1
|
Zürcher D, Wuchner K, Arosio P. Mitigation Strategies against Antibody Aggregation Induced by Oleic Acid in Liquid Formulations. Mol Pharm 2024; 21:5761-5771. [PMID: 39444106 PMCID: PMC11539069 DOI: 10.1021/acs.molpharmaceut.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Polysorbates 20 and 80 (PS20 and PS80) are commonly used in the formulations of biologics to protect against interfacial stresses. However, these surfactants can degrade over time, releasing free fatty acids, which assemble into solid particles or liquid droplets. Here, we apply a droplet microfluidic platform to analyze the interactions between antibodies and oleic acid, the primary free fatty acid resulting from the hydrolysis of PS80. We show that antibodies adsorb within seconds to the polar oleic acid-water interface, forming a viscoelastic protein layer that leads to particle formation upon mechanical rupture. By testing two different monoclonal antibodies of pharmaceutical origin, we show that the propensity to form a rigid viscoelastic layer is protein-specific. We further demonstrate that intact PS80 is effective in preventing antibody adsorption at the oleic acid-water interface only at low antibody concentrations and low pH, where oleic acid is fully protonated. Importantly, introduction of the amino acid l-arginine prevents the formation of the interfacial layer and protein particles even at high antibody concentrations (180 mg mL-1). Overall, our findings indicate that oleic acid droplets in antibody formulations can lead to the formation of protein particles via an interface-mediated mechanism. Depending on the conditions, intact PS80 alone might not be sufficient to protect against antibody aggregation. Additional mitigation strategies include the optimization of protein physicochemical properties, pH, and the addition of arginine.
Collapse
Affiliation(s)
- Dominik Zürcher
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Wuchner
- Cilag
GmbH International, a Division of Johnson & Johnson TDS-Biologics,
Analytical Development, 8200 Schaffhausen, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Yonet-Tanyeri N, Parker RS, Falo LD, Little SR. Investigation of the Impact of Manufacturing Methods on Protein-Based Long-Acting Injectable Formulations: A Comparative Assessment for Microfluidics vs. Conventional Methods. Pharmaceutics 2024; 16:1264. [PMID: 39458596 PMCID: PMC11510299 DOI: 10.3390/pharmaceutics16101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Microparticle-based drug delivery systems offer several advantages for protein-based drug formulations, enhancing patient compliance and therapeutic efficiency through the sustained delivery of the active pharmaceutical ingredient. Over the past few decades, the microfluidics method has emerged as a continuous manufacturing process for preparing drug-encapsulating microparticles, mainly for small molecule drugs. However, comparative assessments for the conventional batch method vs. the microfluidics method for protein-based drug formulations have been lacking. The main objective of this study was to generate immunomodulatory protein drug-loaded injectable formulations using both conventional batch and microfluidics methods. METHODS Therefore, rhCCL22-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles were prepared by conventional homogenization and microfluidics methods. RESULTS The resulting microparticles were analyzed comparatively, focusing on critical quality attributes such as microparticle size, size distribution, morphology, drug encapsulation efficiency, release kinetics, and batch-to-batch variations in relation to the manufacturing method. Our results demonstrated that the conventional method resulted in microparticles with denser surface porosity and wider size distribution as opposed to microparticles prepared by the microfluidics method, which could contribute to a significant difference in the drug-release kinetics. Additionally, our findings indicated minimal variation within batches for the microparticles prepared by the microfluidics method. CONCLUSION Overall, this study highlights the comparative assessment of several critical quality attributes and batch variations associated with the manufacturing methods of protein-loaded microparticles which is crucial for ensuring consistency in efficacy, regulatory compliance, and quality control in the drug formulation manufacturing process.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
| | - Robert S. Parker
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, 3550 Terrace Street, Alan Magee Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA
| | - Louis D. Falo
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, 3708 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Steven R. Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Lv JY, Ingle RG, Wu H, Liu C, Fang WJ. Histidine as a versatile excipient in the protein-based biopharmaceutical formulations. Int J Pharm 2024; 662:124472. [PMID: 39013532 DOI: 10.1016/j.ijpharm.2024.124472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Adequate stabilization is essential for marketed protein-based biopharmaceutical formulations to withstand the various stresses that can be exerted during the pre- and post-manufacturing processes. Therefore, a suitable choice of excipient is a significant step in the manufacturing of such delicate products. Histidine, an essential amino acid, has been extensively used in protein-based biopharmaceutical formulations. The physicochemical properties of histidine are unique among amino acids and could afford multifaceted benefits to protein-based biopharmaceutical formulations. With a pKa of approximately 6.0 at the side chain, histidine has been primarily used as a buffering agent, especially for pH 5.5-6.5. Additionally, histidine exhibited several affirmative properties similar to those of carbohydrates (e.g., sucrose and trehalose) and could therefore be considered to be an alternative approach to established protein-based formulation strategies. The current review describes the general physicochemical properties of histidine, lists all commercial histidine-containing protein-based biopharmaceutical products, and discusses a brief outline of the existing research focused on the versatile applications of histidine, which can act as a buffering agent, stabilizer, cryo-/lyo-protectant, antioxidant, viscosity reducer, and solubilizing agent. The interaction between histidine and proteins in protein-based biopharmaceutical formulations, such as the Donnan effect during diafiltration of monoclonal antibody solutions and the degradation of polysorbates in histidine buffer, has also been discussed. As the first review of histidine in protein biopharmaceuticals, it helps to deepen our understanding of the opportunities and challenges associated with histidine as an excipient for protein-based biopharmaceutical formulations.
Collapse
Affiliation(s)
- Jia-Yi Lv
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; School of Pharmaceutical Sciences, Xiamen University, 4221 Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rahul G Ingle
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education & Research (Deemed to University), Sawangi, Wardha, India
| | - Hao Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Cuihua Liu
- Bio-Thera Solutions, Ltd, Guangzhou, Guangdong 510530, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Agrohia DK, Goswami R, Jantarat T, Çiçek YA, Thongsukh K, Jeon T, Bell JM, Rotello VM, Vachet RW. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS NANO 2024; 18:16808-16818. [PMID: 38870478 PMCID: PMC11497159 DOI: 10.1021/acsnano.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.
Collapse
Affiliation(s)
- Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yağız Anil Çiçek
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Korndanai Thongsukh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jonathan M. Bell
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Ge S, Dias ACP, Zhang X. Chimerism of avian IgY-scFv and truncated IgG-Fc: A novel strategy in cross-species antibody generation and enhancement. Immunology 2024; 172:46-60. [PMID: 38247105 DOI: 10.1111/imm.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Chicken single-chain fragment variable (IgY-scFv) is a functional fragment and an emerging development in genetically engineered antibodies with a wide range of biomedical applications. However, scFvs have considerably shorter serum half-life due to the absence of antibody Fc region compared with the full-length antibody, and usually requires continuous intravenous administration for efficacy. A promising approach to overcome this limitation is to fuse scFv with immunoglobulin G (IgG) Fc region, for better recognition and mediation by the neonatal Fc receptor (FcRn) in the host. In this study, engineered mammalian ΔFc domains (CH2, CH3, and intact Fc region) were fused with anti-canine parvovirus-like particles avian IgY-scFv to produce chimeric antibodies and expressed in the HEK293 cell expression system. The obtained scFv-CH2, scFv-CH3, and scFv-Fc can bind with antigen specifically and dose-dependently. Surface plasmon resonance investigation confirmed that scFv-CH2, scFv-CH3, and scFv-Fc had different degrees of binding to FcRn, with scFv-Fc showing the highest affinity. scFv-Fc had a significantly longer half-life in mice compared with the unfused scFv. The identified ΔFcs are promising for the development of engineered Fc-based therapeutic antibodies and proteins with longer half-lives. The avian IgY-scFv-mammalian IgG Fc region opens up new avenues for antibody engineering, and it is a novel strategy to enhance the rapid development and screening of functional antibodies in veterinary and human medicine.
Collapse
Affiliation(s)
- Shikun Ge
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Alberto Carlos Pires Dias
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Xiaoying Zhang
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Anjani QK, Nainggolan ADC, Li H, Miatmoko A, Larrañeta E, Donnelly RF. Parafilm® M and Strat-M® as skin simulants in in vitro permeation of dissolving microarray patches loaded with proteins. Int J Pharm 2024; 655:124071. [PMID: 38554738 DOI: 10.1016/j.ijpharm.2024.124071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | | | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andang Miatmoko
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Stem Cell Research and Development Center, Airlangga University, Institute of Tropical Disease Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
8
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
9
|
Lao T, Farnos O, Bueno A, Alvarez A, Rodríguez E, Palacios J, de la Luz KR, Kamen A, Carpio Y, Estrada MP. Transient Expression in HEK-293 Cells in Suspension Culture as a Rapid and Powerful Tool: SARS-CoV-2 N and Chimeric SARS-CoV-2N-CD154 Proteins as a Case Study. Biomedicines 2023; 11:3050. [PMID: 38002050 PMCID: PMC10669214 DOI: 10.3390/biomedicines11113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In a previous work, we proposed a vaccine chimeric antigen based on the fusion of the SARS-CoV-2 N protein to the extracellular domain of the human CD40 ligand (CD154). This vaccine antigen was named N-CD protein and its expression was carried out in HEK-293 stably transfected cells, grown in adherent conditions and serum-supplemented medium. The chimeric protein obtained in these conditions presented a consistent pattern of degradation. The immunization of mice and monkeys with this chimeric protein was able to induce a high N-specific IgG response with only two doses in pre-clinical experiments. In order to explore ways to diminish protein degradation, in the present work, the N and N-CD proteins were produced in suspension cultures and serum-free media following transient transfection of the HEK-293 clone 3F6, at different scales, including stirred-tank controlled bioreactors. The results showed negligible or no degradation of the target proteins. Further, clones stably expressing N-CD were obtained and adapted to suspension culture, obtaining similar results to those observed in the transient expression experiments in HEK-293-3F6. The evidence supports transient protein expression in suspension cultures and serum-free media as a powerful tool to produce in a short period of time high levels of complex proteins susceptible to degradation, such as the SARS-CoV-2 N protein.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Omar Farnos
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Alexi Bueno
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Anays Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Elsa Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Julio Palacios
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Kathya Rashida de la Luz
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| |
Collapse
|
10
|
Zürcher D, Caduff S, Aurand L, Capasso Palmiero U, Wuchner K, Arosio P. Comparison of the Protective Effect of Polysorbates, Poloxamer and Brij on Antibody Stability Against Different Interfaces. J Pharm Sci 2023; 112:2853-2862. [PMID: 37295604 DOI: 10.1016/j.xphs.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Therapeutic proteins and antibodies are exposed to a variety of interfaces during their lifecycle, which can compromise their stability. Formulations, including surfactants, must be carefully optimized to improve interfacial stability against all types of surfaces. Here we apply a nanoparticle-based approach to evaluate the instability of four antibody drugs against different solid-liquid interfaces characterized by different degrees of hydrophobicity. We considered a model hydrophobic material as well as cycloolefin-copolymer (COC) and cellulose, which represent some of the common solid-liquid interfaces encountered during drug production, storage, and delivery. We assess the protective effect of polysorbate 20, polysorbate 80, Poloxamer 188 and Brij 35 in our assay and in a traditional agitation study. While all nonionic surfactants stabilize antibodies against the air-water interface, none of them can protect against hydrophilic charged cellulose. Polysorbates and Brij increase antibody stability in the presence of COC and the model hydrophobic interface, although to a lesser extent compared to the air-water interface, while Poloxamer 188 has a negligible stabilizing effect against these interfaces. These results highlight the challenge of fully protecting antibodies against all types of solid-liquid interfaces with traditional surfactants. In this context, our high-throughput nanoparticle-based approach can complement traditional shaking assays and assist in formulation design to ensure protein stability not only at air-water interfaces, but also at relevant solid-liquid interfaces encountered during the product lifecycle.
Collapse
Affiliation(s)
- Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Severin Caduff
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Laetitia Aurand
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | | | - Klaus Wuchner
- Janssen R&D, BTDS Analytical Development, Schaffhausen, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Gao Q, Grzyb K, Gamon LF, Ogilby PR, Pędziński T, Davies MJ. The structure of model and peptide disulfides markedly affects their reactivity and products formed with singlet oxygen. Free Radic Biol Med 2023; 207:320-329. [PMID: 37633403 DOI: 10.1016/j.freeradbiomed.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Disulfide bonds are critical structural elements in proteins and stabilize folded structures. Modification of these linkages is associated with a loss of structure and function. Previous studies have reported large variations in the rate of disulfide oxidation by hypohalous acids, due to stabilization of reaction intermediates. In this study we hypothesized that considerable variation (and hence selective oxidation) would occur with singlet oxygen (1O2), a key intermediate in photo-oxidation reactions. The kinetics of disulfide-mediated 1O2 removal were monitored using the time-resolved 1270 nm phosphorescence of 1O2. Stern-Volmer plots of these data showed a large variation (∼103) in the quenching rate constants kq (from 2 × 107 for α-lipoic acid to 3.6 × 104 M-1s-1 for cystamine). The time course of disulfide loss and product formation (determined by LC-MS) support a role for 1O2, with mono- and di-oxygenated products detected. Elevated levels of these latter species were generated in D2O- compared to H2O buffers, which is consistent with solvent effects on the 1O2 lifetime. These data are interpreted in terms of the intermediacy of a zwitterion [-S+(OO-)-S-], which either isomerizes to a thiosulfonate [-S(O)2-S-] or reacts with another parent molecule to give two thiosulfinates [-S(O)-S-]. The variation in quenching rates and product formation are ascribed to zwitterion stabilization by neighboring, or remote, lone pairs of electrons. These data suggest that some disulfides, including some present within or attached to proteins (e.g., α-lipoic acid), may be selectively modified, and undergo subsequent cleavage, with adverse effects on protein structure and function.
Collapse
Affiliation(s)
- Qing Gao
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Katarzyna Grzyb
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
12
|
Kumari P, Saldanha M, Jain R, Dandekar P. Controlling monoclonal antibody aggregation during cell culture using medium additives facilitated by the monitoring of aggregation in cell culture matrix using size exclusion chromatography. J Pharm Biomed Anal 2023; 234:115575. [PMID: 37467528 DOI: 10.1016/j.jpba.2023.115575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Controlling monoclonal antibody aggregation at the upstream stage itself can significantly reduce the burden on downstream processing and can improve the process yield. Hence, we have investigated the use of sugar osmolytes (glucose, mannose, sucrose and maltose) and formulation excipients (mannitol, polysorbate 20 and polysorbate 80) as medium additives to reduce protein aggregation during cell culture. Aggregate content in cell culture samples was estimated using a high-resolution size-exclusion chromatography technique, which efficiently resolved the antibody monomer and aggregates in the cell culture matrix i.e., without purification. Glucose, mannose, maltose and the polysorbates effectively reduced the mean aggregate content over the course of the culture. Sugar-based additives exhibited a higher degree of variation during aggregate quantitation as compared to polysorbate additives, rendering the latter a preferred additive. Therefore, this study demonstrated the potential of sugar osmolytes and formulation excipients as media additives during cell culture to reduce aggregate formation, without negatively impacting cell growth and antibody production, facilitated by the monitoring of aggregate content in cell culture samples without purification.
Collapse
Affiliation(s)
- Prity Kumari
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Marianne Saldanha
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
13
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
14
|
Erfani A, Schieferstein JM, Reichert P, Narasimhan CN, Pastuskovas C, Parab V, Simmons D, Yang X, Shanker A, Hammond P, Doyle PS. Crystalline Antibody-Laden Alginate Particles: A Platform for Enabling High Concentration Subcutaneous Delivery of Antibodies. Adv Healthc Mater 2023; 12:e2202370. [PMID: 36745878 PMCID: PMC11469019 DOI: 10.1002/adhm.202202370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL-1 antibody are achieved with encapsulation efficiencies in the range of 89-97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles' disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated.
Collapse
Affiliation(s)
- Amir Erfani
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
| | | | | | | | | | | | | | - Xiaoyu Yang
- Merck Research LaboratoriesKenilworthNJ07033USA
| | - Apoorv Shanker
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Harvard Medical School Initiative for RNA MedicineBostonMA02215USA
| |
Collapse
|
15
|
Wang H, Ke B, Wang W, Guo J, Ying W, Ma S, Jiang H. A novel method for the component identification of human blood products: Mass spectrometric analysis of human fibrinogen digested after SDS-PAGE in-gel digestion. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123718. [PMID: 37327516 DOI: 10.1016/j.jchromb.2023.123718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 06/18/2023]
Abstract
Human fibrinogen, as a blood product of special origin, is relatively simple to prepare and purify. Therefore, completely isolating and removing the relevant impurity proteins is difficult. Further, which impurity protein components are present is not clear. In this study, human fibrinogen products from seven enterprises were collected from the market, and the presence of impurity proteins was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Subsequently, the major 12 impurity proteins were identified and screened by in-gel enzymolysis mass spectrometry, and 7 major impurity proteins with different peptide coverage were identified by enzyme-linked immunosorbent assay, in agreement with the mass spectrometry results. The seven major impurity proteins included fibronectin, plasminogen, F-XIII, F-VIII, complement factor H, cystatin-A, and α-2-macroglobulin. The final test results were in the range of undetectable to 50.94 µg/mL, with correspondingly low levels of impurity proteins between different companies and a manageable risk. Moreover, we found that these impurity proteins existed in the form of polymers, which might also be an important cause of adverse reactions. This study established a protein identification technique applicable to fibrinogen products, which provided new ideas for studying the protein composition of blood products. In addition, it provided a new means of testing for companies to monitor the flow of proteomic fractions and improve the purification yield and product quality. It laid the foundation for reducing the risk of clinical adverse reactions.
Collapse
Affiliation(s)
- Haonan Wang
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Binbin Ke
- Hubei Institute for Drug Control, Wuhan, Hubei, China
| | - Wenxi Wang
- Hubei Institute for Drug Control, Wuhan, Hubei, China
| | - Jianghong Guo
- Hubei Institute for Drug Control, Wuhan, Hubei, China
| | - Wang Ying
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China.
| | - Hong Jiang
- Hubei Institute for Drug Control, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Fine J, Wijewardhane PR, Mohideen SDB, Smith K, Bothe JR, Krishnamachari Y, Andrews A, Liu Y, Chopra G. Learning Relationships Between Chemical and Physical Stability for Peptide Drug Development. Pharm Res 2023; 40:701-710. [PMID: 36797504 DOI: 10.1007/s11095-023-03475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE OR OBJECTIVE Chemical and physical stabilities are two key features considered in pharmaceutical development. Chemical stability is typically reported as a combination of potency and degradation product. Moreover, fluorescent reporter Thioflavin-T is commonly used to measure physical stability. Executing stability studies is a lengthy process and requires extensive resources. To reduce the resources and shorten the process for stability studies during the development of a drug product, we introduce a machine learning-based model for predicting the chemical stability over time using both formulation conditions as well as aggregation curves. METHODS In this work, we develop the relationships between the formulation, stability timepoint, and the chemical stability measurements and evaluated the performance on a random test set. We have developed a multilayer perceptron (MLP) for total degradation prediction and a random forest (RF) model for potency. RESULTS The coefficient of determination (R2) of 0.945 and a mean absolute error (MAE) of 0.421 were achieved on the test set when using MLP for total degradation. Similarly, we achieved a R2 of 0.908 and MAE of 1.435 when predicting potency using the RF model. When physical stability measurements are included into the MLP model, the MAE of predicting TD decreases to 0.148. Using a similar strategy for potency prediction, the MAE decreases to 0.705 for the RF model. CONCLUSIONS We conclude two important points: first, chemical stability can be modeled using machine learning techniques and second there is a relationship between the physical stability of a peptide and its chemical stability.
Collapse
Affiliation(s)
- Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | - Katelyn Smith
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Jameson R Bothe
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Yogita Krishnamachari
- Sterile and Specialty Products, Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Alexandra Andrews
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Yong Liu
- Tango Therapeutics, Boston, MA, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science (by courtesy), Purdue University, West Lafayette, NJ, USA.
| |
Collapse
|
17
|
Zhou X, Sinkjær AW, Zhang M, Pinholt HD, Nielsen HM, Hatzakis NS, van de Weert M, Foderà V. Heterogeneous and Surface-Catalyzed Amyloid Aggregation Monitored by Spatially Resolved Fluorescence and Single Molecule Microscopy. J Phys Chem Lett 2023; 14:912-919. [PMID: 36669144 DOI: 10.1021/acs.jpclett.2c03400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amyloid aggregation is associated with many diseases and may also occur in therapeutic protein formulations. Addition of co-solutes is a key strategy to modulate the stability of proteins in pharmaceutical formulations and select inhibitors for drug design in the context of diseases. However, the heterogeneous nature of this multicomponent system in terms of structures and mechanisms poses a number of challenges for the analysis of the chemical reaction. Using insulin as protein system and polysorbate 80 as co-solute, we combine a spatially resolved fluorescence approach with single molecule microscopy and machine learning methods to kinetically disentangle the different contributions from multiple species within a single aggregation experiment. We link the presence of interfaces to the degree of heterogeneity of the aggregation kinetics and retrieve the rate constants and underlying mechanisms for single aggregation events. Importantly, we report that the mechanism of inhibition of the self-assembly process depends on the details of the growth pathways of otherwise macroscopically identical species. This information can only be accessed by the analysis of single aggregate events, suggesting our method as a general tool for a comprehensive physicochemical characterization of self-assembly reactions.
Collapse
Affiliation(s)
- Xin Zhou
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Wilgaard Sinkjær
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Min Zhang
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Henrik Dahl Pinholt
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hanne Mørck Nielsen
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Marco van de Weert
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Vito Foderà
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Evaluation of a Raman Chemometric Method for Detecting Protein Structural Conformational Changes in Solution. J Pharm Sci 2023; 112:573-586. [PMID: 36152698 DOI: 10.1016/j.xphs.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 01/18/2023]
Abstract
Raman scattering shows promise as a powerful routine tool, to determine both secondary and the smaller tertiary structural changes that precede aggregation in both solutions and solids. A method was developed utilizing principal component analysis (PCA) of Raman spectra for detection of small, but meaningful, pH induced changes in tertiary protein structure linked to aggregate formation using α-lactalbumin solutions as a model. The sample preparation and spectral parameters, were optimized for a bulk Raman probe. Analysis of large regions (600-1850 cm-1) yielded principal component (PC) scores useful for semi-quantitative comparison of protein conformation between formulations. PC loadings corresponded to specific structural peaks known to change with solution pH. PCA of circular dichroism (CD) spectra of dilute solutions yielded similar results. Sucrose is a common formulation excipient with a Raman spectrum that overlaps many protein peaks. With sucrose in the protein solution, the ability of PCA to discern protein structural changes from the Raman spectra was somewhat reduced. Analysis of a more limited spectral region (1530-1780 cm-1) with negligible sucrose spectral contribution improved the discrimination of protein conformational states. The new Raman method accurately distinguished differences in protein structure in concentrated solutions. The long-term goal is to explore Raman characterization as a routine monitoring tool of protein stability in both solution and solid states.
Collapse
|
19
|
Kopp MRG, Grigolato F, Zürcher D, Das TK, Chou D, Wuchner K, Arosio P. Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J Pharm Sci 2023; 112:377-385. [PMID: 36223809 DOI: 10.1016/j.xphs.2022.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023]
Abstract
Protein stability against aggregation is a major quality concern for the production of safe and effective biopharmaceuticals. Amongst the different drivers of protein aggregation, increasing evidence indicates that interactions between proteins and interfaces represent a major risk factor for the formation of protein aggregates in aqueous solutions. Potentially harmful surfaces relevant to biologics manufacturing and storage include air-water and silicone oil-water interfaces as well as materials from different processing units, storage containers, and delivery devices. The impact of some of these surfaces, for instance originating from impurities, can be difficult to predict and control. Moreover, aggregate formation may additionally be complicated by the simultaneous presence of interfacial, hydrodynamic and mechanical stresses, whose contributions may be difficult to deconvolute. As a consequence, it remains difficult to identify the key chemical and physical determinants and define appropriate analytical methods to monitor and predict protein instability at these interfaces. In this review, we first discuss the main mechanisms of surface-induced protein aggregation. We then review the types of contact materials identified as potentially harmful or detected as potential triggers of proteinaceous particle formation in formulations and discuss proposed mitigation strategies. Finally, we present current methods to probe surface-induced instabilities, which represent a starting point towards assays that can be implemented in early-stage screening and formulation development of biologics.
Collapse
Affiliation(s)
- Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Dauer K, Werner C, Lindenblatt D, Wagner KG. Impact of process stress on protein stability in highly-loaded solid protein/PEG formulations from small-scale melt extrusion. Int J Pharm X 2022; 5:100154. [PMID: 36632069 PMCID: PMC9826855 DOI: 10.1016/j.ijpx.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
As protein-based therapeutics often exhibit a limited stability in liquid formulations, there is a growing interest in the development of solid protein formulations due to improved protein stability in the solid state. We used small-scale (<3 g) ram and twin-screw extrusion for the solid stabilization of proteins (Lysozyme, BSA, and human insulin) in PEG-matrices. Protein stability after extrusion was systematically investigated using ss-DSC, ss-FTIR, CD spectroscopy, SEM-EDX, SEC, RP-HPLC, and in case of Lysozyme an activity assay. The applied analytical methods offered an accurate assessment of protein stability in extrudates, enabling the comparison of different melt extrusion formulations and process parameters (e.g., shear stress levels, screw configurations, residence times). Lysozyme was implemented as a model protein and was completely recovered in its active form after extrusion. Differences seen between Lysozyme- and BSA- or human insulin-loaded extrudates indicated that melt extrusion could have an impact on the conformational stability. In particular, BSA and human insulin were more susceptible to heat exposure and shear stress compared to Lysozyme, where shear stress was the dominant parameter. Consequently, ram extrusion led to less conformational changes compared to TSE. Ram extrusion showed good protein particle distribution resulting in the preferred method to prepare highly-loaded solid protein formulations.
Collapse
Key Words
- BSA, bovine serum albumin
- BSE, backscattered electron
- CD, circular dichroism
- DSC, Differential Scanning Calorimetry
- EDX, energy-dispersive X-ray detector
- EVA, Ethylene-vinyl acetate
- FTIR, Fourier transformation infrared spectroscopy
- HME, hot-melt extrusion
- HMWS, high molecular weight species
- Hot-melt extrusion
- PEG, polyethylene glycol
- PEO, polyethylene oxide
- PLGA, Poly Lactic-co-Glycolic Acid
- Protein stability
- SEM, scanning electron microscopy
- Small-scale
- Solid-state characterization
- TSE, twin-screw extrusion
- ss, solid-state
Collapse
Affiliation(s)
- Katharina Dauer
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
| | - Christian Werner
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Dirk Lindenblatt
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Karl Gerhard Wagner
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
- Corresponding author at: University of Bonn, Department of Pharmaceutics, 53121 Bonn, Germany.
| |
Collapse
|
21
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
22
|
Ai Y, Gunawardena HP, Li X, Kim YI, Dewald HD, Chen H. Standard-Free Absolute Quantitation of Antibody Deamidation Degradation and Host Cell Proteins by Coulometric Mass Spectrometry. Anal Chem 2022; 94:12490-12499. [PMID: 36018377 PMCID: PMC10492508 DOI: 10.1021/acs.analchem.2c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteomic absolute quantitation strategies mainly rely on the use of synthetic stable isotope-labeled peptides or proteins as internal standards, which are highly costly and time-consuming to synthesize. To circumvent this limitation, we recently developed a coulometric mass spectrometry (CMS) approach for absolute quantitation of proteins without the use of standards, based on the electrochemical oxidation of oxidizable surrogate peptides, followed by mass spectrometry measurement of the peptide oxidation yield. Previously, CMS was only applied for single-protein quantitation. In this study, first, we demonstrated absolute quantitation of multiple proteins in a mixture (e.g., β-lactoglobulin B, α-lactalbumin, and carbonic anhydrase) by CMS in one run, without using any standards. The CMS quantitation result was validated with a traditional isotope dilution method. Second, CMS can be used for absolute quantitation of a low-level target protein in a mixture; for instance, 500 ppm of PLBL2, a problematic host cell protein (HCP), in the presence of a highly abundant monoclonal antibody (mAb) was successfully quantified by CMS with no use of standards. Third, taking one step further, this study demonstrated the unprecedented quantitative analysis of deamidated peptide products arising from the mAb heavy chain deamidation reaction. In particular, absolute quantitation of the deamidation succinimide intermediate which had not been performed before due to the lack of standard was conducted by CMS, for the first time. Overall, our data suggest that CMS has potential utilities for quantitative proteomics and biotherapeutic drug discovery.
Collapse
Affiliation(s)
- Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Xuanwen Li
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yong-Ick Kim
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Howard D Dewald
- Department of Chemistry and Biochemistry, Ohio University, Chemistry Building, 133 University Terrace, Athens, Ohio 45701, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
23
|
Tran CH, Saha R, Blanco C, Bagchi D, Chen IA. Modulation of α-Synuclein Aggregation In Vitro by a DNA Aptamer. Biochemistry 2022; 61:1757-1765. [PMID: 35994742 PMCID: PMC9454088 DOI: 10.1021/acs.biochem.2c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation is an important problem for human health and biotechnology, with consequences in areas ranging from neurodegenerative diseases to protein production yields. Methods to modulate protein aggregation are therefore essential. One suggested method to modulate protein aggregation is the use of nucleic acid aptamers, that is, single-stranded nucleic acids that have been selected to specifically bind to a target. Previous studies in some systems have demonstrated that aptamers may inhibit protein aggregation, including for α-synuclein, a protein implicated in synucleinopathies. However, the mechanisms by which aptamers might affect or modulate aggregation have not been fully determined. In this study, we investigated the effect of an aptamer that binds α-synuclein oligomer, T-SO508, on α-synuclein aggregation in vitro using thioflavin T to monitor aggregation kinetics, and we performed atomic force microscopy, transmission electron microscopy, and analytical ultracentrifugation to characterize intermediate structures. The results indicated that T-SO508, but not control DNA sequences, extends the lag phase of aggregation and stabilizes formation of a small non-fibrillar aggregate complex. Attempts to use the aptamer-induced complexes to seed fibril formation did not in fact accelerate aggregation, indicating that these structures are off-pathway for aggregation. This study highlights a potential mechanism by which aptamers may modulate the aggregation properties of proteins.
Collapse
Affiliation(s)
- Claire H Tran
- Program in Biomolecular Sciences and Engineering, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ranajay Saha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90024, United States
| | - Celia Blanco
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90024, United States
| | - Damayanti Bagchi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90024, United States
| | - Irene A Chen
- Program in Biomolecular Sciences and Engineering, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90024, United States
| |
Collapse
|
24
|
Sheng H, Zhao Y, Long X, Chen L, Li B, Fei Y, Mi L, Ma J. Visible Particle Identification Using Raman Spectroscopy and Machine Learning. AAPS PharmSciTech 2022; 23:186. [PMID: 35790644 DOI: 10.1208/s12249-022-02335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Visible particle identification is a crucial prerequisite step for process improvement and control during the manufacturing of injectable biotherapeutic drug products. Raman spectroscopy is a technology with several advantages for particle identification including high chemical sensitivity, minimal sample manipulation, and applicability to aqueous solutions. However, considerable effort and experience are required to extract and interpret Raman spectral data. In this study, we applied machine learning algorithms to analyze Raman spectral data for visible particle identification in order to minimize expert support and improve data analysis accuracy. We manually prepared ten types of particle standard solutions to simulate the particle types typically observed during manufacturing and established a Raman spectral library with accurate peak assignments for the visible particles. Five classification algorithms were trained using visible particle Raman spectral data. All models had high prediction accuracy of >98% for all types of visible particles. Our results demonstrate that the combination of Raman spectroscopy and machine learning can provide a simple and accurate data analysis approach for visible particle identification.
Collapse
Affiliation(s)
- Han Sheng
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yinping Zhao
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xiangan Long
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Liwen Chen
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.,Ruidge Biotech Co. Ltd., No. 888, Huanhu West 2nd Road, Lin-Gang Special Area, China (Shanghai) Pilot Free Trade Zone, Shanghai, 200131, China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dong Nanhu Road, Changchun, Jilin, 130033, China
| | - Yiyan Fei
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lan Mi
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jiong Ma
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China. .,Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China. .,Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
25
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
26
|
Zhou X, Fennema Galparsoro D, Østergaard Madsen A, Vetri V, van de Weert M, Mørck Nielsen H, Foderà V. Polysorbate 80 controls Morphology, structure and stability of human insulin Amyloid-Like spherulites. J Colloid Interface Sci 2022; 606:1928-1939. [PMID: 34695760 DOI: 10.1016/j.jcis.2021.09.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Amyloid protein aggregates are not only associated with neurodegenerative diseases and may also occur as unwanted by-products in protein-based therapeutics. Surfactants are often employed to stabilize protein formulations and reduce the risk of aggregation. However, surfactants alter protein-protein interactions and may thus modulate the physicochemical characteristics of any aggregates formed. Human insulin aggregation was induced at low pH in the presence of varying concentrations of the surfactant polysorbate 80. Various spectroscopic and imaging methods were used to study the aggregation kinetics, as well as structure and morphology of the formed aggregates. Molecular dynamics simulations were employed to investigate the initial interaction between the surfactant and insulin. Addition of polysorbate 80 slowed down, but did not prevent, aggregation of insulin. Amyloid spherulites formed under all conditions, with a higher content of intermolecular beta-sheets in the presence of the surfactant above its critical micelle concentration. In addition, a denser packing was observed, leading to a more stable aggregate. Molecular dynamics simulations suggested a tendency for insulin to form dimers in the presence of the surfactant, indicating a change in protein-protein interactions. It is thus shown that surfactants not only alter aggregation kinetics, but also affect physicochemical properties of any aggregates formed.
Collapse
Affiliation(s)
- Xin Zhou
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Dirk Fennema Galparsoro
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Ed. 18, Palermo 90128, Italy
| | - Anders Østergaard Madsen
- Manufacturing and Materials, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Ed. 18, Palermo 90128, Italy.
| | - Marco van de Weert
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Hanne Mørck Nielsen
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Vito Foderà
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
27
|
Das TK, Chou DK, Jiskoot W, Arosio P. Nucleation in protein aggregation in biotherapeutic development: a look into the heart of the event. J Pharm Sci 2022; 111:951-959. [DOI: 10.1016/j.xphs.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
|
28
|
Irudayanathan FJ, Zarzar J, Lin J, Izadi S. Deciphering deamidation and isomerization in therapeutic proteins: Effect of neighboring residue. MAbs 2022; 14:2143006. [PMID: 36377085 PMCID: PMC9673968 DOI: 10.1080/19420862.2022.2143006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Deamidation of asparagine (Asn) and isomerization of aspartic acid (Asp) residues are among the most commonly observed spontaneous post-translational modifications (PTMs) in proteins. Understanding and predicting a protein sequence's propensity for such PTMs can help expedite protein therapeutic discovery and development. In this study, we used proton-affinity calculations with semi-empirical quantum mechanics and microsecond long equilibrium molecular dynamics simulations to investigate mechanistic roles of structural conformation and chemical environment in dictating spontaneous degradation of Asn and Asp residues in 131 clinical-stage therapeutic antibodies. Backbone secondary structure, side-chain rotamer conformation and solvent accessibility were found to be key molecular indicators of Asp isomerization and Asn deamidation. Comparative analysis of backbone dihedral angles along with N-H proton affinity calculations provides a mechanistic explanation for the strong influence of the identity of the n + 1 residue on the rate of Asn/Asp degradation. With these findings, we propose a minimalistic physics-based classification model that can be leveraged to predict deamidation and isomerization propensity of proteins.
Collapse
Affiliation(s)
| | - Jonathan Zarzar
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States
| | - Jasper Lin
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States
| | - Saeed Izadi
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States,CONTACT Saeed Izadi Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States
| |
Collapse
|
29
|
Linkuvienė V, Ross EL, Crawford L, Weiser SE, Man D, Kay S, Kolhe P, Carpenter JF. Effects of transportation of IV bags containing protein formulations via hospital pneumatic tube system: Particle characterization by multiple methods. J Pharm Sci 2022; 111:1024-1039. [DOI: 10.1016/j.xphs.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
|
30
|
Narayanan H, Dingfelder F, Condado Morales I, Patel B, Heding KE, Bjelke JR, Egebjerg T, Butté A, Sokolov M, Lorenzen N, Arosio P. Design of Biopharmaceutical Formulations Accelerated by Machine Learning. Mol Pharm 2021; 18:3843-3853. [PMID: 34519511 DOI: 10.1021/acs.molpharmaceut.1c00469] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In addition to activity, successful biological drugs must exhibit a series of suitable developability properties, which depend on both protein sequence and buffer composition. In the context of this high-dimensional optimization problem, advanced algorithms from the domain of machine learning are highly beneficial in complementing analytical screening and rational design. Here, we propose a Bayesian optimization algorithm to accelerate the design of biopharmaceutical formulations. We demonstrate the power of this approach by identifying the formulation that optimizes the thermal stability of three tandem single-chain Fv variants within 25 experiments, a number which is less than one-third of the experiments that would be required by a classical DoE method and several orders of magnitude smaller compared to detailed experimental analysis of full combinatorial space. We further show the advantage of this method over conventional approaches to efficiently transfer historical information as prior knowledge for the development of new biologics or when new buffer agents are available. Moreover, we highlight the benefit of our technique in engineering multiple biophysical properties by simultaneously optimizing both thermal and interface stabilities. This optimization minimizes the amount of surfactant in the formulation, which is important to decrease the risks associated with corresponding degradation processes. Overall, this method can provide high speed of converging to optimal conditions, the ability to transfer prior knowledge, and the identification of new nonlinear combinations of excipients. We envision that these features can lead to a considerable acceleration in formulation design and to parallelization of operations during drug development.
Collapse
Affiliation(s)
- Harini Narayanan
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Fabian Dingfelder
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.,Department of Biophysics and Injectable Formulation, Global Research Technologies, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Itzel Condado Morales
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.,Department of Biophysics and Injectable Formulation, Global Research Technologies, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Bhargav Patel
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Kristine Enemærke Heding
- Department of Biophysics and Injectable Formulation, Global Research Technologies, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Jais Rose Bjelke
- Department of Purification Technologies, Global Research Technologies, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Thomas Egebjerg
- Department of Mammalian Expression, Global Research Technologies, Novo Nordisk A/S, Måløv 2760, Denmark
| | | | | | - Nikolai Lorenzen
- Department of Biophysics and Injectable Formulation, Global Research Technologies, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Schöneich C. Photo-induced fragmentation of tyrosine side chains in IgG4-Fc: Effect of protein sequence, conformation and glycan structure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
32
|
Füssl F, Barry CS, Pugh KM, Chooi KP, Vijayakrishnan B, Kang GD, von Bulow C, Howard PW, Bones J. Simultaneous monitoring of multiple attributes of pyrrolobenzodiazepine antibody-drug conjugates by size exclusion chromatography - high resolution mass spectrometry. J Pharm Biomed Anal 2021; 205:114287. [PMID: 34385015 DOI: 10.1016/j.jpba.2021.114287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 07/24/2021] [Indexed: 11/24/2022]
Abstract
Antibody-drug conjugates (ADCs) are an emerging class of oncology treatments combining the unique specificity of monoclonal antibodies with the highly cytotoxic properties of small molecule compounds. Pyrrolobenzodiazepines (PBDs) are highly potent agents capable of inhibiting cellular DNA replication which leads to apoptosis. To ensure efficacy and patient safety upon administration of such toxic and heterogeneous molecules, their structure and quality attributes must be closely monitored. Size exclusion chromatography (SEC) is a powerful, fast and robust tool for the separation of compounds varying in molecular weight. When using volatile components in the chromatographic mobile phase, SEC has also been shown to be amenable for interfacing to mass spectrometry, providing potential for reliable identification of protein isoforms across the size variants present. Here, we present a SEC-MS method developed for the characterisation of PBD-based ADCs on the intact molecular level. We demonstrate that information on ADC monomers such as the glycoform distribution and the average drug-antibody ratio (DAR) can be obtained in 15 minutes of analysis time. Qualitative and quantitative information on low and high molecular weight impurities such as aggregates and fragments, fundamental for critical quality attribute analysis of biopharmaceuticals, can be generated simultaneously. SEC-MS enables the characterisation of multiple product quality attributes of complex biotherapeutics at the same time.
Collapse
Affiliation(s)
- Florian Füssl
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Conor S Barry
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Kathryn M Pugh
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - K Phin Chooi
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Balakumar Vijayakrishnan
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Gyoung-Dong Kang
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Christina von Bulow
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Philip W Howard
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Jonathan Bones
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
33
|
Ditani AS, Mallick PP, Anup N, Tambe V, Polaka S, Sengupta P, Rajpoot K, Tekade RK. Biosimilars accessible in the market for the treatment of cancer. J Control Release 2021; 336:112-129. [PMID: 34126171 DOI: 10.1016/j.jconrel.2021.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022]
Abstract
Biosimilars are the biological product clinically identical to a biologic reference standard regarding their strength, purity, and safety. A large segment of biosimilars has been developed for the treatment of cancer. This review aims to discuss various facets of biosimilars and explicates on biosimilars accessible in the market for cancer clinical intervention. It also illustrates the outcomes of recent clinical trial studies concerning biosimilars. Further, it also crosstalk the safety profiles, regulatory approval requirements, and allied challenges therein. The work will be of significant interest to researchers working in the field of biologics and biosimilars.
Collapse
Affiliation(s)
- Aayushi S Ditani
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Pragyan Paramita Mallick
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Neelima Anup
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Suryanarayana Polaka
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Kuldeep Rajpoot
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
34
|
Erfani A, Hanna A, Zarrintaj P, Manouchehri S, Weigandt K, Aichele CP, Ramsey JD. Biodegradable zwitterionic poly(carboxybetaine) microgel for sustained delivery of antibodies with extended stability and preserved function. SOFT MATTER 2021; 17:5349-5361. [PMID: 33954314 DOI: 10.1039/d1sm00154j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many recent innovative treatments are based on monoclonal antibodies (mAbs) and other protein therapies. Nevertheless, sustained subcutaneous, oral or pulmonary delivery of such therapeutics is limited by the poor stability, short half-life, and non-specific interactions between the antibody (Ab) and delivery vehicle. Protein stabilizers (osmolytes) such as carboxybetaine can prevent non-specific interactions within proteins. In this work, a biodegradable zwitterionic poly(carboxybetaine), pCB, based microgel covalently crosslinked with tetra(ethylene glycol) diacrylate (TTEGDA) was synthesized for Ab encapsulation. The resulting microgels were characterized via FTIR, diffusion NMR, small-angle neutron scattering (SANS), and cell culture studies. The microgels were found to contain up to 97.5% water content and showed excellent degradability that can be tuned with crosslinking density. Cell compatibility of the microgel was studied by assessing the toxicity and immunogenicity in vitro. Cells exposed to microgel showed complete viability and no pro-inflammatory secretion of interleukin 6 (IL6) or tumor necrosis factor-alpha (TNFα). Microgel was loaded with Immunoglobulin G (as a model Ab), using a post-fabrication loading technique, and Ab sustained release from microgels of varying crosslinking densities was studied. The released Abs (especially from the high crosslinked microgels) proved to be completely active and able to bind with Ab receptors. This study opens a new horizon for scientists to use such a platform for local delivery of Abs to the desired target with minimized non-specific interactions.
Collapse
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Abanoub Hanna
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Katie Weigandt
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20889-6102, USA
| | - Clint P Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
35
|
Enzyme-Responsive Nanoparticles and Coatings Made from Alginate/Peptide Ciprofloxacin Conjugates as Drug Release System. Antibiotics (Basel) 2021; 10:antibiotics10060653. [PMID: 34072352 PMCID: PMC8226786 DOI: 10.3390/antibiotics10060653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Infection-controlled release of antibacterial agents is of great importance, particularly for the control of peri-implant infections in the postoperative phase. Polymers containing antibiotics bound via enzymatically cleavable linkers could provide access to drug release systems that could accomplish this. Dispersions of nanogels were prepared by ionotropic gelation of alginate with poly-l-lysine, which was conjugated with ciprofloxacin as model drug via a copper-free 1,3-dipolar cycloaddition (click reaction). The nanogels are stable in dispersion and form films which are stable in aqueous environments. However, both the nanogels and the layers are degraded in the presence of an enzyme and the ciprofloxacin is released. The efficacy of the released drug against Staphylococcus aureus is negatively affected by the residues of the linker. Both the acyl modification of the amine nitrogen in ciprofloxacin and the sterically very demanding linker group with three annellated rings could be responsible for this. However the basic feasibility of the principle for enzyme-triggered release of drugs was successfully demonstrated.
Collapse
|
36
|
Castro LS, Lobo GS, Pereira P, Freire MG, Neves MC, Pedro AQ. Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation. Vaccines (Basel) 2021; 9:328. [PMID: 33915863 PMCID: PMC8065594 DOI: 10.3390/vaccines9040328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, and multiple sclerosis. Given their relevance and sustained market share, this review provides an overview on the evolution of interferon manufacture, comprising their production, purification, and formulation stages. Remarkable developments achieved in the last decades are herein discussed in three main sections: (i) an upstream stage, including genetically engineered genes, vectors, and hosts, and optimization of culture conditions (culture media, induction temperature, type and concentration of inducer, induction regimens, and scale); (ii) a downstream stage, focusing on single- and multiple-step chromatography, and emerging alternatives (e.g., aqueous two-phase systems); and (iii) formulation and delivery, providing an overview of improved bioactivities and extended half-lives and targeted delivery to the site of action. This review ends with an outlook and foreseeable prospects for underdeveloped aspects of biopharma research involving human interferons.
Collapse
Affiliation(s)
- Leonor S. Castro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Guilherme S. Lobo
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Patrícia Pereira
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal;
| | - Mara G. Freire
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Márcia C. Neves
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Augusto Q. Pedro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| |
Collapse
|
37
|
Ahanger IA, Bashir S, Parray ZA, Alajmi MF, Hussain A, Ahmad F, Hassan MI, Islam A, Sharma A. Rationalizing the Role of Monosodium Glutamate in the Protein Aggregation Through Biophysical Approaches: Potential Impact on Neurodegeneration. Front Neurosci 2021; 15:636454. [PMID: 33746704 PMCID: PMC7969894 DOI: 10.3389/fnins.2021.636454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Monosodium glutamate (MSG) is the world’s most extensively used food additive and is generally recognized as safe according to the FDA. However, it is well reported that MSG is associated with a number of neurological diseases, and in turn, neurological diseases are associated with protein aggregation. This study rationalized the role of MSG in protein aggregation using different biophysical techniques such as absorption, far-UV CD, DLS, and ITC. Kinetic measurements revealed that MSG causes significant enhancement of aggregation of BSA through a nucleation-dependent polymerization mechanism. Also, CTAB-BSA aggregation is enhanced by MSG significantly. MSG-induced BSA aggregation also exhibits the formation of irreversible aggregates, temperature dependence, non-Arrhenius behavior, and enhancement of hydrodynamic diameter. From the isothermal titration calorimetry measurement, the significant endothermic heat of the interaction of BSA-MSG indicates that protein aggregation may be due to the coupling of MSG with the protein. The determined enthalpy change (ΔH) is largely positive, also suggesting an endothermic nature, whereas entropy change (ΔS) is positive and Gibbs free energy change (ΔG) is largely negative, suggesting the spontaneous nature of the interaction. Furthermore, even a low concentration of MSG is involved in the unfolding of the secondary structure of protein with the disappearance of original peaks and the formation of a unique peak in the far-UV CD, which is an attention-grabbing observation. This is the first investigation which links the dietary MSG with protein aggregation and thus will be very instrumental in understanding the mechanism of various MSG-related human physiological as well as neurological diseases.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anurag Sharma
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| |
Collapse
|
38
|
Energetic Dissection of Mab-Specific Reversible Self-Association Reveals Unique Thermodynamic Signatures. Pharm Res 2021; 38:243-255. [PMID: 33604786 DOI: 10.1007/s11095-021-02987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Reversible self-association (RSA) remains a challenge in the development of therapeutic monoclonal antibodies (mAbs). We recently analyzed the energetics of RSA for five IgG mAbs (designated as A-E) under matched conditions and using orthogonal methods. Here we examine the thermodynamics of RSA for two of the mAbs that showed the strongest evidence of RSA (mAbs C and E) to identify underlying mechanisms. METHODS Concentration-dependent dynamic light scattering and sedimentation velocity (SV) studies were carried out for each mAb over a range of temperatures. Because self-association was weak, the SV data were globally analyzed via direct boundary fitting to identify best-fit models, accurately determine interaction energetics, and account for the confounding effects of thermodynamic and hydrodynamic nonideality. RESULTS mAb C undergoes isodesmic self-association at all temperatures examined, with the energetics indicative of an enthalpically-driven reaction offset by a significant entropic penalty. By contrast, mAb E undergoes monomer-dimer self-association, with the reaction being entropically-driven and comprised of only a small enthalpic contribution. CONCLUSIONS Classical interpretations implicate van der Waals interactions and H-bond formation for mAb C RSA, and electrostatic interactions for mAb E. However, noting that RSA is likely coupled to additional equilibria, we also discuss the limitations of such interpretations.
Collapse
|
39
|
Pathak JA, Nugent S, Bender MF, Roberts CJ, Curtis RJ, Douglas JF. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers (Basel) 2021; 13:601. [PMID: 33671342 PMCID: PMC7922252 DOI: 10.3390/polym13040601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range "sticky" interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole-dipole and charge-dipole effects is required to understand the significance of kH from the standpoint of fundamental protein-protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Collapse
Affiliation(s)
- Jai A. Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Sean Nugent
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Michael F. Bender
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Christopher J. Roberts
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Robin J. Curtis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Jack F. Douglas
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8544, USA
| |
Collapse
|
40
|
Erfani A, Zarrintaj P, Seaberg J, Ramsey JD, Aichele CP. Zwitterionic poly(carboxybetaine) microgels for enzyme (chymotrypsin) covalent immobilization with extended stability and activity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA
| | - Payam Zarrintaj
- School of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA
| | - Joshua Seaberg
- School of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA
| | - Joshua D. Ramsey
- School of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA
| | - Clint P. Aichele
- School of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA
| |
Collapse
|
41
|
Watanabe H, Ikoma T, Sotome S, Okawa A. Local administration and enhanced release of bone metabolic antibodies from hydroxyapatite/chondroitin sulfate nanocomposite microparticles using zinc cations. J Mater Chem B 2021; 9:757-766. [PMID: 33325979 DOI: 10.1039/d0tb02050h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a local delivery carrier of bone metabolic proteins, we have previously reported hydroxyapatite/chondroitin sulfate composite microparticles (HAp/ChS) and their formulation method using zinc cations (Zn), and the in vitro release properties of proteins from the microparticles. Herein, we report the release properties of model antibodies such as immunoglobulin (IgG), human IgG (hIgG), and denosumab (Dmab) from HAp/ChS using this formulation method. Adding Zn in the formulation of IgG loaded with HAp/ChS microparticles enhanced the release of antibodies from HAp/ChS in phosphate buffer saline. In addition, the biological activity of Dmab released from HAp/ChS formulated with Zn was significantly higher than that without Zn. These results suggest a possible beneficial effect on the treatment for local bone diseases. The sclerostin monoclonal antibody (Sclmab) promotes fracture healing. We prepared HAp/ChS microparticles loaded with Sclmab and locally administered the microparticles into a drilled hole in the distal femoral bone of young rats. After three weeks, the area of the newly formed osteoid around the drilled hole where HAp/ChS loaded with Sclmab and Zn was locally administered was significantly higher than that observed in the control group (normal saline). Thus, HAp/ChS microparticles and the formulation method of monoclonal antibodies using Zn could be useful in the treatment of local bone diseases.
Collapse
Affiliation(s)
- Hajime Watanabe
- Orthopedics, Akabane Hospital, 2-2-1, Akabane, Kita-ku, Tokyo, 115-0045, Japan
| | | | | | | |
Collapse
|
42
|
Zhao Y, Tang R. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomater 2021; 120:57-80. [PMID: 32629191 DOI: 10.1016/j.actbio.2020.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Biomineralization, a bio-organism controlled mineral formation process, plays an important role in linking biological organisms and mineral materials in nature. Inspired by biomineralization, biomimetic mineralization is used as a bridge tool to integrate biological organisms and functional materials together, which can be beneficial for the development of diversified functional organism-material hybrids. In this review, recent progresses on the techniques of biomimetic mineralization for organism-material combinations are summarized and discussed. Based upon these techniques, the preparations and applications of virus-, prokaryotes-, and eukaryotes-material hybrids have been presented and they demonstrate the great potentials in the fields of vaccine improvement, cell protection, energy production, environmental and biomedical treatments, etc. We suggest that more researches about functional organism and material combination with more biocompatible techniques should be developed to improve the design and applications of specific organism-material hybrids. These rationally designed organism-material hybrids will shed light on the production of "live materials" with more advanced functions in future. STATEMENT OF SIGNIFICANCE: This review summaries the recent attempts on improving biological organisms by their integrations with functional materials, which can be achieved by biomimetic mineralization as the combination tool. The integrated materials, as the artificial shells or organelles, confer diversified functions on the enclosed organisms. The successful constructions of various virus-, prokaryotes-, and eukaryotes-material hybrids have demonstrated the great potentials of the material incorporation strategy in vaccine development, cancer treatment, biological photosynthesis and environment protection etc. The suggested challenges and perspectives indicate more inspirations for the future development of organism-material hybrids.
Collapse
Affiliation(s)
- Yueqi Zhao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China; Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027 China.
| |
Collapse
|
43
|
Arranz-Romera A, Hernandez M, Checa-Casalengua P, Garcia-Layana A, Molina-Martinez IT, Recalde S, Young MJ, Tucker BA, Herrero-Vanrell R, Fernandez-Robredo P, Bravo-Osuna I. A Safe GDNF and GDNF/BDNF Controlled Delivery System Improves Migration in Human Retinal Pigment Epithelial Cells and Survival in Retinal Ganglion Cells: Potential Usefulness in Degenerative Retinal Pathologies. Pharmaceuticals (Basel) 2021; 14:ph14010050. [PMID: 33440745 PMCID: PMC7827036 DOI: 10.3390/ph14010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
We assessed the sustained delivery effect of poly (lactic-co-glycolic) acid (PLGA)/vitamin E (VitE) microspheres (MSs) loaded with glial cell-derived neurotrophic factor (GDNF) alone (GDNF-MSs) or combined with brain-derived neurotrophic factor (BDNF; GDNF/BDNF-MSs) on migration of the human adult retinal pigment epithelial cell-line-19 (ARPE-19) cells, primate choroidal endothelial (RF/6A) cells, and the survival of isolated mouse retinal ganglion cells (RGCs). The morphology of the MSs, particle size, and encapsulation efficiencies of the active substances were evaluated. In vitro release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability, terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labelling (TUNEL) apoptosis, functional wound healing migration (ARPE-19; migration), and (RF/6A; angiogenesis) assays were conducted. The safety of MS intravitreal injection was assessed using hematoxylin and eosin, neuronal nuclei (NeuN) immunolabeling, and TUNEL assays, and RGC in vitro survival was analyzed. MSs delivered GDNF and co-delivered GDNF/BDNF in a sustained manner over 77 days. The BDNF/GDNF combination increased RPE cell migration, whereas no effect was observed on RF/6A. MSs did not alter cell viability, apoptosis was absent in vitro, and RGCs survived in vitro for seven weeks. In mice, retinal toxicity and apoptosis was absent in histologic sections. This delivery strategy could be useful as a potential co-therapy in retinal degenerations and glaucoma, in line with future personalized long-term intravitreal treatment as different amounts (doses) of microparticles can be administered according to patients’ needs.
Collapse
Affiliation(s)
- Alicia Arranz-Romera
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
| | - Maria Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Correspondence: (M.H.); (I.B.-O.)
| | - Patricia Checa-Casalengua
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
| | - Alfredo Garcia-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Irene T. Molina-Martinez
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Michael J. Young
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA;
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - Rocío Herrero-Vanrell
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Irene Bravo-Osuna
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Correspondence: (M.H.); (I.B.-O.)
| |
Collapse
|
44
|
Jiang S, Carroll L, Rasmussen LM, Davies MJ. Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins. Redox Biol 2020; 38:101822. [PMID: 33338920 PMCID: PMC7750407 DOI: 10.1016/j.redox.2020.101822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or binding functions (e.g. receptors). Recent data indicate that disulfides vary markedly with regard to their rate of reaction with two-electron oxidants (e.g. HOCl, ONOOH), with some species being rapidly and readily oxidized. These reactions yielding thiosulfinates that can react further with a thiol to give thiolated products (e.g. glutathionylated proteins with glutathione, GSH). Here we show that these ‘oxidant-mediated thiol-disulfide exchange reactions’ also occur during photo-oxidation reactions involving singlet oxygen (1O2). Reaction of protein disulfides with 1O2 (generated by multiple sensitizers in the presence of visible light and O2), yields reactive intermediates, probably zwitterionic peroxyl adducts or thiosulfinates. Subsequent exposure to GSH, at concentrations down to 2 μM, yields thiolated adducts which have been characterized by both immunoblotting and mass spectrometry. The yield of GSH adducts is enhanced in D2O buffers, and requires the presence of the disulfide bond. This glutathionylation can be diminished by non-enzymatic (e.g. tris-(2-carboxyethyl)phosphine) and enzymatic (glutaredoxin) reducing systems. Photo-oxidation of human plasma and subsequent incubation with GSH yields similar glutathionylated products with these formed primarily on serum albumin and immunoglobulin chains, demonstrating potential in vivo relevance. These reactions provide a novel pathway to the formation of glutathionylated proteins, which are widely recognized as key signaling molecules, via photo-oxidation reactions. Disulfide bonds (DSBs) are critical to protein structure and function. DSBs are rapidly oxidized by singlet oxygen and other oxidants to reactive species. These DSB-derived intermediates react with GSH to give glutathionylated proteins. Glutathionylation can be diminished by reductants, but does not repair DSB damage. Oxidation of human plasma DSBs gives glutathionylated albumin and immunoglobulins.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lars M Rasmussen
- Center for Individualized Medicine in Arterial Diseases (CIMA), Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
45
|
Immunological Evaluation In Vitro of Nanoparticulate Impurities Isolated From Pharmaceutical-Grade Sucrose. J Pharm Sci 2020; 110:952-958. [PMID: 33220239 DOI: 10.1016/j.xphs.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Sucrose is a commonly used stabilizing excipient in protein formulations. However, recent studies have indicated the presence of nanoparticulate impurities (NPIs) in the size range of 100-200 nm in pharmaceutical-grade sucrose. Furthermore, isolated NPIs have been shown to induce protein aggregation when added to monoclonal antibody formulations. Moreover, nanoparticles are popular vaccine delivery systems used to increase the immunogenicity of antigens. Therefore, we hypothesized that NPIs may have immunostimulatory properties. In this study, we evaluated the immunomodulatory effects of NPIs in presence and absence of trastuzumab in vitro with monocyte-derived dendritic cells (moDCs). Exposure of trastuzumab, the model IgG used in this study, to NPIs led to an increase in concentration of proteinaceous particles in the sub-micron range. When added to moDCs, the NPIs alone or in presence of trastuzumab did not affect cell viability or cytotoxicity. Moreover, no significant effect on the expression of surface markers, and cytokine and chemokine production was observed. Our findings showed, surprisingly, no evidence of any immunomodulatory activity of NPIs. As this study was limited to a single IgG formulation and to in vitro immunological read-outs, further work is required to fully understand the immunogenic potential of NPIs.
Collapse
|
46
|
Fang WJ, Liu JW, Zheng HJ, Shen BB, Wang X, Kong Y, Jing ZY, Gao JQ. Protein Sub-Visible Particle and Free Radical formation of a Freeze-Dried Monoclonal Antibody Formulation During Dropping. J Pharm Sci 2020; 110:1625-1634. [PMID: 33049261 DOI: 10.1016/j.xphs.2020.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 01/31/2023]
Abstract
Dropping during shipping and handling of liquid biopharmaceutical formulations has long been known to cause protein degradation and aggregation. On the other hand, accidental dropping of freeze-dried protein formulations is generally considered not a major issue for biopharmaceutical quality. Reports of stability and especially the underling degradation mechanism(s) during shipping and handling of freeze-dried protein formulations were rarely seen in literature. In this manuscript, we report an interesting phenomenon in which repeated dropping of freeze-dried monoclonal antibody X (mAb-X) formulation powder resulted in significant protein sub-visible particles (SbVPs) in the reconstituted liquid as determined by the sensitive particle analyzing technique micro-flow imaging (MFI). Free radicals were observed after repeated dropping by electron paramagnetic resonance (EPR). Formation of SbVPs could be partially inhibited by the free radical scavengers methionine and 3-carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidin-yloxy free radical (CTPO). The amount of free radicals and SbVPs was correlated to the sample temperature during dropping. Therefore we propose that the high temperature formed during dropping was probably the root cause for protein aggregation and free radical formation, which could further cause protein aggregation. Our observations suggest that similar to liquid protein formulations, dropping of freeze-dried protein formulations should also be avoided or mitigated.
Collapse
Affiliation(s)
- Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016 China.
| | - Jia-Wei Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016 China
| | - Hong-Jian Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016 China
| | - Bin-Bin Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016 China
| | - Xinyu Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310013 China
| | - Yi Kong
- The First People's Hospital of Xiaoshan District, Hangzhou, 311200 China
| | - Zhen-Yi Jing
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016 China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
47
|
Long-Term Stability of Anti-Vascular Endothelial Growth Factor (a-VEGF) Biologics Under Physiologically Relevant Conditions and Its Impact on the Development of Long-Acting Delivery Systems. J Pharm Sci 2020; 110:860-870. [PMID: 33031788 DOI: 10.1016/j.xphs.2020.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022]
Abstract
The port delivery system with ranibizumab (PDS) is an investigational long-acting drug delivery system for the continuous release of ranibizumab, an anti-VEGF biologic, in the vitreous humor. The efficacy of the PDS implant relies on the maintenance of long-term drug stability under physiological conditions. Herein, the long-term stability of three anti-VEGF biologics - ranibizumab, bevacizumab and aflibercept - was investigated in phosphate buffered saline (PBS) at 37 °C for several months. Comparison of stability profiles shows that bevacizumab and aflibercept are increasingly prone to aggregation whereas ranibizumab undergoes minimal aggregation. Ranibizumab also shows the smallest loss in antigen binding capacity after long-term incubation in PBS. Even though the aggregated forms of bevacizumab and aflibercept bind to VEGF, the consequences of aggregation on immunogenicity, implant function and efficacy are unknown. These results highlight the importance of maintaining long-term drug stability under physiologically relevant conditions which is necessary for achieving efficacy with an in vivo continuous drug delivery device such as the PDS implant.
Collapse
|
48
|
Kozawa D, Cho SY, Gong X, Nguyen FT, Jin X, Lee MA, Lee H, Zeng A, Xue G, Schacherl J, Gibson S, Vega L, Strano MS. A Fiber Optic Interface Coupled to Nanosensors: Applications to Protein Aggregation and Organic Molecule Quantification. ACS NANO 2020; 14:10141-10152. [PMID: 32667777 DOI: 10.1021/acsnano.0c03417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent nanosensors hold promise to address analytical challenges in the biopharmaceutical industry. The monitoring of therapeutic protein critical quality attributes such as aggregation is a long-standing challenge requiring low detection limits and multiplexing of different product parameters. However, general approaches for interfacing nanosensors to the biopharmaceutical process remain minimally explored to date. Herein, we design and fabricate a integrated fiber optic nanosensor element, measuring sensitivity, response time, and stability for applications to the rapid process monitoring. The fiber optic-nanosensor interface, or optode, consists of label-free nIR fluorescent single-walled carbon nanotube transducers embedded within a protective yet porous hydrogel attached to the end of the fiber waveguide. The optode platform is shown to be capable of differentiating the aggregation status of human immunoglobulin G, reporting the relative fraction of monomers and dimer aggregates with sizes 5.6 and 9.6 nm, respectively, in under 5 min of analysis time. We introduce a lab-on-fiber design with potential for at-line monitoring with integration of 3D-printed miniaturized sensor tips having high mechanical flexibility. A parallel measurement of fluctuations in laser excitation allows for intensity normalization and significantly lower noise level (3.7 times improved) when using lower quality lasers, improving the cost effectiveness of the platform. As an application, we demonstrate the capability of the fully integrated lab-on-fiber system to rapidly monitor various bioanalytes including serotonin, norepinephrine, adrenaline, and hydrogen peroxide, in addition to proteins and their aggregation states. These results in total constitute an effective form factor for nanosensor-based transducers for applications in industrial process monitoring.
Collapse
Affiliation(s)
- Daichi Kozawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Soo-Yeon Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heejin Lee
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Alicia Zeng
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gang Xue
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jeff Schacherl
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Scott Gibson
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Leonela Vega
- Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
Wang S, Liu R, Fu Y, Kao WJ. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin Drug Deliv 2020; 17:1289-1304. [PMID: 32619149 DOI: 10.1080/17425247.2020.1788541] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Drug delivery systems with extended-release profiles are ideal in improving patient compliance with enhanced efficacy. To develop devices capable of a prolonged delivery kinetics, it is crucial to understand the various underlying mechanisms contributing to extended drug release and the impact thereof on modulating the long-term performance of such systems in a practical application environment. AREAS COVERED This review article intends to provide a comprehensive summary of release mechanisms in extended-release drug delivery systems, particularly polymer-based systems; however, other material types will also be mentioned. Selected current research in the delivery of small molecule drugs and macromolecules is highlighted. Emphasis is placed on the combined impact of different release mechanisms and drug properties on the long-term release kinetics in vitro and in vivo. EXPERT OPINION The development of drug delivery systems over an extended duration is promising but also challenging when considering the numerous interrelated delivery-related parameters. Achieving a well-controlled extended drug release requires advanced techniques to minimize burst release and lag phase, a better understanding of the dynamic interrelationship between drug properties and release profiles over time, and a thorough elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.
Collapse
Affiliation(s)
- Shuying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University , Chengdu, China
| | - Renhe Liu
- Global Health Drug Discovery Institute , Beijing, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University , Chengdu, China
| | - W John Kao
- Department of Industrial and Manufacturing Systems Engineering, Biomedical Engineering Programme, Chemical Biology Centre, and Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, China
| |
Collapse
|
50
|
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020; 326:419-441. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
This review highlights how hydrogel formulations can improve intravitreal protein delivery to the posterior segment of the eye in order to increase therapeutic outcome and patient compliance. Several therapeutic proteins have shown excellent clinical successes for the treatment of various intraocular diseases. However, drug delivery to the posterior segment of the eye faces significant challenges due to multiple physiological barriers preventing drugs from reaching the retina, among which intravitreal protein instability and rapid clearance from the site of injection. Hence, frequent injections are required to maintain therapeutic levels. Moreover, because the world population ages, the number of patients suffering from ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) is increasing and causing increased health care costs. Therefore, there is a growing need for suitable delivery systems able to tackle the current limitations in retinal protein delivery, which also may reduce costs. Hydrogels have shown to be promising delivery systems capable of sustaining release of therapeutic proteins and thus extending their local presence. Here, an extensive overview of preclinically developed intravitreal hydrogels is provided with attention to the rational design of clinically useful intravitreal systems. The currently used polymers, crosslinking mechanisms, in vitro/in vivo models and advancements are discussed together with the limitations and future perspective of these biomaterials.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|