1
|
Luo C, Yu Y, Meng G, Yuan J. Slowly digestible starch impairs growth performance of broiler chickens offered low-protein diet supplemental higher amino acid densities by inhibiting the utilization of intestinal amino acid. J Anim Sci Biotechnol 2025; 16:12. [PMID: 39844287 PMCID: PMC11755884 DOI: 10.1186/s40104-024-01142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/08/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The synchronized absorption of amino acids (AAs) and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body. The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion, transport and metabolism, breast muscle protein metabolism, and growth in grower broilers. A total of 720 21-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments, each with 6 replicates of 10 birds. The treatments comprised 3 different starch [corn: control, cassava: rapidly digestible starch (RDS), and pea: slowly digestible starch (SDS)] with 4 different AA levels [based on standardized ileal digestible lysine (SID Lys), 0.92%, 1.02% (as the standard), 1.12% and 1.22%]. RESULTS An interaction between dietary starch sources and SID Lys levels significantly affected breast muscle yield (P = 0.033). RDS and SDS diets, or SID Lys levels of 0.92%, 1.02%, or 1.22%, significantly decreased the breast muscle yield of broilers in contrast to the corn starch diet with 1.12% SID Lys (P = 0.033). The SID Lys levels of 1.12% and 1.22% markedly improved body weight (BW), body weight gain (BWG) from 22 to 42 days of age, and mRNA expression of y+LAT1 and mTOR while reducing feed intake (FI) and feed/gain ratio (F/G) compared to the 0.92% SID Lys level (P < 0.05). The SDS diet significantly decreased BW and BWG of broilers from 22 to 42 days of age, distal ileal starch digestibility, jejunal amylase and chymotrypsin activities, and mRNA expression of GLUT2 and y+LAT1 compared to the corn starch diet (P < 0.05). The RDS diet suppressed the breast muscle mass by down-regulating expression of mTOR, S6K1, and eIF4E and up-regulating expression of MuRF, CathepsinB, Atrogin-1, and M-calpain compared to the corn starch diet (P < 0.05). Targeted metabolomics analysis revealed that the SDS diet significantly increased acetyl-CoA and α-ketoglutaric acid levels in the tricarboxylic acid (TCA) cycle (P < 0.05) but decreased the ileal digestibility of Lys, Tyr, Leu, Asp, Ser, Gly, Pro, Arg, Ile, and Val compared to the corn starch group (P < 0.05). CONCLUSION The SDS diet impaired broiler growth by reducing intestinal starch digestibility, which inhibited intestinal AA and glucose absorption and utilization, increased AA oxidation for energy supply, and lowered the efficiency of protein synthesis. Although the RDS diet resulted in growth performance similar to the corn starch diet, it reduced breast muscle mass by inhibiting protein synthesis and promoting degradation.
Collapse
Affiliation(s)
- Caiwei Luo
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Yu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gang Meng
- Ningxia Eppen Biotech Co., Ltd., Ningxia, 750100, China
| | - Jianmin Yuan
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Ssemanda JN, den Besten HMW, van Wagenberg CPA, Zwietering MH. Quantitative assessment of food safety interventions for Campylobacter spp. and Salmonella spp. along the chicken meat supply chain in Burkina Faso and Ethiopia. Int J Food Microbiol 2024; 415:110637. [PMID: 38422679 DOI: 10.1016/j.ijfoodmicro.2024.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Rural and small-scale chicken farming is a major source of income in most African countries, and chicken meat is an important source of nutrients. However, chicken meat can be contaminated with Campylobacter spp. and Salmonella spp., pathogens with a high reported burden of foodborne illnesses. Therefore, it is essential to control these pathogens in chicken meat. Quantitative microbial risk assessments (QMRA) can aid the development of effective food safety control measures and are currently lacking in chicken meat supply chains in the African context. In this study, we developed stochastic QMRA models for Salmonella spp. and Campylobacter spp. in the chicken meat supply chain in Burkina Faso and Ethiopia employing the modular process risk model in @Risk software. The study scope covered chicken farming, transport, slaughtering, consumer handling, and consumption. Effectiveness of candidate interventions was assessed against baseline models' outputs, which showed that the mean annual Campylobacter spp. risk estimates were 6482 cases of illness per 100,000 persons and 164 disability adjusted life years (DALYs) per 100,000 persons in Burkina Faso, and 12,145 cases and 272 DALYs per 100,000 persons in Ethiopia. For Salmonella spp., mean annual estimates were 2713 cases and 1212 DALYs per 100,000 persons in Burkina Faso, and 4745 cases and 432 DALYs per 100,000 persons in Ethiopia. Combining interventions (improved hand washing plus designated kitchen utensils plus improved cooking) resulted in 75 % risk reduction in Burkina Faso at restaurants and 93 to 94 % in Ethiopia at homes for both Salmonella spp. and Campylobacter spp. For Burkina Faso, adding good hygienic slaughter practices at the market to these combined interventions led to over 91 % microbial risk reduction. Interventions that involved multiple food safety actions in a particular step of the supply chain or combining different interventions from different steps of the supply chain resulted in more risk reduction than individual action interventions. Overall, this study demonstrates how diverse and scanty food supply chain information can be applied in QMRA to provide estimates that can be used to stimulate risk-based food safety action in African countries.
Collapse
Affiliation(s)
- James Noah Ssemanda
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands
| | - Coen P A van Wagenberg
- Wageningen Economic Research, Wageningen University & Research, 2970, 2502 LS, The Hague, the Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
3
|
Ncho CM, Goel A, Gupta V, Jeong CM, Jung JY, Ha SY, Yang JK, Choi YH. Dietary supplementation of solubles from shredded, steam-exploded pine particles modulates cecal microbiome composition in broiler chickens. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:971-988. [PMID: 37969336 PMCID: PMC10640930 DOI: 10.5187/jast.2023.e15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 11/17/2023]
Abstract
This study evaluated the effects of supplementing solubles from shredded, steam-exploded pine particles (SSPP) on growth performances, plasma biochemicals, and microbial composition in broilers. The birds were reared for 28 days and fed basal diets with or without the inclusion of SSPP from 8 days old. There were a total of three dietary treatments supplemented with 0% (0% SSPP), 0.1% (0.1% SSPP) and 0.4% (0.4% SSPP) SSPP in basal diets. Supplementation of SSPP did not significantly affect growth or plasma biochemicals, but there was a clear indication of diet-induced microbial shifts. Beta-diversity analysis revealed SSPP supplementation-related clustering (ANOSIM: r = 0.31, p < 0.01), with an overall lower (PERMDISP: p < 0.05) individual dispersion in comparison to the control group. In addition, the proportions of the Bacteroides were increased, and the relative abundances of the families Vallitaleaceae, Defluviitaleaceae, Clostridiaceae, and the genera Butyricicoccus and Anaerofilum (p < 0.05) were significantly higher in the 0.4% SSPP group than in the control group. Furthermore, the linear discriminant analysis effect size (LEfSe) also showed that beneficial bacteria such as Ruminococcus albus and Butyricicoccus pullicaecorum were identified as microbial biomarkers of dietary SSPP inclusion (p < 0.05; | LDA effect size | > 2.0). Finally, network analysis showed that strong positive correlations were established among microbial species belonging to the class Clostridia, whereas Erysipelotrichia and Bacteroidia were mostly negatively correlated with Clostridia. Taken together, the results suggested that SSPP supplementation modulates the cecal microbial composition of broilers toward a "healthier" profile.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Vaishali Gupta
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Division of Applied Life Sciences (BK21
Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Division of Applied Life Sciences (BK21
Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
- Department of Environmental Materials
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Si-Young Ha
- Department of Environmental Materials
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
- Department of Environmental Materials
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
- Division of Applied Life Sciences (BK21
Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
4
|
Farid N, Waheed A, Motwani S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023; 9:e17021. [PMID: 37484319 PMCID: PMC10361103 DOI: 10.1016/j.heliyon.2023.e17021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
Collapse
Affiliation(s)
- Neha Farid
- Corresponding author. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.
| | | | | |
Collapse
|
5
|
Trung Thong H, Nu Anh Thu L, Viet Duc H. Potential Substitutes of Antibiotics for Swine and Poultry Production. Vet Med Sci 2022. [DOI: 10.5772/intechopen.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Early of the last century, it was detected that antibiotics added to the animal feeds at low doses and for a long time can improve technical performances such as average daily gain and gain-to-feed ratio. Since then, the antibiotics have been used worldwide as feed additives for many decades. At the end of the twentieth century, the consequences of the uses of antibiotics in animal feeds as growth promoters were informed. Since then, many research studies have been done to find other solutions to replace partly or fully to antibiotic as growth promoters (AGPs). Many achievements in finding alternatives to AGPs in which probiotics and direct-fed microorganism, prebiotics, organic acids and their salts, feed enzymes, bacteriophages, herbs, spices, and other plant extractives (phytogenics), mineral and essential oils are included.
Collapse
|
6
|
Ruvalcaba-Gómez JM, Villagrán Z, Valdez-Alarcón JJ, Martínez-Núñez M, Gomez-Godínez LJ, Ruesga-Gutiérrez E, Anaya-Esparza LM, Arteaga-Garibay RI, Villarruel-López A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals (Basel) 2022; 12:102. [PMID: 35011208 PMCID: PMC8749512 DOI: 10.3390/ani12010102] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/04/2023] Open
Abstract
Salmonella spp. is a facultative intracellular pathogen causing localized or systemic infections, involving economic and public health significance, and remains the leading pathogen of food safety concern worldwide, with poultry being the primary transmission vector. Antibiotics have been the main strategy for Salmonella control for many years, which has allowed producers to improve the growth and health of food-producing animals. However, the utilization of antibiotics has been reconsidered since bacterial pathogens have established and shared a variety of antibiotic resistance mechanisms that can quickly increase within microbial communities. The use of alternatives to antibiotics has been recommended and successfully applied in many countries, leading to the core aim of this review, focused on (1) describing the importance of Salmonella infection in poultry and the effects associated with the use of antibiotics for disease control; (2) discussing the use of feeding-based (prebiotics, probiotics, bacterial subproducts, phytobiotics) and non-feeding-based (bacteriophages, in ovo injection, vaccines) strategies in poultry production for Salmonella control; and (3) exploring the use of complementary strategies, highlighting those based on -omics tools, to assess the effects of using the available antibiotic-free alternatives and their role in lowering dependency on the existing antimicrobial substances to manage bacterial infections in poultry effectively.
Collapse
Affiliation(s)
- José Martín Ruvalcaba-Gómez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Jalisco 47600, Mexico; (J.M.R.-G.); (L.J.G.-G.)
| | - Zuamí Villagrán
- Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Jalisco 47600, Mexico; (Z.V.); (E.R.-G.); (L.M.A.-E.)
| | - Juan José Valdez-Alarcón
- Multidisciplinary Center for Biotechnology Studies, Centenary and Meritorious University of Michoacán of San Nicolás de Hidalgo, Michoacán 58893, Mexico;
| | | | - Lorena Jacqueline Gomez-Godínez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Jalisco 47600, Mexico; (J.M.R.-G.); (L.J.G.-G.)
| | - Edmundo Ruesga-Gutiérrez
- Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Jalisco 47600, Mexico; (Z.V.); (E.R.-G.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Jalisco 47600, Mexico; (Z.V.); (E.R.-G.); (L.M.A.-E.)
| | - Ramón Ignacio Arteaga-Garibay
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Jalisco 47600, Mexico; (J.M.R.-G.); (L.J.G.-G.)
| | - Angélica Villarruel-López
- University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Jalisco 44430, Mexico
| |
Collapse
|
7
|
Lone A, Mottawea W, Mehdi Y, Hammami R. Bacteriocinogenic probiotics as an integrated alternative to antibiotics in chicken production - why and how? Crit Rev Food Sci Nutr 2021; 62:8744-8760. [PMID: 34060404 DOI: 10.1080/10408398.2021.1932722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The misuse of antibiotics in the livestock industry has played an important role in the spread of resistant superbugs with severe health implications for humans. With the recent ban on the use of antibiotics in poultry and poultry feed in Canada and the USA, poultry farmers will have to rely on the use of alternatives to antibiotics (such as feed acidifiers, antibodies, bacteriophages, antimicrobial peptides, prebiotics, and probiotics) to maintain the same productivity and health of their livestock. Of particular interest are bacteriocinogenic probiotics, that is, bacterial strains capable of producing bacteriocins that confer health benefits on the host. These bacterial strains have multiple promising features, such as the ability to attach to the host mucosa, colonize, proliferate, and produce advantageous products such as bacteriocins and short-chain fatty acids. These not only affect pathogenic colonization but improve poultry phenotype as well. Bacteriocins are antimicrobial peptides with multiple promising features such as being non-harmful for human and animal consumption, non-disruptive to the host microbiota eubiosis, non-cytotoxic, and non-carcinogenic. Therefore, bacteriocinogenic probiotics are at the forefront to be excellent candidates for effective replacements to antibiotics. While evidence of their safety and effectiveness is accumulating in vitro and in vivo in inhibiting pathogens while promoting animal health, their safety and history of use in livestock remains unclear and requires additional investigations. In the present paper, we review the safety assessment regulations and commercialization policies on existing and novel bacteriocinogenic and bacteriocin products intended to be used in poultry feed as an alternative to antibiotics.
Collapse
Affiliation(s)
- Ayesha Lone
- GUT Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Walid Mottawea
- GUT Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Pharmacy, Department of Microbiology and Immunology, Mansoura University, Mansoura, Egypt
| | - Youcef Mehdi
- Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Riadh Hammami
- GUT Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
8
|
Roque-Borda CA, Pereira LP, Guastalli EAL, Soares NM, Mac-Lean PAB, Salgado DD, Meneguin AB, Chorilli M, Vicente EF. HPMCP-Coated Microcapsules Containing the Ctx(Ile 21)-Ha Antimicrobial Peptide Reduce the Mortality Rate Caused by Resistant Salmonella Enteritidis in Laying Hens. Antibiotics (Basel) 2021; 10:616. [PMID: 34064051 PMCID: PMC8224044 DOI: 10.3390/antibiotics10060616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constant use of synthetic antibiotics as growth promoters can cause bacterial resistance in chicks. Consequently, the use of these drugs has been restricted in different countries. In recent years, antimicrobial peptides have gained relevance due to their minimal capacity for bacterial resistance and does not generate toxic residues that harm the environment and human health. In this study, a Ctx(Ile21)-Ha antimicrobial peptide was employed, due to its previously reported great antimicrobial potential, to evaluate its application effects in laying chicks challenged with Salmonella Enteritidis, resistant to nalidixic acid and spectinomycin. For this, Ctx(Ile21)-Ha was synthesized, microencapsulated and coated with hypromellose phthalate (HPMCP) to be released in the intestine. Two different doses (20 and 40 mg of Ctx(Ile21)-Ha per kg of isoproteic and isoenergetic poultry feed) were included in the chick's food and administered for 28 days. Antimicrobial activity, effect and response as treatment were evaluated. Statistical results were analyzed in detail and indicate that the formulated Ctx(Ile21)-Ha peptide had a positive and significant effect in relation to the reduction of chick mortality in the first days of life. However, there was moderate evidence (p = 0.07), not considered statistically significant, in the differences in laying chick weight between the control and microencapsulation treatment groups as a function of time. Therefore, the microencapsulated Ctx(Ile21)-Ha antimicrobial peptide can be an interesting and promising option in the substitution of conventional antibiotics.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo 14884-900, Brazil;
| | - Larissa Pires Pereira
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | | | - Nilce Maria Soares
- Poultry Health Specialized Laboratory, Biological Institute, Bastos, São Paulo 17690-000, Brazil; (E.A.L.G.); (N.M.S.)
| | - Priscilla Ayleen Bustos Mac-Lean
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | - Douglas D’Alessandro Salgado
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo 14801-902, Brazil; (A.B.M.); (M.C.)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo 14801-902, Brazil; (A.B.M.); (M.C.)
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| |
Collapse
|
9
|
Nguyen TPA, Nguyen TTM, Nguyen NH, Nguyen TN, Dang TTP. Application of yeast surface display system in expression of recombinant pediocin PA-1 in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2020; 65:955-961. [PMID: 32578013 DOI: 10.1007/s12223-020-00804-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Pediocin PA-1 is a bacteriocin that shows strongly anti-microbial activity against some Gram-positive pathogens such as Listeria monocytogenes, Staphylococcus aureus, and Enterococcus faecalis. With the broad inhibitory spectrum as well as high-temperature stability, pediocin has a potential application in the food preservation and pharmaceutical industry. Pediocin has been studied to express in many heterologous expression systems such as Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris as a free peptide. Here we showed in this study a new strategy by using yeast surface display system to produce the anchored pediocin PA-1 on the cell surface of Saccharomyces cerevisiae, which could be used directly as a pediocin resource. We had successfully constructed a recombinant S. cerevisiae W303 strain that could express pediocin PA-1 on the cell surface. The pediocin-expressing yeast could inhibit the growth of Shigella boydii and Shigella flexneri, which have never been reported before for pediocin activity. Besides, the pediocin expression level of the recombinant S. cerevisiae strain was also evaluated in three different media: synthetic defined (SD), basic medium (BM), and fermentation medium (FM). BM medium was shown to give the highest production yield of the recombinant yeast (4.75 ± 0.75 g dry cell weight per 1 L of culture) with the ratio number of the pediocin-expressing cells of 93.46 ± 2.45%. Taken together, the results clearly showed that pediocin can be displayed on yeast cell surface as anchored protein. The application of yeast cell surface system enables a new door of pediocin application on either food or feed industries. Graphical abstract.
Collapse
Affiliation(s)
- Thu Pham Anh Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu St, Dist 5, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thu Thi Minh Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu St, Dist 5, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nghia Hieu Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu St, Dist 5, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tri Nhan Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu St, Dist 5, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thao Thi Phuong Dang
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu St, Dist 5, Ho Chi Minh City, Vietnam. .,Vietnam National University, Ho Chi Minh City, Vietnam. .,Laboratory of Molecular Biotechnology, University of Science, Vietnam National University - Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Kierończyk B, Rawski M, Mikołajczak Z, Świątkiewicz S, Józefiak D. Nisin as a Novel Feed Additive: The Effects on Gut Microbial Modulation and Activity, Histological Parameters, and Growth Performance of Broiler Chickens. Animals (Basel) 2020; 10:E101. [PMID: 31936255 PMCID: PMC7023484 DOI: 10.3390/ani10010101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 01/03/2023] Open
Abstract
Two independent experiments were performed to evaluate the effect of nisin alone or with monensin on gut microbiota, gut microbial activities, and histomorphology (exp 1) and the effect of nisin application in a dose‒response manner on the growth performance of broiler chickens (exp 2). A total of 900 one-day-old female Ross 308 chicks (400, exp 1; 500, exp 2) were randomly distributed to four groups (exp 1; 10 replicate pens per treatment with 10 birds each), i.e., NA, no additives; MON, monensin (100 ppm); NIS, nisin (2700 IU/kg diet); and MON + NIS, a mixture of monensin (100 ppm) and nisin (2700 IU/kg diet); or 5 treatments (exp 2), NA, no additives; NIS100, nisin (100 IU/kg diet); NIS200, nisin (200 IU/kg diet); NIS400, nisin (400 IU/kg diet); and NIS800, nisin (800 IU/kg diet). Nisin supplementation positively affected the microbiota of the gut by reducing potentially pathogenic bacterial populations in the jejunum and ceca. The bacterial fermentation in the jejunum was significantly lowered by nisin addition. The addition of nisin from 100 IU to 800 IU decreased the FCR value over the entire experimental period. According to the results, nisin can be considered a natural dietary supplement for broiler chickens.
Collapse
Affiliation(s)
- Bartosz Kierończyk
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (Z.M.); (D.J.)
| | - Mateusz Rawski
- Division of Inland Fisheries and Aquaculture, Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland;
| | - Zuzanna Mikołajczak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (Z.M.); (D.J.)
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition Physiology, National Research Institute of Animal Production, 32-083 Balice, Poland;
| | - Damian Józefiak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (Z.M.); (D.J.)
| |
Collapse
|
11
|
Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2017; 44:318-335. [DOI: 10.1080/1040841x.2017.1373062] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, Québec, QC, Canada
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon, India
| | | | | | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologie Environnementales Inc, Shawinigan, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Stephane Godbout
- Institut de recherche et de développement en agroenvironnement, Québec, Canada
| |
Collapse
|
12
|
Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 2017; 18:26-45. [DOI: 10.1017/s1466252316000207] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractWith the increase in regulations regarding the use of antibiotic growth promoters and the rise in consumer demand for poultry products from ‘Raised Without Antibiotics’ or ‘No Antibiotics Ever’ flocks, the quest for alternative products or approaches has intensified in recent years. A great deal of research has focused on the development of antibiotic alternatives to maintain or improve poultry health and performance. This review describes the potential for the various alternatives available to increase animal productivity and help poultry perform to their genetic potential under existing commercial conditions. The classes of alternatives described include probiotics, prebiotics, synbiotics, organic acids, enzymes, phytogenics, antimicrobial peptides, hyperimmune egg antibodies, bacteriophages, clay, and metals. A brief description of the mechanism of action, efficacy, and advantages and disadvantages of their uses are also presented. Though the beneficial effects of many of the alternatives developed have been well demonstrated, the general consensus is that these products lack consistency and the results vary greatly from farm to farm. Furthermore, their mode of action needs to be better defined. Optimal combinations of various alternatives coupled with good management and husbandry practices will be the key to maximize performance and maintain animal productivity, while we move forward with the ultimate goal of reducing antibiotic use in the animal industry.
Collapse
|
13
|
Ben Lagha A, Haas B, Gottschalk M, Grenier D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 2017; 48:22. [PMID: 28399941 PMCID: PMC5387282 DOI: 10.1186/s13567-017-0425-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
The routine use of antibiotics in agriculture has contributed to an increase in drug-resistant bacterial pathogens in animals that can potentially be transmitted to humans. In 2000, the World Health Organization identified resistance to antibiotics as one of the most significant global threats to public health and recommended that the use of antibiotics as additives in animal feed be phased out or terminated, particularly those used to treat human infections. Research is currently being carried out to identify alternative antimicrobial compounds for use in animal production. A number of studies, mostly in vitro, have provided evidence indicating that bacteriocins, which are antimicrobial peptides of bacterial origin, may be promising alternatives to conventional antibiotics in poultry and swine production. This review provides an update on bacteriocins and their potential for use in the poultry and swine industries.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada
| | - Bruno Haas
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec-Nature et Technologies (FQRNT), Saint-Hyacinthe, QC, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada. .,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec-Nature et Technologies (FQRNT), Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
14
|
Chen CY, Chen SW, Wang HT. Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:211-220. [PMID: 27383813 PMCID: PMC5205609 DOI: 10.5713/ajas.16.0203] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Objective The aim of the present study was to investigate the effect of yeast with bacteriocin and Lactobacillus cultures (mixture of Lactobacillus agilis BCRC 10436 and Lactobacillus reuteri BCRC 17476) supplements, alone or in combination, on broiler chicken performance. Methods A total of 300, 1-d-old healthy broiler chickens were randomly divided into five treatment groups: i) basal diet (control), ii) basal diet+0.25% yeast (Saccharomyces cerevisiae) (YC), iii) basal diet+0.25% yeast with bacteriocin (BA), iv) basal diet+Lactobacillus cultures (LAB), and v) basal diet +0.25% yeast with bacteriocin+Lactobacillus cultures (BA+LAB). Growth performance, cecal microbiota, cecal fermentation products, and blood biochemistry parameters were determined when chickens were 21 and 35 d old. Results The supplementation of YC, BA, and BA+LAB resulted in a significantly better feed conversion rate (FCR) than that of the control group during 1 to 21 d (p<0.05). The LAB supplementation had a significant effect on the presence of Lactobacillus in the ceca at 35 d. None of the supplements had an effect on relative numbers of L. agilis and L. reuter at 21 d, but the BA supplementation resulted in the decrease of both Lactobacillus strains at 35 d. The BA+LAB supplementation resulted in higher short chain fatty acid (SCFA) in the ceca, but LAB supplementation significantly decreased the SCFA at 35 d (p<0.05). All treatments tended to decrease ammonia concentration in the ceca at 21 d, especially in the LAB treatment group. The BA supplementation alone decreased the triacylglycerol (TG) concentration significantly at 21 d (p<0.05), but the synergistic effect of BA and LAB supplementation was required to reduce the TG concentration at 35 d. The YC supplementation tended to increase the plasma cholesterol at 21 d and 35 d. However, the BA supplementation significantly decreased the cholesterol and low density lipoprotein cholesterol level at 35 d. In conclusion, the BA+LAB supplementation was beneficial to body weight gain and FCR of broiler chickens. Conclusion The effect of BA and LAB supplementation may be a result of the growth of lactic acid bacteria enhancement and physiological characterization of bacteriocin, and it suggests that the BA and LAB supplementation level or Lactobacillus strain selection should be integrated in future supplementation designs.
Collapse
Affiliation(s)
- C Y Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - S W Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - H T Wang
- Department of Animal Science, Chinese Culture University, Taipei 11114, Taiwan
| |
Collapse
|
15
|
Peng Z, Wang A, Xie L, Song W, Wang J, Yin Z, Zhou D, Li F. Use of recombinant porcine β-defensin 2 as a medicated feed additive for weaned piglets. Sci Rep 2016; 6:26790. [PMID: 27225034 PMCID: PMC4880912 DOI: 10.1038/srep26790] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
Post-weaning diarrhoea (PWD) in piglets is associated with colonization of the intestine with bacterial pathogens. In this study, we evaluated the use of recombinant porcine β-defensin 2 (rpBD2) as a medicated feed additive for weaned piglets. The crude extract from the culture supernatant of rpBD2-expressing Pichia pastoris was used as a medicated feed additive for weaned piglets. Dietary treatments included a positive control (basal diet + antibiotics, designated PC) and three different rpBD2 treatments without antibiotics (basal diet supplemented with 1, 5, or 15 g of crude rpBD2/kg basal diet, designated 1PD, 5PD, and 15PD, respectively). Of all the treatments, 5PD had the greatest impact on the weaned piglets. It increased their body weight, average daily weight gain, average daily feed intake, and intestinal villus height in the duodenum and jejunum, and reduced the incidence of PWD. The diversity of the cecal digesta and mucosa microflora was compared between the weaned piglets in the PC and 5PD groups. Piglets treated with 5PD had lower diversity indices and fewer bacterial pathogens in their cecal digesta and mucosa than the PC group. Our results demonstrate that crude rpBD2 could provide an alternative to the traditional antibiotic feed additives given to weaned piglets.
Collapse
Affiliation(s)
- Zixin Peng
- Microbiology Laboratory, China National Center for Food Safety Risk Assessment, No. 7 Panjiayuannanli Road, Chaoyang District, Beijing, 100021, China.,State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Anru Wang
- State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Linqi Xie
- State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Weiping Song
- State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 15 Fengtaidongdajie Street, Fengtai District, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 15 Fengtaidongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 15 Fengtaidongdajie Street, Fengtai District, Beijing, 100071, China
| | - Fengqin Li
- Microbiology Laboratory, China National Center for Food Safety Risk Assessment, No. 7 Panjiayuannanli Road, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
16
|
Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes. Appl Environ Microbiol 2015; 81:7290-304. [PMID: 26253660 DOI: 10.1128/aem.01223-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/02/2015] [Indexed: 11/20/2022] Open
Abstract
Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.
Collapse
|
17
|
Tsai YC, Wang HT, Hsu JT, Li YH, Chen CY. Yeast with bacteriocin from ruminal bacteria enhances glucose utilization, reduces ectopic fat accumulation, and alters cecal microbiota in dietary-induced obese mice. Food Funct 2015; 6:2727-35. [PMID: 26147740 DOI: 10.1039/c5fo00367a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study investigated the effect of yeast with bacteriocin (YB) on the homeostasis of lipid and glucose in diet-induced obese (DIO) mice. Seven-week-old C57BL/6 male mice were fed with a Western diet for 24 weeks to induce obesity. These DIO mice were randomly assigned to 2 groups: obese control (WS) and WYB [0.125 μg YB per g body weight (BW)]. YB was administered daily to the WYB mice in the last 4 weeks, while an equal volume of normal saline was administered to the WS mice. RESULTS YB caused a significant reduction in BW, and in plasma levels of total cholesterol and glucose. Less hepatic lipid accumulation and smaller adipocytes were observed in WYB mice. WYB mice had higher lipid catabolism in liver and adipose tissue. Compared with WS mice, WYB mice had higher glycolysis in the liver and muscles. YB suppressed hepatic GLUT5 expression, altered the composition of cecal microbiota, and also caused more efficient carbohydrate utilization for energy expenditure. CONCLUSION YB resulted in body weight loss, promoted lipid catabolism and carbohydrate utilization; it also modulated cecal microbiota, and therefore partially improved the health of obese mice.
Collapse
Affiliation(s)
- Yi-Chen Tsai
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
18
|
Wang HT, Shih WY, Chen SW, Wang SY. Effect of yeast with bacteriocin from rumen bacteria on laying performance, blood biochemistry, faecal microbiota and egg quality of laying hens. J Anim Physiol Anim Nutr (Berl) 2014; 99:1105-15. [DOI: 10.1111/jpn.12262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023]
Affiliation(s)
- H. T. Wang
- Department of Animal Science; Chinese Culture University; Taipei Taiwan 111 ROC
| | - W. Y. Shih
- Graduate Institute of Biotechnology; Chinese Culture University; Taipei Taiwan 111 ROC
| | - S. W. Chen
- Graduate Institute of Animal Science and Technology; National Taiwan University; Taipei Taiwan 106 ROC
| | - S. Y. Wang
- Department of Animal Science; Chinese Culture University; Taipei Taiwan 111 ROC
- Graduate Institute of Biotechnology; Chinese Culture University; Taipei Taiwan 111 ROC
| |
Collapse
|
19
|
Józefiak D, Kierończyk B, Juśkiewicz J, Zduńczyk Z, Rawski M, Długosz J, Sip A, Højberg O. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One 2013; 8:e85347. [PMID: 24376878 PMCID: PMC3869907 DOI: 10.1371/journal.pone.0085347] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022] Open
Abstract
Due to antimicrobial properties, nisin is one of the most commonly used and investigated bacteriocins for food preservation. Surprisingly, nisin has had limited use in animal feed as well as there are only few reports on its influence on microbial ecology of the gastrointestinal tract (GIT). The present study therefore aimed at investigating effects of dietary nisin on broiler chicken GIT microbial ecology and performance in comparison to salinomycin, the widely used ionophore coccidiostat. In total, 720 one-day-old male Ross 308 chicks were randomly distributed to six experimental groups. The positive control (PC) diet was supplemented with salinomycin (60 mg/kg). The nisin (NI) diets were supplemented with increasing levels (100, 300, 900 and 2700 IU nisin/g, respectively) of the bacteriocin. The negative control (NC) diet contained no additives. At slaughter (35 days of age), activity of specific bacterial enzymes (α- and β-glucosidases, α-galactosidases and β-glucuronidase) in crop, ileum and caeca were significantly higher (P<0.05) in the NC group, and nisin supplementation decreased the enzyme activities to levels observed for the PC group. A similar inhibitory influence on bacterial activity was reflected in the levels of short-chain fatty acids (SCFA) and putrefactive SCFA (PSCFA) in digesta from crop and ileum; no effect was observed in caeca. Counts of Bacteroides and Enterobacteriacae in ileum digesta were significantly (P<0.001) decreased by nisin and salinomycin, but no effects were observed on the counts of Clostridium perfringens, Lactobacillus/Enterococcus and total bacteria. Like salinomycin, nisin supplementation improved broiler growth performance in a dose-dependent manner; compared to the NC group, the body weight gain of the NI₉₀₀ and NI₂₇₀₀ groups was improved by 4.7 and 8.7%, respectively. Our findings suggest that dietary nisin exerts a mode of action similar to salinomycin and could be considered as a dietary supplement for broiler chickens.
Collapse
Affiliation(s)
- Damian Józefiak
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Poznań, Poland
- * E-mail:
| | - Bartosz Kierończyk
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Poznań, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Zenon Zduńczyk
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Mateusz Rawski
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Poznań, Poland
| | - Jakub Długosz
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Ole Højberg
- Department of Animal Science, Arhus University, Tjele, Denmark
| |
Collapse
|
20
|
Hsieh YH, Wang HT, Hsu JT, Chen CY. Albusin B, mass-produced by the Saccharomyces cerevisiae suppression system, enhances lipid utilisation and antioxidant capacity in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2758-2764. [PMID: 23553112 DOI: 10.1002/jsfa.6095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/14/2013] [Accepted: 02/07/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Albusin B (bacteriocin), isolated from Ruminococcus albus 7 and mass-produced by the Saccharomyces cerevisiae expression system, has previously been shown to have a beneficial effect on lipid metabolism in broiler chickens. The present study was focused on the effect of albusin B on lipid metabolism in mice and the potential of albusin B-expressing yeast product (albusin B) as a food supplement. Forty-five BALB/c male mice at 6 weeks of age were each orally administered normal saline (control), yeast (0.125 mg kg(-1) ) or albusin B (0.125 mg kg(-1) ) for 14 days and then euthanised. RESULTS Compared with the control group, albusin B-fed mice exhibited decreased body weight and plasma levels of triglycerides and free fatty acids but increased plasma high-density lipoprotein. Albusin B-fed mice showed higher mRNA expression of fatty acid oxidation in the ileum, heart and liver than control mice. Compared with the control treatment, both yeast and albusin B treatments caused a decrease in mRNA expression of fatty acid synthesis in the heart and liver. Moreover, albusin B suppressed mRNA levels of lipogenesis in the ileum and liver. Albusin B-fed mice exhibited more favourable adenosine triphosphate production and antioxidant capacity in the heart and liver. Albusin B treatment led to a significantly lower respiratory quotient than that of the control, whereas yeast treatment did not. CONCLUSION This study demonstrated a beneficial effect of albusin B on lipid utilisation and anti-atherosclerotic and antioxidant capacities in mice. However, more comprehensive studies are required to elucidate the exact mechanism behind the effect of albusin B.
Collapse
Affiliation(s)
- Ya-Hui Hsieh
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec. 3, Keelung Rd, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Wang HT, Li YH, Chou IP, Hsieh YH, Chen BJ, Chen CY. Albusin B modulates lipid metabolism and increases antioxidant defense in broiler chickens by a proteomic approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:284-292. [PMID: 22729694 DOI: 10.1002/jsfa.5754] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/31/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The present study was designed to investigate the effect of albusin B on lipid metabolism and antioxidant defense in broiler chickens by a proteomic approach. The bacteriocin, albusin B of Ruminococcus albus 7, expressed by yeast was applied in this study. Three dietary treatments, consisting of the basal diet (control), basal diet + albusin B (2.5 g kg⁻¹), and basal diet + nosiheptide (2.5 mg kg⁻¹) were randomly fed to 90 broiler chickens from 1 to 35 days of age, respectively. After 35 days of supplementation, the growth performance, lipid metabolism and antioxidant proteins in the jejunum and liver, intestinal protein profile, and plasma lipid profile were analyzed. RESULTS Broilers with albusin B supplementation had greater body weight than the control broilers. Compared with the control broilers, lower triglyceride and higher high-density lipoprotein concentration in the blood were observed in both broilers with albusin B and nosiheptide supplementation. In addition, albusin B suppressed the mRNA expression of fatty acid binding protein 2 and ATP binding cassette transporter G 5 in the jejunum. In the jejunal protein profiles, four antioxidant proteins were upregulated by albusin B and nosiheptide treatments. The jejunal antioxidant gene expression had a concordant pattern. Hepatic genes related to lipid metabolism, 3-hydroxy-3-methyl-glutaryl CoA reductase, and superoxide dismutase were upregulated by albusin B supplementation. CONCLUSION Albusin B supplementation modulated lipid metabolism and activated systemic antioxidant defense, which might partially contribute to the performance of broiler chickens.
Collapse
Affiliation(s)
- Han-Tsung Wang
- Department of Animal Science, Chinese Culture University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Peinado MJ, Ruiz R, Echávarri A, Rubio LA. Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poult Sci 2012; 91:2148-57. [PMID: 22912448 DOI: 10.3382/ps.2012-02280] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two experiments were carried out to study the effects of dietary supplementation with the garlic (Allium sativum)-derived product propyl propane thiosulfonate (PTS-O) on the intestinal log(10) number of copies of enteropathogens in broiler chickens, together with their intestinal morphology and growth performance. The additive had no significant effect on feed intake at any dose assayed. In experiment 1 (1 to 21 d of age), the BW of chickens fed on 45 mg of PTS-O/kg of diet was higher (P < 0.01) than that of controls. Birds fed on diets containing 45 and 90 mg of PTS-O/kg of diet had improved (P < 0.01) feed:gain ratios compared with the controls at 21 d of age. Ileal villus height, width and surface area, mucosal thickness, and muscular layer thickness were considerably greater (P < 0.01) than control values in chickens fed 90 mg of PTS-O/kg of diet. The Clostridium perfringens log(10) number of counts was not significantly affected at any dose assayed. The inclusion of PTS-O at both concentrations (45 and 90 mg/kg of diet) resulted in lower (P < 0.01) log(10) number of copies of ileal Salmonella spp. and crop enterobacteria and Escherichia coli. The inclusion of 90 mg of PTS-O/kg of diet also resulted in lower (P < 0.01) enterobacteria and E. coli log(10) numbers of copies in the ileal and cecal contents, respectively. The number of copies of Campylobacter jejuni was not significantly affected. In experiment 2 (15 to 28 d of age), lower (P < 0.01) log(10) number of copies of Salmonella spp. and C. jejuni were determined in the ileal contents of chickens fed on diets containing 135 mg of PTS-O/kg of diet. The addition of 90 mg of PTS-O/kg of diet lowered (P < 0.01) only the number of copies of ileal Salmonella spp. This investigation confirmed previous in vitro data and showed that PTS-O lowered the intestinal numbers of enteropathogens and improved the ileal histological structure and productive parameters of broilers.
Collapse
Affiliation(s)
- M J Peinado
- Consejo Superior de Investigaciones Científicas (Fisiología y Bioquímica de la Nutrición Animal, EEZ), Profesor Albareda, 1, 18008 Granada, Spain
| | | | | | | |
Collapse
|