1
|
Pan GP, Liu YH, Qi MX, Guo YQ, Shao ZL, Liu HT, Qian YW, Guo S, Yin YL, Li P. Alizarin attenuates oxidative stress-induced mitochondrial damage in vascular dementia rats by promoting TRPM2 ubiquitination and proteasomal degradation via Smurf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156119. [PMID: 39418971 DOI: 10.1016/j.phymed.2024.156119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Alizarin (AZ) is a natural anthraquinone with anti-inflammatory and moderate antioxidant properties. PURPOSE In this study, we characterized the role of AZ in a rat model of vascular dementia (VaD) and explored its underlying mechanisms. METHODS VaD was induced by bilateral common carotid artery occlusion. RESULTS We found that AZ attenuated oxidative stress and improved mitochondrial structure and function in VaD rats, which led to the improvement of their learning and memory function. Mechanistically, AZ reduced transient receptor potential melastatin 2 (TRPM2) expression and activation of the Janus-kinase and signal transducer activator of transcription (JAK-STAT) pathway in VaD rats. In particular, the reduction in the expression of TRPM2 channels was the key to the attenuation of the oxidative stress-induced mitochondrial damage, which may be achieved by increasing the expression of the E3 ubiquitin ligase, Smad-ubiquitination regulatory factor 2 (Smurf2); thereby increasing the ubiquitination and degradation levels of TRPM2. CONCLUSION Our results suggest that AZ is an effective candidate drug for ameliorating VaD and provide new insights into the current clinical treatment of VaD.
Collapse
Affiliation(s)
- Guo-Pin Pan
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan-Hua Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Xu Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130000, China
| | - Ya-Qi Guo
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhen-Lei Shao
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui-Ting Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicien, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
2
|
Xu G, Liu M, Wang Z, Chen S Y. Cytotoxic and Antitumor Agents from Genus Rubia. Chem Biodivers 2024:e202401498. [PMID: 39183172 DOI: 10.1002/cbdv.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Genus Rubia is widely distributed in almost all regions of the world, with 36 species and 2 varieties in China. Rubia species, such as Rubia cordifolia, have been used in traditional Chinese medicine for the treatment of diseases since ancient times. In recent years, the study of anticancer effects in traditional Chinese medicine has become a popular topic, and some studies have shown that several Rubia species extracts have cytotoxic and antitumor effects, and some of them have been shown to contain specific antitumor agents. Therefore, this review focuses on the cytotoxic and antitumor effects of the chemical constituents contained in Genus Rubia. Summarized 71 types of chemical substances in 5 categories with the effect of cytotoxicity and antitumor, as well as their structures, targets and mechanisms of action.
Collapse
Affiliation(s)
- Geng Xu
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
| | - Meiyu Liu
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zuobin Wang
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yujuan Chen S
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
3
|
Zhu ML, Fan JX, Guo YQ, Guo LJ, Que HD, Cui BY, Li YL, Guo S, Zhang MX, Yin YL, Li P. Protective effect of alizarin on vascular endothelial dysfunction via inhibiting the type 2 diabetes-induced synthesis of THBS1 and activating the AMPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155557. [PMID: 38547622 DOI: 10.1016/j.phymed.2024.155557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jia-Xin Fan
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Qi Guo
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li-Juan Guo
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453119, China
| | - Hua-Dong Que
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Bao-Yue Cui
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, 150040, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ming-Xiang Zhang
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
4
|
Liang S, Bo H, Zhang Y, Zhen H, Zhong L. Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells. Molecules 2023; 28:7373. [PMID: 37959792 PMCID: PMC10650112 DOI: 10.3390/molecules28217373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The phytopigment alizarin was previously characterized as an anti-tumor drug owing to its antioxidant or antigenotoxic activities. However, the safety of alizarin is currently still under dispute. In this study, we explored the activity of alizarin in the AHR-CYP1A1 pathway and analyzed the transcriptional changes affected by alizarin using human hepatoma cell line HepG2-based assays. The results showed that alizarin decreased HepG2 cell viability in a dose-dependent manner, with IC50 values between 160.4 and 216.8 μM. Furthermore, alizarin significantly upregulated the expression of CYP1A1 and increased the ethoxyresorufin-O-deethylase activity. Alizarin also exhibited agonistic activity toward the AHR receptor in the XRE-mediated luciferase reporter gene assay, which was further confirmed via the molecular docking assay. In addition, the transcriptional analysis indicated that alizarin may act as a potential carcinogen through significantly enriching several items related to cancer in both DO and KEGG analysis. In brief, our findings indicated that alizarin shows agonistic activities to the AHR receptor through activating the AHR-CYP1A1 signaling pathway in HepG2 cells, which may lead to the risks for cancer developing.
Collapse
Affiliation(s)
- Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Haimei Bo
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Yue Zhang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Hongcheng Zhen
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Li Zhong
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
de Araujo-Neto JH, Guedes APM, Leite CM, Moraes CAF, Santos AL, Brito RDS, Rocha TL, Mello-Andrade F, Ellena J, Batista AA. "Half-Sandwich" Ruthenium Complexes with Alizarin as Anticancer Agents: In Vitro and In Vivo Studies. Inorg Chem 2023; 62:6955-6969. [PMID: 37099760 DOI: 10.1021/acs.inorgchem.3c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Upon exploration of the chemistry of the combination of ruthenium/arene with anthraquinone alizarin (L), three new complexes with the general formulas [Ru(L)Cl(η6-p-cymene)] (C1), [Ru(L)(η6-p-cymene)(PPh3)]PF6 (C2), and [Ru(L)(η6-p-cymene)(PEt3)]PF6 (C3) were synthesized and characterized using spectroscopic techniques (mass, IR, and 1D and 2D NMR), molar conductivity, elemental analysis, and X-ray diffraction. Complex C1 exhibited fluorescence, such as free alizarin, while in C2 and C3, the emission was probably quenched by monophosphines and the crystallographic data showed that hydrophobic interactions are predominant in intermolecular contacts. The cytotoxicity of the complexes was evaluated in the MDA-MB-231 (triple-negative breast cancer), MCF-7 (breast cancer), and A549 (lung) tumor cell lines and MCF-10A (breast) and MRC-5 (lung) nontumor cell lines. Complexes C1 and C2 were more selective to the breast tumor cell lines, and C2 was the most cytotoxic (IC50 = 6.5 μM for MDA-MB-231). In addition, compound C1 performs a covalent interaction with DNA, while C2 and C3 present only weak interactions; however, internalization studies by flow cytometry and confocal microscopy showed that complex C1 does not accumulate in viable MDA-MB-231 cells and is detected in the cytoplasm only after cell permeabilization. Investigations of the mechanism of action of the complexes indicate that C2 promotes cell cycle arrest in the Sub-G1 phase in MDA-MB-231, inhibits its colony formation, and has a possible antimetastatic action, impeding cell migration in the wound-healing experiment (13% of wound healing in 24 h). The in vivo toxicological experiments with zebrafish indicate that C1 and C3 exhibit the most zebrafish embryo developmental toxicity (inhibition of spontaneous movements and heartbeats), while C2, the most promising anticancer drug in the in vitro preclinical tests, revealed the lowest toxicity in in vivo preclinical screening.
Collapse
Affiliation(s)
- João Honorato de Araujo-Neto
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Adriana P M Guedes
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Celisnolia M Leite
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
| | - Carlos André F Moraes
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Andressa L Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Rafaella da S Brito
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Thiago L Rocha
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Francyelli Mello-Andrade
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
- Instituto Federal de Educação Ciência e Tecnologia (IFG), Goiânia, Goiás 74055-110, Brazil
| | - Javier Ellena
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
7
|
de Souza ÍP, de Melo ACC, Rodrigues BL, Bortoluzzi A, Poole S, Molphy Z, McKee V, Kellett A, Fazzi RB, da Costa Ferreira AM, Pereira-Maia EC. Antitumor copper(II) complexes with hydroxyanthraquinones and N,N-heterocyclic ligands. J Inorg Biochem 2023; 241:112121. [PMID: 36696836 DOI: 10.1016/j.jinorgbio.2023.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Five ternary copper(II) complexes, [Cu2(phen)2(L1)(ClO4)2] (1), [Cu2(phen)2(L1)(DMSO)2](PF6)2 (2), [Cu2(bpy)2(L1)(ClO4)2(H2O)2] (3), [Cu2(dmp)2(L1)(ClO4)2(H2O)2] (4), and [Cu(phen)(L2)]2(ClO4)2 (5), in which phen = 1,10-phenanthroline, bpy = 2,2'-bipyridine, dmp = 2,9-dimethyl-1,10-phenanthroline, H2L1 = 1,4-dihydroxyanthracene-9,10-dione and HL2 = 1-hydroxyanthracene-9,10-dione, DMSO = dimethylsulfoxide, were synthesized and fully characterized. Complex 2 was obtained through the substitution of perchlorate for DMSO. When two hydroxyquinone groups are present, L1 makes a bridge between two Cu(II) ions, which also bind two nitrogens of the respective diimine ligand. The compounds bind to calf thymus DNA and oxidatively cleave pUC19 DNA according to the following order of activity 1 > 4-5 > 3. Furthermore, complexes 1, 3, 4 and 5 inhibit topoisomerase-I activity and the growth of myelogenous leukemia cells with the IC50 values of 1.13, 10.60, 0.078, and 1.84 μmol L-1, respectively. Complexes 1 and 4 are the most active in cancer cells and in DNA cleavage.
Collapse
Affiliation(s)
- Ívina P de Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Avenida Amazonas, 5253, 30421-169 Belo Horizonte, MG, Brazil
| | - Ariane C C de Melo
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Bernardo L Rodrigues
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Adailton Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Simon Poole
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland
| | - Zara Molphy
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland
| | - Vickie McKee
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Andrew Kellett
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Science, Dublin City University, Dublin 9, Ireland
| | - Rodrigo B Fazzi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Ana M da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Khan A, Ezati P, Rhim JW. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf B Biointerfaces 2023; 223:113169. [PMID: 36738702 DOI: 10.1016/j.colsurfb.2023.113169] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Active and intelligent food packaging has emerged to ensure food safety, quality, or spoilage monitoring and extend the shelf life of food. The development of intelligent packaging has accelerated significantly in recent years with a focus on monitoring changes in the quality of packaged products in real-time throughout the food supply chain. As one of the popular natural colorants, alizarin has attracted much consideration due to its excellent functional properties and quality to color change under varying pH. Alizarin is an efficient and cost-effective biomaterial with numerous biological features such as antioxidant, antibacterial, non-cytotoxic, and antitumor. This review focuses on an in-depth summary and prospects for alizarin as a natural and safe colorant that has the potential to be incorporated into intelligent packaging to track the freshness of packaged foodstuffs. The use of alizarin as an intelligent packaging agent shows huge potential for the application of food packaging and brings it one step closer to real-time monitoring of food quality throughout the supply chain. Finally, various limitations and future requirements are discussed to underscore the importance of developing alizarin-based intelligent functional food packaging systems.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Marković Z, Komolkin AV, Egorov AV, Milenković D, Jeremić S. Alizarin as a potential protector of proteins against damage caused by hydroperoxyl radical. Chem Biol Interact 2023; 373:110395. [PMID: 36758887 DOI: 10.1016/j.cbi.2023.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Alizarin is a natural anthraquinone molecule with moderate antioxidative capacity. Some earlier investigations indicated that it can inhibit osteosarcoma and breast carcinoma cell proliferation by inhibiting of phosphorylation process of ERK protein (extracellular signal-regulated kinases). Several mechanisms of deactivation of one of the most reactive oxygen species, hydroperoxyl radical, by alizarin are estimated: hydrogen atom abstraction (HAA), radical adduct formation (RAF), and single electron transfer (SET). The plausibility of those mechanisms is estimated using density functional theory. The obtained results indicated HAA as the only thermodynamically plausible mechanism. For that purpose, two possible mechanistic pathways for hydrogen atom abstraction are studied in detail: hydrogen atom transfer (HAT) and proton-coupled electron transfer (PCET). Water and benzene are used as models of solvents with opposite polarity. To examine the difference between HAT and PCET is used kinetical approach based on the Transition state theory (TST) and determined rate constants (k). Important data used for a distinction between HAT and PCET mechanisms are obtained by applying the Quantum Theory of Atoms in Molecules (QTAIM), and by the analysis of single occupied molecular orbitals (SOMOs) in transition states for two examined mechanisms. The molecular docking analysis and molecular dynamic are used to predict the most probable positions of binding of alizarin to the sequence of ApoB-100 protein, a protein component of plasma low-density lipoproteins (LDL). It is found that alizarin links the nitrated polypeptide forming the π-π interactions with the amino acids Phenylalanine and Nitrotyrosine. The ability of alizarin to scavenge hydroperoxyl radical when it is in a sandwich structure between the polypeptide and radical species, as the operative reaction mechanism, is not significantly changed concerning its antioxidant capacity in the absence of polypeptide. Therefore, alizarin can protect the polypeptide from harmful hydroperoxyl radical attack, positioning itself between the polypeptide chain and the reactive oxygen species.
Collapse
Affiliation(s)
- Zoran Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia; Department of Natural Science and Mathematics, State University of Novi Pazar, Serbia.
| | - Andrei V Komolkin
- Faculty of Physics, Department of Nuclear-Physics Research Methods, St. Petersburg State University, Saint Petersburg, Russia
| | - Andrei V Egorov
- Faculty of Physics, Department of Nuclear-Physics Research Methods, St. Petersburg State University, Saint Petersburg, Russia
| | - Dejan Milenković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Svetlana Jeremić
- Department of Natural Science and Mathematics, State University of Novi Pazar, Serbia.
| |
Collapse
|
10
|
Lee JH, Kim YG, Park S, Hu L, Lee J. Phytopigment Alizarin Inhibits Multispecies Biofilm Development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14051047. [PMID: 35631633 PMCID: PMC9143108 DOI: 10.3390/pharmaceutics14051047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Acne vulgaris is a common chronic inflammatory skin disease involving Cutibacterium acnes with other skin commensals such as Staphylococcus aureus and Candida albicans in the anaerobic and lipid-rich conditions of pilosebaceous units. These microbes readily form multispecies biofilms that are tolerant of traditional antibiotics as well as host immune systems. The phytopigment alizarin was previously found to prevent biofilm formation by S. aureus and C. albicans strains under aerobic conditions. Hence, we hypothesized that alizarin might control C. acnes and multispecies biofilm development. We found that under anaerobic conditions, alizarin efficiently inhibited single biofilm formation and multispecies biofilm development by C. acnes, S. aureus, and C. albicans without inhibiting planktonic cell growth. Alizarin increased the hydrophilicities of S. aureus and C. albicans cells, decreased lipase production by S. aureus, diminished agglutination by C. acnes, and inhibited the aggregation of C. albicans cells. Furthermore, the co-administration of alizarin and antibiotics enhanced the antibiofilm efficacies of alizarin against C. acnes. A transcriptomic study showed that alizarin repressed the transcriptions of various biofilm-related genes such as lipase, hyaluronate lyase, adhesin/invasion-related, and virulence-related genes of C. acnes. Furthermore, alizarin at 100 µg/mL prevented C. acnes biofilm development on porcine skin. Our results show that alizarin inhibits multispecies biofilm development by acne-causing microbes and suggest it might be a useful agent for treating or preventing C. acnes-causing skin diseases.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Sunyoung Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Liangbin Hu
- School of Food & Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|
11
|
Leggett CS, Doll MA, Salazar-González RA, Habil MR, Trent JO, Hein DW. Identification and characterization of potent, selective, and efficacious inhibitors of human arylamine N-acetyltransferase 1. Arch Toxicol 2022; 96:511-524. [PMID: 34783865 PMCID: PMC8837702 DOI: 10.1007/s00204-021-03194-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Arylamine N-acetyltransferase 1 (NAT1) plays a pivotal role in the metabolism of carcinogens and is a drug target for cancer prevention and/or treatment. A protein-ligand virtual screening of 2 million chemicals was ranked for predicted binding affinity towards the inhibition of human NAT1. Sixty of the five hundred top-ranked compounds were tested experimentally for inhibition of recombinant human NAT1 and N-acetyltransferase 2 (NAT2). The most promising compound 9,10-dihydro-9,10-dioxo-1,2-anthracenediyl diethyl ester (compound 10) was found to be a potent and selective NAT1 inhibitor with an in vitro IC50 of 0.75 µM. Two structural analogs of this compound were selective but less potent for inhibition of NAT1 whereas a third structural analog 1,2-dihydroxyanthraquinone (a compound 10 hydrolysis product also known as Alizarin) showed comparable potency and efficacy for human NAT1 inhibition. Compound 10 inhibited N-acetylation of the arylamine carcinogen 4-aminobiphenyl (ABP) both in vitro and in DNA repair-deficient Chinese hamster ovary (CHO) cells in situ stably expressing human NAT1 and CYP1A1. Compound 10 and Alizarin effectively inhibited NAT1 in cryopreserved human hepatocytes whereas inhibition of NAT2 was not observed. Compound 10 caused concentration-dependent reductions in DNA adduct formation and DNA double-strand breaks following metabolism of aromatic amine carcinogens beta-naphthylamine and/or ABP in CHO cells. Compound 10 inhibited proliferation and invasion in human breast cancer cells and showed selectivity towards tumorigenic versus non-tumorigenic cells. In conclusion, our study identifies potent, selective, and efficacious inhibitors of human NAT1. Alizarin's ability to inhibit NAT1 could reduce breast cancer metastasis particularly to bone.
Collapse
Affiliation(s)
- Carmine S. Leggett
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Raúl A. Salazar-González
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Mariam R. Habil
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - John O. Trent
- UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA,Department of Medicine, University of Louisville,
Louisville, KY USA
| | - David W. Hein
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA,Department of Medicine, University of Louisville,
Louisville, KY USA,Corresponding author: David W. Hein, University of
Louisville Health Science Center, Kosair Charities Clinical and Translational
Research Building Room 303, 505 South Hancock Street, Louisville, KY USA
40202-1617. . Telephone:
502-852-6252
| |
Collapse
|
12
|
Jamaludin R, Kim DS, Salleh LM, Lim SB. Kinetic Study of Subcritical Water Extraction of Scopoletin, Alizarin, and Rutin from Morinda citrifolia. Foods 2021; 10:2260. [PMID: 34681309 PMCID: PMC8534878 DOI: 10.3390/foods10102260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Noni fruits (Morinda citrifolia) are a source of phenolic bioactive compounds (scopoletin, alizarin, and rutin), which have antioxidant, antimicrobial, anticancer, and anti-inflammatory activities. In this study, subcritical water was applied to determine the extraction yields and kinetics of phenolic compounds from noni fruits. The scopoletin and alizarin yields increased with the increase in temperature from 100 to 140 °C, while that of rutin increased up to 120 °C and then decreased at 140 °C. The yields of all the compounds rapidly increased from 1 to 2 mL/min and then slightly up to 3 mL/min of water flow rate. The extraction kinetics were assessed using two mathematical models. The two-site kinetic desorption model had a better fit for all experimental conditions throughout the extraction cycle and best described the extraction kinetics of phenolic compounds from noni fruits. The diffusion coefficients of scopoletin and alizarin at 140 °C and 3 mL/min were 3.7- and 16.2-fold higher than those at 100 °C and 1 mL/min, respectively. The activation energies of alizarin were 2.9- to 8.5-fold higher than those of scopoletin at various flow rates. Thus, subcritical water could be an excellent solvent with higher extraction yields and shorter extraction times using an environmentally friendly solvent.
Collapse
Affiliation(s)
- Roslina Jamaludin
- Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia; (R.J.); (L.M.S.)
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia
| | - Dong-Shin Kim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea;
| | - Liza Md Salleh
- Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia; (R.J.); (L.M.S.)
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia
| | - Sang-Bin Lim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea;
| |
Collapse
|
13
|
Zeng L, Sirbu D, Tkachenko NV, Benniston AC. Autocatalytic photodegradation of [Ru(II)(2,2'-bipyridine) 2DAD] + (DADH = 1,2-dihydroxyanthracene-9,10-dione) by hydrogen peroxide under acidic aqueous conditions. Dalton Trans 2021; 50:7640-7646. [PMID: 33973612 DOI: 10.1039/d1dt00952d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As part of a continuing effort to identify ruthenium agents capable of the photorelease of anthraquinone-based ligands the complexes Δ/Λ-[Ru(bpy)2DAD]+ (bpy = 2,2'-bipyridine) were produced by the reaction of 1,2-dihydroxyanthracene-9,10-dione (DADH) with chirally pure Δ/Λ-[Ru(bpy)2(py)2][(+)-O,O'-dibenzoyl-d-tartrate]·12H2O (py = pyridine). A very subtle difference in the chemical shift of the hydroxyl proton in their high-field 1H NMR spectra was observed, supporting that the OH proton is susceptible to a small change in environment at the metal centre. The excited state lifetime of the complexes, as measured by femtosecond pump-probe spectroscopy, was 7.1 (±0.8) ps in water (pH 2) and 13 (±1) ps in MeCN. Illumination of a sample of Λ-[Ru(bpy)2DAD]+ in water (pH 2) in the presence of hydrogen peroxide resulted in decomposition of the complex. The decay profile, as monitored at several wavelengths, was sigmoidal indicating the reaction was autocatalytic, in which the product formed catalysed decomposition of the starting complex. A mechanism is proposed that relies on participation of the uncoordinated hydroxyl group on the anthraquinone ligand in promoting water loss and radical formation in the excited state. The radical is oxidised by peroxide to generate the ruthenium(iii) complex, which behaves as an oxidant in the autocatalytic process.
Collapse
Affiliation(s)
- Lingli Zeng
- Molecular Photonics Laboratory, Chemistry-School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Dumitru Sirbu
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Nikolai V Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Andrew C Benniston
- Molecular Photonics Laboratory, Chemistry-School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
14
|
Ground-state intramolecular proton transfer and observation of high energy tautomer in 1,4-Dihydroxyanthraquinone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Valarmathi T, Premkumar R, Franklin Benial AM. Spectroscopic and molecular docking studies on 1-Hydroxyanthraquinone: A potent ovarian cancer drug. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Nguyen TTH, Han JM, Jung HJ, Pandey RP, Park YI, Sohng JK. Regio-specific biotransformation of alizarin to alizarin methoxide with enhanced cytotoxicity against proliferative cells. J Ind Microbiol Biotechnol 2020; 47:537-542. [PMID: 32588231 DOI: 10.1007/s10295-020-02286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/17/2020] [Indexed: 11/27/2022]
Abstract
Alizarin has been reported to have an antigenotoxic activity along with an inhibitory effect on the tumor cell growth of human colon carcinoma cells. Alizarin was biotransformed into an O-methoxide derivative using O-methyltransferase from Streptomyces avermitilis MA4680 (SaOMT2) to enhance its bioefficacy. The biotransformed product was extracted, purified, and characterized using various chromatographic and spectroscopic analyses, and confirmed to be an alizarin 2-O-methoxide. The antiproliferative activity of the compound against gastric cancer cells (AGS), uterine cervical cancer (Hela), liver cancer (HepG2), and normal cell lines was investigated. Alizarin 2-O-methoxide showed an inhibitory effect on all three cancer-cell lines at very low concentrations, from 0.078 µM, with no cytotoxicity against 267B1 (human prostate epithelial) and MRC-5 (normal human fetal lung fibroblast).
Collapse
Affiliation(s)
- Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jang Mi Han
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Gyeonggi-do, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
17
|
Räisänen R, Primetta A, Nikunen S, Honkalampi U, Nygren H, Pihlava JM, Vanden Berghe I, von Wright A. Examining Safety of Biocolourants from Fungal and Plant Sources-Examples from Cortinarius and Tapinella, Salix and Tanacetum spp. and Dyed Woollen Fabrics. Antibiotics (Basel) 2020; 9:E266. [PMID: 32443886 PMCID: PMC7277368 DOI: 10.3390/antibiotics9050266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
Biocolourants have been investigated as alternatives to synthetic dyes. However, natural origin per se is not a label of harmlessness and research is needed to obtain safe dyes. We studied the cytotoxicity of the extracts from fungal (Cortinarius semisanguineus, Tapinella atrotomentosa) and plant (Tanacetum vulgare, Salix phylicifolia) sources and the woollen fabrics dyed with the extracts. Cytotoxicity in vitro using hepa-1 mouse hepatoma cells for 24 h and 72 h exposure was observed as the highest tolerated dose. All biocolourants produced intensive colour on fabrics with fastness properties from moderate to good. The Salix and Cortinarius samples did not show any cytotoxic effects, whereas the Tanacetum and Tapinella samples had slightly higher test values but were not interpreted as being significantly toxic. Higher than zero values of the undyed fabrics showed the importance of examining their toxicity as well. It was found that the cytotoxicity of the samples dyed with the biocolourants did not differ significantly from the undyed wool fabric. The concentrations of dyes used in the assays were very low, imitating the dose of the user. In addition to colouring properties, natural dyes may have pharmaceutical and antibacterial properties which would enhance the interest in using them in products for added value.
Collapse
Affiliation(s)
- Riikka Räisänen
- Craft Studies, University of Helsinki, P.O. Box 8, 00014 Helsinki, Finland; (A.P.); (S.N.)
| | - Anja Primetta
- Craft Studies, University of Helsinki, P.O. Box 8, 00014 Helsinki, Finland; (A.P.); (S.N.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sari Nikunen
- Craft Studies, University of Helsinki, P.O. Box 8, 00014 Helsinki, Finland; (A.P.); (S.N.)
| | - Ulla Honkalampi
- Department of Pharmacology and Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (U.H.); (A.v.W.)
| | - Heli Nygren
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 Espoo, Finland;
| | - Juha-Matti Pihlava
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland;
| | - Ina Vanden Berghe
- Royal Institute for Cultural Heritage (IRPA/KIK), Parc du Cinquantenaire 1, 1000 Brussels, Belgium;
| | - Atte von Wright
- Department of Pharmacology and Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (U.H.); (A.v.W.)
| |
Collapse
|
18
|
Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12:1037-1069. [PMID: 32349522 DOI: 10.4155/fmc-2019-0198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer, characterized by uncontrolled malignant neoplasm, is a leading cause of death in both advanced and emerging countries. Although, ample drugs are accessible in the market to intervene with tumor progression, none are totally effective and safe. Natural anthraquinone (AQ) equivalents such as emodin, aloe-emodin, alchemix and many synthetic analogs extend their antitumor activity on different targets including telomerase, topoisomerases, kinases, matrix metalloproteinases, DNA and different phases of cell lines. Nano drug delivery strategies are advanced tools which deliver drugs into tumor cells with minimum drug leakage to normal cells. This review delineates the way AQ derivatives are binding on these targets by abolishing tumor cells to produce anticancer activity and purview of nanoformulations related to AQ analogs.
Collapse
|
19
|
Tang Z, Wei H, Zhou P. Effects of solvents on the excited state intramolecular proton transfer and hydrogen bond mechanisms of alizarin and its isomers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112415] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Taourati R, Khaddor M, El Kasmi A. Stable ZnO nanocatalysts with high photocatalytic activity for textile dye treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Kale KB, Ottoor DP. Comprehensive analysis of the atenolol - DNA complex by viscometric, molecular docking and spectroscopic techniques. LUMINESCENCE 2018; 34:39-47. [DOI: 10.1002/bio.3574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Kishor B. Kale
- Department of Chemistry; Savitribai Phule Pune University; Ganeshkhind Road Pune India
| | - Divya P. Ottoor
- Department of Chemistry; Savitribai Phule Pune University; Ganeshkhind Road Pune India
| |
Collapse
|
22
|
QSAR of the free radical scavenging potency of selected hydroxyanthraquinones. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0534-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Jeremić S, Amić A, Stanojević-Pirković M, Marković Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org Biomol Chem 2018; 16:1890-1902. [DOI: 10.1039/c8ob00060c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we estimated the scavenger capacity of six selected anthraquinones toward free radicals and their efficacy as inhibitors of P-glycoproteins.
Collapse
Affiliation(s)
- S. Jeremić
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| | - A. Amić
- Department of Chemistry
- Josip Juraj Strossmayer University of Osijek
- 31000 Osijek
- Croatia
| | | | - Z. Marković
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| |
Collapse
|
24
|
Anastasova EI, Ivanovski V, Fakhardo AF, Lepeshkin AI, Omar S, Drozdov AS, Vinogradov VV. A pure magnetite hydrogel: synthesis, properties and possible applications. SOFT MATTER 2017; 13:8651-8660. [PMID: 29115351 DOI: 10.1039/c7sm01702b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A magnetite-only hydrogel was prepared for the first time by weak base mediated gelation of stable magnetite hydrosols at room temperature. The hydrogel consists of 10 nm magnetite nanoparticles linked by interparticle Fe-O-Fe bonds and has the appearance of a dark-brown viscous thixotropic material. The water content in the hydrogel could be up to 93.6% by mass while volume fraction reaches 99%. The material shows excellent biocompatibility and minor cytotoxic effects at concentrations up to 207 μg mL-1. The gel shows excellent sorption capacity for heavy metal adsorption such as chrome and lead ions, which is 225% more than the adsorption capacity of magnetite nanoparticles. Due to thixotropic nature, the gel demonstrates mechanical stimuli-responsive release behavior with up to 98% release triggered by ultrasound irradiation. The material shows superparamagnetic behavior with a coercivity of 65 emu g-1 at 6000 Oe. The magnetite gels prepared could be used for the production of magnetite aerogels, magnetic drug delivery systems with controlled release and highly efficient sorbents for hydrometallurgy.
Collapse
Affiliation(s)
- Elizaveta I Anastasova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Saint-Petersburg, 197101, Russian Federation.
| | - Vladimir Ivanovski
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, 1000, Republic of Macedonia
| | - Anna F Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Saint-Petersburg, 197101, Russian Federation.
| | - Artem I Lepeshkin
- Chair of Applied Biotechnology, ITMO University, Saint-Petersburg, 197101, Russian Federation
| | - Suheir Omar
- Institute of Chemistry, Casali Center for Applied Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Andrey S Drozdov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Saint-Petersburg, 197101, Russian Federation.
| | - Vladimir V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Saint-Petersburg, 197101, Russian Federation.
| |
Collapse
|
25
|
Manoharan RK, Lee JH, Kim YG, Lee J. Alizarin and Chrysazin Inhibit Biofilm and Hyphal Formation by Candida albicans. Front Cell Infect Microbiol 2017; 7:447. [PMID: 29085811 PMCID: PMC5650607 DOI: 10.3389/fcimb.2017.00447] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is one of the most common pathogen causes fungal infections. This opportunistic pathogen can form biofilms comprised of yeast, hyphae and pseudo hyphal elements, and the hyphal form C. albicans considered as probable virulence factor. We investigated the antibiofilm activities of 13 quinones and anthraquinones related compounds against C. albicans biofilms by using crystal violet and 2,3-bis (2-Methoxy-4-Nitro-5-Sulfo-phenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) reduction assays to assess inhibitions of biofilm growth. Morphological changes in biofilms and biofilm thicknesses were determined by scanning electron microscopy and confocal laser scanning microscopy, respectively. It was found alizarin (1,2-dihydroxyanthraquinone) and chrysazin (1,8-dihydroxyanthraquinone) suppressed C. albicans biofilm formation. Interestingly, alizarin and chrysazin at only 2 μg/ml effectively inhibited hyphal formation and prolonged the survival of C. albicans infected Caenorhabditis elegans, thus showing a distinct antivirulent potential. A structural activity relationship study of alizarin and 6 other anthraquinones showed the presence of a hydroxyl group at C-1 position which is important for antibiofilm and antifilamentation activities. Transcriptomic analyses revealed that alizarin downregulated the expression of several hypha-specific and biofilm related genes (ALS3, ECE1, ECE2, and RBT1). Furthermore, unlike the commercial antifungal drug fluconazole, no acute toxic effect was observed when uninfected nematodes were exposed to alizarin at concentrations up to 1 mg/ml. The results of this study indicate alizarin suppresses the virulence of C. albicans in vivo which suggests alizarin may be considered as a potential candidate for further investigations to develop antifungal agent against fungal pathogen in vivo.
Collapse
Affiliation(s)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
26
|
Jen M, Lee S, Jeon K, Hussain S, Pang Y. Ultrafast Intramolecular Proton Transfer of Alizarin Investigated by Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2017; 121:4129-4136. [DOI: 10.1021/acs.jpcb.6b12408] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myungsam Jen
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sebok Lee
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kooknam Jeon
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Shafqat Hussain
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yoonsoo Pang
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
27
|
Lee HW, Ryu HW, Kang MG, Park D, Oh SR, Kim H. Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone. Bioorg Med Chem Lett 2017; 27:1136-1140. [PMID: 28188065 DOI: 10.1016/j.bmcl.2017.01.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 12/30/2022]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidation of monoamines that act as neurotransmitters. During a target-based screening of natural products using two isoforms of recombinant human MAO-A and MAO-B, purpurin (an anthraquinone derivative) was found to potently and selectively inhibit MAO-A, with an IC50 value of 2.50μM, and not to inhibit MAO-B. Alizarin (also an anthraquinone) inhibited MAO-A less potently with an IC50 value of 30.1μM. Furthermore, purpurin was a reversible and competitive inhibitor of MAO-A with a Ki value of 0.422μM. A comparison of their chemical structures suggested the 4-hydroxy group of purpurin might play an important role in its inhibition of MAO-A. Molecular docking simulation showed that the binding affinity of purpurin for MAO-A (-40.0kcal/mol) was higher than its affinity for MAO-B (-33.9kcal/mol), and that Ile 207 and Gly 443 of MAO-A were key residues for hydrogen bonding with purpurin. The findings of this study suggest purpurin is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a new potential lead compound for development of novel reversible inhibitors of MAO-A (RIMAs).
Collapse
Affiliation(s)
- Hyun Woo Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongju, Chungbuk 28116, Republic of Korea
| | - Myung-Gyun Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
28
|
Huang ST, Huang CC, Sheen JM, Lin TK, Liao PL, Huang WL, Wang PW, Liou CW, Chuang JH. Phyllanthus urinaria’s Inhibition of Human Osteosarcoma Xenografts Growth in Mice is Associated with Modulation of Mitochondrial Fission/Fusion Machinery. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1507-1523. [DOI: 10.1142/s0192415x16500841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteosarcoma is an aggressive bone cancer arising from primitive transformed cells of mesenchymal origin to form malignant osteoid. Phyllanthus urinaria [Formula: see text]P. urinaria[Formula: see text] is a widely used folk medicine in cancer treatment, however the mechanism of P. urinaria inhibited human osteosarcoma is unclear. The present study was aimed at investigating the antitumoral effects of an aqueous P. urinaria on human osteosarcoma in vivo and the related underlying mechanisms, mainly focusing on mitochondrial dynamic dysfunction. Our results showed that oral administration of P. urinaria to mice led to significant inhibition of tumor development without substantial changes to body weight or major organs. Histological examinations with H&E, Giemsa, and Masson trichrome stains confirmed inhibition of tumor growth by the P. urinaria treatment. Immunohistochemical staining of proliferation markers antigen KI-67 (Ki67) and proliferating cell nuclear antigen (PCNA), as well as a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated a decrease of tumor proliferation and an increase of apoptosis, which was associated with the modulation of B-cell lymphoma 2 (Bcl-2) family activating the caspase cascade in the P. urinaria-treated mice. The neovascularization marker cluster of differentiation 31 (CD31) was inhibited in P. urinaria-treated xenografts, implicating the potential anti-angiogenic effect of P. urinaria. P. urinaria treatment resulted in a significant decrease in the mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and optic atrophy type 1 (Opa1), as well as an increase in the fission protein dynamin-related protein 1 (Drp1). The results of this study suggest mitochondrial dysfunction is associated with dynamic change that is involved in the apoptosis and anti-angiogenesis elicited by P. urinaria.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Chun Huang
- Division of General Surgery, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Jer-Ming Sheen
- Department of Chinese Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Liao
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Liang Huang
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Department of Internal Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Özbakır Işın D. Theoretical study on the investigation of antioxidant properties of some hydroxyanthraquinones. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1248514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dilara Özbakır Işın
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
30
|
Sun Y, Gong X, Tan JY, Kang L, Li D, Vikash, Yang J, Du G. In vitro Antiviral Activity of Rubia cordifolia Aerial Part Extract against Rotavirus. Front Pharmacol 2016; 7:308. [PMID: 27679574 PMCID: PMC5020101 DOI: 10.3389/fphar.2016.00308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
The root of Rubia cordifolia has been used traditionally as a hemostatic agent, while the aerial part of the plant consisting of leaf and stem is known to exhibit anti-diarrheal properties and has been widely used as a remedy in many parts of China. As rotavirus is one of the most commonly associated diarrhea-causing pathogen, this study aims to investigate the anti-rotaviral effect of R. cordifolia aerial part (RCAP). The cytotoxicity of RCAP toward MA-104 cells was evaluated using the WST-8 assay. Colloidal gold method and real time polymerase chain reaction (qPCR) assay were used to confirm the findings of the antiviral assay. Then, 4',6-diamidino-2-phenylindole (DAPI) staining method was subsequently used to investigate the mode of death among the cells. And the representative components of aqueous extract were isolated and identified. It was shown that both the viability of MA-104 cells and the viral load were reduced with increasing concentration of the extract. DAPI staining showed that virus-induced apoptosis was the cause of the low cell viability and viral load, an effect which was accelerated with incubation in the aqueous herbal extract. The major compounds postulated to exhibit this activity were isolated from the aqueous herbal extract and identified to be compounds Xanthopurpurin and Vanillic Acid. This study showed that RCAP extract effectively inhibited rotavirus multiplication by promoting virus-induced apoptosis in MA-104 cells.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Department of Pharmacy, National University of SingaporeSingapore, Singapore
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jia Y Tan
- Department of Pharmacy, National University of Singapore Singapore, Singapore
| | - Lifeng Kang
- Department of Pharmacy, National University of Singapore Singapore, Singapore
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Vikash
- Department of Infectious Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jihong Yang
- College of Life Sciences, Central China Normal University Wuhan, China
| | - Guang Du
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
31
|
Zengin G, Degirmenci NS, Alpsoy L, Aktumsek A. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Hum Exp Toxicol 2016; 35:544-53. [PMID: 26178874 DOI: 10.1177/0960327115595687] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this work was to investigate the cytotoxic, antioxidative, and enzyme inhibition effects of alizarin, quinizarin, and purpurin, which are anthraquinones (AQ). METHODS Cytotoxic effects were evaluated with cell inhibition rate by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay. Different chemical assays, including free radical scavenging activity (1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazloine-6-sulfonic acid)), phosphomolybdenum and reducing power (ferric reducing antioxidant power and cupric ion reducing activity), were used to evaluate the antioxidant properties. Moreover, enzyme inhibitory activities were analyzed against acetylcholinesterase, butrylcholinesterase, tyrosinase, α-amylase, and α-glucosidase. RESULTS These components have antioxidant and enzyme inhibition activity. Especially, purpurin showed the strongest antioxidant and good enzyme inhibitory effects. According to our cytotoxicity results, alizarin, purpurin, and quinizarin induced dose- and time-dependent cell proliferation. Furthermore, when we applied AQs with mitomycin C (MC) on L929 cell line, we demonstrated that cell proliferation in MC-AQ groups compared with MC group was increased. The most effective component was alizarin at 100 µM concentration. These AQs showed positive effects on L929 cell lines with high half-maximal inhibitory concentration values. CONCLUSION Our results demonstrate that AQs may be used as antioxidative compounds in food and medicinal applications.
Collapse
Affiliation(s)
- G Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - N S Degirmenci
- Department of Biology, Faculty of Science and Art, Fatih University, Istanbul, Turkey
| | - L Alpsoy
- Department of Medical Biology, Faculty of Medicine, Fatih University, Istanbul, Turkey
| | - A Aktumsek
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
32
|
A new efficient synthesis of highly functionalized alizarins from alizarin, acetylenic esters, and isocyanides. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-015-1643-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Lajkó E, Bányai P, Zámbó Z, Kursinszki L, Szőke É, Kőhidai L. Targeted tumor therapy by Rubia tinctorum L.: analytical characterization of hydroxyanthraquinones and investigation of their selective cytotoxic, adhesion and migration modulator effects on melanoma cell lines (A2058 and HT168-M1). Cancer Cell Int 2015; 15:119. [PMID: 26690297 PMCID: PMC4683936 DOI: 10.1186/s12935-015-0271-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/07/2015] [Indexed: 11/12/2022] Open
Abstract
Background Alizarin and purpurin are di- and trihydroxyanthraquinones derived from Rubia tinctorum L. Previous pharmacological studies have demonstrated that they exhibit certain degree of selective inhibitory effects towards cancer cells suggesting their application as a targeted drug for cancer. Our present work was aimed to investigate the suitability of hydroxyanthraquinones of Rubia tinctorum L. for targeted tumor therapy. The effects of alizarin, purpurin and an aqueous extract from transformed hairy root culture of Rubia tinctorum L. were examined on (1) cell proliferation, (2) apoptosis, (3) cell adhesion/morphology and (4) migration (chemotaxis, chemokinesis) of human melanoma cell lines (A2058, HT168-M1) and human fibroblast cells (MRC-5), as well as (5) the aqueous extract was analytically characterized. Methods The aqueous extract was prepared from R. tinctorum hairy root culture and qualitatively analyzed by HPLC and ESI–MS methods. The cell growth inhibitory activity of anthraquinones was evaluated by MTT-assay and by flow cytometry. The effect of anthraquinones on cell adhesion was measured by an impedance based technique, the xCELLigence SP. For the chemotaxis assay NeuroProbe® chamber was used. Computer based holographic microscopy was applied to analyze chemokinetic responses as well as morphometry. Statistical significance was determined by the one-way ANOVA test. Results In the aqueous extract, munjistin (Mr = 284, tR = 18.4 min) as a principal component and three minor anthraquinones (pseudopurpurin, rubiadin and nordamnacanthal) were identified. The purpurin elicited a stronger but not apoptosis-mediated antitumor effect in melanoma cells (A2058: 10−6–10−5 M: 90.6–64.1 %) than in normal fibroblasts (10−6–10−5 M: 97.6–84.8 %). The aqueous extract in equimolar concentrations showed the most potent cytotoxicity after 72 h incubation (A2058: 10−6–10−5 M: 87.4–55.0 %). All tested substances elicited chemorepellent effect in melanoma cells, while in MRC-5 fibroblasts, only the alizarin exhibited such a repellent character. Indices of chemokinesis measured by holographic microscopy (migration, migration directness, motility and motility speed) were significantly enhanced by alizarin and purpurin as well, while morphometric changes were weak in the two melanoma cell lines. Conclusions Our results highlight the effective and selective inhibitory activity of purpurin towards melanoma cells and its possible use as a targeted anticancer agent. The anthraquinones of the cytotoxic extract are suggested to apply in drug delivery systems as an anticancer drug. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0271-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089 Hungary
| | - Péter Bányai
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, Budapest, 1085 Hungary
| | - Zsófia Zámbó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089 Hungary
| | - László Kursinszki
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, Budapest, 1085 Hungary
| | - Éva Szőke
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, Budapest, 1085 Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089 Hungary
| |
Collapse
|
34
|
Marković S, Tošović J. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV–vis Absorption Spectra of Some Phenolic Compounds. J Phys Chem A 2015; 119:9352-62. [DOI: 10.1021/acs.jpca.5b05129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Svetlana Marković
- Faculty
of Science, University of Kragujevac, 12 Radoja Domanovića, 34000 Kragujevac, Serbia
| | - Jelena Tošović
- Faculty
of Science, University of Kragujevac, 12 Radoja Domanovića, 34000 Kragujevac, Serbia
| |
Collapse
|
35
|
Furuta A, Tsubuki M, Endoh M, Miyamoto T, Tanaka J, Salam KA, Akimitsu N, Tani H, Yamashita A, Moriishi K, Nakakoshi M, Sekiguchi Y, Tsuneda S, Noda N. Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase. Int J Mol Sci 2015; 16:18439-53. [PMID: 26262613 PMCID: PMC4581254 DOI: 10.3390/ijms160818439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure-activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.
Collapse
Affiliation(s)
- Atsushi Furuta
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Masayoshi Tsubuki
- Institute of Medical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Miduki Endoh
- Institute of Medical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | - Kazi Abdus Salam
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Nobuyoshi Akimitsu
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Hidenori Tani
- Environmental Measurement Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Atsuya Yamashita
- Department of Microbiology, Division of Medicine, Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan.
| | - Kohji Moriishi
- Department of Microbiology, Division of Medicine, Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan.
| | - Masamichi Nakakoshi
- Department of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan.
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
36
|
Fu Y, Kadioglu O, Wiench B, Wei Z, Gao C, Luo M, Gu C, Zu Y, Efferth T. Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:462-468. [PMID: 25925968 DOI: 10.1016/j.phymed.2015.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The low abundant cajanin stilbene acid (CSA) from Pigeon Pea (Cajanus cajan) has been shown to kill estrogen receptor α positive cancer cells in vitro and in vivo. Downstream effects such as cell cycle and apoptosis-related mechanisms have not been analyzed yet. MATERIAL AND METHODS We analyzed the activity of CSA by means of flow cytometry (cell cycle distribution, mitochondrial membrane potential, MMP), confocal laser scanning microscopy (MMP), DNA fragmentation assay (apoptosis), Western blotting (Bax and Bcl-2 expression, caspase-3 activation) as well as mRNA microarray hybridization and Ingenuity pathway analysis. RESULTS CSA induced G2/M arrest and apoptosis in a concentration-dependent manner from 8.88 to 14.79 µM. The MMP broke down, Bax was upregulated, Bcl-2 downregulated and caspase-3 activated. Microarray profiling revealed that CSA affected BRCA-related DNA damage response and cell cycle-regulated chromosomal replication pathways. CONCLUSION CSA inhibited breast cancer cells by DNA damage and cell cycle-related signaling pathways leading to cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Benjamin Wiench
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Zuofu Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chang Gao
- Peking University People's Hospital, Beijing 100044, China
| | - Meng Luo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chengbo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
37
|
Thermodynamical aspect of radical scavenging activity of alizarin and alizarin red S. Theoretical comparative study. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Synthesis and antitumor activities of novel α-aminophosphonate derivatives containing an alizarin moiety. Eur J Med Chem 2014; 83:116-28. [DOI: 10.1016/j.ejmech.2014.02.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
|
39
|
Di Pompo G, Poli F, Mandrone M, Lorenzi B, Roncuzzi L, Baldini N, Granchi D. Comparative "in vitro" evaluation of the antiresorptive activity residing in four Ayurvedic medicinal plants. Hemidesmus indicus emerges for its potential in the treatment of bone loss diseases. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:462-470. [PMID: 24786575 DOI: 10.1016/j.jep.2014.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/14/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Four Indian plants, traditionally used in Ayurvedic medicine: Asparagus racemosus Willd., Emblica officinalis Gaertn., Hemidesmus indicus R. Br., and Rubia cordifolia L. were selected on the basis of their ethnobotanical use and of scientific evidence that suggests a potential efficacy in the treatment of bone-loss diseases. The antiresorptive properties of the four plants have been investigated. The aim was to provide adequate evidence for the exploitation of natural compounds as alternative therapeutics for the treatment of diseases caused by increased osteoclast activity. MATERIALS AND METHODS Decoctions were prepared from dried plant material according to the traditional procedure and standardization by HPLC was performed using marker compounds for each species. Total polyphenols, flavonoids and radical scavenging activity of the decoctions were also determined. The bioactivity of the plant decoctions was evaluated in subsequent phases. (1) A cytotoxicity screening was performed on the mouse monocytic RAW 264.7 cell line to define the concentrations that could be utilized in the following step. (2) The antiresorptive properties of plant decoctions were compared with that of a "gold standard" drug (alendronate) by measuring osteoclastogenesis inhibition and osteoclast apoptosis. (3) The toxic effect on bone forming cells was excluded by evaluating the impact on the proliferation of osteogenic precursors (mesenchymal stem cells, MSC). RESULTS All the decoctions inhibited osteoclastogenesis similarly to alendronate at the highest doses, but Hemidesmus indicus and Rubia cordifolia were also effective at lower concentrations. Apoptosis increased significantly when cells were exposed to the highest concentration of Emblica officinalis, Hemidesmus indicus, and Rubia cordifolia. All concentrations of Emblica officinalis tested inhibited the proliferation of osteogenic precursors, while only the highest doses of Asparagus racemosus and Rubia cordifolia were toxic. On the contrary, Hemidesmus indicus did not affect osteogenic precursor growth at any concentration tested. CONCLUSION Among the medicinal plants included in the study, Hemidesmus indicus showed the greatest antiosteoclastic activity without toxic effect on osteogenic precursors. Therefore, Hemidesmus indicus exhibits the properties of an antiresorptive drug and represents the ideal candidate for further clinical investigations.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Beatrice Lorenzi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Laura Roncuzzi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
40
|
Synthesis, Cytotoxicity, DNA Binding, and Apoptosis of Alizarin 2-O-Side-Chain Derivatives. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-0922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Ji T, Lin C, Krill LS, Eskander R, Guo Y, Zi X, Hoang BH. Flavokawain B, a kava chalcone, inhibits growth of human osteosarcoma cells through G2/M cell cycle arrest and apoptosis. Mol Cancer 2013; 12:55. [PMID: 23764122 PMCID: PMC3681603 DOI: 10.1186/1476-4598-12-55] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/30/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary bone malignancy with a high propensity for local invasion and distant metastasis. Limited by the severe toxicity of conventional agents, the therapeutic bottleneck of osteosarcoma still remains unconquered. Flavokawain B (FKB), a kava extract, has been reported to have significant anti-tumor effects on several carcinoma cell lines both in vitro and in vivo. Its efficacy and low toxicity profile make FKB a promising agent for use as a novel chemotherapeutic agent. RESULTS In the current study, we investigated the anti-proliferative and apoptotic effects of FKB against human osteosarcomas. Exposure of OS cells to FKB resulted in apoptosis, evidenced by loss of cell viability, morphological changes and the externalization of phosphatidylserine. Apoptosis induced by FKB resulted in activation of Caspase-3/7, -8 and -9 in OS cell lines, 143B and Saos-2. FKB also down-regulated inhibitory apoptotic markers, including Bcl-2 and Survivin and led to concomitant increases in apoptotic proteins, Bax, Puma and Fas. Therefore, the induction of apoptosis by FKB involved both extrinsic and intrinsic pathways. FKB also caused G2/M phase cell cycle arrest, which was observed through reductions in the levels of cyclin B1, cdc2 and cdc25c and increases in Myt1 levels. Furthermore, migration and invasion ability was decreased by FKB in a dose-dependent manner. The cytotoxicity profile showed FKB had significant lower side effects on bone marrow cells and small intestinal epithelial cells compared with Adriamycin. CONCLUSIONS Taken together, our evidence of apoptosis and cell cycle arrest by FKB treatment with less toxicity than the standard treatments provides an innovative argument for the use of FKB as a chemotherapeutic and chemopreventive compound. In vivo experiments utilizing FKB to reduce tumorigenesis and metastatic potential will be crucial to further justify clinical application.
Collapse
Affiliation(s)
- Tao Ji
- Department of Orthopaedic Surgery, UC Irvine Multidisciplinary Sarcoma Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, USA
| | | | | | | | | | | | | |
Collapse
|