1
|
Lugata JK, Ndunguru SF, Reda GK, Ozsváth XE, Angyal E, Czeglédi L, Gulyás G, Knop R, Oláh J, Mészár Z, Varga R, Csernus B, Szabó C. Methionine sources and genotype affect embryonic intestinal development, antioxidants, tight junctions, and growth-related gene expression in chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:218-230. [PMID: 38362512 PMCID: PMC10867599 DOI: 10.1016/j.aninu.2023.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Methionine (Met) is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth. The present study examined the effect of in ovo injection of DL-Met and L-Met sources and genotypes on chicken embryonic-intestinal development and health. Fertilized eggs of the two genotypes, TETRA-SL layer hybrid (TSL) - commercial layer hybrid and Hungarian Partridge colored hen breed (HPC) - a native genotype, were randomly distributed into four treatments for each genotype. The treatment groups include the following: 1) control non-injected eggs (NoIn); 2) saline-injected (SaIn); 3) DL-Met injected (DLM); and 4) L-Met injected (LM). The in ovo injection was carried out on 17.5 d of embryonic development; after hatching, eight chicks per group were sacrificed, and the jejunum was extracted for analysis. The results showed that both DLM and LM groups had enhanced intestinal development as evidenced by increased villus width, villus height, and villus area (P < 0.05) compared to the control. The DLM group had significantly reduced crypt depth, glutathione content (GSH), glutathione S-transferase 3 alpha (GST3), occludin (OCLN) gene expression and increased villus height to crypt depth ratio in the TSL genotype than the LM group (P < 0.05). The HPC genotype has overexpressed insulin-like growth factor 1 (IGF1) gene, tricellulin (MD2), occludin (OCLN), superoxide dismutase 1 (SOD1), and GST3 genes than the TSL genotype (P < 0.05). In conclusion, these findings showed that in ovo injection of Met enhanced intestinal development, and function, with genotypes responding differently under normal conditions. Genotypes also influenced the expression of intestinal antioxidants, tight junction, and growth-related genes.
Collapse
Affiliation(s)
- James K. Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
| | - Sawadi F. Ndunguru
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gebrehaweria K. Reda
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Xénia E. Ozsváth
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Eszter Angyal
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Debrecen, Hungary
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rita Varga
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
3
|
Madej JP, Graczyk S, Bobrek K, Bajzert J, Gaweł A. Impact of early posthatch feeding on the immune system and selected hematological, biochemical, and hormonal parameters in broiler chickens. Poult Sci 2024; 103:103366. [PMID: 38183879 PMCID: PMC10809208 DOI: 10.1016/j.psj.2023.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024] Open
Abstract
Under commercial conditions, chicks hatch within a 24 to 48 h window, a period known as the hatching window. Subsequently, they undergo various treatments before finally being transported to the broiler farm. These procedures may delay the chicks' access to food and water, sometimes receiving them as late as 72 h after hatching. Previous studies have indicated that fasting during this initial period is detrimental, leading to impaired body growth, compromised immune system response, and hindered muscle development. The objective of this study was to assess the impact of early posthatch feeding on immune system organs and selected hematological, biochemical, and hormonal parameters. The experiment utilized Ross 308 broiler eggs incubated under typical commercial hatchery conditions. The experimental group's eggs were hatched in HatchCare hatchers (HC) with immediate access to feed and water, while the control group's eggs were hatched under standard conditions (ST). Thirty chickens from each group were assessed on the 1st (D1), 7th (D7), 21st (D21), and 35th (D35) day after hatching. On D1, the HC group exhibited lower hemoglobin, hematocrit, and total serum protein values, suggesting that early access to water prevents initial dehydration in newborn chicks. Conversely, the ST group showed a stress reaction on D1 due to feed deprivation, leading to an almost 2-fold higher serum corticosterone concentration compared to the HC group. However, this increase did not result in a significant change in the heterophil/lymphocyte ratio. Furthermore, the HC group displayed an increase in triglyceride concentration and a decrease in HDL concentration on D1. On D7, the HC group exhibited an increased relative weight of the bursa and a higher CD4+ cell number in the cecal tonsil (CT), indicating a more rapid development of these organs resulting from early stimulation of the gastrointestinal tract. However, early feeding did not influence the numbers of Bu-1+, CD4+, and CD8+ cells or the germinal center (GC) areas in the spleen. In conclusion, early feeding contributes to the welfare of newborn chicks by reducing dehydration and stress levels and stimulating the development of gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Stanisław Graczyk
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Kamila Bobrek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland
| | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Andrzej Gaweł
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland.
| |
Collapse
|
4
|
Baykalir Y, Simsek UG, Seker İ, Koseman A, Gul B, Eroglu M, Mutlu SI, Kocyigit S, Karaca M, Demir P. Investigation of the effects of in ovo taurine injection on hatching characteristics and stress reduction potential. Vet Med Sci 2024; 10:e1387. [PMID: 38379352 PMCID: PMC10879721 DOI: 10.1002/vms3.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND In ovo application is the process of administering some nutrients or components into the egg. The main purpose of this application is to ensure that some nutrients are provided to chicks with a short incubation period. Few studies were conducted with taurine in fertile eggs; especially, no observation of hatchability and chick quality has been found. In addition, taurine has an anti-stress impact that fights oxidative factors. OBJECTIVE To assess the hatchability and chick quality after in ovo taurine administration. To determine the stress that may occur as a result of in ovo application and whether taurine has a stress-reducing effect. METHODS A total of 1200 fertile eggs from a 34-week-old broiler breeder (Ross 308) flock were categorized into 4 groups with 75 eggs per replicate: control (uninjected), taurine group (0.30 mL dissolved taurine in distilled water), sham control (sterile distilled water) and perforation (eggs perforated and then waxed). On day 14 of incubation, an in ovo injection was administered to the albumen. Data on hatching parameters and hepatic HSP70 levels were obtained using relevant formulas and western blotting, respectively. RESULTS Control chicks exhibited higher hatchability than other groups, with the taurine group showing the lowest hatchability. The HSP70 levels were the highest in the perforation group compared to the control group. An increase of 21.37% in the taurine group and 83.45% in the sham control group was observed compared to the control group. CONCLUSIONS The findings suggest that in ovo application may induce increased stress, whereas taurine may have positive effects in mitigating the stress caused by in ovo application.
Collapse
Affiliation(s)
- Yasin Baykalir
- Department of Biostatistics, Faculty of Veterinary MedicineBalikesir UniversityBalikesirTurkey
| | - Ulku Gulcihan Simsek
- Department of Animal Science, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| | - İbrahim Seker
- Department of Animal Science, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| | | | - Burcu Gul
- Department of Nursing, Faculty of Health SciencesFirat UniversityElazigTurkey
| | - Mehmet Eroglu
- Agriculture and Rural Development Support InstitutionElazigTurkey
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| | | | - Mehmet Karaca
- The Ministry of Agriculture and ForestryElazigTurkey
| | - Pelin Demir
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| |
Collapse
|
5
|
Lugata JK, Ndunguru SF, Reda GK, Gulyás G, Knop R, Oláh J, Czeglédi L, Szabó C. In ovo feeding of methionine affects antioxidant status and growth-related gene expression of TETRA SL and Hungarian indigenous chicks. Sci Rep 2024; 14:4387. [PMID: 38388769 PMCID: PMC10884004 DOI: 10.1038/s41598-024-54891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Methionine (Met) plays a substantial role in poultry due to its involvement in several pathways, including enhancing antioxidant status and improving growth performance and health status. This study examined how in ovo feeding of Met affects hatching performance, antioxidant status, and hepatic gene expression related to growth and immunity in the TETRA-SL LL hybrid (TSL) commercial layer and Hungarian partridge colored hen (HPC) indigenous genotypes. The eggs were injected with saline, DL-Met, and L-Met on 17.5 days of embryonic development. The results showed that the in ovo feeding of DL-Met significantly increased the hatching weight and ferric reducing the ability of the plasma (FRAP) compared with L-Met. The in ovo feeding of either Met source enhanced the liver health and function and hepatic antioxidant status of the chicks. The genotype's differences were significant; the TSL genotype had better hatching weight, an antioxidant defense system, and downregulated growth-related gene expression than the HPC genotype. In ovo feeding of either Met source enhanced the chicks' health status and antioxidant status, and DL-Met improved the hatching weight of the chicks more than L-Met. Genotype differences were significantly evident in the responses of growth performance, antioxidant status, blood biochemical parameters, and gene expression to Met sources.
Collapse
Affiliation(s)
- James K Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
| | - Sawadi F Ndunguru
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Faculty of Science and Technology, Egyetem Street 1, 4032, Debrecen, Hungary
| | - Gebrehaweria K Reda
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Faculty of Science and Technology, Egyetem Street 1, 4032, Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| |
Collapse
|
6
|
Biesek J, Wlaźlak S, Adamski M. Pheasant hatchability and physicochemical features of egg and extra-embryonic structures depending on eggshell color. Poult Sci 2024; 103:103338. [PMID: 38134460 PMCID: PMC10784316 DOI: 10.1016/j.psj.2023.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The study aimed to analyze the biological value of eggs and extra-embryonic structures affecting pheasant hatchability depending on the eggshell's color. Eggs (1,415) from 62-wk-old pheasants were used. The quality of fresh blue (BL), brown (BR), and green (G) eggs were analyzed. Incubation lasted for 25 d. Thick albumen (d 0, 1, 7, 14), amniotic fluid (d 14, 18), and the yolk (d 0-14) were collected. The pH, viscosity, lysozyme activity, crude protein (CP) content in albumen and amnion, pH, vitelline membrane strength, and fatty acids (FA) content in the yolk were performed. The lowest hatchability was in the BL group, and the highest was in the G group. BL group showed lower eggshell thickness and strength and higher egg weight. In thick albumen and amniotic fluid, the pH decreased with the incubation. In the yolk, there was an increasing trend (P = 0.015), with a decrease on d 18 (P < 0.001). The vitelline membrane strength decreased after 1 d of incubation, excluding BR eggs (P < 0.001). Thick albumen viscosity was higher on d 14 in the G group than in other dates and groups, the lowest in amniotic fluid, and slightly higher in BL and BR eggs. On d 18, amniotic fluid viscosity increased (P < 0.001). The lowest viscosity was indicated in BL eggs (P < 0.001). The lysozyme activity in thick albumen on d 14 was the highest (uniquely in BR and G groups), and the lowest values were found in amniotic fluid on d 14; after four d, the activity increased (P < 0.001). The CP content was higher in the BL group on d 14. In amnion, on d 14, the CP content was the lowest (<1%) and increased on d 18 (P < 0.001). There was a higher FA content (especially UFA) in the G group and a decrease in FA content after d 14 (P < 0.001). It was found that eggs with green eggshells have the highest biological value, and blue eggs are the least useful for incubation.
Collapse
Affiliation(s)
- Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland.
| | - Sebastian Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland
| | - Marek Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland
| |
Collapse
|
7
|
Ncho CM, Bakhsh A, Goel A. In ovo feeding of vitamins in broilers: A comprehensive meta-analysis of hatchability and growth performance. J Anim Physiol Anim Nutr (Berl) 2024; 108:215-225. [PMID: 37697679 DOI: 10.1111/jpn.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
In ovo feeding has been introduced as a cost-effective method to improve hatchability and broiler performance. Specifically, several studies have focused on the impact of vitamins. However, due to variations in experimental conditions across all trials, drawing general conclusions appears challenging. Therefore, we conducted a meta-analysis of 17 published papers, including a maximum of 134 sample size to evaluate the potential effects of in ovo feeding of vitamins in broilers. Studies were retrieved by consulting scientific repositories such as Pubmed, Scopus, Scielo, Web of Science, and Google Scholar. A binary logistic model was used to determine the parameters influencing hatchability. To assess variations in hatchling weight and growth parameters based on the vitamin category, a mixed model analysis of variance was performed, considering the study as a random effect and the vitamin category as a fixed effect. Finally, a linear mixed model was used to develop equations that explain the evolution of growth parameters based on vitamin concentration, volume, and day of injection. The results revealed that for better hatchability, it is preferable to consider heavier eggs (p = 0.007), lower volumes (p = 0.039), and late injection (p = 0.022). Vitamin E was associated with higher hatchling weight (p = 0.037), while vitamin C exhibited the lowest overall feed conversion ratio (p = 0.042). Interactions were observed between the day of injection and vitamin concentration or volume of injection for all studied growth parameters. In summary, the findings of this study suggest that hatchability during in ovo feeding is influenced by technique-related parameters, whereas growth parameters can be modulated by the category of vitamin injected. Consequently, this study lays the groundwork for future investigations assessing the effects of in ovo feeding in broilers, as it highlights the relationship between the methodology and potential outcomes.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Allah Bakhsh
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
8
|
Sharma S, Kulkarni RR, Sharif S, Hassan H, Alizadeh M, Pratt S, Abdelaziz K. In ovo feeding of probiotic lactobacilli differentially alters expression of genes involved in the development and immunological maturation of bursa of Fabricius in pre-hatched chicks. Poult Sci 2024; 103:103237. [PMID: 38011819 PMCID: PMC10801656 DOI: 10.1016/j.psj.2023.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Compelling evidence indicates that immunological maturation of the gut-associated lymphoid tissues, including the bursa of Fabricius, is dependent upon antigenic stimulation post-hatch. In view of these data, the present study investigated the impact of exposing the immune system of chick embryos to antigenic stimuli, via in ovo delivery of poultry-specific lactobacilli, on the expression of genes associated with early bursal development and maturation. Broiler line embryonated eggs were inoculated with 106 and 107 colony-forming units (CFUs) of an individual or a mixture of Lactobacillus species, including L. crispatus (C25), L. animalis (P38), L. acidophilus (P42), and L. reuteri (P43), at embryonic day 18 (ED18). The bursa of Fabricius was collected from pre-hatched chicks (ED20) to measure the expression levels of various immune system genes. The results revealed that L. acidophilus and the mixture of Lactobacillus species at the dose of 106 CFU consistently elicited higher expression of genes responsible for B cell development, differentiation, and survival (B cell activating factor (BAFF), BAFF-receptor (BAFF-R)), and antibody production (interleukin (IL)-10) and diversification (TGF-β). Similar expression patterns were also noted in T helper (Th) cell-associated cytokine genes, including Th1-type cytokines (interferon (IFN)-γ and IL-12p40), Th2-type cytokines (IL-4 and IL-13) and Th17 cytokine (IL-17). Overall, these results suggest that the supplementation of poultry-specific lactobacilli to chick embryos might be beneficial for accelerating the development and immunological maturation of the bursa of Fabricius. However, further studies are required to determine if the changes in gene expression are associated with the developmental trajectory and phenotypes of bursal cells.
Collapse
Affiliation(s)
- Shreeya Sharma
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Scott Pratt
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Khaled Abdelaziz
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
9
|
Zhao M, Li J, Shi Q, Shan H, Liu L, Geng T, Yu L, Gong D. The Effects of In Ovo Feeding of Selenized Glucose on Selenium Concentration and Antioxidant Capacity of Breast Muscle in Neonatal Broilers. Biol Trace Elem Res 2023; 201:5764-5773. [PMID: 36899096 DOI: 10.1007/s12011-023-03611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
This study aims to investigate the impacts of in ovo feeding (IOF) of selenized glucose (SeGlu) on selenium (Se) level and antioxidant capacity of breast muscle in newborn broilers. After candling on 16 day of incubation, a total of 450 eggs were randomly divided into three treatments. On the 17.5th day of incubation, eggs in a control treatment were injected with 0.1 mL of physiological saline (0.75%), while the 2nd group and 3rd group were supplied with 0.1 mL of physiological saline containing 10 μg Se from SeGlu (SeGlu10 group) and 20 μg Se from SeGlu (SeGlu20 group). The results showed that in ovo injection in both SeGlu10 and SeGlu20 increased the Se level and reduced glutathione concentration (GSH) in pectoral muscle of hatchlings (P < 0.05). Compared with the control group, the SeGlu20-treated chicks significantly enhanced the activity of the superoxide dismutase (SOD) and mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1) in breast muscle, while there was upregulation in mRNA expressions of glutathione peroxidase 1 (GPX-1) and thioredoxin reductase 1 (TrxR1) and higher total antioxidant capacity (T-AOC) in SeGlu10 treatment (P < 0.05). However, no significant difference on enzyme activities of glutathione peroxidase (GR), glutathione reductase, thioredoxin reductase, concentration of malondialdehyde, and free radical scavenging ability (FRSA) of superoxide radical (O2-•) and hydroxyl radical (OH•) was observed among the three treatments (P > 0.05). Therefore, IOF of SeGlu enhanced Se deposition in breast muscle of neonatal broilers. In addition, in ovo injection of SeGlu could increase the antioxidant capacity of newborn chicks possibly through upregulating the mRNA expression of GPX1, TrxR1, and NQO1, as well as the SOD activity.
Collapse
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jiahui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Qiao Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Haoshu Shan
- Zhenjiang Animal Disease Prevention and Control Center, Zhenjiang, 212009, People's Republic of China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
10
|
Ayalew H, Wang J, Wu S, Qiu K, Tekeste A, Xu C, Lamesgen D, Cao S, Qi G, Zhang H. Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult Sci 2023; 102:103130. [PMID: 37926011 PMCID: PMC10633051 DOI: 10.1016/j.psj.2023.103130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dessalegn Lamesgen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sumei Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
El Sabry MI, Yalcin S. Factors influencing the development of gastrointestinal tract and nutrient transporters' function during the embryonic life of chickens-A review. J Anim Physiol Anim Nutr (Berl) 2023; 107:1419-1428. [PMID: 37409520 DOI: 10.1111/jpn.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Intestinal morphology and regulation of nutrient transportation genes during the embryonic and early life of chicks influence their body weight and feed conversion ratio through the growing period. The intestine development can be monitored by measuring villus morphology and enzymatic activity and determining the expression of nutrient transporters genes. With the increasing importance of gut development and health in broiler production, considerable research has been directed towards factors affecting intestine development. Thus, this article reviews (1) intestinal development during embryogenesis, and (2) maternal factors, in ovo administration, and incubation conditions that influence intestinal development during embryogenesis. Conclusively, (1) chicks from heavier eggs may have a better-developed intestine than chicks from younger ones, (2) in ovo supplementation with amino acids, minerals, vitamins or a combination of several probiotics and prebiotics stimulates intestine development and increases the expression of intestine mucosal-related genes and (3) the long storage period, improper incubation temperature and imbalanced ventilation can negatively influence intestinal morphology and nutrient transporters gene expression. Finally, understanding the intestine development during embryonic life will enable us to enhance the productivity of broilers.
Collapse
Affiliation(s)
- Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Servet Yalcin
- Department of Animal Science, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
12
|
Ciszewski A, Jarosz Ł, Marek A, Michalak K, Grądzki Z, Kaczmarek B, Rysiak A. Effect of combined in ovo administration of zinc glycine chelate (Zn-Gly) and a multistrain probiotic on the modulation of cellular and humoral immune responses in broiler chickens. Poult Sci 2023; 102:102823. [PMID: 37406438 PMCID: PMC10466233 DOI: 10.1016/j.psj.2023.102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
The aim of the study was to determine the effect of in ovo administration of zinc glycine chelate (Zn-Gly), and a multistrain probiotic on the hatchability and selected parameters of the cellular and humoral immune response of chickens. The study was conducted on 1,400 fertilized eggs from commercial broiler breeders (Ross x Ross 708). Material for the study consisted of peripheral blood and spleens of chicks taken 12 h and 7 d after hatching. The results showed that both combined and single in ovo administration of the multistrain probiotic and zinc glycine chelate significantly reduced hatchability of chicks. The flow cytometry study showed that the highest percentage of CD4+ T cells, CD4+CD25+, and high expression of KUL01 in the serum were obtained in the group supplemented with probiotic and Zn-Gly both 12 h and 7 d after hatching. In birds supplemented with probiotic and zinc chelate, a high percentage of TCRγδ+ cells was found in serum and spleen 12 h after hatching and in serum after 7 d. The percentage of Bu-1A+ lymphocytes in serum and spleen 12 h and 7 d after hatching was the highest in the group supplemented with probiotic and Zn-Gly. The highest expression of CD79A was observed in the group supplemented only with zinc chelate. There were no significant differences in the percentage of CD4+ cells in the spleens of birds in the groups receiving the multistrain probiotic at 12 h after hatching, and after 7 d, the percentage of CD4+ T cells was lower in the experimental groups than in the control group. The percentage of CD8+ cells in the serum of birds after hatching was lower in the group supplemented with multistrain probiotic and Zn-Gly than in the control group, but reached the highest value on d 7 after hatching. The obtained results confirm the strong effect of the combined administration of a multistrain probiotic and Zn-Gly chelate on lymphocyte proliferation and stimulation of cellular immune mechanisms in birds.
Collapse
Affiliation(s)
- Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland.
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Beata Kaczmarek
- Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| |
Collapse
|
13
|
Akosile OA, Kehinde FO, Oni AI, Oke OE. Potential Implication of in ovo Feeding of Phytogenics in Poultry Production. Transl Anim Sci 2023; 7:txad094. [PMID: 37701128 PMCID: PMC10494881 DOI: 10.1093/tas/txad094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023] Open
Abstract
Hatchery's goals include maximizing revenue by achieving high hatchability with day-old birds of excellent quality. The advancement of technology has benefited the poultry sector since breeding and genetics technology have increased the rates of meat maturation in developing birds in a short period of time. Excessive use of in-feed antibiotics has been shown in studies to increase the chance of resistance to human infections. Bacterial resistance and antibiotic residues in animal products raised concerns about using antibiotics as growth promoters, eventually leading to a prohibition on using in-feed antibiotics in most industrialized nations. In ovo technology is a novel method for delivering bioactive chemicals to developing avian embryos. In ovo feeding technologies may provide additional nutrients to the embryos before hatching. The introduction of bioactive compounds has the potential to assist in decreasing and eventually eliminating the problems associated with traditional antibiotic delivery in chicken production. Phytobiotics were advocated as an alternative by researchers and dietitians. So far, several studies have been conducted on the use of phytogenic feed additives in poultry and swine feeding. They have primarily demonstrated that phytobiotics possess antibacterial, antioxidant, anti-inflammatory, and growth-stimulating properties. The antioxidant effect of phytobiotics can improve the stability of animal feed and increase the quality and storage duration of animal products. In general, the existing documentation indicates that phytobiotics improve poultry performance. To effectively and efficiently use the in ovo technique in poultry production and advance research in this area, it is important to have a thorough understanding of its potential as a means of nutrient delivery during the critical stage of incubation, its effects on hatching events and posthatch performance, and the challenges associated with its use. Overall, this review suggests that in ovo feeding of phytobiotics has the potential to improve the antioxidant status and performance of chickens.
Collapse
Affiliation(s)
| | - Festus Olasehinde Kehinde
- Department of Animal and Environmental Biology, Faculty of Natural Science, Kogi State University, Anyigba, Nigeria
| | - Aderanti Ifeoluwa Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
14
|
Goel A, Ncho CM, Gupta V, Choi YH. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. ANIMAL NUTRITION 2023; 13:150-159. [PMID: 37123616 PMCID: PMC10130083 DOI: 10.1016/j.aninu.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Healthy chickens are necessary to meet the ever-increasing demand for poultry meat. Birds are subjected to numerous stressful conditions under commercial rearing systems, including variations in the environmental temperature. However, it is difficult to counter the effects of global warming on the livestock industry. High environmental temperature is a stressful condition that has detrimental effects on growth and production performance, resulting in decreased feed intake, retarded growth, compromised gut health, enhanced oxidative stress, and altered immune responses. Traditional approaches include nutritional modification and housing management to mitigate the harmful effects of hot environments. Currently, broiler chickens are more susceptible to heat stress (HS) than layer chickens because of their high muscle mass and metabolic rate. In this review, we explored the possibility of in ovo manipulation to combat HS in broiler chickens. Given their short lifespan from hatching to market age, embryonic life is thought to be one of the critical periods for achieving these objectives. Chicken embryos can be modulated through either temperature treatment or nourishment to improve thermal tolerance during the rearing phase. We first provided a brief overview of the harmful effects of HS on poultry. An in-depth evaluation was then presented for in ovo feeding and thermal manipulation as emerging strategies to combat the negative effects of HS. Finally, we evaluated a combination of the two methods using the available data. Taken together, these investigations suggest that embryonic manipulation has the potential to confer heat resistance in chickens.
Collapse
|
15
|
Lu P, Morawong T, Molee A, Molee W. L-arginine alters myogenic genes expression but does not affect breast muscle characteristics by in ovo feeding technique in slow-growing chickens. Front Vet Sci 2022; 9:1030873. [PMID: 36590799 PMCID: PMC9794582 DOI: 10.3389/fvets.2022.1030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
In ovo feeding (IOF) of nutrients is a viable method for increasing muscle mass through hyperplasia and hypertrophy. The objective of this study was to evaluate the effects of IOF of L-arginine (Arg) on breast muscle weight, muscle morphology, amino acid profile, and gene expression of muscle development in slow-growing chickens. Four hundred eighty fertilized eggs were randomly divided into two groups: the first group was the non-injected control group, and the second group was the Arg group, injected with 1% Arg (0.5 mL) into the amnion on day 18 of incubation. After hatching, 160 birds from each group were randomly divided into four replicates of 40 birds each. This experiment lasted for 63 days. The results showed that IOF of Arg did not affect (P > 0.05) breast muscle weight, muscle morphology, and mRNA expression of mammalian target of rapamycin (mTOR) signaling pathway in slow-growing chickens. However, the amino acid profile of breast muscle was altered (P < 0.05) on the day of hatching (DOH), day 21 (D21), and day 42 (D42) post-hatch, respectively. Myogenic factor 5 (Myf5) mRNA expression was upregulated (P < 0.05) on D21 post-hatch. Myogenic regulator 4 (MRF4) mRNA expression was increased (P < 0.05) on DOH. And myogenin (MyoG) was increased (P < 0.05) on DOH and D21 post-hatch, in the Arg group compared to the control group. Overall, IOF of 1% Arg improved the expression of myogenic genes but did not influence muscle morphology and BMW. These results indicate that in ovo Arg dosage (0.5 mL/egg) has no adverse effect on breast muscle development of slow-growing chickens.
Collapse
|
16
|
Effect of early feeding of L-arginine and L-threonine on hatchability and post-hatch performance of broiler chicken. Trop Anim Health Prod 2022; 54:380. [DOI: 10.1007/s11250-022-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
|
17
|
Dang DX, Zhou H, Lou Y, Li D. Effects of in ovo feeding of methionine and/or disaccharide on post-hatching breast development, glycogen reserves, nutrients absorption parameters, and jejunum antioxidant indices in geese. Front Vet Sci 2022; 9:944063. [PMID: 36072396 PMCID: PMC9441801 DOI: 10.3389/fvets.2022.944063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of in ovo injection of methionine (Met) and/or disaccharide (DS) on breast muscle and small intestine development, and the aspect of the glycogen contents, digestive enzymes activities, and jejunal antioxidant parameters in geese after incubation. A total of 600 fertilized eggs were used in this study to be employed in a 2 × 2 factorial experiment. Eggs were randomly assigned to 4 groups, 6 replicates per group, and 25 eggs per replicate. Factors in four groups included non-injection, Met injection (5 g/L Met dissolved in 7.5 g/L NaCl), DS injection (25 g/L maltose and 25 g/L sucrose dissolved in 7.5 g/L NaCl), and DS plus Met injection (25 g/L maltose, 25 g/L sucrose, and 5 g/L Met dissolved in 7.5 g/L NaCl). As a result, birth weight, relative weight of breast muscle, diameter of myofiber, glycogen contents, jejunal villus and surface area, and jejunal digestive enzymes activities improved, while liver glucose-6-phosphatase activity decreased, by DS injection. Additionally, DS administration upregulated the expression of myogenic factor-5 (Myf-5) from breast muscle and sodium/glucose cotransporter protein-1 (SGLT-1) from jejunum. In ovo delivery of DS has long-term effects on the improvement of jejunal glucose transporter-2 (GLUT-2) and sucrase-isomaltase expression. In ovo feeding of Met improved the relative weight of breast muscle and small intestine, diameter of myofiber, length of small intestine, jejunal villus width, jejunal sucrase, Na+/K+ATPase and alkaline phosphatase activities, and jejunal glutathione (GSH) concentration, and decreased the jejunal glutathione disulfide (GSSH) and the ratio of GSSG to GSH, in early-life post-hatching. The breast muscle Myf-5 and myostatin expression, jejunal villus height and surface area, jejunal glutathione peroxidase concentration, and the expression of GLUT-2 in jejunum long-term improved by in ovo delivery of Met. Moreover, in ovo feeding of DS plus Met mixture synergistically improved the diameter of myofiber, jejunal villus height and width, jejunal sucrase, and alkaline phosphatase activities in early-life post-hatching, but long-term upregulated the expression of jejunal GLUT-2. Therefore, we concluded that in ovo injection of Met plus DS is an effective way to improve the development of gosling during post-hatching stages.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Desheng Li
| |
Collapse
|
18
|
Arain MA, Nabi F, Marghazani IB, Hassan FU, Soomro H, Kalhoro H, Soomro F, Buzdar JA. In ovo delivery of nutraceuticals improves health status and production performance of poultry birds: a review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2091501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Faiz ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hidayatullah Soomro
- Faculty of Animal Production and Technology, Department of Poultry Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science Sakrand, Sakrand, Pakistan
| | - Hameeda Kalhoro
- Department of Fresh Water Biology and Fisheries, Sindh University Jamshoro, Jamshoro, Pakistan
| | - Feroza Soomro
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| |
Collapse
|
19
|
Kachungwa Lugata J, Oláh J, Ozsváth XE, Knop R, Angyal E, Szabó C. Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1-28 Days of Age. Animals (Basel) 2022; 12:ani12151928. [PMID: 35953916 PMCID: PMC9367603 DOI: 10.3390/ani12151928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The study was carried out to determine whether sources or levels of methionine (Met) affect the health status of Tetra-SL (TSL) chicks by examining growth performance, feather growth, and hematological parameters. A total of ninety-six (96) day-old (44.2 ± 0.18 g lw) TSL chicks were randomly allotted to six treatment groups (three levels for each DL and L-Met source) with four replicates of four chicks each. Chicks were fed ad libitum diets supplemented with 90, 100, and 110% of methionine requirements for four weeks after hatch. The parameters examined are bodyweight (BW), average daily gain (ADG), feather length (FL), and hematological parameters, including: red blood cell (RBC) count, hemoglobin (Hb) concentration in the blood, hematocrit (Ht; %), number of white blood cells (WBC), platelet count, mean corpuscular volume of red blood cells (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), lymphocyte (LYM), mid-range (MID), and granulocyte (GRAN). There was no significant effect of Met sources and levels on BW, ADG, and FL of TSL chicks for the first four weeks of rearing. The RBC, Hb, Ht, WBC, LYM, MID, and GRAN values of TSL chicks were statistically influenced by dietary Met sources and Met levels (p < 0.05). Among the treatment groups, the number of white blood cells (WBC) on 90% DL−Met was the lowest. WBC, RBC, Hb, and Ht were higher from chicks that received 100% DL-Met than all other levels, regardless of the Met sources. The MCV, MCH, and MCHC values were not affected by either Met source or levels or their interactions. Met source and level interactively affected the Ht, WBC, LYM %, and GRAN values of TSL chicks (p < 0.05). The platelet number was affected by Met source only (p < 0.05) with chicks receiving L-Met source having more than twofold higher platelet values than DL-Met source. In conclusion, varying Met levels by ±10% of the requirement does not adversely affect the growth performance, feather growth, and hematological parameters of TSL chicks reared for up to four weeks of age. DL-Met increased the body weight and improved the white blood cells, red blood cells, and hematocrit at 28 days after hatch. DL-Met showed similar biological efficacy as L-Met for body weight and feather growth but not for the hematological parameters.
Collapse
Affiliation(s)
- James Kachungwa Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (X.E.O.); (E.A.)
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Xénia Erika Ozsváth
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (X.E.O.); (E.A.)
- Department of Animal Husbandry, Faculty of Agriculture and Food Science and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Science and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Eszter Angyal
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (X.E.O.); (E.A.)
- Department of Animal Husbandry, Faculty of Agriculture and Food Science and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
- Correspondence:
| |
Collapse
|
20
|
Surugihalli C, Farley LS, Beckford RC, Kamkrathok B, Liu HC, Muralidaran V, Patel K, Porter TE, Sunny NE. Remodeling of Hepatocyte Mitochondrial Metabolism and De Novo Lipogenesis During the Embryonic-to-Neonatal Transition in Chickens. Front Physiol 2022; 13:870451. [PMID: 35530509 PMCID: PMC9068877 DOI: 10.3389/fphys.2022.870451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
Embryonic-to-neonatal development in chicken is characterized by high rates of lipid oxidation in the late-term embryonic liver and high rates of de novo lipogenesis in the neonatal liver. This rapid remodeling of hepatic mitochondrial and cytoplasmic networks occurs without symptoms of hepatocellular stress. Our objective was to characterize the metabolic phenotype of the embryonic and neonatal liver and explore whether these metabolic signatures are preserved in primary cultured hepatocytes. Plasma and liver metabolites were profiled using mass spectrometry based metabolomics on embryonic day 18 (ed18) and neonatal day 3 (nd3). Hepatocytes from ed18 and nd3 were isolated and cultured, and treated with insulin, glucagon, growth hormone and corticosterone to define hormonal responsiveness and determine their impacts on mitochondrial metabolism and lipogenesis. Metabolic profiling illustrated the clear transition from the embryonic liver relying on lipid oxidation to the neonatal liver upregulating de novo lipogenesis. This metabolic phenotype was conserved in the isolated hepatocytes from the embryos and the neonates. Cultured hepatocytes from the neonatal liver also maintained a robust response to insulin and glucagon, as evidenced by their contradictory effects on lipid oxidation and lipogenesis. In summary, primary hepatocytes from the embryonic and neonatal chicken could be a valuable tool to investigate mechanisms regulating hepatic mitochondrial metabolism and de novo lipogenesis.
Collapse
Affiliation(s)
- Chaitra Surugihalli
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Linda S Farley
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Ronique C Beckford
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Boonyarit Kamkrathok
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Hsiao-Ching Liu
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Vaishna Muralidaran
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Kruti Patel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
21
|
Arain MA, Nabi F, Shah QA, Alagawany M, Fazlani SA, Khalid M, Soomro F, Khand FM, Farag MR. The role of early feeding in improving performance and health of poultry: herbs and their derivatives. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2043133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sarfraz Ali Fazlani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, (LUAWMS), Uthal, Pakistan
| | - Muhammad Khalid
- Sindh Institute of Animal Health, Ministry of Livestock and Fisheries, Government of Sindh, Pakistan
| | - Feroza Soomro
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Faiz Muhammad Khand
- Department of Veterinary Surgery, Shaheed Benazir Bhutto, university of veterinary and animal sciences, Sakrand, Pakistan
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
22
|
Nutritional stimulation by in-ovo feeding modulates cellular proliferation and differentiation in the small intestinal epithelium of chicks. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:91-101. [PMID: 34977379 PMCID: PMC8669250 DOI: 10.1016/j.aninu.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Nutritional stimulation of the developing small intestine of chick embryos can be conducted by in-ovo feeding (IOF). We hypothesized that IOF of glutamine and leucine can enhance small intestinal development by promoting proliferation and differentiation of multipotent small intestinal epithelial cells. Broiler embryos (n = 128) were subject to IOF of glutamine (IOF-Gln), leucine (IOF-Leu), NaCl (IOF-NaCl) or no injection (control) at embryonic d 17 (E 17). Multipotent, progenitor and differentiated cells were located and quantified in the small intestinal epithelium between E 17 and d 7 after hatch (D 7) in all treatment groups by immunofluorescence of SRY-box transcription factor 9 (Sox9) and proliferating cell nuclear antigen (PCNA), in-situ hybridization of leucine-rich repeat containing G-protein coupled receptor 5 (Lgr5) and peptide transporter 1 (PepT1) and histochemical goblet cell staining. The effects of IOF treatments at E 19 (48 h post-IOF), in comparison to control embryos, were as follows: total cell counts increased by 40%, 33% and 19%, and multipotent cell counts increased by 52%, 50% and 38%, in IOF-Gln, IOF-Leu and IOF-NaCl embryos, respectively. Only IOF-Gln embryos exhibited a significance, 36% increase in progenitor cell counts. All IOF treatments shifted Lgr5+ stem cell localizations to villus bottoms. The differentiated, PepT1+ region of the villi was 1.9 and 1.3-fold longer in IOF-Gln and IOF-Leu embryos, respectively, while goblet cell densities decreased by 20% in IOF-Gln embryos. Post–hatch, crypt and villi epithelial cell counts were significantly higher IOF-Gln chicks, compared to control chicks (P < 0.05). We conclude IOF of glutamine stimulates small intestinal maturation and functionality during the peri-hatch period by promoting multipotent cell proliferation and differentiation, resulting in enhanced compartmentalization of multipotent and differentiated cell niches and expansions of the absorptive surface area.
Collapse
|
23
|
Effects of methionine and/or disaccharide injected in the amnion of geese on post-hatching pectoral muscle and small intestine development, glycogen reserves, jejunum morphology, and digestive enzymes activities. Poult Sci 2022; 101:101867. [PMID: 35986947 PMCID: PMC9405100 DOI: 10.1016/j.psj.2022.101867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to investigate the effects of in ovo injection of methionine (Met) and/or disaccharide (DS) on post-hatching pectoral muscle and small intestine development, glycogen reserves, jejunum morphology, and jejunum digestive enzymes activities. A total of 600 fertilized eggs containing live embryo from geese were randomly assigned into 4 groups with 6 replicates and 25 eggs per replicate in a completely randomized design employing a 2 × 2 factorial experiment. Factors in 4 groups included noninjection, Met injection (5 g/L Met + 7.5 g/L NaCl), DS injection (25 g/L maltose + 25 g/L sucrose + 7.5 g/L NaCl), or DS plus Met injection (25 g/L maltose + 25 g/L sucrose + 5 g/L Met + 7.5g/L NaCl), respectively. In ovo nutritional injections were performed at day 23 of incubation, and the experiment until d 21 post-hatching. We found that in ovo feeding of Met increased relative weight of pectoral muscle and small intestine, jejunum alkaline phosphatase activities, and jejunum villus height and surface area. DS injection improved the relative weight of pectoral muscle, pectoral and liver glycogen contents, jejunum villus height, width, and surface area, and jejunum sucrase, Na+/K+ATPase, and alkaline phosphatase activities. In addition, Met plus DS injection synergistically improved jejunum villus height and surface area. Therefore, Met plus DS injection is a suitable strategy for improving intestinal parameters in gosling during post-hatching periods.
Collapse
|
24
|
Lu P, Morawong T, Molee A, Molee W. Influences of L-Arginine In Ovo Feeding on the Hatchability, Growth Performance, Antioxidant Capacity, and Meat Quality of Slow-Growing Chickens. Animals (Basel) 2022; 12:ani12030392. [PMID: 35158714 PMCID: PMC8833405 DOI: 10.3390/ani12030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The nutrition and health status of the embryo in the hatching process directly influence the hatchability and chicken performance post-hatch in poultry production. The in ovo feeding (IOF) technique provides a viable way to improve the embryonic development and chicken performance post-hatch. Thus, the hypothesis of this study was that supplementing L-arginine (Arg) into embryos could positively affect the hatchability, growth performance, antioxidant capacity, and meat quality of slow-growing chickens. The results of this study demonstrate that IOF of Arg positively affected the antioxidant capacity of the breast muscle in the starter period, and there was no effect on the hatchability, growth performance, carcass traits, and meat quality. Overall, our findings suggest that IOF of Arg may have beneficial effects on chicken health without compromising the hatchability, subsequent growth, and meat quality. Abstract The aim of this study was to evaluate the effects of in ovo feeding (IOF) of L-arginine (Arg) on the hatchability, growth performance, antioxidant capacity, and meat quality of slow-growing chickens. A total of 480 eggs were randomly divided into a non-injected control group (NC group) and a 1% Arg-injected group (Arg group). On day 18 of incubation, 0.5 mL of Arg solution was injected into the embryonic amnion in the Arg group. Upon hatching, 160 mixed-sex chickens were randomly assigned to two groups, with four replicates per group. This experiment lasted for 63 days. The results showed that the hatchability, growth performance, carcass traits, and meat quality were not significantly different (p > 0.05) between the two groups. However, the malondialdehyde (MDA) content was lower (p < 0.05), and the glutathione (GSH) level was higher (p < 0.05) on day of hatching in the Arg group. The total antioxidant capacity (T-AOC) activity was increased (p < 0.05) on day 21 post-hatch in the Arg group compared to that in the NC group. In conclusion, IOF of Arg increased the antioxidant capacity of the breast muscle in the starter period, which may have a positive effect on health status of slow-growing chickens post-hatch.
Collapse
|
25
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
26
|
Andrade MDFDS, Moreira Filho ALDB, Alves da Silva EF, Silva JHVD, Freitas Neto OCD, de Oliveira CJB, Givisiez PEN. In ovo threonine supplementation affects ileal gene expression of nutrient transporters in broilers inoculated post-hatch with Salmonella Enteritidis. J Anim Physiol Anim Nutr (Berl) 2021; 106:395-402. [PMID: 34958492 DOI: 10.1111/jpn.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The effect of in ovo threonine (Thr) supplementation on the ileal expression of glucose, peptide and amino acid transporters was assessed in Salmonella Enteritidis-challenged broiler chicks. At 17.5 days of incubation, fertile eggs were supplemented in the amniotic fluid with sterile saline or 3.5% threonine. Hatchlings were individually weighed, and Salmonella Enteritidis negative status was confirmed. At 2 days of age, half of the birds of each group were inoculated with sterile nutrient broth or Salmonella Enteritidis inoculum. Relative expression of sodium-dependent glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), di- and tri-peptide transporter 1 (PepT1) and alanine, serine, cysteine, threonine transporter (ASCT1) was assessed at hatch, 2 and 9 days of age, i.e., before inoculation and 7 days post-inoculation (dpi). At 9 days of age (7dpi), threonine increased SGLT1 and GLUT2 expression, whereas GLUT2 expression decreased in Salmonella-challenged birds. There was a significant interaction between threonine and Salmonella for PepT1 and ASCT1. Threonine increased PepT1 expression only in non-challenged birds. In addition, in ovo supplementation increased expression of ASCT1 regardless of post-hatch inoculation; Salmonella inoculation resulted in decreased expression of ASCT1 only in supplemented birds. The results suggest that while intra-amniotic threonine administration in broiler embryos increases the expression of genes related to the absorption of monosaccharides and amino acids, Salmonella challenge may negatively affect the expression of protein related transporters in the ileum of broilers.
Collapse
Affiliation(s)
| | | | | | - José Humberto Vilar da Silva
- Departamento de Ciência Animal, Centro de Ciências Humanas Sociais e Agrárias, Universidade Federal da Paraíba, Bananeiras, Brazil
| | | | - Celso José Bruno de Oliveira
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil.,Global One Health Initiative (GOHi), Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
27
|
Tufarelli V, Ghane F, Shahbazi HR, Slozhenkina M, Gorlov I, Viktoronova FM, Seidavi A, Laudadio V. Effect of in ovo injection of some B-group vitamins on performance of broiler breeders and their progeny. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.2003169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vincenzo Tufarelli
- Department of Deto, Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Farhad Ghane
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hossein Reza Shahbazi
- Department of Animal Science, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Marina Slozhenkina
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, Volgograd, Russia
| | - Ivan Gorlov
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, Volgograd, Russia
| | - Frolova Maria Viktoronova
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, Volgograd, Russia
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Vito Laudadio
- Department of Deto, Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
28
|
Chen MJ, Zhou JY, Chen YJ, Wang XQ, Yan HC, Gao CQ. The in ovo injection of methionine improves intestinal cell proliferation and differentiation in chick embryos by activating the JAK2/STAT3 signaling pathway. ACTA ACUST UNITED AC 2021; 7:1031-1038. [PMID: 34738033 PMCID: PMC8536505 DOI: 10.1016/j.aninu.2021.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
The intestinal health of chick embryos is vital for their life-long growth, and exogenous nutrition intervention may provide sufficient nutrition for embryonic development. In the present study, we investigated the effect of in ovo injection of L-methionine (L-Met) on the intestinal structure and barrier function of chick embryos. There were 4 groups of treatments: the control (CON) group injected with phosphate-buffered saline (PBS) and the other 3 groups injected with 5, 10, and 20 mg L-Met/egg, respectively. The injection was performed on embryonic day 9 (E9), and intestinal samples were collected on the day of hatching for analysis. The results showed that, compared with the CON group, the groups administered an in ovo injection of L-Met increased relative weights of the duodenum, jejunum, and ileum (P < 0.05). Hematoxylin and eosin (H&E) staining showed that the groups injected with 5, 10, and 20 mg L-Met significantly increased villus height and crypt depth (P < 0.05). Moreover, in ovo injection of 10 mg L-Met also increased the transepithelial electrical resistance (TEER) of the jejunum (P < 0.05). Injection with 10 and 20 mg L-Met increased the expression of the tight junction proteins (ZO-1 and claudin-1) and the fluorescence signal intensity of Ki67 and villin proteins (P < 0.05). Further, the protein expression of phospho-Janus kinase 2 (p-JAK2) and phospho-signal transducer and activator of transcription 3 (p-STAT3) was significantly increased by 10 or 20 mg L-Met injection (P < 0.05). In conclusion, the injection of L-Met, especially at a dose of 10 mg, showed beneficial effects on the intestinal integrity of chick embryos due to the activation of the JAK2/STAT3 signaling pathway. Our results may provide new insights for regulating the intestinal development of embryonic chicks and the rapid growth of chicks after hatching.
Collapse
|
29
|
Yang SB, Qin YJ, Ma X, Luan WM, Sun P, Ju AQ, Duan AY, Zhang YN, Zhao DH. Effects of in ovo Injection of Astragalus Polysaccharide on the Intestinal Development and Mucosal Immunity in Broiler Chickens. Front Vet Sci 2021; 8:738816. [PMID: 34527718 PMCID: PMC8435677 DOI: 10.3389/fvets.2021.738816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to examine the effects of in ovo injection of Astragalus polysaccharide (APS) on hatchability, body weight (BW), intestinal histomorphology, the number of IgA+ cells and sIgA content in intestine, and the expression of intestinal immune-related genes in broiler chickens. On day 18 of the incubation, a total of 960 live embryo eggs were weighed and randomly divided into 4 treatment groups: a control group and three APS groups. The eggs in the control group were injected with 0.5 mL physiological saline. The eggs in the APS groups were injected with 3 different amounts of APS in 0.5 mL physiological saline: 1 mg (APSL), 2 mg (APSM) and 4 mg (APSH). The solution was injected into the amnion of each egg. The results showed that in ovo injection of APS did not affect the hatchability but increased the body weight of the 14 d and 21 d chickens, with a significant increase observed in the APSM group (P < 0.05). At most time points, the villus height (VH) was increased (P < 0.05) and the crypt depth (CD) was decreased (P < 0.05) in the small intestine of the broilers, with higher VH/CD ratios in the APSL and APSM groups compared with the control group. The number of IgA+ cells in the mucosa and the secretory immunoglobulin A (sIgA) levels in the intestinal washings were higher in the APSM and APSH groups than in the APSL and control groups. The gene expression levels of interleukin (IL)-2, interleukin (IL)-4, interferon gamma (IFN-γ), and Toll-like receptor (TLR)-4 were significantly enhanced by APS stimulation at most time points (P < 0.05). These results indicated that in ovo injection of APS has the potential of promoting intestinal development and enhancing intestinal mucosal immunity of broiler chickens in the early stage after hatching.
Collapse
Affiliation(s)
- Shu-Bao Yang
- Basic Medical College, Jilin Medical University, Jilin, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yan-Jun Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei-Min Luan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - An-Qi Ju
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ao-Yi Duan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ying-Nan Zhang
- School of Public Health, Jilin Medical University, Jilin, China.,College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Dong-Hai Zhao
- Basic Medical College, Jilin Medical University, Jilin, China
| |
Collapse
|
30
|
ALABI JO, BHANJA SK, FAFIOLU AO, OLUWATOSIN OO, ONAGBESAN OM, MEHRA M, GOEL A. Influence of in ovo threonine on growth performance, immunocompetence and carcass characteristics in broiler chickens. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i12.113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The experiment was conducted to investigate the effect of in ovo threonine (Thr) injection on 18th embryonation day at the broad end of the egg using 24G needle on growth performance, organs development, immunocompetence and carcass yield in broiler chickens. Fertile eggs (n=500) were randomly distributed to 5 groups, viz. (i) uninjected control, sham control (0.5 mL sterile water), Thr @15 mg/egg, Thr @30 mg/egg, and Thr @45 mg/egg. Hatchability was better in chicks treated with 45 mg Thr/egg compared to other Thr-injected groups. In ovo Thr injection had quadratic effect on weight gain (WG) and production index at the 2nd and 3rd weeks. Chicks fed 45 mg Thr/egg had better feed conversion ratio (FCR) at 2nd week compared to other groups while feed intake (FI) was not affected. Thr injected chicks had higher thymus weight (d0), bursa weight (d3), spleen weight (d3 and d7) whereas quadratic effect were observed on weights of bursa, thymus and spleen at d21. In ovo Thr administration improved (group-wise, linear or quadratic) the relative weights of gizzard, intestine, and liver at hatch, proventriculus at d7, as well as intestine and liver at d21. No significant difference was recorded for humoral and cell mediated immune response following in ovo Thr injection. Carcass traits of broiler chickens were not influenced by in ovo Thr administration, except breast meat which slightly differs, among the treatment groups. The results of this study suggested that in ovo Thr can improve growth performance, digestive and immune organs development at the early age.
Collapse
|
31
|
Ncho CM, Goel A, Jeong CM, Youssouf M, Choi YH. In Ovo Injection of GABA Can Help Body Weight Gain at Hatch, Increase Chick Weight to Egg Weight Ratio, and Improve Broiler Heat Resistance. Animals (Basel) 2021; 11:ani11051364. [PMID: 34064864 PMCID: PMC8151094 DOI: 10.3390/ani11051364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Heat stress is a vital issue that causes severe losses to the poultry industry. A partly developed thermoregulatory mechanism during the embryonic phase is emphasized to manipulate embryos for achieving thermotolerance during rearing. The present study was conducted firstly to standardize the dosage for an in ovo manipulation, and the selective dose was used to evaluate its effects on early-age heat-stressed (HS) broilers. HS induces cholesterol while an antioxidant acts as a first line of defense under stress. However, 5% GABA supplementation had a higher hatchling weight and chick weight to egg weight ratio (CWEWR). We selected a 10% GABA dosage for HS studies due to its higher antioxidants and lower cholesterol values in hatchlings. In ovo, 10% GABA supplementation significantly increased total antioxidant capacity and reduced malondialdehyde levels, hepatic mRNA levels of HSP70, FAS, and L-FABP in broilers when subjected to HS (38 ± 1 °C; 3 h) at ten days of age. This indicates that an in ovo GABA injection improves CWEWR and antioxidant status at hatch, and creates thermotolerance by increasing antioxidant production and downregulating the expression of HSP70 and fatty acid metabolism genes in HS chicks. Abstract The aim of this study was to explore the outcomes of an in ovo GABA injection in broilers challenged with HS. In Experiment 1, 210 Arbor Acres eggs were allocated to five treatments: no-injection, and in ovo injection of 0.6 mL of 0%, 5%, 10%, or 20% of GABA. Hatchling weight and CWEWR were significantly increased in the 5% GABA group. In ovo, injection of 10% GABA solution caused a significant decrease in plasma cholesterol and increased plasma total antioxidant capacity of hatchlings. Experiment 2 was conducted with 126 fertile Arbor Acres eggs distributed into one of two groups. At 17.5 days of incubation, one received no injection, and the other was fed 0.6 mL of 10% GABA. On day 10, one subgroup (4 replicates * 3 birds) from each treatment was submitted to HS (38 ± 1 °C for 3 h) while the other was kept at a thermoneutral temperature (29 ± 1 °C). An in ovo injection of GABA significantly increased total antioxidant capacity, but reduced malondialdehyde levels, hepatic mRNA levels of HSP70, FAS, and L-FABP with HS. In conclusion, an in ovo GABA injection improves CWEWR and antioxidant status at hatch, and enhances antioxidant status while downregulating the expression of HSP70 and fatty acid metabolism-related genes in young chicks under HS.
Collapse
Affiliation(s)
- Chris-Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Mohamed Youssouf
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
32
|
Oke OE, Oyelola OB, Iyasere OS, Njoku CP, Oso AO, Oso OM, Fatoki ST, Bankole KO, Jimoh IO, Sybill NI, Awodipe HO, Adegbite HO, Rahman SA, Daramola JO. In ovo injection of black cumin (Nigella sativa) extract on hatching and post hatch performance of thermally challenged broiler chickens during incubation. Poult Sci 2020; 100:100831. [PMID: 33516471 PMCID: PMC7936144 DOI: 10.1016/j.psj.2020.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/13/2023] Open
Abstract
The objective of this study was to investigate the effects in ovo injection of black cumin (BC) extract on chick's quality and response of thermally challenged broiler chickens. A total of 700 hatching eggs of broiler chickens (Marshall) were assigned to 7 treatments of 100 eggs each and incubated using the conventional protocol (37.8°C) for the first 10 d and then exposed to a high temperature (39.6°C) for 6 h daily from day 10 until day 18 of the incubation. At embryonic day 17.5, the eggs were randomly allotted to 7 treatment groups, viz.: eggs without in ovo injection (WA), eggs injected with 0.9% saline solution (SA), 3 mg ascorbic acid (AA), 2 mg BC (TB), 4 mg BC (FB), 6 mg BC (SB), and 8 mg BC (EB) extracts. Experiment was laid out in a Completely Randomized Design. After hatching, the chicks were reared separately according to in ovo treatments for 8 wk. Data were collected on hatchability, chick quality, internal organs, growth performance, plasma superoxide dismutase, malondialdehyde, and triiodothyronine (T3). The results showed that the hatchability of the eggs in the AA group was similar to that of SB eggs and higher than that of the other treatment groups. The intestinal weights of SB and EB birds were significantly higher (P < 0.05) than those of TB, SA, and WA. The final weights of the birds of SB and AA were higher (P < 0.05) than those of other treatments. The feed conversion ratio of the birds of TB and FB was comparable to that of EB and WA but higher than that of SB and AA. At hatch, the creatinine of the birds in SA and WA was similar to that of EB, FB, and TB but higher (P < 0.05) than that of AA and SB. Also, the plasma malondialdehyde, T3, and superoxide dismutase of SB and AA birds were better (P < 0.05) than those of the control groups. Overall, it was concluded that 6 mg of BC extract improved the antioxidant status and posthatch performance of thermally challenged broiler chickens.
Collapse
Affiliation(s)
- O E Oke
- Centre of Excellence in Avian Science, University of Lome, Lome, Togo; Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria.
| | - O B Oyelola
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - C P Njoku
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A O Oso
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, Nigeria
| | - O M Oso
- Centre of Excellence in Avian Science, University of Lome, Lome, Togo
| | - S T Fatoki
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - K O Bankole
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Jimoh
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - N I Sybill
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - H O Awodipe
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - H O Adegbite
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - S A Rahman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Daramola
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
33
|
Oladokun S, Adewole DI. In ovo delivery of bioactive substances: an alternative to the use of antibiotic growth promoters in poultry production—a review. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Wang JS, Hu HJ, Xu YB, Wang DC, Jiang L, Li KX, Wang YY, Zhan XA. Effects of posthatch feed deprivation on residual yolk absorption, macronutrients synthesis, and organ development in broiler chicks. Poult Sci 2020; 99:5587-5597. [PMID: 33142476 PMCID: PMC7647868 DOI: 10.1016/j.psj.2020.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of the research was to evaluate the dynamic changes of early posthatch starvation on residual yolk absorption, synthesis of macronutrients (protein, lipid, and glycogen), and organ development in broiler chicks. A total of 720 1-day-old chicks (Lingnan Yellow) were randomly assigned to 3 treatments: group A (nonfasted), group B (fasting for 24 h after placement), and group C (fasting for 48 h after placement). The trial lasted for 168 h, and water was provided ad libitum all the time. Sampling was performed at 0, 24, 48, 72, 120, and 168 h. Nonfasting (group A) promoted (P < 0.05) the absorption of amino acids, fatty acids, mineral elements, protein, and maternal antibody in the residual yolk of broiler chicks. The concentration of insulin-like growth factor 1 in plasma and the liver was higher (P < 0.05) in group A. Nonfasting enhanced (P < 0.05) the synthesis of protein and glycogen in the breast muscle and liver; the relative weights of the liver, pancreas, and spleen; and body weight, but retarded (P < 0.05) the synthesis of triglyceride in the liver. The results indicated that nonfasting (group A) after placement promoted the absorption of residual yolk and synthesis of protein and glycogen in the breast muscle and liver, whereas early feed deprivation promoted the synthesis of lipid in the liver. Thereby, nonfasting after placement promoted organ development and body growth of broiler chicks.
Collapse
Affiliation(s)
- J S Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - H J Hu
- Qingdao Vland Biotech Inc., Qingdao 266000, China
| | - Y B Xu
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D C Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - L Jiang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - K X Li
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y Y Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Wang J, Lin J, Wang J, Wu S, Qi G, Zhang H, Song Z. Effects of in ovo feeding of N-acetyl-L-glutamate on early intestinal development and growth performance in broiler chickens. Poult Sci 2020; 99:3583-3593. [PMID: 32616255 PMCID: PMC7597834 DOI: 10.1016/j.psj.2020.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/07/2020] [Accepted: 04/01/2020] [Indexed: 10/28/2022] Open
Abstract
The present study determined the effects of in ovo feeding (IOF) of N-acetyl-L-glutamate (NAG) on early intestinal development and growth performance of broilers. A total of 702 fertile broiler eggs were randomly divided into 3 treatments: 1) non-punctured control group, 2) saline-injected control group, and 3) NAG solution-injected group (1.5 mg/egg). At 17.5 D of incubation, 300 μL of each solution was injected into each egg of injected groups. Results indicated that the hatchability and healthy chicken rate were not affected by NAG injection (P > 0.05). Chicks from NAG solution-injected group had significantly decreased average daily feed intake and feed conversion ratio during 1-14 D than those in the non-punctured control group (P < 0.05). Compared with the non-punctured control group, IOF of NAG significantly increased the density of goblet cells in jejunum at hatch, duodenum at 7 D, and ileum at 14 D; decreased crypt depth in jejunum at hatch; and increased villus height in duodenum and jejunum and villus height:crypt depth ratio in duodenum at 7 D (P < 0.05). The intestinal mRNA expression of Na+-dependent neutral amino acid transporter, peptide transporter, and excitatory amino acid transporter 3 did not differ between groups at 7 or 14 D. However, the mRNA expression level of rBAT in jejunum significantly increased in the NAG solution-injected group than in the non-punctured control group at 7 D (P < 0.05). In conclusion, IOF of NAG (1.5 mg/egg) accelerated the early intestinal development by enhancing intestinal immune and absorption function, thereby positively affecting the feed efficiency for the first 2 wk post-hatch.
Collapse
Affiliation(s)
- Jiguang Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Jing Lin
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Shugeng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Guanghai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Haijun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China.
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, P. R. China.
| |
Collapse
|
36
|
Effect of Amniotic Injection of N-Carbamylglutamate on Meat Quality of Broilers. Animals (Basel) 2020; 10:ani10040576. [PMID: 32235422 PMCID: PMC7222414 DOI: 10.3390/ani10040576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary N-carbamylglutamate (NCG) is a key activator of endogenous arginine production, which plays a vital role in meat quality and antioxidant performance. To the best of our knowledge, there is no study about NCG enhancing the meat quality of broilers. The present research was aimed at exploring the effects of amniotic injection of NCG on meat quality of pectoral muscle in broilers. The data showed that the in ovo feeding (IOF) of NCG enhanced the arginine content, improved the nutritional properties, enhanced the antioxidant capacity, and improved the meat quality in the pectoral muscle of broilers. In summary, amniotic injection of NCG on day 17.5 of incubation could be an effective and novel approach to improving the meat quality of broilers. Abstract The current study was performed to determine the influence of amniotic injection of N-carbamylglutamate (NCG) on meat quality of pectoral muscle in broilers. A total of 792 alive broiler embryos at 17 d of incubation were assigned to three treatments randomly (non-injected control, saline-injected control, or NCG-injected treatment). The two injection treatments were an injection with 0.1 mL 0.85% aseptic saline alone or containing 2 mg NCG per egg at 17.5 d of incubation. After hatching, 72 healthy male chicks were selected from each treatment and housed in six pens for a 42 day feeding study. Pectoral muscles from six 42-day-old broilers were collected from each treatment group and were dissected for meat quality assays. The results showed that arginine contents in pectoral muscle in either free or hydrolytic form in the NCG group were higher than those in the non-injection control group (p < 0.05). In comparison to the non-injection or saline-injection control groups, NCG injection resulted in a lower lactic acid content in pectoral muscle (p < 0.05). Muscular antioxidant capacity in the NCG group was higher, as evidenced by the higher activity of catalase and glutathione peroxidase and lower content of malondialdehyde (p < 0.05). In addition, the group of in ovo administration of NCG had decreased drip loss and increased crude fat content in pectoral muscle in comparison to those of either control group (p < 0.05) and had enhanced crude protein content compared to that of the saline-injection control group (p < 0.05). Briefly, these results indicate that amniotic administration of NCG in the late incubation phase increased the arginine content, improved the nutritional properties, enhanced the antioxidant capacity, and improved the meat quality in the pectoral muscle of broilers. Amniotic injection of NCG may serve as a novel approach to improving the meat quality of broilers.
Collapse
|
37
|
Zhu MK, Zhang XY, Dong XY, Zou XT. Effects of in ovo feeding of L-lysine on hatchability, hatching time, and early post-hatch development in domestic pigeons (Columba livia)1. Poult Sci 2020; 98:5533-5540. [PMID: 31287887 DOI: 10.3382/ps/pez300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/22/2019] [Indexed: 02/02/2023] Open
Abstract
This study was conducted to evaluate the effects of in ovo feeding (IOF) of L-lysine (Lys) on hatchability and development in pigeon neonates. At day 13 of incubation, fertile eggs were injected with 200 μL of sterilized saline (0.75%, SC group), 1% Conc. Lys solution (Lys group, 2.11 mg Lys dissolved in 200 μL of sterilized saline), with controls not injected (NC group). The results showed that IOF of Lys decreased the hatchability (P < 0.05) compared with other groups, whereas the hatching time was not affected among groups. On day 14 of post-hatch (D14), the body weight (BW) of squabs received Lys IOF was increased relative to the NC group (P < 0.05). Squabs in Lys group exhibited higher (P < 0.05) body weight gain (BWG) than other groups from D14 to day of hatch (DOH). Meanwhile, IOF of Lys increased the brain relative weight on DOH (P < 0.05), and organ index of heart, legs, and gizzard on day 7 of post-hatch (D7) compared with other groups. In addition, the length index of duodenum, jejunum, or ileum had no difference between groups, as well as the weight index except the weight index of duodenum in Lys group was higher than that of SC group on DOH. However, squabs received Lys IOF showed lower villus height, crypt depth, and villus surface area of jejunum than NC group (P < 0.05) on DOH, and lower crypt depth than NC and SC groups on D7. The situation was improved by D14, although there was no significant difference in morphometric trait of jejunum between Lys group and NC group, squabs received Lys IOF showed higher villus height, crypt depth, and villus surface area of jejunum than NC group. In conclusion, the present study demonstrates that IOF of Lys has negative effects on hatchability and development of early post-hatch squabs, but the situation will be improved with the growth of age.
Collapse
Affiliation(s)
- M K Zhu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - X Y Zhang
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - X Y Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - X T Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| |
Collapse
|
38
|
Memon S, Kamboh A, Leghari I, Leghari R. Effect of in ovo and post-hatch administration of honey on the immunity and intestinal microflora of growing chickens. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/114139/2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Zhang H, Elliott KEC, Durojaye OA, Fatemi SA, Schilling MW, Peebles ED. Effects of in ovo injection of L-ascorbic acid on growth performance, carcass composition, plasma antioxidant capacity, and meat quality in broiler chickens1,2,3. Poult Sci 2019; 98:3617-3625. [PMID: 30982062 DOI: 10.3382/ps/pez173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/17/2019] [Indexed: 11/20/2022] Open
Abstract
The current study was designed to investigate the effects of the in ovo injection of different dosages of L-ascorbic acid (AA) on posthatch growth performance, carcass characteristics, plasma antioxidant capacity, and meat quality in broiler chickens. A total of 2,220 Ross 708 broiler hatching eggs containing live embryos at 17 D of incubation were subjected to 1 of 6 treatments (trt): non-injected control, saline-injected control, or saline containing 3, 6, 12 or 36 mg of AA. An Inovoject m semi-automatic multi-egg injector was used to inject a 100 μL volume of sterile saline (0.85%) alone or containing the different AA dosage into each egg. After hatch, 14 male hatchlings from each trt group were randomly selected and placed in each of 10 replicate floor pens for growth performance evaluation through 45 D posthatch. Chicks from the 3 and 6 mg AA trt groups had a higher average daily BW gain and a higher feed intake compared to the saline-injected control group during the grower phase. Chicks in the 12 mg AA trt group exhibited a better feed efficiency in the late finisher phase and the entire growing phase than those in the saline-injected control group. Higher thigh and leg percentages were observed in chicks from the 3 and 6 mg AA trt groups than in the non-injected control group. Compared to the non-injected or saline-injected control groups, birds in the 12 mg AA trt group were observed to have a lower plasma malondialdehyde content during the grower and finisher phases, and breast muscle tenderness was elevated in chicks from the 36 mg AA trt group. Taken together, these results suggest that the in ovo injection of AA (3 to 12 mg per egg) have lasting positive effects on the posthatch growth, leg muscle development, and systemic antioxidant capacity of broilers. Higher injected dosages of AA (36 mg per egg) may also have the potential to improve broiler meat quality.
Collapse
Affiliation(s)
- H Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762.,Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - K E C Elliott
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| | - O A Durojaye
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| | - S A Fatemi
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| | - M W Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS 39762
| | - E D Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
40
|
Kolba N, Guo Z, Olivas FM, Mahler GJ, Tako E. Intra-amniotic administration (Gallus gallus) of TiO 2, SiO 2, and ZnO nanoparticles affect brush border membrane functionality and alters gut microflora populations. Food Chem Toxicol 2019; 135:110896. [PMID: 31654707 DOI: 10.1016/j.fct.2019.110896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 02/02/2023]
Abstract
Metal oxide nanoparticles (NP) are increasingly used in the food and agriculture industries, making human consumption nearly unavoidable. The goal of this study was to use the Gallus gallus (broiler chicken) intra-amniotic administration of physiologically relevant concentrations of TiO2, SiO2, and ZnO to better understand the effects of NP exposure on gut health and function. Immediately after hatch, blood, cecum, and small intestine were collected for assessment of iron (Fe)-metabolism, zinc (Zn)-metabolism, brush border membrane (BBM) functional, and pro-inflammatory related proteins gene expression; blood Fe and Zn levels; cecum weight; and the relative abundance of intestinal microflora. NP type, dose, and the presence or absence of minerals was shown to result in altered mineral transporter, BBM functional, and pro-inflammatory gene expression. Metal oxide NP also altered the abundance of intestinal bacterial populations. Overall, the data suggest that the in vivo results align with in vitro studies, and that NP have the potential to negatively affect intestinal functionality and health.
Collapse
Affiliation(s)
- Nikolai Kolba
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhongyuan Guo
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
| | | | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
41
|
Xu QQ, Zhang XY, Zou XT, Dong XY. Effects of in ovo injection of L-histidine on hatch performance and post-hatch development in domestic pigeons (Columba livia). Poult Sci 2019; 98:3194-3203. [PMID: 30753623 DOI: 10.3382/ps/pez046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/24/2019] [Indexed: 01/26/2023] Open
Abstract
The objective of this study was to evaluate the effects of in ovo injection of histidine on hatch performance and post-hatch development by determining hatchability, hatching time, BW gain, carcass traits, and intestinal morphology in domestic pigeons (Columba livia). A completely randomized design (n = 3) with a L-histidine injection treatment (His group, 0.55 mg histidine dissolved in 200 μL 0.75% saline as 1% Conc compared to total histidine in the egg), a 0.75% saline injection treatment (SC group), and non-injection treatment (NC group) was used. Six squabs from each treatment were randomly sampled at day of hatch (DOH), day 7 (D7), and day 14 (D14) post hatch, respectively. Results showed that in ovo injection of histidine solution increased (P < 0.01) the hatchability in comparison with that of other groups. The hatching time of His group was earlier (P = 0.05) than that of the NC group. In ovo injection of histidine had no influence (P > 0.05) on BW gain and carcass traits, but had a significant effect on the organ index of pigeons. The index of pancreas on DOH, the indices of leg, gizzard, proventriculus, small intestine, and pancreas on D7, and the index of head on D14 were significantly increased (P < 0.05) by injection of histidine. Moreover, in ovo injection of histidine had significant effects on the weight indices of different intestinal segments and jejunal morphology in squabs. Ileum weight index on D7 from His group was significantly higher (P < 0.05) than that of other groups. Compared with the NC group, the jejunal crypt depth on DOH and D7 of His group decreased (P < 0.05), while jejunal villus area and villus crypt ratio on D7 of His group increased (P < 0.05). The results of this study indicate that in ovo injection of histidine may have beneficial effects on squabs' hatchability, intestinal development but have negligible effects on their growth performance during early post-hatch period.
Collapse
Affiliation(s)
- Q Q Xu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - X Y Zhang
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - X T Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - X Y Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| |
Collapse
|
42
|
Effect of In Ovo Injection of L-Arginine in Different Chicken Embryonic Development Stages on Post-Hatchability, Immune Response, and Myo-D and Myogenin Proteins. Animals (Basel) 2019; 9:ani9060357. [PMID: 31207968 PMCID: PMC6617498 DOI: 10.3390/ani9060357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/26/2023] Open
Abstract
Simple Summary In the current study, we hypothesized that the in ovo injection of L-arginine (L-Arg) at different stages of embryonic development, which would have positive effects on the survival rate, hatching rate, immunoglobulin M (IgM) levels, heat shock proteins (HSPs) such as HSP-47, HSP-60, and HSP-70, and muscle development markers as well: Mainly, myoblast determination protein (myoD) and myogenin in pectoral muscles. As indicated, the in ovo injection of L-Arg resulted in an increased hatch rate and weight, survival rate, higher levels of IgM, and myogenin and MyoD expression in the muscles. At the same time, a decrease in the level of HSP-47, HSP-60, and HSP-70 expressions in the tissues was observed on the 14th day of injection compared to the eighth and 18th day of the injection period. In addition, the in ovo injection of L-Arg decreased the serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) concentration in serum as well micronuclei and nuclear abnormality in the blood on the 14th day of the incubation period. Hence, the 14th day would be a suitable day for the injection of L-Arg to promote the hatching rate and muscle growth of broiler chickens. Abstract The aim of this study was to evaluate the effect of in ovo injection with different ratios of L-arginine (L-Arg) into Ross broiler eggs at three different embryonic developmental stages (eighth day (d), 14th day, and 18th day) on the survival, hatchability, and body weight (BW) of one-day-old hatched chicks. Additionally, we have analyzed the levels of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), the protein expression of heat shock proteins (HSPs), and we have also determined micronuclei (MN) and nuclear abnormality (NA). In addition, the genotoxic effect was observed in peripheral blood cells such as the presence of micronuclei and nuclear abnormalities in the experimental groups. The results showed that survival and hatching rates as well as body weight were increased on the 14th day of incubation compared to the eighth and 18th day of incubation at lower concentrations of L-Arg. Moreover, the levels of SGOT and SGPT were also significantly (p < 0.05) increased on the 14th day of incubation at the same concentration (100 μg/μL/egg) of injection. In addition, immunoglobulin (IgM) levels were increased on the 14th day of incubation compared to other days. The protein expressions of HSP-47, HSP-60, and HSP-70 in the liver were significantly down-regulated, whereas the expression of myogenin and myoblast determination protein (MyoD) were significantly up-regulated on the 14th day after incubation when treated with all different doses such as 100 μg, 1000 μg, and 2500 μg/μL/egg, namely 3T1, 3T2, and 3T3, respectively. However, the treatment with low doses of L-Arg down-regulated the expression levels of those proteins on the 14th day of incubation. Histopathology of the liver by hematoxylin and eosin (H&E) staining showed that the majority of liver damage, specifically intracytoplasmic vacuoles, were observed in the 3T1, 3T2, and 3T3 groups. The minimum dose of 100 μg/mL/egg on the 14th day of incubation significantly prevented intracytoplasmic vacuole damages. These results demonstrate that in ovo administration of L-Arg at (100 μg/μL/egg) may be an effective method to increase chick BW, hatch rate, muscle growth-related proteins, and promote the immune response through increasing IgM on the 14th day of the incubation period.
Collapse
|
43
|
Saeed M, Babazadeh D, Naveed M, Alagawany M, Abd El-Hack ME, Arain MA, Tiwari R, Sachan S, Karthik K, Dhama K, Elnesr SS, Chao S. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3727-3739. [PMID: 30637739 DOI: 10.1002/jsfa.9593] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The technique of delivering various nutrients, supplements, immunostimulants, vaccines, and drugs via the in ovo route is gaining wide attention among researchers worldwide for boosting production performance, immunity and safeguarding the health of poultry. It involves direct administration of the nutrients and biologics into poultry eggs during the incubation period and before the chicks hatch out. In ovo delivery of nutrients has been found to be more effective than post-hatch administration in poultry production. The supplementation of feed additives, nutrients, hormones, probiotics, prebiotics, or their combination via in ovo techniques has shown diverse advantages for poultry products, such as improved growth performance and feed conversion efficiency, optimum development of the gastrointestinal tract, enhancing carcass yield, decreased embryo mortality, and enhanced immunity of poultry. In ovo delivery of vaccination has yielded a better response against various poultry pathogens than vaccination after hatch. So, this review has aimed to provide an insight on in ovo technology and its potential applications in poultry production to deliver different nutrients, supplements, beneficial microbes, vaccines, and drugs directly into the developing embryo to achieve an improvement in post-hatch growth, immunity, and health of poultry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, PR China
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad A Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Swati Sachan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shaaban S Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Sun Chao
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
| |
Collapse
|
44
|
Jha R, Singh AK, Yadav S, Berrocoso JFD, Mishra B. Early Nutrition Programming ( in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Front Vet Sci 2019; 6:82. [PMID: 30949488 PMCID: PMC6437089 DOI: 10.3389/fvets.2019.00082] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 01/15/2023] Open
Abstract
Healthy gastrointestinal tract (GIT) is crucial for optimum performance, better feed efficiency, and overall health of poultry. In the past, antibiotic growth promoters (AGP) were commonly used to modulate the gut health of animals. However, considering the public health concern, the use of AGP in animal feeding is banned or regulated in several jurisdictions around the world. This necessitates the need for alternative nutritional strategies to produce healthy poultry. For that, several alternatives to AGP have been attempted with some success. However, effective modulation of the gut health parameters depends on the methods and timing of the compound being available to host animals. Routinely, the alternatives to AGP and other nutrients are provided in feed or water to poultry. However, the GIT of the newly hatched poultry is functionally immature, despite going through significant morphological, cellular, and molecular changes toward the end of incubation. Thus, early growth and development of GIT are of critical importance to enhance nutrients utilization and optimize the growth of poultry. Early nutrition programming using both in ovo and post-hatch feeding has been used as a means to modulate the early growth and development of GIT and found to be an effective strategy but with inconsistent results. This review summarizes the information on in ovo and post-hatch-feeding of different nutrients and feeds additives and their effects on gut development, histomorphology, microbiology, and immunology. Furthermore, this review will provide insight on the future of early nutrition programming as a strategy to enhance gut health, thereby improving overall health and production so that the poultry industry can benefit from this technique.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Amit Kumar Singh
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Sudhir Yadav
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
45
|
Moreira Filho ALB, Ferket PR, Malheiros RD, Oliveira CJB, Aristimunha PC, Wilsmann DE, Givisiez PEN. Enrichment of the amnion with threonine in chicken embryos affects the small intestine development, ileal gene expression and performance of broilers between 1 and 21 days of age. Poult Sci 2019; 98:1363-1370. [PMID: 30325446 DOI: 10.3382/ps/pey461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
The effects of in ovo feeding with threonine (Thr) on intestinal morphology, ileal gene expression and performance of broiler chicken between 1 and 21 d of age (d) were assessed. On day 17.5 of incubation, fertile eggs were randomly allotted to 5 treatments of Thr injection in the amniotic fluid (0; 1.75; 3.5; 5.25; 7%, corresponding to 17.5; 35; 52.5 and 70 mg Thr/mL). After hatch, chicks were given a commercial corn-soybean diet up to 21 d. Daily feed intake (FI), body weight (BW), and food conversion ratio (FCR) were measured from 1 to 7, 14, and 21 d of age. The ileal gene expression of mucin (MUC2), peptide transporter (PepT1), and aminopeptidase enzyme (APN) were evaluated on day of hatch and at 21 d, as well as intestinal morphometric traits. In ovo feeding with threonine significantly increased final weight (FI) and weight gain (WG) and decreased FCR in the period from 1 to 21 d. Threonine levels affected beneficially the villus height, vilo: crypt ratio and villus area on day of hatch and at 21 d. At hatch, all Thr levels increased the expression of MUC2 and PepT1 compared to the control group. APN expression also increased, but for the lowest and the highest threonine levels (1.75 and 7%). At 21 d, there was no effect of threonine on the expression of MUC2, PepT1, and APN. In conclusion, in ovo threonine feeding beneficially affected the morphological and functional development of the intestinal mucosa, which ensured improved performance of chicks at hatch and at 21 d.
Collapse
Affiliation(s)
- A L B Moreira Filho
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, 58397-000, Brazil
| | - P R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695-7608, USA
| | - R D Malheiros
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695-7608, USA
| | - C J B Oliveira
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, 58397-000, Brazil
| | - P C Aristimunha
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - D E Wilsmann
- Departamento de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - P E N Givisiez
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, 58397-000, Brazil
| |
Collapse
|
46
|
Wang X, Kolba N, Liang J, Tako E. Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts. Food Funct 2019; 10:4834-4843. [DOI: 10.1039/c9fo00836e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wheat bran is the by-product of milling wheat flour which is one of the richest sources of dietary fiber, and cellulase that can be used for increasing the soluble dietary fiber.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Nikolai Kolba
- USDA-ARS
- Robert W. Holley Center for Agriculture and Health
- Cornell University
- Ithaca
- USA
| | - Jianfen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Elad Tako
- USDA-ARS
- Robert W. Holley Center for Agriculture and Health
- Cornell University
- Ithaca
- USA
| |
Collapse
|
47
|
Toghyani M, Tahmasebi S, Modaresi M, Ale Saheb Fosoul SS. Effect of arginine and threonine in ovo supplementation on immune responses and some serum biochemical attributes in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1529545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Majid Toghyani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shohreh Tahmasebi
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mehrdad Modaresi
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | |
Collapse
|
48
|
Siwek M, Slawinska A, Stadnicka K, Bogucka J, Dunislawska A, Bednarczyk M. Prebiotics and synbiotics - in ovo delivery for improved lifespan condition in chicken. BMC Vet Res 2018; 14:402. [PMID: 30558599 PMCID: PMC6296066 DOI: 10.1186/s12917-018-1738-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Commercially produced chickens have become key food-producing animals in the global food system. The scale of production in industrial settings has changed management systems to a point now very far from traditional methods. During the perinatal period, newly hatched chicks undergo processing, vaccination and transportation, which introduces a gap in access to feed and water. This gap, referred to as the hatching window, dampens the potential for microflora inoculation and as such, prevents proper microbiome, gastrointestinal system and innate immunity development. As a consequence, the industrial production of chickens with a poor microbial profile leads to enteric microbial infestation and infectious disease outbreaks, which became even more prevalent after the withdrawal of antibiotic growth promoters on many world markets (e.g., the EU).This review presents the rationale, methodology and life-long effects of in ovo stimulation of chicken microflora. In ovo stimulation provides efficient embryonic microbiome colonization with commensal microflora during the perinatal period. A carefully selected bioactive formulation (prebiotics, probiotics alone or combined into synbiotics) is delivered into the air cell of the egg on day 12 of egg incubation. The prebiotic penetrates the outer and inner egg membranes and stimulates development on the innate microflora in the embryonic guts. Probiotics are available after the mechanical breakage of the shell membranes by the chick's beak at the beginning of hatching (day 19). The intestinal microflora after in ovo stimulation is potent enough for competitive exclusion and programs the lifespan condition. We present the effects of different combinations of prebiotic and probiotic delivered in ovo on day 12 of egg incubation on microflora, growth traits, feed efficiency, intestinal morphology, meat microstructure and quality, immune system development, physiological characteristics and the transcriptome of the broiler chickens.We discuss the differences between in ovo stimulation (day 12 of egg incubation) and in ovo feeding (days 17-18 of egg incubation) and speculate about possible future developments in this field. In summary, decades of research on in ovo stimulation and the lifelong effects support this method as efficient programming of lifespan conditions in commercially raised chickens.
Collapse
Affiliation(s)
- M. Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka, 28 85-084 Bydgoszcz, Poland
| | - A. Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka, 28 85-084 Bydgoszcz, Poland
| | - K. Stadnicka
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka, 28 85-084 Bydgoszcz, Poland
| | - J. Bogucka
- Department of Animal Physiology, Physiotherapy and Nutrition, UTP University of Science and Technology, Mazowiecka, 28 85-084 Bydgoszcz, Poland
| | - A. Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka, 28 85-084 Bydgoszcz, Poland
| | - M. Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka, 28 85-084 Bydgoszcz, Poland
| |
Collapse
|
49
|
Sun X, Lu L, Liao X, Zhang L, Lin X, Luo X, Ma Q. Effect of In Ovo Zinc Injection on the Embryonic Development and Epigenetics-Related Indices of Zinc-Deprived Broiler Breeder Eggs. Biol Trace Elem Res 2018; 185:456-464. [PMID: 29427034 DOI: 10.1007/s12011-018-1260-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/30/2018] [Indexed: 01/16/2023]
Abstract
The role of in ovo zinc (Zn) injection in improving the embryonic development in eggs from Zn-deficient hens, via epigenetic and antioxidant mechanisms, was examined. A completely randomized design involving a 1 (the non-injected control) + 1 (the injected control with sterilized water) + 2 (Zn source) × 2 (Zn level) factorial arrangement of treatments was used. The two injected Zn sources were inorganic Zn sulfate and organic Zn-lysine chelate with a moderate chelation strength, and the two injected Zn levels were 50 and 100 μg Zn/egg. In ovo Zn injection decreased (P < 0.05) embryonic mortality, and increased (P < 0.05) hatchability and healthy chick ratio. In ovo Zn injection increased (P < 0.05) embryonic tibia Zn content, but had no effect (P > 0.05) on copper (Cu)- and Zn-containing superoxide dismutase (CuZnSOD) activities and metallothionein IV (MT4) levels or their mRNA expression levels and malondialdehyde (MDA) levels in the embryonic liver. In ovo Zn injection had no effect (P > 0.05) on the global level of DNA methylation or DNA methylation and histone 3 lysine 9 (H3K9) acetylation levels of the MT4 promoter in the embryonic liver. However, the organic Zn had higher (P < 0.05) levels of DNA methylation and H3K9 acetylation than inorganic Zn. These data demonstrate that in ovo Zn injection improved the embryonic development, and the organic Zn was more effective than inorganic Zn in enhancing DNA methylation and H3K9 acetylation in the liver MT4 promoter, but the precise mechanisms require further investigations.
Collapse
Affiliation(s)
- Xiaoming Sun
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Qiugang Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
50
|
Zhao M, Gong D, Gao T, Zhang L, Li J, Lv P, Yu L, Zhou G, Gao F. In Ovo Feeding of Creatine Pyruvate Increases the Glycolysis Pathway, Glucose Transporter Gene Expression, and AMPK Phosphorylation in Breast Muscle of Neonatal Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7684-7691. [PMID: 29974734 DOI: 10.1021/acs.jafc.8b02557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aims to investigate in ovo feeding (IOF) of creatine pyruvate (CrPyr) on glucose metabolism, hormone concentration, and the 5'-AMP-activated protein kinase (AMPK) pathway in breast muscle of embryos and neonatal broilers. The three treatments were noninjected control, 0.75% NaCl treatment, and 12 mg CrPyr/egg treatment. The solution was injected on the 17.5 day of incubation. At hatch, 120 male broilers from each treatment were chosen for a 7 day feeding trial. Compared with other treatments, CrPyr treated broilers enhanced insulin and thyroxine levels in plasma, adenosine triphosphate (ATP) concentration, hexokinase and pyruvate kinase activities, glucose transporter protein mRNA expressions, as well as protein abundances of phosphor-liver kinase B1 and phosphor-AMPK in breast muscle at hatch. In conclusion, IOF of CrPyr improved the energy status, increased the gene expression of glucose transporter proteins, and facilitated glycolysis in breast muscle, which may be associated with the activated AMPK pathway.
Collapse
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , P. R. China
| | - Daoqing Gong
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , P. R. China
| | - Tian Gao
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Peng'an Lv
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Lanlin Yu
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Guanghong Zhou
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|