1
|
Fang J, Wang X, Lai H, Li W, Yao X, Pan Z, Mao R, Yan Y, Xie C, Lin J, Sun W, Li R, Wang J, Dai J, Xu K, Yu X, Xu T, Duan W, Qian J, Ouyang H, Dai X. Decoding the mechanical characteristics of the human anterior cruciate ligament entheses through graduated mineralization interfaces. Nat Commun 2024; 15:9253. [PMID: 39462005 PMCID: PMC11513108 DOI: 10.1038/s41467-024-53542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The anterior cruciate ligament is anchored to the femur and tibia via specialized interfaces known as entheses. These play a critical role in ligament homeostasis and joint stability by transferring forces, varying in magnitude and direction between structurally and functionally dissimilar tissues. However, the precise structural and mechanical characteristics underlying the femoral and tibial entheses and their intricate interplay remain elusive. In this study, two thin-graduated mineralization regions in the femoral enthesis (~21 μm) and tibial enthesis (~14 μm) are identified, both exhibiting distinct biomolecular compositions and mineral assembly patterns. Notably, the femoral enthesis interface exhibits progressively maturing hydroxyapatites, whereas the mineral at the tibial enthesis interface region transitions from amorphous calcium phosphate to hydroxyapatites with increasing crystallinity. Proteomics results reveal that Matrix Gla protein uniquely enriched at the tibial enthesis interface, may stabilize amorphous calcium phosphate, while C-type lectin domain containing 11 A, enriched at the femoral enthesis interface, could facilitate the interface mineralization. Moreover, the finite element analysis indicates that the femoral enthesis model exhibited higher resistance to shearing, whereas the tibial enthesis model contributes to tensile resistance, suggesting that the discrepancy in biomolecular expression and the corresponding mineral assembly heterogeneities collectively contribute to the superior mechanical properties of both the femoral enthesis and tibial enthesis models. These findings provide novel perspectives on the structure-function relationships of anterior cruciate ligament entheses, paving the way for improved management of anterior cruciate ligament injury and regeneration.
Collapse
Affiliation(s)
- Jinghua Fang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhao Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenyue Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Zongyou Pan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Renwei Mao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiyang Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Junxin Lin
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Sun
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jiacheng Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinning Yu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Hongwei Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China.
| | - Xuesong Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Wang H, He K, Cheng CK. The Structure, Biology, and Mechanical Function of Tendon/Ligament-Bone Interfaces. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:545-558. [PMID: 38323564 DOI: 10.1089/ten.teb.2023.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
After tendon or ligament reconstruction, the interface between the hard bone and soft connective tissue is considerably weakened and is difficult to restore through healing. The tendon/ligament-bone interface is mechanically the weakest point under tensile loading and is often the source of various postoperative complications, such as bone resorption and graft laxity. A comprehensive understanding of the macro- and microfeatures of the native tendon/ligament-bone interface would be beneficial for developing strategies for regenerating the tissue. This article discusses the structural, biological, and mechanical features of the tendon/ligament-bone interfaces and how these can be affected by aging and loading conditions.
Collapse
Affiliation(s)
- Huizhi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Kaixin He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Sorsby M, Almardini S, Alayyat A, Hughes A, Venkat S, Rahman M, Baker J, Rana R, Rosen V, Liu ES. The role of GDF5 in regulating enthesopathy development in the Hyp mouse model of XLH. J Bone Miner Res 2024; 39:1162-1173. [PMID: 38836497 PMCID: PMC11337578 DOI: 10.1093/jbmr/zjae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
X-linked hypophosphatemia (XLH) is caused by mutations in PHEX, leading to rickets and osteomalacia. Adults affected with XLH develop a mineralization of the bone-tendon attachment site (enthesis), called enthesopathy, which causes significant pain and impaired movement. Entheses in mice with XLH (Hyp) have enhanced bone morphogenetic protein (BMP) and Indian hedgehog (IHH) signaling. Treatment of Hyp mice with the BMP signaling blocker palovarotene attenuated BMP/IHH signaling in Hyp entheses, thus indicating that BMP signaling plays a pathogenic role in enthesopathy development and that IHH signaling is activated by BMP signaling in entheses. It was previously shown that mRNA expression of growth/differentiation factor 5 (Gdf5) is enhanced in Hyp entheses at P14. Thus, to determine a role for GDF5 in enthesopathy development, Gdf5 was deleted globally in Hyp mice and conditionally in Scx + cells of Hyp mice. In both murine models, BMP/IHH signaling was similarly decreased in Hyp entheses, leading to decreased enthesopathy. BMP/IHH signaling remained unaffected in WT entheses with decreased Gdf5 expression. Moreover, deletion of Gdf5 in Hyp entheses starting at P30, after enthesopathy has developed, partially reversed enthesopathy. Taken together, these results demonstrate that while GDF5 is not essential for modulating BMP/IHH signaling in WT entheses, inappropriate GDF5 activity in Scx + cells contributes to XLH enthesopathy development. As such, inhibition of GDF5 signaling may be beneficial for the treatment of XLH enthesopathy.
Collapse
Affiliation(s)
- Melissa Sorsby
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Shaza Almardini
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Ahmad Alayyat
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Ashleigh Hughes
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Shreya Venkat
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Mansoor Rahman
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Jiana Baker
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Rakshya Rana
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Eva S Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
4
|
Sabido-Sauri R, Baraliakos X, Aydin SZ. Enthesopathies - Mechanical, inflammatory or both? Best Pract Res Clin Rheumatol 2024; 38:101966. [PMID: 39019747 DOI: 10.1016/j.berh.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/19/2024]
Abstract
Entheses have the challenging task of transferring biomechanical forces between tendon and bone, two tissues that differ greatly in composition and mechanical properties. Consequently, entheses are adapted to withstand these forces through continuous repair mechanisms. Locally specialized cells (mechanosensitive tenocytes) are crucial in the repair, physiologically triggering biochemical processes to maintain hemostasis. When repetitive forces cause "material fatigue," or trauma exceeds the entheses' repair capacity, structural changes occur, and patients become symptomatic. Clinical assessment of enthesopathies mainly depends on subjective reports by the patient and lacks specificity, especially in patients with central sensitization syndromes. Ultrasonography has been increasingly used to improve the diagnosis of enthesopathies. In this article, the literature on how biomechanical forces lead to entheseal inflammation, including factors contributing to differentiation into a "clinical enthesitis" state and the value of ultrasound to diagnose enthesopathies will be reviewed, as well as providing clues to overcome the pitfalls of imaging.
Collapse
Affiliation(s)
| | | | - Sibel Zehra Aydin
- Division of Rheumatology, Department of Medicine, University of Ottawa, Canada; Ottawa Hospital Research Institute, Canada.
| |
Collapse
|
5
|
Murphy P, Rolfe RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:81-110. [PMID: 37955772 DOI: 10.1007/978-3-031-38215-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Rebecca A Rolfe
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen Biomater 2022; 10:rbac091. [PMID: 36683751 PMCID: PMC9847541 DOI: 10.1093/rb/rbac091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Repairing injured tendon or ligament attachments to bones (enthesis) remains costly and challenging. Despite superb surgical management, the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations. Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue. Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies. Interestingly, recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force. In this review, we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized. We firstly described compositions, structures and features of natural enthesis with their special mechanical properties highlighted. Stimuli for growth, development and healing of enthesis widely used in popular strategies are systematically summarized. We discuss the fabrication of engineering scaffolds from the aspects of biomaterials, techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy. At last, this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.
Collapse
Affiliation(s)
| | | | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Nan Jiang
- Correspondence address. E-mail: (N.J.); (J.Y.)
| |
Collapse
|
7
|
Liu Y, Wang L, Li S, Zhang T, Chen C, Hu J, Sun D, Lu H. Mechanical stimulation improves rotator cuff tendon-bone healing via activating IL-4/JAK/STAT signaling pathway mediated macrophage M2 polarization. J Orthop Translat 2022; 37:78-88. [PMID: 36262964 PMCID: PMC9550856 DOI: 10.1016/j.jot.2022.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is well known that appropriate mechanical stimulation benefits tendon-bone (T-B) healing, however, the mechanisms behind this are still uncovered completely. Here, we aimed to explore whether the IL-4/JAK/STAT signaling pathway mediated macrophage polarization was involved in mechanical stimulation induced T-B healing. Method C57BL/6 mice rotator cuff (RC) repair model was established, and the mice were randomly allocated to the following group. 1. Mice were allowed for free cage activities after surgery (FC group); 2. Mice received treadmill running initiated on postoperative day 7 (TR group); 3. Mice only received a local injection of hydrogel containing IL-4 neutralizing antibody without postoperative intervention (FC + AF-404-SP group); 4. Mice received a local injection of hydrogel containing IL-4 neutralizing antibody and postoperative treadmill running (TR + AF-404-SP group). The expression of IL-4 within supraspinatus tendon (SST) enthesis was measured by Enzyme-linked immunosorbent assay (ELISA). In addition, the activation of JAK/STAT signaling pathway in macrophages and identification of macrophage phenotype at the RC insertion site was detected by Flow cytometry and qRT-PCR. T-B healing quality in this RC repair model was evaluated by histological staining, Micro-computed tomography (Micro-CT) scanning, and biomechanical testing. Result In this study, using the RC repair model, we confirmed that generation of IL-4, activation of the JAK/STAT signaling pathway in macrophages, the ability of macrophages to polarize towards M2 subtype, and T-B healing quality were significantly enhanced in TR group compared to FC group. When comparing FC + AF-404-SP group with TR + AF-404-SP group, it was found that the mechanical stimulation induced this effect was depleted following the blockade of the IL-4/JAK/STAT signaling pathway. Conclusion Our finding suggested that mechanical stimulation could accelerate T-B healing via activating the IL-4/JAK/STAT signaling pathway that modulates macrophages to polarize towards M2 subtype. The translational potential of this article This is the first study to reveal a significant role of mechanical stimulation in the IL-4/JAK/STAT signaling pathway activation and macrophage polarization during RC T-B healing, which highlights the IL-4/JAK/STAT signaling pathway as a potential target to mediate macrophage M2 polarization and improves T-B healing for RC repair.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Mechanoresponsive regulation of fibroblast-to-myofibroblast transition in three-dimensional tissue analogues: mechanical strain amplitude dependency of fibrosis. Sci Rep 2022; 12:16832. [PMID: 36207437 PMCID: PMC9547073 DOI: 10.1038/s41598-022-20383-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spatiotemporal interaction and constant iterative feedback between fibroblasts, extracellular matrix, and environmental cues are central for investigating the fibroblast-induced musculoskeletal tissue regeneration and fibroblast-to-myofibroblast transition (FMT). In this study, we created a fibroblast-laden 3D tissue analogue to study (1) how mechanical loading exerted on three-dimensional (3D) tissues affected the residing fibroblast phenotype and (2) to identify the ideal mechanical strain amplitude for promoting tissue regeneration without initiating myofibroblast differentiation. We applied uniaxial tensile strain (0, 4, 8, and 12%) to the cell-laden 3D tissue analogues to understand the interrelation between the degree of applied mechanical loading amplitudes and FMT. Our data demonstrated that 4% mechanical strain created an anabolic effect toward tissue regeneration, but higher strain amplitudes over-stimulated the cells and initiated fibrotic tissue formation. Under increased mechanical strain amplitudes, fibroblasts were activated from a homeostatic state to a proto-myofibroblast state which resulted in increased cellularity accompanied by increased expressions of extracellular matrix (ECM) components, activation stressors (TGF-β1 and TGF-βR1), and profibrotic markers. This further transformed fibroblasts into α-smooth muscle actin expressing myofibroblasts. Understanding the interplay between the applied degree of mechanical loading exerted on 3D tissues and residing fibroblast phenotypic response is important to identify specific mechanomodulatory approaches for tissue regeneration and the informed mechanotherapy-guided tissue healing strategies.
Collapse
|
9
|
Camy C, Brioche T, Senni K, Bertaud A, Genovesio C, Lamy E, Fovet T, Chopard A, Pithioux M, Roffino S. Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment. FASEB J 2022; 36:e22548. [PMID: 36121701 DOI: 10.1096/fj.202200713r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
While muscle and bone adaptations to deconditioning have been widely described, few studies have focused on the tendon enthesis. Our study examined the effects of mechanical loading on the structure and mechanical properties of the Achilles tendon enthesis. We assessed the fibrocartilage surface area, the organization of collagen, the expression of collagen II, the presence of osteoclasts, and the tensile properties of the mouse enthesis both after 14 days of hindlimb suspension (HU) and after a subsequent 6 days of reloading. Although soleus atrophy was severe after HU, calcified fibrocartilage (CFc) was a little affected. In contrast, we observed a decrease in non-calcified fibrocartilage (UFc) surface area, collagen fiber disorganization, modification of morphological characteristics of the fibrocartilage cells, and altered collagen II distribution. Compared to the control group, restoring normal loads increased both UFc surface area and expression of collagen II, and led to a crimp pattern in collagen. Reloading induced an increase in CFc surface area, probably due to the mineralization front advancing toward the tendon. Functionally, unloading resulted in decreased enthesis stiffness and a shift in site of failure from the osteochondral interface to the bone, whereas 6 days of reloading restored the original elastic properties and site of failure. In the context of spaceflight, our results suggest that care must be taken when performing countermeasure exercises both during missions and during the return to Earth.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Karim Senni
- Laboratoire EBInnov, Ecole de Biologie Industrielle-EBI, Cergy, France
| | - Alexandrine Bertaud
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Cécile Genovesio
- Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Edouard Lamy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Department of Orthopaedics and Traumatology, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| | - Sandrine Roffino
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| |
Collapse
|
10
|
Macica CM, Luo J, Tommasini SM. The Enthesopathy of XLH Is a Mechanical Adaptation to Osteomalacia: Biomechanical Evidence from Hyp Mice. Calcif Tissue Int 2022; 111:313-322. [PMID: 35618776 DOI: 10.1007/s00223-022-00989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
A major comorbidity of X-linked hypophosphatemia (XLH) is fibrocartilaginous tendinous insertion site mineralization resulting in painful enthesophytes that contribute to the adult clinical picture and significantly impact physical function. Enthesophytes in Hyp mice, a murine model of XLH are the result of a hyperplastic expansion of resident alkaline phosphatase, Sox9-positive mineralizing fibrochondrocytes. Here, we hypothesized hyperplasia as a compensatory physical adaptation to aberrant mechanical stresses at the level of the entheses interface inserting into pathologically soft bone. To test this hypothesis, we examined the Achilles insertion of the triceps surae developed under normal and impaired loading conditions in Hyp and WT mice. Tensile stiffness, ultimate strength, and maximum strain were measured and compared. Biomechanical testing revealed that under normal loading conditions, despite inserting into a soft bone matrix, both the enthesophyte development (9 weeks) and progression (6-8 months) of Hyp mice were equivalent to the mechanical properties of WT mice. Unloading the insertion during development significantly reduced alkaline phosphatase, Sox9-positive fibrochondrocytes. In WT mice, this correlated with a decrease in stiffness and ultimate strength relative to the control limb, confirming the critical role of mechanical loading in the development of the enthesis. Most significantly, in response to unloading, maximum strain was increased in tensile tests only in the setting of subchondral osteomalacia of Hyp mice. These data suggest that mineralizing fibrochondrocyte expansion in XLH occurs as a compensatory adaptation to the soft bone matrix.
Collapse
Affiliation(s)
- Carolyn M Macica
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT, 06518, USA.
- , 275, Mt Carmel Ave, Hamden, CT, 06518, USA.
| | - Jack Luo
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT, 06518, USA
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
11
|
Ozone K, Kokubun T, Takahata K, Takahashi H, Yoneno M, Oka Y, Minegishi Y, Arakawa K, Kano T, Murata K, Kanemura N. Structural and pathological changes in the enthesis are influenced by the muscle contraction type during exercise. J Orthop Res 2022; 40:2076-2088. [PMID: 34862672 DOI: 10.1002/jor.25233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/10/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Mechanical stress is involved in the onset of sports-related enthesopathy. Although the amount of exercise undertaken is a recognized problem during disease onset, changes in muscle contraction type are also involved in the increase in mechanical stress during exercise. This study aimed to clarify the effects of increased mechanical stress associated with muscle contraction type and amount of exercise on enthesis. Twenty mice underwent treadmill exercise, and the muscle contraction type and overall load during exercise were adjusted by varying the angle and speed conditions. Histological analysis was used to the cross-sectional area of the muscle; area of the enthesis fibrocartilage (FC), and expression of inflammation-, degeneration-, and calcification-related factors in the FC area. In addition, the volume and structure of the bone and FC area were examined using microcomputer imaging. Molecular biological analysis was conducted to compare relative expression levels of inflammation and cytokine-related factors in tendons. The Overuse group, which increased the amount of exercise, showed no significant differences in parameters compared to the sedentary mice (Control group). The mice subjected to slow-speed downhill running (Misuse group) showed pathological changes compared to the Control and Overuse groups, despite the small amount of exercise. Thus, the enthesis FC area may be altered by local mechanical stress that would be increased by eccentric muscle contraction rather than by mechanical stress that increases with the overall amount of exercise. Clinical Significance: The muscle contraction type might be more involved in the onset of sports-related enthesopathy rather than the amount of exercise.
Collapse
Affiliation(s)
- Kaichi Ozone
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Kei Takahata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Haruna Takahashi
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Moe Yoneno
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Yuichiro Oka
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Yuki Minegishi
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kohei Arakawa
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Takuma Kano
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Kenji Murata
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya, Saitama, Japan
| |
Collapse
|
12
|
Forrester LA, Fang F, Jacobsen T, Hu Y, Kurtaliaj I, Roye BD, Guo XE, Chahine NO, Thomopoulos S. Transient neonatal shoulder paralysis causes early osteoarthritis in a mouse model. J Orthop Res 2022; 40:1981-1992. [PMID: 34812543 PMCID: PMC9124737 DOI: 10.1002/jor.25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Neonatal brachial plexus palsy (NBPP) occurs in approximately 1.5 of every 1,000 live births. The majority of children with NBPP recover function of the shoulder. However, the long-term risk of osteoarthritis (OA) in this population is unknown. The purpose of this study was to investigate the development of OA in a mouse model of transient neonatal shoulder paralysis. Neonatal mice were injected twice per week for 4 weeks with saline in the right supraspinatus muscle (Saline, control) and botulinum toxin A (BtxA, transient paralysis) in the left supraspinatus muscle, and then allowed to recover for 20 or 36 weeks. Control mice received no injections, and all mice were sacrificed at 24 or 40 weeks. BtxA mice exhibited abnormalities in gait compared to controls through 10 weeks of age, but these differences did not persist into adulthood. BtxA shoulders had decreased bone volume (-9%) and abnormal trabecular microstructure compared to controls. Histomorphometry analysis demonstrated that BtxA shoulders had higher murine shoulder arthritis scale scores (+30%), and therefore more shoulder OA compared to controls. Articular cartilage of BtxA shoulders demonstrated stiffening of the tissue. Compared with controls, articular cartilage from BtxA shoulders had 2-fold and 10-fold decreases in Dkk1 and BMP2 expression, respectively, and 3-fold and 14-fold increases in Col10A1 and BGLAP expression, respectively, consistent with established models of OA. In summary, a brief period of paralysis of the neonatal mouse shoulder was sufficient to generate early signs of OA in adult cartilage and bone.
Collapse
Affiliation(s)
- Lynn Ann Forrester
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Timothy Jacobsen
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Iden Kurtaliaj
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Benjamin D. Roye
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Nadeen O. Chahine
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
13
|
Saito T, Nakamichi R, Yoshida A, Hiranaka T, Okazaki Y, Nezu S, Matsuhashi M, Shimamura Y, Furumatsu T, Nishida K, Ozaki T. The effect of mechanical stress on enthesis homeostasis in a rat Achilles enthesis organ culture model. J Orthop Res 2022; 40:1872-1882. [PMID: 34783068 DOI: 10.1002/jor.25210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/19/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
Tendons and ligaments are jointed to bones via an enthesis that is essential to the proper function of the muscular and skeletal structures. The aim of the study is to investigate the effect of mechanical stress on the enthesis. We used ex vivo models in organ cultures of rat Achilles tendons with calcaneus including the enthesis. The organ was attached to a mechanical stretching apparatus that can conduct cyclic tensile strain. We made the models of 1-mm elongation (0.5 Hz, 3% elongation), 2-mm elongation (0.5 Hz, 5% elongation), and no stress. Histological evaluation by Safranin O staining and Toluidin Blue and Picro Sirius red staining was conducted. Expression of sex-determining region Y-box 9 (Sox9), scleraxis (Scx), Runt-related transcription factor 2 (Runx2), and matrix metalloproteinase 13 (Mmp13) were examined by real-time polymerase chain reaction and immunocytochemistry. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end-labeling and live/dead staining and was conducted for evaluation of the apoptosis and cell viability. The structure of the enthesis was most maintained in the model of 1-mm elongation. The electronic microscope showed that the enthesis of the no stress model had ill-defined borders between fibrocartilage and mineralized fibrocartilage, and that calcification of mineralized fibrocartilage occurred in the model of 2-mm elongation. Sox9 and Scx was upregulated by 1-mm elongation, whereas Runx2 and Mmp13 were upregulated by 2-mm elongation. Apoptosis was inhibited by low stress. The results of this study suggested that 1-mm elongation can maintain the structure of the enthesis, while 2-mm elongation promotes degenerative changes.
Collapse
Affiliation(s)
- Taichi Saito
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Nakamichi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takaaki Hiranaka
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Okazaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Nezu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Minami Matsuhashi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasunori Shimamura
- Department of Sports Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Xiao H, Zhang T, Li CJ, Cao Y, Wang LF, Chen HB, Li SC, Guan CB, Hu JZ, Chen D, Chen C, Lu HB. Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling. eLife 2022; 11:73614. [PMID: 35475783 PMCID: PMC9094755 DOI: 10.7554/elife.73614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Proper mechanical stimulation can improve rotator cuff enthesis injury repair. However, the underlying mechanism of mechanical stimulation promoting injury repair is still unknown. In this study, we found that Prrx1+ cell was essential for murine rotator cuff enthesis development identified by single-cell RNA sequence and involved in the injury repair. Proper mechanical stimulation could promote the migration of Prrx1+ cells to enhance enthesis injury repair. Meantime, TGF-β signaling and primary cilia played an essential role in mediating mechanical stimulation signaling transmission. Proper mechanical stimulation enhanced the release of active TGF-β1 to promote migration of Prrx1+ cells. Inhibition of TGF-β signaling eliminated the stimulatory effect of mechanical stimulation on Prrx1+ cell migration and enthesis injury repair. In addition, knockdown of Pallidin to inhibit TGF-βR2 translocation to the primary cilia or deletion of Ift88 in Prrx1+ cells also restrained the mechanics-induced Prrx1+ cells migration. These findings suggested that mechanical stimulation could increase the release of active TGF-β1 and enhance the mobilization of Prrx1+ cells to promote enthesis injury repair via ciliary TGF-β signaling.
Collapse
Affiliation(s)
- Han Xiao
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Jun Li
- Department of Endocrinology, Xiangya Hospital Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lin Feng Wang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Hua Bin Chen
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Sheng Can Li
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Chang Biao Guan
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhong Hu
- Department of Spine Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Can Chen
- Department of Orthopedic, Xiangya Hospital Central South University, Changsha, China
| | - Hong Bin Lu
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
15
|
Peng Y, Li X, Wu W, Ma H, Wang G, Jia S, Zheng C. Effect of Mechanical Stimulation Combined With Platelet-Rich Plasma on Healing of the Rotator Cuff in a Murine Model. Am J Sports Med 2022; 50:1358-1368. [PMID: 35188809 DOI: 10.1177/03635465211073339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mechanical stimulation and platelet-rich plasma (PRP) have been shown to be beneficial for healing of the bone-tendon interface (BTI), but few studies have explored the efficacy of a combination of these applications. We investigated the effect of mechanical stimulation combined with PRP on rotator cuff repair in mice. HYPOTHESIS Mechanical stimulation combined with PRP can enhance BTI healing in a murine model of rotator cuff repair. STUDY DESIGN Controlled laboratory study. METHODS A total of 160 C57BL/6 mice were used. Overall, 40 mice were used to prepare PRP, while 120 mice underwent acute supraspinatus tendon (SST) repair. The animals were randomly assigned to 4 groups: control group, mechanical stimulation group, PRP group, and mechanical stimulation combined with PRP group (combination group). At 4 and 8 weeks postoperatively, animals were sacrificed, the eyeballs were removed to collect blood, and the SST-humeral complexes were collected. Histological, biomechanical, immunological, and bone morphometric tests were performed. RESULTS Histologically, at 4 and 8 weeks after surgery, the area of the fibrocartilage layer at the BTI in the combination group was larger than in the other groups. The content and distribution of proteoglycans in this layer in the combination group were significantly greater than in the other groups. At 8 weeks postoperatively, trabecular number, and trabecular bone thickness of the subchondral bone area of interest at the BTI of the combination group were greater than those of the other groups, bone volume fraction of the combination group was greater than the control group. On biomechanical testing at 4 and 8 weeks after surgery, the failure load and ultimate strength of the SST-humeral complex in the combination group were higher than in the other groups. Enzyme-linked immunosorbent assay results showed that, at 4 weeks postoperatively, the serum concentrations of transforming growth factor beta 1 and platelet-derived growth factor (PDGF) in the combination group were significantly higher than in the other groups; at 8 weeks, the PDGF-AB concentration in the combination group was higher than in the control and mechanical stimulation groups. CONCLUSION Mechanical stimulation combined with PRP can effectively promote the early stage of healing after a rotator cuff injury. CLINICAL RELEVANCE These findings imply that mechanical stimulation combined with PRP can serve as a potential therapeutic strategy for rotator cuff healing.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaomei Li
- College of Health Science, Wuhan Sports University, Wuhan, China.,Medical College, Huainan Union University, Huainan, China
| | - Wenxia Wu
- College of Health Science, Wuhan Sports University, Wuhan, China.,Department of Rehabilitation Therapy, Jinci College of Shanxi Medical University, Taiyuan, China
| | - Haozhe Ma
- College of International Education, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
16
|
Berntsen L, Forghani A, Hayes DJ. Mesenchymal Stem Cell Sheets for Engineering of the Tendon-Bone Interface. Tissue Eng Part A 2022; 28:341-352. [PMID: 34476994 PMCID: PMC9057909 DOI: 10.1089/ten.tea.2021.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022] Open
Abstract
Failure to regenerate the gradient tendon-bone interface of the enthesis results in poor clinical outcomes for surgical repair. The goal of this study was to evaluate the potential of composite cell sheets for engineering of the tendon-bone interface to improve regeneration of the functionally graded tissue. We hypothesize that stacking cell sheets at early stages of differentiation into tenogenic and osteogenic progenitors will create a composite structure with integrated layers. Cell sheets were fabricated on methyl cellulose and poly(N-isopropylacrylamide) thermally reversible polymers with human adipose-derived stem cells and differentiated into progenitors of tendon and bone with chemical induction media. Tenogenic and osteogenic cell sheets were stacked, and the engineered tendon-bone interface (TM-OM) was characterized in vitro in comparison to stacked cell sheet controls cultured in basal growth medium (GM-GM), osteogenic medium (OM-OM), and tenogenic medium (TM-TM). Samples were characterized by histology, quantitative real-time polymerase chain reaction, and immunofluorescent staining for markers of tendon, fibrocartilage, and bone including mineralization, scleraxis, tenomodulin, COL2, COLX, RUNX2, osteonectin, and osterix. After 1 week co-culture in basal growth medium, TM-OM cell sheets formed a tissue construct with integrated layers expressing markers of tendon, mineralized fibrocartilage, and bone with a spatial gradient in RUNX2 expression. Tenogenic cell sheets had increased expression of scleraxis and tenomodulin. Osteogenic cell sheets exhibited mineralization 1 week after stacking and upregulation of osterix and osteonectin. Additionally, in the engineered interface, there was significantly increased gene expression of IHH and COLX, indicative of endochondral ossification. These results highlight the potential for composite cell sheets fabricated with adipose-derived stem cells for engineering of the tendon-bone interface. Impact statement This study presents a method for fabrication of the tendon-bone interface using stacked cell sheets of tenogenic and osteogenic progenitors differentiated from human adipose-derived mesenchymal stem cells, resulting in a composite structure expressing markers of tendon, mineralized fibrocartilage, and bone. This work is an important step toward regeneration of the biological gradient of the enthesis and demonstrates the potential for engineering complex tissue interfaces from a single autologous cell source to facilitate clinical translation.
Collapse
Affiliation(s)
- Lisa Berntsen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anoosha Forghani
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Growth and mechanobiology of the tendon-bone enthesis. Semin Cell Dev Biol 2022; 123:64-73. [PMID: 34362655 PMCID: PMC8810906 DOI: 10.1016/j.semcdb.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone. In this review, we focus on emerging areas in enthesis development related to its structure, function, and mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes that influence the formation and adaptation of this important transitional tissue.
Collapse
|
18
|
Jiang X, Wojtkiewicz M, Patwardhan C, Greer S, Kong Y, Kuss M, Huang X, Liao J, Lu Y, Dudley A, Gundry RL, Fuchs M, Streubel P, Duan B. The effects of maturation and aging on the rotator cuff tendon-to-bone interface. FASEB J 2021; 35:e22066. [PMID: 34822203 DOI: 10.1096/fj.202101484r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Rotator cuff tendon injuries often occur at the tendon-to-bone interface (i.e., enthesis) area, with a high prevalence for the elderly population, but the underlying reason for this phenomenon is still unknown. The objective of this study is to identify the histological, molecular, and biomechanical alterations of the rotator cuff enthesis with maturation and aging in a mouse model. Four different age groups of mice (newborn, young, adult, and old) were studied. Striking variations of the entheses were observed between the newborn and other matured groups, with collagen content, proteoglycan deposition, collagen fiber dispersion was significantly higher in the newborn group. The compositional and histological features of young, adult, and old groups did not show significant differences, except having increased proteoglycan deposition and thinner collagen fibers at the insertion sites in the old group. Nanoindentation testing showed that the old group had a smaller compressive modulus at the insertion site when compared with other groups. However, tensile mechanical testing reported that the old group demonstrated a significantly higher failure stress when compared with the young and adult groups. The proteomics analysis detected dramatic differences in protein content between newborn and young groups but minor changes among young, adult, and old groups. These results demonstrated: (1) the significant alterations of the enthesis composition and structure occur from the newborn to the young time period; (2) the increased risk of rotator cuff tendon injuries in the elderly population is not solely because of old age alone in the rodent model.
Collapse
Affiliation(s)
- Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chinmay Patwardhan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Sydney Greer
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Xi Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Andrew Dudley
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthias Fuchs
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Philipp Streubel
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
19
|
Yamada T, Kanazawa T, Ohta K, Nakamura KI. Comparison of Structural Properties Between Postnatal and Adult Tendon Insertion with FIB/SEM Tomography in Rat. Kurume Med J 2021; 66:217-224. [PMID: 34690208 DOI: 10.2739/kurumemedj.ms664007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The repaired tendon-bone interface after rotator cuff (RC) repair has been identified as a mechanical weak point, which may contribute to re-tearing. Analyzing the postnatal development of a normal tendon insertion in detail may be useful in helping to promote the regeneration of a normal tendon insertion. We verified the morphological differences between postnatal and adult tendon insertions in terms of the cellular structural properties using FIB/SEM tomography. MATERIALS AND METHOD SPostnatal and adult Sprague-Dawley rats were used as a model of tendon insertion. The morphological structure of the insertion was evaluated using hematoxylin and eosin (HE) staining, and the 3D ultrastructure of the cells in the insertion was evaluated using FIB/SEM tomography. Additionally, the volume of the cell bodies, nuclei, and cytoplasm were measured and compared in a quantitative analysis. RESULTS On conventional histology, the boundary line between the fibrocartilage and mineralized cartilage was flat in the adult insertions; however, the boundary line between the mineralized cartilage and bone formed deep interdigitations. The morphology of the cells among the collagen bundles in the adult insertions was completely different from those in the postnatal insertions at the 3D ultrastructural level. The cellular structural properties were statistically different between the postnatal and adult insertions. CONCLUSIONS In the present study, the morphological differences between postnatal and adult tendon insertion in terms of the ultrastructural cellular properties were clarified. These findings may aid in determining how to regenerate a clinically stable tendon insertion at the tendon-bone interface after RC repair.
Collapse
Affiliation(s)
- Taku Yamada
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine
| | - Tomonoshin Kanazawa
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine.,Department of Orthopaedic surgery, Kurume University School of Medicine
| | - Keisuke Ohta
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine
| |
Collapse
|
20
|
Zhang X, Wang D, Mak KLK, Tuan RS, Ker DFE. Engineering Musculoskeletal Grafts for Multi-Tissue Unit Repair: Lessons From Developmental Biology and Wound Healing. Front Physiol 2021; 12:691954. [PMID: 34504435 PMCID: PMC8421786 DOI: 10.3389/fphys.2021.691954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
In the musculoskeletal system, bone, tendon, and skeletal muscle integrate and act coordinately as a single multi-tissue unit to facilitate body movement. The development, integration, and maturation of these essential components and their response to injury are vital for conferring efficient locomotion. The highly integrated nature of these components is evident under disease conditions, where rotator cuff tears at the bone-tendon interface have been reported to be associated with distal pathological alterations such as skeletal muscle degeneration and bone loss. To successfully treat musculoskeletal injuries and diseases, it is important to gain deep understanding of the development, integration and maturation of these musculoskeletal tissues along with their interfaces as well as the impact of inflammation on musculoskeletal healing and graft integration. This review highlights the current knowledge of developmental biology and wound healing in the bone-tendon-muscle multi-tissue unit and perspectives of what can be learnt from these biological and pathological processes within the context of musculoskeletal tissue engineering and regenerative medicine. Integrating these knowledge and perspectives can serve as guiding principles to inform the development and engineering of musculoskeletal grafts and other tissue engineering strategies to address challenging musculoskeletal injuries and diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - King-Lun Kingston Mak
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
21
|
Tits A, Plougonven E, Blouin S, Hartmann MA, Kaux JF, Drion P, Fernandez J, van Lenthe GH, Ruffoni D. Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci Rep 2021; 11:16534. [PMID: 34400706 PMCID: PMC8367976 DOI: 10.1038/s41598-021-95917-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium
| | - Erwan Plougonven
- Chemical Engineering Department, University of Liège, Liège, Belgium
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery Unit, GIGA and Credec, University of Liege, Liege, Belgium
| | - Justin Fernandez
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | | | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium.
| |
Collapse
|
22
|
The transition from enthesis physiological responses in health to aberrant responses that underpin spondyloarthritis mechanisms. Curr Opin Rheumatol 2021; 33:64-73. [PMID: 33229975 DOI: 10.1097/bor.0000000000000768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Despite immunology and translational therapeutics advances in inflammatory arthritis over the past two decades, the enthesis, which is the epicentric of the spondyloarthritis family pathological process, retains many mysteries because of tissue inaccessibility that hampers direct immune study. As entheses are subject to almost continuous mechanical stress and spondyloarthritis is linked to microdamage or injury and joint stress, it is cardinal to understand the physiological changes occurring within the entheses not only to be able to differentiate disease from health but also to understand the transition normal physiology break down and its merges into spondyloarthritis-related disease. RECENT FINDINGS Imaging has played a major role in understanding the enthesis in human. Remarkable insights from enthesis functioning and microdamage in normal and with ageing including those linked to body mass index is emerging. The impact of mechanical stress and degenerative conditions on the development of the secondary entheseal vascular changes is not understood. Of note, ultrasound studies in psoriasis have shown higher power Doppler changes compared to controls pointing towards a role for vascular changes in the development of enthesitis in psoriatic arthritis. SUMMARY The literature pertaining to normal entheses changes with age, microdamage and vascular changes in health is providing a roadmap for understanding of the enthesis and its potential role in evolution of spondyloarthritis including psoriatic arthritis.
Collapse
|
23
|
Xu J, Su W, Chen J, Ye Z, Wu C, Jiang J, Yan X, Cai J, Zhao J. The Effect of Antiosteoporosis Therapy With Risedronate on Rotator Cuff Healing in an Osteoporotic Rat Model. Am J Sports Med 2021; 49:2074-2084. [PMID: 33998839 DOI: 10.1177/03635465211011748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteoporosis increases the revision rate of rotator cuff repair (RCR). Weak fixation might not be the only cause of high RCR failure rates. The biological mechanism associated with tendon-to-bone healing after RCR in osteoporosis should be investigated. HYPOTHESIS (1) Osteoporosis would impair rotator cuff healing through the high osteoclastic activity at the repaired interface. (2) Risedronate would promote rotator cuff healing by reducing osteoclastic activity at the repaired interface. STUDY DESIGN Controlled laboratory study. METHODS A total of 84 female Sprague Dawley rats were randomly treated using ovariectomy or sham surgeries to establish osteoporotic and nonosteoporotic rat models. After confirming osteoporosis, a chronic rotator cuff tear model was created and RCR was performed. Postoperatively, osteoporotic rats were randomly divided into osteoporosis (OP) and osteoporosis with risedronate administration (OP+RIS) groups. Nonosteoporotic rats were used as the control (CON) group. Osteoclastic activity was measured at 1 and 3 weeks after RCR, and histologic analysis of the tendon-to-bone interface, bone morphometric evaluation, and biomechanical tests were performed at 4 and 8 weeks. RESULTS At the early healing stages of 1 and 3 weeks after RCR, the OP group showed the highest osteoclast density at the repaired interface. Compared with the OP group, risedronate administration significantly decreased osteoclast density in the OP+RIS group. At 8 weeks, histologic scores were greater in the OP+RIS group than in the OP group but still lower than in the CON group. Histologic scores at 8 weeks were negatively correlated with osteoclast density at the early healing stage. Additionally, the OP+RIS group showed better bone morphometric parameters and biomechanical properties than did the OP group. CONCLUSION Osteoporosis impaired rotator cuff healing, which might be related to the high osteoclast density at the repaired interface at the early healing stage. Postoperative risedronate administration decreased osteoclast density and enhanced rotator cuff healing in osteoporotic rats, although the effect was inferior to that in nonosteoporotic rats. CLINICAL RELEVANCE Postoperative risedronate administration can be considered a potential therapy to enhance rotator cuff healing in patients with postmenopausal osteoporosis. However, this needs to be verified in a clinical setting.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiebo Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
24
|
Bramson MTK, Van Houten SK, Corr DT. Mechanobiology in Tendon, Ligament, and Skeletal Muscle Tissue Engineering. J Biomech Eng 2021; 143:070801. [PMID: 33537704 DOI: 10.1115/1.4050035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/28/2022]
Abstract
Tendon, ligament, and skeletal muscle are highly organized tissues that largely rely on a hierarchical collagenous matrix to withstand high tensile loads experienced in activities of daily life. This critical biomechanical role predisposes these tissues to injury, and current treatments fail to recapitulate the biomechanical function of native tissue. This has prompted researchers to pursue engineering functional tissue replacements, or dysfunction/disease/development models, by emulating in vivo stimuli within in vitro tissue engineering platforms-specifically mechanical stimulation, as well as active contraction in skeletal muscle. Mechanical loading is critical for matrix production and organization in the development, maturation, and maintenance of native tendon, ligament, and skeletal muscle, as well as their interfaces. Tissue engineers seek to harness these mechanobiological benefits using bioreactors to apply both static and dynamic mechanical stimulation to tissue constructs, and induce active contraction in engineered skeletal muscle. The vast majority of engineering approaches in these tissues are scaffold-based, providing interim structure and support to engineered constructs, and sufficient integrity to withstand mechanical loading. Alternatively, some recent studies have employed developmentally inspired scaffold-free techniques, relying on cellular self-assembly and matrix production to form tissue constructs. Whether utilizing a scaffold or not, incorporation of mechanobiological stimuli has been shown to improve the composition, structure, and biomechanical function of engineered tendon, ligament, and skeletal muscle. Together, these findings highlight the importance of mechanobiology and suggest how it can be leveraged to engineer these tissues and their interfaces, and to create functional multitissue constructs.
Collapse
Affiliation(s)
- Michael T K Bramson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| | - Sarah K Van Houten
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| |
Collapse
|
25
|
Theodossiou SK, Pancheri NM, Martes AC, Bozeman AL, Brumley MR, Raveling AR, Courtright JM, Schiele NR. Neonatal Spinal Cord Transection Decreases Hindlimb Weight-Bearing and Affects Formation of Achilles and Tail Tendons. J Biomech Eng 2021; 143:061012. [PMID: 33537729 PMCID: PMC8114905 DOI: 10.1115/1.4050031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/06/2021] [Indexed: 01/08/2023]
Abstract
Mechanical loading may be required for proper tendon formation. However, it is not well understood how tendon formation is impacted by the development of weight-bearing locomotor activity in the neonate. This study assessed tendon mechanical properties, and concomitant changes in weight-bearing locomotion, in neonatal rats subjected to a low thoracic spinal cord transection or a sham surgery at postnatal day (P)1. On P10, spontaneous locomotion was evaluated in spinal cord transected and sham controls to determine impacts on weight-bearing hindlimb movement. The mechanical properties of P10 Achilles tendons (ATs), as representative energy-storing, weight-bearing tendons, and tail tendons (TTs), as representative positional, non-weight-bearing tendons were evaluated. Non- and partial weight-bearing hindlimb activity decreased in spinal cord transected rats compared to sham controls. No spinal cord transected rats showed full weight-bearing locomotion. ATs from spinal cord transected rats had increased elastic modulus, while cross-sectional area trended lower compared to sham rats. TTs from spinal cord transected rats had higher stiffness and cross-sectional area. Collagen structure of ATs and TTs did not appear impacted by surgery condition, and no significant differences were detected in the collagen crimp pattern. Our findings suggest that mechanical loading from weight-bearing locomotor activity during development regulates neonatal AT lateral expansion and maintains tendon compliance, and that TTs may be differentially regulated. The onset and gradual increase of weight-bearing movement in the neonate may provide the mechanical loading needed to direct functional postnatal tendon formation.
Collapse
Affiliation(s)
- Sophia K. Theodossiou
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Nicholas M. Pancheri
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Alleyna C. Martes
- Psychology, Idaho State University, 921 South 8th Avenue Stop 8112, Pocatello, ID 83209
| | - Aimee L. Bozeman
- Psychology, Idaho State University, 921 South 8th Avenue Stop 8112, Pocatello, ID 83209
| | - Michele R. Brumley
- Psychology, Idaho State University, 921 South 8th Avenue Stop 8087, Pocatello, ID 83209
| | - Abigail R. Raveling
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Jeffrey M. Courtright
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Nathan R. Schiele
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| |
Collapse
|
26
|
Roffino S, Camy C, Foucault-Bertaud A, Lamy E, Pithioux M, Chopard A. Negative impact of disuse and unloading on tendon enthesis structure and function. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:46-52. [PMID: 33888287 DOI: 10.1016/j.lssr.2021.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Exposure to chronic skeletal muscle disuse and unloading that astronauts experience results in muscle deconditioning and bone remodeling. Tendons involved in the transmission of force from muscles to skeleton are also affected. Understanding the changes that occur in muscle, tendon, and bone is an essential step toward limiting or preventing the deleterious effects of chronic reduction in mechanical load. Numerous reviews have reported the effects of this reduction on both muscle and bone, and to a lesser extent on the tendon. However, none focused on the tendon enthesis, the tendon-to-bone attachment site. While the enthesis structure appears to be determined by mechanical stress, little is known about enthesis plasticity. Our review first looks at the relationship between entheses and mechanical stress, exploring how tensile and compressive loads determine and influence enthesis structure and composition. The second part of this review addresses the deleterious effects of skeletal muscle disuse and unloading on enthesis structure, composition, and function. We discuss the possibility that spaceflight-induced enthesis remodeling could impact both the capacity of the enthesis to withstand compressive stress and its potential weakness. Finally, we point out how altered compressive strength at entheses could expose astronauts to the risk of developing enthesopathies.
Collapse
Affiliation(s)
- S Roffino
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France.
| | - C Camy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Foucault-Bertaud
- INSERM 1263, INRA 1260, C2VN, Aix-Marseille University, Marseille, France
| | - E Lamy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - M Pithioux
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Chopard
- DMEM, Montpellier University, INRAE, Montpellier, France
| |
Collapse
|
27
|
Pierantoni M, Le Cann S, Sotiriou V, Ahmed S, Bodey AJ, Jerjen I, Nowlan NC, Isaksson H. Muscular loading affects the 3D structure of both the mineralized rudiment and growth plate at early stages of bone formation. Bone 2021; 145:115849. [PMID: 33454374 DOI: 10.1016/j.bone.2021.115849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Fetal immobilization affects skeletal development and can lead to severe malformations. Still, how mechanical load affects embryonic bone formation is not fully elucidated. This study combines mechanobiology, image analysis and developmental biology, to investigate the structural effects of muscular loading on embryonic long bones. We present a novel approach involving a semi-automatic workflow, to study the spatial and temporal evolutions of both hard and soft tissues in 3D without any contrast agent at micrometrical resolution. Using high-resolution phase-contrast-enhanced X-ray synchrotron microtomography, we compare the humeri of Splotch-delayed embryonic mice lacking skeletal muscles with healthy littermates. The effects of skeletal muscles on bone formation was studied from the first stages of mineral deposition (Theiler Stages 23 and 24) to just before birth (Theiler Stage 27). The results show that muscle activity affects both growth plate and mineralized regions, especially during early embryonic development. When skeletal muscles were absent, there was reduced mineralization, altered tuberosity size and location, and, at early embryonic stages, decreased chondrocyte density, size and elongation compared to littermate controls. The proposed workflow enhances our understanding of mechanobiology of early bone formation and could be implemented for the study of other complex biological tissues.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | - Iwan Jerjen
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
28
|
Ozone K, Oka Y, Minegishi Y, Kano T, Kokubun T, Murata K, Kanemura N. Effect of Various Types of Muscle Contraction with Different Running Conditions on Mouse Humerus Morphology. Life (Basel) 2021; 11:life11040284. [PMID: 33801768 PMCID: PMC8065967 DOI: 10.3390/life11040284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022] Open
Abstract
How various types of muscle contraction during exercises affect bone formation remains unclear. This study aimed to determine how exercises with different muscle contraction types affect bone morphology. In total, 20 mice were used and divided into four groups: Control, Level, Down Slow, and Down. Different types of muscle contraction were induced by changing the running angle of the treadmill. After the intervention, micro-computed tomography (Micro-CT), tartrate-resistant acid phosphatase/alkaline phosphatase (ALP) staining, and immunohistochemical staining were used to analyze the humerus head, tendon-to-bone attachment, and humerus diaphyseal region. Micro-CT found that the volume ratio of the humeral head, the volume of the tendon-to-bone attachment region, and the area of the humeral diaphyseal region increased in the Down group. However, no difference was detected in bone morphology between the Level and Down Slow groups. In addition, histology showed activation of ALP in the subarticular subchondral region in the Down Slow and Down groups and the fibrocartilage region in the tendon-to-bone attachment. Moreover, Osterix increased predominantly in the Down Slow and Down groups.Overall bone morphological changes in the humerus occur only when overuse is added to EC-dominant activity. Furthermore, different type of muscle contractile activities might promote bone formation in a site-specific manner.
Collapse
Affiliation(s)
- Kaichi Ozone
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Yuichiro Oka
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
| | - Yuki Minegishi
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Takuma Kano
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
| | - Takanori Kokubun
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
| | - Kenji Murata
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
| | - Naohiko Kanemura
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
- Correspondence: ; Tel.: +81-48-971-0500
| |
Collapse
|
29
|
Gereli A, Uslu S, Okur B, Ulku TK, Kocaoğlu B, Yoo YS. Effect of suprascapular nerve injury on rotator cuff enthesis. J Shoulder Elbow Surg 2020; 29:1584-1589. [PMID: 32199756 DOI: 10.1016/j.jse.2019.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Numerous reports have shown that retracted rotator cuff tears may cause suprascapular nerve injury, and nerve injury causes atrophy and fat accumulation in the rotator cuff muscles. However, the effect of suprascapular nerve injury on rotator cuff enthesis has not been directly defined. This study aimed to investigate the effect of suprascapular nerve injury on rotator cuff enthesis. METHODS Twenty-four Wistar albino rats underwent bilateral transection of the suprascapular nerve. Additional 6 rats were used as the sham group. Bilateral supraspinatus and infraspinatus entheses were examined after 1, 4, 8, and 12 weeks of nerve transection. Histomorphometric analyses were performed for each zone of enthesis. RESULTS Compared with normal enthesis, significant and consistent decrease in cellularity were observed in the tendon and bone at all time points (P < .001). Collagen bundle diameter in the tendon also decreased in a similar manner (P < .001). Apart from the tendon and bone zones, fibrocartilage and calcified fibrocartilage zones showed similar response, and significant decrease in cellularity was observed 8 weeks after nerve transection (P < .001). CONCLUSION This study identifies suprascapular nerve injury as an underlying mechanism leading to compromise of the rotator cuff enthesis structure. Suprascapular nerve injury may be considered as an etiologic factor for the impaired healing after repair of a massive tear.
Collapse
Affiliation(s)
- Arel Gereli
- Department of Orthopedic Surgery, Acibadem University Faculty of Medicine, Istanbul, Turkey.
| | - Serap Uslu
- Department of Histology and Embryology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Beril Okur
- Acibadem University Faculty of Medicine, Istanbul, Turkey
| | - Tekin Kerem Ulku
- Department of Orthopedic Surgery, Acibadem University Faculty of Medicine, Istanbul, Turkey
| | - Barış Kocaoğlu
- Department of Orthopedic Surgery, Acibadem University Faculty of Medicine, Istanbul, Turkey
| | - Yon-Sik Yoo
- Department of Orthopedic Surgery, Hallym University Medical College, Hwaseong, Republic of Korea
| |
Collapse
|
30
|
Shen H, Schwartz AG, Civitelli R, Thomopoulos S. Connexin 43 Is Necessary for Murine Tendon Enthesis Formation and Response to Loading. J Bone Miner Res 2020; 35:1494-1503. [PMID: 32227614 PMCID: PMC7725385 DOI: 10.1002/jbmr.4018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 12/28/2022]
Abstract
The enthesis is a mineralized fibrocartilage transition that attaches tendon to bone and is vital for musculoskeletal function. Despite recent studies demonstrating the necessity of muscle loading for enthesis formation, the mechanisms that regulate enthesis formation and mechanoresponsiveness remain unclear. Therefore, the current study investigated the role of the gap junction protein connexin 43 in these processes by deleting Gja1 (the Cx43 gene) in the tendon and enthesis. Compared with their wild-type (WT) counterparts, mice lacking Cx43 showed disrupted entheseal cell alignment, reduced mineralized fibrocartilage, and impaired biomechanical properties of the supraspinatus tendon entheses during postnatal development. Cx43-deficient mice also exhibited reduced ability to complete a treadmill running protocol but no apparent deficits in daily activity, metabolic indexes, shoulder muscle size, grip strength, and major trabecular bone properties of the adjacent humeral head. To examine enthesis mechanoresponsiveness, young adult mice were subjected to modest treadmill exercise. Gja1 deficiency in the tendon and enthesis reduced entheseal anabolic responses to treadmill exercise: WT mice had increased expression of Sox9, Ihh, and Gli1 and increased Brdu incorporation, whereas Cx43-deficient mice showed no changes or decreased levels with exercise. Collectively, the results demonstrated an essential role for Cx43 in postnatal tendon enthesis formation, function, and response to loading; results further provided evidence implicating a link between Cx43 function and the hedgehog signaling pathway. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hua Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Andrea G Schwartz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Roberto Civitelli
- Department of Internal Medicine, Division of Bone and Mineral Disease, Washington University, St. Louis, MO, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA.,Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
32
|
Rossini M, Epis OM, Tinazzi I, Grembiale RD, Iagnocco A. Role of the IL-23 pathway in the pathogenesis and treatment of enthesitis in psoriatic arthritis. Expert Opin Biol Ther 2020; 20:787-798. [PMID: 32129102 DOI: 10.1080/14712598.2020.1737855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Enthesitis is a key feature of spondyloarthritis (SpA). Several studies have underlined the role of interleukin (IL)-23 in SpA development as a crucial cytokine in the pathogenesis of enthesitis. AREA COVERED This review summarizes recent evidence of the role of IL-23 in the pathogenesis of and as a target of the treatment of enthesitis. We review the definition, diagnosis and clinical impact of enthesitis and its connection with microbial infections, gut dysbiosis, and mechanical stress. We also review clinical trials and real-life studies of drugs targeting the p19 or p40 subunits of IL-23. EXPERT OPINION Novel therapies targeting the p19 or p40 subunit of IL-23 appear to be promising treatment options for patients with enthesitis. Although we are currently unable to identify the best therapeutic window to target IL-23 in SpA disease evolution, the promising ability of this therapy to control the gut-entheseal axis is increasing our knowledge of SpA pathogenesis.
Collapse
Affiliation(s)
- Maurizio Rossini
- Rheumatology Section, Department of Medicine, University of Verona , Verona, Italy
| | | | - Ilaria Tinazzi
- Unit of Rheumatology, IRCCS Sacro Cuore Don Calabria Hospital , Verona, Italy
| | | | - Annamaria Iagnocco
- Academic Rheumatology Centre, Università Degli Studi Di Torino , Turin, Italy
| |
Collapse
|
33
|
Djukić K, Milovanović P, Milenković P, Djurić M. A microarchitectural assessment of the gluteal tuberosity suggests two possible patterns in entheseal changes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:291-299. [PMID: 32154921 DOI: 10.1002/ajpa.24038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Macroscopic entheseal forms show two main features: predominant signs of bony formation or resorption. To understand the development of these forms, we investigated microarchitectural differences between the macroscopic proliferative and resorptive forms of the gluteus maximus enthesis. MATERIALS AND METHODS The macromorphological analysis of entheseal changes (EC) was based on the Villotte, visual scoring system for fibrous entheses. Gluteal tuberosity specimens of different stages of Villote's system were harvested from 16 adult males derived from an archaeological context and scanned using microcomputed tomography. RESULTS The microarchitectural analyzes of cortical bone demonstrated a trend of higher porosity in the resorptive compared to the proliferative phase in Stage B, whereas a 30% porosity reduction was detected in the resorptive compared to proliferative phase of Stage C. In terms of the trabecular bone between the resorptive and proliferative entheseal phases, there was a trend of increased connectivity density, whereas the structural model index decreased in B and increased in C. The assessment of the entire specimen showed an increase in porosity from the proliferative to the resorptive phase in the Stage B, in contrast to a decrease in the Stage C. DISCUSSION The results suggest that from an initial flat entheses, two directions of EC development are possible: (a) a bony prominence may form and, subsequently, it is subjected to trabecularization of the cortical bone inside the prominence, such cortical trabecularization can lead to visible porosity on the cortical external surface; (b) the cortical bone defect may develop with the regular underlying cortical bone.
Collapse
Affiliation(s)
- Ksenija Djukić
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Serbia
| | - Petar Milovanović
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Serbia
| | - Petar Milenković
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Serbia.,Institute of Oncology and Radiology of Serbia, National Cancer Research Center, Belgrade, Serbia
| | - Marija Djurić
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
34
|
Regional muscle changes in adult dysfunctional hip conditions of femoroacetabular impingement and hip dysplasia. Skeletal Radiol 2020; 49:101-108. [PMID: 31254007 DOI: 10.1007/s00256-019-03263-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To analyze regional muscle CT density and bulk in femoroacetabular impingement (FAI) and hip dysplasia (HD) versus controls. MATERIALS AND METHODS Patients who obtained perioperative CT imaging for FAI and HD before surgery were retrospectively studied. Asymptomatic controls included for comparison. Two readers independently evaluated regional hip muscle [iliopsoas (IP), rectus femoris (RF), gluteus minimus (Gm), and medius (GM)] density, muscle area, and muscle circumference. Inter-observer reliability calculated using intra-class correlation coefficient (ICC). RESULTS A consecutive series of 25 FAI patients, 16 HD patients, and 38 controls were recruited in the study. FAI patients had significantly greater Gm and GM circumferences as well as greater RF and IP areas on the normal side compared to the asymptomatic control group (p values 0.004, 0.032, 0.033, and 0.028, respectively). In addition, Gm and RF circumferences and RF area were significantly larger (p values 0.029, 0.036, and 0.014, respectively) in FAI patients on the affected side compared to the control group. HD patients had significantly smaller Gm and GM circumferences on the affected side than normal side measurements in FAI group (p values 0.043 and 0.003, respectively). Normal side GM circumference was also smaller in HD patients than normal side FAI hips (p value 0.02). There was no significant difference between the measurements on normal and abnormal sides in each disease group. No significant difference was found between measurements of HD compared to controls (p > 0.05). No muscle density differences were seen among different groups. There was moderate to excellent inter-reader reliability for all measurements except Gm muscle density. CONCLUSIONS Muscle analysis was able to quantify differences among patients with FAI, HD, and asymptomatic controls. These changes could indicate either a muscle imbalance contributing to the pathology or disuse atrophy, which may have implications for specific muscle-strengthening therapies and rehabilitation procedures in such patients.
Collapse
|
35
|
Abstract
Tendons link muscle to bone and transfer forces necessary for normal movement. Tendon injuries can be debilitating and their intrinsic healing potential is limited. These challenges have motivated the development of model systems to study the factors that regulate tendon formation and tendon injury. Recent advances in understanding of embryonic and postnatal tendon formation have inspired approaches that aimed to mimic key aspects of tendon development. Model systems have also been developed to explore factors that regulate tendon injury and healing. We highlight current model systems that explore developmentally inspired cellular, mechanical, and biochemical factors in tendon formation and tenogenic stem cell differentiation. Next, we discuss in vivo, in vitro, ex vivo, and computational models of tendon injury that examine how mechanical loading and biochemical factors contribute to tendon pathologies and healing. These tendon development and injury models show promise for identifying the factors guiding tendon formation and tendon pathologies, and will ultimately improve regenerative tissue engineering strategies and clinical outcomes.
Collapse
Affiliation(s)
- Sophia K Theodossiou
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Nathan R Schiele
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
36
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:330-356. [DOI: 10.1089/ten.teb.2018.0383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
37
|
Walters M, Crew M, Fyfe G. Bone Surface Micro‐Topography at Craniofacial Entheses: Insights on Osteogenic Adaptation at Muscle Insertions. Anat Rec (Hoboken) 2019; 302:2140-2155. [DOI: 10.1002/ar.24215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/04/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mark Walters
- School of Human SciencesThe University of Western Australia Crawley Perth Western Australia
- Department of Plastic and Reconstructive SurgeryPerth Children's Hospital Nedlands Perth Western Australia
| | - Michael Crew
- Health Department of Western Australia and Faculty of Health SciencesCurtin University Western Australia
| | - Georgina Fyfe
- Faculty of Health SciencesCurtin University Perth Western Australia
| |
Collapse
|
38
|
Deymier AC, Schwartz AG, Cai Z, Daulton TL, Pasteris JD, Genin GM, Thomopoulos S. The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomater 2019; 83:302-313. [PMID: 30342287 DOI: 10.1016/j.actbio.2018.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
The musculoskeletal system is sensitive to its loading environment; this is of particular concern under conditions such as disuse, paralysis, and extended-duration space flight. Although structural and mechanical changes to tendon and bone following paralysis and disuse are well understood, there is a pressing need to understand how this unloading affects the bone-tendon interface (enthesis); the location most prone to tears and injury. We therefore elucidated these effects of unloading in the entheses of adult mice shoulders that were paralyzed for 21 days by treatment with botulinum toxin A. Unloading significantly increased the extent of mechanical failure and was associated with structural changes across hierarchical scales. At the millimeter scale, unloading caused bone loss. At the micrometer scale, unloading decreased bioapatite crystal size and crystallographic alignment in the enthesis. At the nanometer scale, unloading induced compositional changes that stiffened the bioapatite/collagen composite tissue. Mathematical modeling and mechanical testing indicated that these factors combined to increase local elevations of stress while decreasing the ability of the tissue to absorb energy prior to failure, thereby increasing injury risk. These first observations of the multiscale effects of unloading on the adult enthesis provide new insight into the hierarchical features of structure and composition that endow the enthesis with increased resistance to failure. STATEMENT OF SIGNIFICANCE: The musculoskeletal system is sensitive to its loading environment; this is of particular concern under conditions such as disuse, paralysis, and extended-duration space flight. Although changes to tendon and bone following paralysis are understood, there is a pressing need to clarify how unloading affects the bone-tendon interface (enthesis), which is the location most prone to tears and injury. We elucidated the effects of enthesis unloading in adult mice shoulders showing, for the first time, that unloading significantly increased the risk and extent of mechanical failure and was associated with structural changes across hierarchical scales. These observations provide new insight into the hierarchical features of structure and composition that endow the enthesis with resilience. This knowledge can be used to develop more targeted treatments to improve mobility and function.
Collapse
Affiliation(s)
- Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA.
| | - Andrea G Schwartz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.
| | - Zhounghou Cai
- Advanced Photon Source, Argonne National Lab, Argonne, IL, USA.
| | - Tyrone L Daulton
- Department of Physics, Washington University, St. Louis, MO, USA; Institute of Materials Science and Engineering, Washington University, St. Louis, MO, USA.
| | - Jill D Pasteris
- Department of Earth and Planetary Science, Washington University, St. Louis, MO, USA.
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Balanta-Melo J, Torres-Quintana MA, Bemmann M, Vega C, González C, Kupczik K, Toro-Ibacache V, Buvinic S. Masseter muscle atrophy impairs bone quality of the mandibular condyle but not the alveolar process early after induction. J Oral Rehabil 2018; 46:233-241. [PMID: 30468522 DOI: 10.1111/joor.12747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Masseter muscle function influences mandibular bone homeostasis. As previously reported, bone resorption markers increased in the mouse mandibular condyle two days after masseter paralysis induced with botulinum toxin type A (BoNTA), followed by local bone loss. OBJECTIVE This study aimed to evaluate the bone quality of both the mandibular condyle and alveolar process in the mandible of adult mice during the early stage of a BoNTA-induced masseter muscle atrophy, using a combined 3D histomorphometrics and shape analysis approach. METHODS Adult BALB/c mice were divided into an untreated control group and an experimental group; the latter received one single BoNTA injection in the right masseter (BoNTA-right) and saline in the left masseter (Saline-left). 3D bone microstructural changes in the mandibular condyle and alveolar process were determined with high-resolution microtomography. Additionally, landmark-based geometric morphometrics was implemented to assess external shape changes. RESULTS After 2 weeks, masseter mass was significantly reduced (P-value <0.001). When compared to Saline-left and untreated condyles, BoNTA-right condyles showed significant bone loss (P-value <0.001) and shape changes. No significant bone loss was observed in the alveolar processes of any of the groups (P-value >0.05). CONCLUSION Condyle bone quality deteriorates at an early stage of BoNTA-induced masseter muscle atrophy, and before the alveolar process is affected. Since the observed bone microstructural changes resemble those in human temporomandibular joint degenerative disorders, the clinical safety of BoNTA intervention in the masticatory apparatus remains to be clarified.
Collapse
Affiliation(s)
- Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,School of Dentistry, Universidad del Valle, Cali, Colombia.,Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Maximilian Bemmann
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Carolina Vega
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Abstract
Tendons connect muscle to bone and play an integral role in bone and joint alignment and loading. Tendons act as pulleys that provide anchorage of muscle forces for joint motion and stability, as well as for fracture reduction and realignment. Patients that experience complex fractures also have concomitant soft tissue injuries, such as tendon damage or rupture. Tendon injuries that occur at the time of bone fracture have long-term ramifications on musculoskeletal health, yet these injuries are often disregarded in clinical treatment and diagnosis for patients with bone fractures as well as in basic science approaches for understanding bone repair processes. Delayed assessment of soft tissue injuries during evaluation of trauma can lead to chronic pain, dysfunction, and delayed bone healing even following successful fracture repair, highlighting the importance of identifying and treating damaged tendons early. Treatment strategies for bone repair, such as mechanical stabilization and biological therapeutics, can impact tendon healing and function. Because poor tendon healing following complex fracture can significantly impact the function of tendon during bone fracture healing, a need exists to understand the healing process of complex fractures more broadly, beyond the healing of bone. In this review, we explored the mechanical and biological interaction of bone and tendon in the context of complex fracture, as well as the relevance and potential ramifications of tendon damage following bone fracture, which has particular impact on patients that experience complex fractures, such as from combat, automobile accidents, and other trauma.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
41
|
Su W, Qi W, Li X, Zhao S, Jiang J, Zhao J. Effect of Suture Absorbability on Rotator Cuff Healing in a Rabbit Rotator Cuff Repair Model. Am J Sports Med 2018; 46:2743-2754. [PMID: 30074817 DOI: 10.1177/0363546518787181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Various suture materials can be clinically used for rotator cuff repair (RCR). RCR with high-strength nonabsorbable sutures may not be ideal, because it may cause stress shielding, which may hinder enthesis regeneration and maturation in the tendon-bone interface. RCR with strength-decreasing sutures (ie, absorbable sutures) may be a better choice. However, the effects of suture absorbability on enthesis regeneration and maturation have not been investigated. HYPOTHESIS The use of absorbable sutures in RCR would produce a better tendon-bone connection structure, which provides histological and biomechanical advantages over the use of nonabsorbable sutures. STUDY DESIGN Controlled laboratory study. METHODS A supraspinatus tear was created on the right shoulder in 108 of 120 skeletally mature male rabbits. The animals were randomly divided into 3 groups, with 36 rabbits in each group, to undergo RCR individually with total absorbable, partial absorbable, and nonabsorbable sutures (TAS, PAS, and NAS). Twelve animals in each group were sacrificed at 4, 8, and 12 weeks after surgery, with 6 operated shoulders used for histological evaluation to detect enthesis regeneration and maturation and the other 6 for biomechanical testing. The remaining 12 animals without supraspinatus tear were used as control. RESULTS At 12 weeks, in the tendon-bone interface, enthesis regeneration was detected in the TAS group but not in the NAS group. A mature enthesis appeared in the TAS group but not in the NAS group. In the PAS group, enthesis regeneration was also observed; however, the fibrocartilage was not abundant and the enthesis maturity not good as compared with the TAS group. Biomechanical testing showed that the rotator cuff-greater tuberosity connection structure in the TAS and PAS groups had greater values of ultimate load to failure, stiffness, and stress than the NAS group at all time points. CONCLUSION In RCR in an acute rabbit rotator cuff tear model, the use of sutures with absorbability lead to enthesis regeneration, increased maturity of rotator cuff insertion, and enhanced rotator cuff-greater tuberosity connection. CLINICAL RELEVANCE Compared with the use of NAS, the use of TAS or PAS might be a better choice for RCR.
Collapse
Affiliation(s)
- Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenxiao Qi
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoxi Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Song Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
42
|
Shimada A, Ideno H, Arai Y, Komatsu K, Wada S, Yamashita T, Amizuka N, Pöschl E, Brachvogel B, Nakamura Y, Nakashima K, Mizukami H, Ezura Y, Nifuji A. Annexin A5 Involvement in Bone Overgrowth at the Enthesis. J Bone Miner Res 2018; 33:1532-1543. [PMID: 29694681 DOI: 10.1002/jbmr.3453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/08/2018] [Accepted: 08/12/2018] [Indexed: 01/12/2023]
Abstract
Little is known about the molecular mechanisms of enthesis formation in mature animals. Here, we report that annexin A5 (Anxa5) plays a critical role in the regulation of bone ridge outgrowth at the entheses. We found that Anxa5 is highly expressed in the entheses of postnatal and adult mice. In Anxa5-deficient (Anxa5-/- ) mice, the sizes of bone ridge outgrowths at the entheses of the tibias and femur were increased after age 7 weeks. Bone overgrowth was not observed at the fibrous enthesis where the fibrocartilage layer does not exist. More ALP-expressing cells were observed in the fibrocartilage layer in Anxa5-/- mice than in wild-type (WT) mice. Calcein and Alizarin Red double labeling revealed more mineralized areas in Anxa5-/- mice than WT mice. To examine the effects of mechanical forces, we performed tenotomy in which transmission of contractile forces by the tibial muscle was impaired by surgical muscle release. In tenotomized mice, bone overgrowth at the enthesis in Anxa5-/- mice was decreased to a level comparable to that in WT mice at 8 weeks after the operation. The tail-suspended mice also showed a decrease in bone overgrowth to similar levels in Anxa5-/- and WT mice at 8 weeks after hindlimb unloading. These results suggest that bone overgrowth at the enthesis requires mechanical forces. We further examined effects of Anxa5 gene knockdown (KD) in primary cultures of osteoblasts, chondrocytes, and tenocytes in vitro. Anxa5 KD increased ALP expression in tenocytes and chondrocytes but not in osteoblasts, suggesting that increased ALP activity in the fibrocartilaginous tissue in Anxa5-/- mice is directly caused by Anxa5 deletion in tenocytes or fibrocartilage cells. These data indicate that Anxa5 prevents bone overgrowth at the enthesis, whose formation is mediated through mechanical forces and modulating expression of mineralization regulators. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Akemi Shimada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hisashi Ideno
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshinori Arai
- Nihon University, School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Wada
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Division of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ernst Pöschl
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bent Brachvogel
- Experimental Neonatology, Department of Pediatrics and Adolescent Medicine, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hiroaki Mizukami
- Division of Genetics Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Akira Nifuji
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
43
|
Tsutsumi R, Tran MP, Cooper KL. Changing While Staying the Same: Preservation of Structural Continuity During Limb Evolution by Developmental Integration. Integr Comp Biol 2018; 57:1269-1280. [PMID: 28992070 DOI: 10.1093/icb/icx092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 150 years since Charles Darwin published "On the Origin of Species", gradual evolution by natural selection is still not fully reconciled with the apparent sudden appearance of complex structures, such as the bat wing, with highly derived functions. This is in part because developmental genetics has not yet identified the number and types of mutations that accumulated to drive complex morphological evolution. Here, we consider the experimental manipulations in laboratory model systems that suggest tissue interdependence and mechanical responsiveness during limb development conceptually reduce the genetic complexity required to reshape the structure as a whole. It is an exciting time in the field of evolutionary developmental biology as emerging technical approaches in a variety of non-traditional laboratory species are on the verge of filling the gaps between theory and evidence to resolve this sesquicentennial debate.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Mai P Tran
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| |
Collapse
|
44
|
Cibulka MT, Bennett J. How weakness of the tensor fascia lata and gluteus maximus may contribute to ACL injury: A new theory. Physiother Theory Pract 2018; 36:359-364. [PMID: 29927670 DOI: 10.1080/09593985.2018.1486492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Anterior cruciate ligament (ACL) injuries are common in sports including a significant failure rate following reconstruction. The iliotibial band (ITB) is an important stabilizer of the lateral portion of the knee and also an important lateral rotator of the tibia. Both the tensor fascia lata (TFL) and gluteus maximus (Gmax) muscles insert into the ITB proximally. This paper describes a theory that implicates weakened TFL and Gmax muscles as possible contributors to anterolateral rotatory instability. If the TFL and Gmax are important contributors to anterolateral rotatory instability, physical therapists can emphasize assessing for their weakness and developing a rehabilitation program to restore their strength.
Collapse
Affiliation(s)
| | - Jack Bennett
- Physical Therapy Program, Maryville University, St. Louis, MO, USA
| |
Collapse
|
45
|
Jensen PT, Lambertsen KL, Frich LH. Assembly, maturation, and degradation of the supraspinatus enthesis. J Shoulder Elbow Surg 2018; 27:739-750. [PMID: 29329904 DOI: 10.1016/j.jse.2017.10.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023]
Abstract
The development of the rotator cuff enthesis is still poorly understood. The processes in the early and late developmental steps are gradually elucidated, but it is still unclear how cell activities are coordinated during development and maturation of the structured enthesis. This review summarizes current knowledge about development and age-related degradation of the supraspinatus enthesis. Healing and repair of an injured and degenerated supraspinatus enthesis also remain a challenge, as the original graded transitional tissue of the fibrocartilaginous insertion is not re-created after the tendon is surgically reattached to bone. Instead, mechanically inferior and disorganized tissue forms at the healing site because of scar tissue formation. Consequently, the enthesis never reaches mechanical properties comparable to those of the native enthesis. So far, no novel biologic healing approach has been successful in enhancing healing of the injured enthesis. The results revealed in this review imply the need for further research to pave the way for better treatment of patients with rotator cuff disorder.
Collapse
Affiliation(s)
- Peter T Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kate L Lambertsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars H Frich
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
46
|
Zhang C, Liu YJ. Biomechanic and histologic analysis of fibroblastic effects of tendon-to-bone healing by transforming growth factor β1 (TGF-β1) in rotator cuff tears. Acta Cir Bras 2018; 32:1045-1055. [PMID: 29319733 DOI: 10.1590/s0102-865020170120000006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/19/2017] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To evaluate the effect of transforming growth factor β1 (TGF-β1) on tendon-to-bone reconstruction of rotator cuff tears. METHODS Seventy-two rat supraspinatus tendons were transected and reconstructed in situ. At 8 and 16 weeks, specimens of three groups; that is control, L-dose (low dose), and H-dose (high dose) were harvested and underwent a biomechanical test to evaluate the maximum load and stiffness values. Histology sections of the tendon-to-bone interface were identified by hematoxylin-eosin or Masson trichrome stain. Collagen type III was observed by picric acid sirius red staining under polarized light. The level of insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) was measured by the enzyme-linked immunosorbent assay (ELISA) method. RESULTS Collagen type III of the H-dose group had a significant difference in histology structure compared with the L-dose group (P<0.05). The maximum load and stiffness decreased significantly in the control group compared with the values of the L-dose and H-dose groups. The stiffness among the three groups differed significantly at the same postoperative time (P<0.05). Interestingly, progressive reestablishment of collagen type III affected tendon-to-bone healing significantly in the later stages. CONCLUSION The H-dose was associated with an increased collagen type III morphology stimulated by TGF-β1.
Collapse
Affiliation(s)
- Chong Zhang
- Associated Professor, Department of Orthopaedic Surgery, Traditional Chinese Medicine Hospital, Hebei Province, China. Aquisition of data, manuscript writing
| | - Yu-Jie Liu
- MD, Professor, Department of Orthopaedic Surgery, Chinese PLA General Hospital, Beijing, China. Design, intellectual and scientific content of the study; critical revision
| |
Collapse
|
47
|
Shahar D, Evans J, Sayers MGL. Large enthesophytes in teenage skulls: Mechanical, inflammatory and genetic considerations. Clin Biomech (Bristol, Avon) 2018; 53:60-64. [PMID: 29448082 DOI: 10.1016/j.clinbiomech.2018.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The literature implies that large enthesophytes are exclusive to genetically predisposed individuals and to Spondyloarthropathies sufferers. Accordingly, the aim of this investigation and report was to assess the involvement of genetic predisposition, inflammatory and/or mechanical influences in the development of large enthesophytes in a sample population of teenagers presenting with large enthesophytes emanating from the external occipital protuberance. METHODS Analysis was based on four teenage males (13-16 year-old) possessing 14.5-30.5 mm enthesophytes projecting from the external occipital protuberance. This study included assessment of radiographs, MRI scans, blood-work, history, the SF-36 health survey, and the comparison of these data with the relevant literature to describe the interrelationships between the presence of enlarged external occipital protuberance, forward head protraction, active inflammation and/or genetic factors. FINDINGS Known genetic markers (e.g. HLA-B27) were not detected by allele-specific primers and both ESR and CRP tests were negative. Additionally, MRI analyses failed to detect active localised inflammation at the external occipital protuberance and surrounding structures. The health survey yielded normal parameters for all participants. All participants displayed significantly large Forward Head Protraction values (>40 mm), and interviews with participants and their parents indicated that concerns related to posture were prevalent since early childhood. INTERPRETATION This report suggests that mechanical load has an important role in enthesophyte development, irrespective the involvement of inflammatory or genetic factors.
Collapse
Affiliation(s)
- David Shahar
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - John Evans
- Sunshine Coast Radiology, Birtinya, Australia
| | - Mark G L Sayers
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
48
|
Shahar D, Sayers MGL. Prominent exostosis projecting from the occipital squama more substantial and prevalent in young adult than older age groups. Sci Rep 2018; 8:3354. [PMID: 29463874 PMCID: PMC5820356 DOI: 10.1038/s41598-018-21625-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Recently we reported the development of prominent exostosis young adults' skulls (41%; 10-31 mm) emanating from the external occipital protuberance (EOP). These findings contrast existing reports that large enthesophytes are not seen in young adults. Here we show that a combination sex, the degree of forward head protraction (FHP) and age predicted the presence of enlarged EOP (EEOP) (n = 1200, age 18-86). While being a male and increased FHP had a positive effect on prominent exostosis, paradoxically, increase in age was linked to a decrease in enthesophyte size. Our latter findings provide a conundrum, as the frequency and severity of degenerative skeletal features in humans are associated typically with aging. Our findings and the literature provide evidence that mechanical load plays a vital role in the development and maintenance of the enthesis (insertion) and draws a direct link between aberrant loading of the enthesis and related pathologies. We hypothesize EEOP may be linked to sustained aberrant postures associated with the emergence and extensive use of hand-held contemporary technologies, such as smartphones and tablets. Our findings raise a concern about the future musculoskeletal health of the young adult population and reinforce the need for prevention intervention through posture improvement education.
Collapse
Affiliation(s)
- David Shahar
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| | - Mark G L Sayers
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| |
Collapse
|
49
|
Lebaschi A, Nakagawa Y, Wada S, Cong GT, Rodeo SA. Tissue-specific endothelial cells: a promising approach for augmentation of soft tissue repair in orthopedics. Ann N Y Acad Sci 2018; 1410:44-56. [PMID: 29265420 DOI: 10.1111/nyas.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Biologics are playing an increasingly significant role in the practice of modern medicine and surgery in general and orthopedics in particular. Cell-based approaches are among the most important and widely used modalities in orthopedic biologics, with mesenchymal stem cells and other multi/pluripotent cells undergoing evaluation in numerous preclinical and clinical studies. On the other hand, fully differentiated endothelial cells (ECs) have been found to perform critical roles in homeostasis of visceral tissues through production of an adaptive panel of so-called "angiocrine factors." This newly discovered function of ECs renders them excellent candidates for novel approaches in cell-based biologics. Here, we present a review of the role of ECs and angiocrine factors in some visceral tissues, followed by an overview of current cell-based approaches and a discussion of the potential applications of ECs in soft tissue repair.
Collapse
Affiliation(s)
- Amir Lebaschi
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Yusuke Nakagawa
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Susumu Wada
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Guang-Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York
| |
Collapse
|
50
|
Qu D, Subramony SD, Boskey AL, Pleshko N, Doty SB, Lu HH. Compositional mapping of the mature anterior cruciate ligament-to-bone insertion. J Orthop Res 2017; 35:2513-2523. [PMID: 28176356 PMCID: PMC5548644 DOI: 10.1002/jor.23539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/27/2017] [Indexed: 02/04/2023]
Abstract
The anterior cruciate ligament (ACL)-to-bone interface constitutes a complex, multi-tissue structure comprised of contiguous ligament, non-mineralized fibrocartilage, mineralized fibrocartilage, and bone regions. This composite structure enables load transfer between structurally and functionally dissimilar tissues and is critical for ligament homeostasis and joint stability. Presently, there is a lack of quantitative understanding of the matrix composition and organization across this junction, especially after the onset of skeletal maturity. The objective of this study is to characterize the adult bovine ACL-to-bone interface using Fourier transform infrared spectroscopic imaging (FTIRI), testing the hypothesis that regional changes in collagen, proteoglycan, and mineral distribution, as well as matrix organization, persist at the mature insertion. It was observed that while collagen content increases continuously across the adult interface, collagen alignment decreases between ligament and bone. Proteoglycans were primarily localized to the fibrocartilage region and an exponential increase in mineral content was observed between the non-mineralized and mineralized regions. These observations reveal significant changes in collagen distribution and alignment with maturity, and these trends underscore the role of physiologic loading in postnatal matrix remodeling. Findings from this study provide new insights into interface organization and serve as benchmark design criteria for interface regeneration and integrative soft tissue repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2513-2523, 2017.
Collapse
Affiliation(s)
- Dovina Qu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Siddarth D. Subramony
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Adele L. Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021
| | - Nancy Pleshko
- Tissue Imaging and Spectroscopy Laboratory, Department of Bioengineering, Temple University, Philadelphia, PA 19122
| | - Stephen B. Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, NY 10021
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027,To whom all correspondence should be addressed: Helen H. Lu, Ph.D., Department of Biomedical Engineering, Columbia University1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, New York, NY 10027, 212-854-4071 (office), 212-854-8725 (fax),
| |
Collapse
|