnologically useful traits of this black yeast.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
- Lars Bolund Institute of Regenerative Medicine, BGI‐QingdaoQingdao 266555China
| | - Martina Turk
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
| | - Janja Zajc
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
- National Institute of BiologyVečna pot 111, SI‐1000LjubljanaSlovenia
| | - Nina Gunde‐Cimerman
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
| |
Collapse
|
15
|
Corbett KM, de Smidt O. Culture-dependent diversity profiling of spoilage yeasts species by PCR-RFLP comparative analysis. FOOD SCI TECHNOL INT 2019; 25:671-679. [PMID: 31272221 DOI: 10.1177/1082013219856779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spoilage caused by yeasts is a constant, widespread problem in the beverage industry that can result in major economic losses. Fruit juices provide an environment that allows the proliferation of yeast. Some factories in South Africa are not equipped with laboratory facilities to identify spoilage yeasts and outsourcing becomes a prolonged process which obstructs corrective action planning. This study aimed to establish yeast diversity and apply a rapid method for preliminary identification of spoilage yeasts associated with a small-scale fruit juice bottling factory. Yeast population in the factory was determined by isolation from the production environment, process equipment and spoiled products. PCR-RFLP analysis targeting the 5.8S-ITS region and D1/D2 sequencing was used for identification. A total of 207 yeasts belonging to 10 different genera (Candida, Lodderomyces, Wickerhamomyces, Yarrowia, Zygosaccharomyces, Zygoascus, Cryptococcus, Filobasidium, Rhodotorula/Cystobasidium and Trichosporon) were isolated and identified from the production environment and processing equipment. Candida intermedia, C. parapsilosis and Lodderomyces elongisporus were widely distributed in the factory. Zygosaccharomyces bailii, Z. bisporus, Zygoascus hellenicus and Saccharomyces cerevisiae were isolated from the spoiled products. The data provided a yeast control panel that was used successfully to identify unknown yeasts in spoiled products from this factory using polymerase chain reaction-restriction length polymorphism (PCR-RFLP) comparative analysis.
Collapse
Affiliation(s)
- Kereng M Corbett
- Centre for Applied Food Security and -Biotechnology (CAFSaB), Central University of Technology, Bloemfontein, South Africa
| | - Olga de Smidt
- Centre for Applied Food Security and -Biotechnology (CAFSaB), Central University of Technology, Bloemfontein, South Africa
| |
Collapse
|
16
|
Hernández A, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int J Food Microbiol 2018; 286:98-110. [PMID: 30056262 DOI: 10.1016/j.ijfoodmicro.2018.07.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Foods and beverages are nutrient-rich ecosystems in which most microorganisms are able to grow. Moreover, several factors, such as physicochemical characteristics, storage temperature, culinary practices, and application of technologies for storage, also define the microbial population of foods and beverages. The yeast population has been well-characterised in fresh and processed fruit and vegetables, dairy products, dry-cured meat products, and beverages, among others. Some species are agents of alteration in different foods and beverages. Since the most comprehensive studies of spoilage yeasts have been performed in the winemaking process, hence, these studies form the thread of the discussion in this review. The natural yeast populations in raw ingredients and environmental contamination in the manufacturing facilities are the main modes by which food contamination occurs. After contamination, yeasts play a significant role in food and beverage spoilage, particularly in the alteration of fermented foods. Several mechanisms contribute to spoilage by yeasts, such as the production of lytic enzymes (lipases, proteases, and cellulases) and gas, utilisation of organic acids, discolouration, and off-flavours. This review addresses the role of yeasts in foods and beverages degradation by considering the modes of contamination and colonisation by yeasts, the yeast population diversity, mechanisms involved, and the analytical techniques for their identification, primarily molecular methods.
Collapse
Affiliation(s)
- A Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain.
| | - F Pérez-Nevado
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - S Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M J Serradilla
- Área de Vegetales, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), A5 km 372, 06187 Guadajira, Spain
| | - M C Villalobos
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - A Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M G Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| |
Collapse
|
17
|
|
18
|
|
19
|
Rotolo C, De Miccolis Angelini RM, Dongiovanni C, Pollastro S, Fumarola G, Di Carolo M, Perrelli D, Natale P, Faretra F. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards. PEST MANAGEMENT SCIENCE 2018; 74:715-725. [PMID: 29044981 DOI: 10.1002/ps.4767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND There is increasing interest in the use of biological control agents (BCAs) and botanicals (BOTs) due to increasing awareness of the environmental and human health risks associated with synthetic plant protection products. The BCAs Bacillus subtilis strain QST713, Bacillus amyloliquefaciens strain D747 and Aureobasidium pullulans strains DSM14940 and DSM14941, and the BOTs Melaleuca alternifolia and terpenic extracts are proposed for the control of grey mould in vineyards. This study was aimed at evaluating their effectiveness in integrated crop management strategies and their outcomes in terms of the management of fungicide resistance and residues. RESULTS In field trials carried out on table grapes in southern Italy, use of BCAs or BOTs alternately or mixtures of BCAs or BOTs with the succinate dehydrogenase inhibitor fungicide fluopyram showed efficacy of up to 96% against grey mould on bunches, comparable with the chemical reference strategy (up to 87%). By contrast, use of BCAs or BOTs (up to 11 sprays) alone was not effective (< 30%) under high disease pressure. The integrated use of BCAs or BOTs reduced the spread of succinate dehydrogenase inhibitor-resistant conidia, as well as fungicide residues in grapes. CONCLUSIONS Spray schedules based on integration of BCAs or BOTs with fungicides are effective against grey mould and reduce the risk of fungicide resistance in B. cinerea and fungicide residues in grapes. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caterina Rotolo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Crescenza Dongiovanni
- Centro di ricerca, Sperimentazione e Formazione in Agricoltura 'Basile Caramia', Locorotondo, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giulio Fumarola
- Centro di ricerca, Sperimentazione e Formazione in Agricoltura 'Basile Caramia', Locorotondo, Bari, Italy
| | - Michele Di Carolo
- Centro di ricerca, Sperimentazione e Formazione in Agricoltura 'Basile Caramia', Locorotondo, Bari, Italy
| | - Donato Perrelli
- Centro di ricerca, Sperimentazione e Formazione in Agricoltura 'Basile Caramia', Locorotondo, Bari, Italy
| | - Patrizia Natale
- Centro di ricerca, Sperimentazione e Formazione in Agricoltura 'Basile Caramia', Locorotondo, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species. Microorganisms 2017; 5:microorganisms5040065. [PMID: 28974017 PMCID: PMC5748574 DOI: 10.3390/microorganisms5040065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans.
Collapse
|
21
|
Piper AM, Farnier K, Linder T, Speight R, Cunningham JP. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. J Chem Ecol 2017; 43:891-901. [PMID: 28836040 DOI: 10.1007/s10886-017-0877-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the 'deterrent odour' yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the 'attractive odour' yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new "attract and kill" lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.
Collapse
Affiliation(s)
- Alexander M Piper
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Kevin Farnier
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Tomas Linder
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Speight
- Queensland University of Technology, Gardens Point, Brisbane, QLD, 4001, Australia
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
22
|
Deutscher AT, Reynolds OL, Chapman TA. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:298-300. [PMID: 28039426 DOI: 10.1093/jee/tow262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique.
Collapse
Affiliation(s)
- Ania T Deutscher
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Narellan, New South Wales, Australia
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Private Mail Bag 4008, Narellan, New South Wales, Australia
| | - Olivia L Reynolds
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Narellan, New South Wales, Australia
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Private Mail Bag 4008, Narellan, New South Wales, Australia
| | - Toni A Chapman
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Narellan, New South Wales, Australia
| |
Collapse
|
23
|
Purification and Properties of Yeast Proteases Secreted by Wickerhamomyces anomalus 227 and Metschnikovia pulcherrima 446 during Growth in a White Grape Juice. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation3010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Production and Properties of a Thermostable, pH-Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace. Foods 2016; 5:foods5040072. [PMID: 28231166 PMCID: PMC5302420 DOI: 10.3390/foods5040072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl20.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5–90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0–10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product.
Collapse
|
25
|
|
26
|
Yeasts from peat in a tropical peat swamp forest in Thailand and their ability to produce ethanol, indole-3-acetic acid and extracellular enzymes. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1205-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 2014; 15:549. [PMID: 24984952 PMCID: PMC4227064 DOI: 10.1186/1471-2164-15-549] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/20/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. RESULTS The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. CONCLUSIONS The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- />Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, SI 1000 Slovenia
- />National Institute of Biology, Večna pot 111, Ljubljana, SI 1000 Slovenia
| | - Robin A Ohm
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Tina Kogej
- />Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, SI 1000 Slovenia
| | - Silva Sonjak
- />Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, SI 1000 Slovenia
| | - Martina Turk
- />Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, SI 1000 Slovenia
| | - Janja Zajc
- />Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, SI 1000 Slovenia
| | - Polona Zalar
- />Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, SI 1000 Slovenia
| | - Martin Grube
- />Institute of Plant Sciences, Karl-Franzens-University Graz, Holteigasse 6, Graz, A-8010 Austria
| | - Hui Sun
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - James Han
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Aditi Sharma
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Jennifer Chiniquy
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Chew Yee Ngan
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Kerrie Barry
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Igor V Grigoriev
- />US Department of Energy Joint Genome Institute, 2800 Michell Drive, Walnut Creek, CA 94598 USA
| | - Nina Gunde-Cimerman
- />Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, SI 1000 Slovenia
- />Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova 39, Ljubljana, SI 1000 Slovenia
| |
Collapse
|