1
|
Samarah NH, Al-Quraan NA, Shawah'en RI. The relationship between GABA content and desiccation tolerance at five developmental stages of wheat ( Triticum durum) seeds. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24216. [PMID: 39836508 DOI: 10.1071/fp24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Drying wheat (Triticum durum ) seeds within their spikes may improve the seed desiccation tolerance. This study aimed to understand the effect of drying wheat seeds within their spikes on their desiccation tolerance in association with GABA (γ-aminobutyric acid) content, malondialdehyde (MDA), the expression of three dehydrin genes (dhn , wcor , dreb ) during seed development. Seeds of wheat variety 'Hourani-Nawawi' were harvested at five developmental stages: (1) milk (ML); (2) soft dough (SD); (3) hard dough (HD); (4) physiological maturity (PM); and (5) harvest maturity (HM) and dried either attached to or detached from their spikes. Drying the seeds attached to their spikes improved desiccation tolerance, speed of germination, and seedling length at ML stage. Before drying (freshly harvested), the seeds harvested at ML and HM had higher GABA than those at SD, HD, and PM. The attached-dried seeds had higher GABA content from ML to PM than at HM, and higher glutamate content at ML, SD, and HD than at the PM stage. Detached-dried seeds had the highest alanine at ML and PM. Attached-dried seeds had lower MDA than detached-dried seeds. Expression of dhn was highest in freshly-harvested and attached-dried seeds at SD. Highest expression of wcor in the attached-dried seeds was detected at SD and HM. Drying the seeds within their spikes increased the expression of dreb gene compared with the freshly-harvested seeds, except at the HD stage. In conclusion, drying the seeds within their spikes enhanced seed germination in association with higher GABA, lower MDA, and higher gene expression.
Collapse
Affiliation(s)
- Nezar H Samarah
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Nisreen A Al-Quraan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roa'a I Shawah'en
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
2
|
Roychowdhury R, Ghatak A, Kumar M, Samantara K, Weckwerth W, Chaturvedi P. Accelerating wheat improvement through trait characterization: advances and perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14544. [PMID: 39360330 DOI: 10.1111/ppl.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Wheat (Triticum spp.) is a primary dietary staple food for humanity. Many wheat genetic resources with variable genomes have a record of domestication history and are widespread throughout the world. To develop elite wheat varieties, agronomical and stress-responsive trait characterization is foremost for evaluating existing germplasm to promote breeding. However, genomic complexity is one of the primary impediments to trait mining and characterization. Multiple reference genomes and cutting-edge technologies like haplotype mapping, genomic selection, precise gene editing tools, high-throughput phenotyping platforms, high-efficiency genetic transformation systems, and speed-breeding facilities are transforming wheat functional genomics research to understand the genomic diversity of polyploidy. This review focuses on the research achievements in wheat genomics, the available omics approaches, and bioinformatic resources developed in the past decades. Advances in genomics and system biology approaches are highlighted to circumvent bottlenecks in genomic and phenotypic selection, as well as gene transfer. In addition, we propose conducting precise functional genomic studies and developing sustainable breeding strategies for wheat. These developments in understanding wheat traits have speed up the creation of high-yielding, stress-resistant, and nutritionally enhanced wheat varieties, which will help in addressing global food security and agricultural sustainability in the era of climate change.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Manoj Kumar
- Department of Ornamental Biotechnology, Institute of Plant Sciences, Agricultural Research, Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Wang Z, Luo R, Wen Q, Liang X, Zhao H, Zhao Y, Yin M, Wen Y, Hu X, Huang F. Screening and functional verification of drought resistance-related genes in castor bean seeds. BMC PLANT BIOLOGY 2024; 24:493. [PMID: 38831288 PMCID: PMC11145773 DOI: 10.1186/s12870-024-04997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/08/2024] [Indexed: 06/05/2024]
Abstract
Drought is one of the natural stresses that greatly impact plants. Castor bean (Ricinus communis L.) is an oil crop with high economic value. Drought is one of the factors limiting castor bean growth. The drought resistance mechanisms of castor bean have become a research focus. In this study, we used castor germinating embryos as experimental materials, and screened genes related to drought resistance through physiological measurements, proteomics and metabolomics joint analysis; castor drought-related genes were subjected to transient silencing expression analysis in castor leaves to validate their drought-resistant functions, and heterologous overexpression and backward complementary expression in Arabidopsis thaliana, and analysed the mechanism of the genes' response to the participation of Arabidopsis thaliana in drought-resistance.Three drought tolerance-related genes, RcECP 63, RcDDX 31 and RcA/HD1, were obtained by screening and analysis, and transient silencing of expression in castor leaves further verified that these three genes corresponded to drought stress, and heterologous overexpression and back-complementary expression of the three genes in Arabidopsis thaliana revealed that the function of these three genes in drought stress response.In this study, three drought tolerance related genes, RcECP 63, RcDDX 31 and RcA/HD1, were screened and analysed for gene function, which were found to be responsive to drought stress and to function in drought stress, laying the foundation for the study of drought tolerance mechanism in castor bean.
Collapse
Grants
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 2021BS03036 Analysis of the R2R3-MYB transcription factor gene family in castor bean and functional resolution of RcMYB61 in response to drought stress
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 31860071 National Natural Science Foundation of China
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2020114 Ministry of Education New Agricultural Research and Reform Practice Project
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2021MS03008 Upper Level Project of Inner Mongolia Natural Science Foundation
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 2022 Inner Mongolia Autonomous Region Grassland Talent Innovation Team - Rolling Support Programme for Castor Molecular Breeding Research Innovation Talent Team
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 21082 2021 Research Project on Higher Education Teaching Reform of the National People's Committee
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- 237 Inner Mongolia University for Nationalities 2022 Basic Research Operating Expenses of Colleges and Universities directly under the Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
- MDK2021011, MDK2022014 Project of the Open Fund of the Collaborative Innovation Centre for Castor Industry in Inner Mongolia Autonomous Region
Collapse
Affiliation(s)
- Zhiyan Wang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Rui Luo
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Qi Wen
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Xiaotian Liang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, 137000, China
| | - Huibo Zhao
- China National Rice Research Institute, Hangzhou, 311400, China
| | - Yong Zhao
- School of Life Sciences, Laboratory of Genetics, Baicheng Normal University, Baicheng, 137000, China
| | - Mingda Yin
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Yanpeng Wen
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Xuemei Hu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China
| | - Fenglan Huang
- Key Laboratory of Castor Breeding of the National Ethnic Affairs Commission of the People's Republic of China, Tongliao, 028000, Inner Mongolia, China.
- Inner Mongolia Key Laboratory of Castor Breeding and Comprehensive Utilization, Tongliao, 028000, Inner Mongolia, China.
| |
Collapse
|
4
|
Yin B, Jia J, Sun X, Hu X, Ao M, Liu W, Tian Z, Liu H, Li D, Tian W, Hao Y, Xia X, Sade N, Brotman Y, Fernie AR, Chen J, He Z, Chen W. Dynamic metabolite QTL analyses provide novel biochemical insights into kernel development and nutritional quality improvement in common wheat. PLANT COMMUNICATIONS 2024; 5:100792. [PMID: 38173227 PMCID: PMC11121174 DOI: 10.1016/j.xplc.2024.100792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
Despite recent advances in crop metabolomics, the genetic control and molecular basis of the wheat kernel metabolome at different developmental stages remain largely unknown. Here, we performed widely targeted metabolite profiling of kernels from three developmental stages (grain-filling kernels [FKs], mature kernels [MKs], and germinating kernels [GKs]) using a population of 159 recombinant inbred lines. We detected 625 annotated metabolites and mapped 3173, 3143, and 2644 metabolite quantitative trait loci (mQTLs) in FKs, MKs, and GKs, respectively. Only 52 mQTLs were mapped at all three stages, indicating the high stage specificity of the wheat kernel metabolome. Four candidate genes were functionally validated by in vitro enzymatic reactions and/or transgenic approaches in wheat, three of which mediated the tricin metabolic pathway. Metabolite flux efficiencies within the tricin pathway were evaluated, and superior candidate haplotypes were identified, comprehensively delineating the tricin metabolism pathway in wheat. Finally, additional wheat metabolic pathways were re-constructed by updating them to incorporate the 177 candidate genes identified in this study. Our work provides new information on variations in the wheat kernel metabolome and important molecular resources for improvement of wheat nutritional quality.
Collapse
Affiliation(s)
- Bo Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xu Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfei Tian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanfeng Hao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nir Sade
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yariv Brotman
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572025, China.
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
5
|
Ma H, Yang Y, Wu D, Xiang G, Luo T, Huang X, Yang H, Zheng T, Fan G. Changes in free amino acid and protein polymerization in wheat caryopsis and endosperm during filling after shading. FRONTIERS IN PLANT SCIENCE 2024; 15:1344972. [PMID: 38425798 PMCID: PMC10902459 DOI: 10.3389/fpls.2024.1344972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Over the past several decades, a decreasing trend in solar radiation has been observed during the wheat growing season. The effects of shade stress on grain yield formation have been extensively studied. However, little information on shade stress's effects on protein formation warrants further investigation. Two wheat cultivars were grown under three treatments, no shade as the control group (CK), shading from the joint to the anthesis stage (S1), and shading from the joint to the mature stage (S2), to investigate the effects of shade stress on the free amino acids of the caryopsis and endosperm and protein accumulation during grain filling. The dry mass of caryopsis and endosperm was significantly decreased under shade stress, whereas Glu, Ser, Ala, and Asp and protein relative content increased during grain filling. The observed increases in total protein in S1 and S2 were attributed to the increases in the SDS-isoluble and SDS-soluble protein extracts, respectively. S1 improved polymer protein formation, but S2 delayed the conversion of albumins and globulins into monomeric and polymeric proteins. Moreover, shade stress increased the proportion of SDS-unextractable polymeric protein, which represented an increase in the degree of protein polymerization. The polymerization of protein interrelations between protein components and accumulation in caryopsis and endosperm provided novel insights into wheat quality formation under shade stress.
Collapse
Affiliation(s)
- Hongliang Ma
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yongheng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Dongming Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Gang Xiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ting Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hongkun Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ting Zheng
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Gaoqiong Fan
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry Science and Technology, Chengdu, China
| |
Collapse
|
6
|
Effah Z, Li L, Xie J, Karikari B, Xu A, Wang L, Du C, Duku Boamah E, Adingo S, Zeng M. Widely untargeted metabolomic profiling unearths metabolites and pathways involved in leaf senescence and N remobilization in spring-cultivated wheat under different N regimes. FRONTIERS IN PLANT SCIENCE 2023; 14:1166933. [PMID: 37260937 PMCID: PMC10227437 DOI: 10.3389/fpls.2023.1166933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023]
Abstract
Progression of leaf senescence consists of both degenerative and nutrient recycling processes in crops including wheat. However, the levels of metabolites in flag leaves in spring-cultivated wheat, as well as biosynthetic pathways involved under different nitrogen fertilization regimes, are largely unknown. Therefore, the present study employed a widely untargeted metabolomic profiling strategy to identify metabolites and biosynthetic pathways that could be used in a wheat improvement program aimed at manipulating the rate and onset of senescence by handling spring wheat (Dingxi 38) flag leaves sampled from no-, low-, and high-nitrogen (N) conditions (designated Groups 1, 2, and 3, respectively) across three sampling times: anthesis, grain filling, and end grain filling stages. Through ultrahigh-performance liquid chromatography-tandem mass spectrometry, a total of 826 metabolites comprising 107 flavonoids, 51 phenol lipids, 37 fatty acyls, 37 organooxygen compounds, 31 steroids and steroid derivatives, 18 phenols, and several unknown compounds were detected. Upon the application of the stringent screening criteria for differentially accumulated metabolites (DAMs), 28 and 23 metabolites were differentially accumulated in Group 1_vs_Group 2 and Group 1_vs_Group 3, respectively. From these, 1-O-Caffeoylglucose, Rhoifolin, Eurycomalactone;Ingenol, 4-Methoxyphenyl beta-D-glucopyranoside, and Baldrinal were detected as core conserved DAMs among the three groups with all accumulated higher in Group 1 than in the other two groups. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that tropane, piperidine, and pyridine alkaloid biosynthesis; acarbose and validamycin biosynthesis; lysine degradation; and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid pathways were the most significantly (p < 0.05) enriched in Group 1_vs_Group 2, while flavone and flavonol as well as anthocyanins biosynthetic pathways were the most significantly (p < 0.05) enriched in Group 1_vs_Group 3. The results from this study provide a foundation for the manipulation of the onset and rate of leaf senescence and N remobilization in wheat.
Collapse
Affiliation(s)
- Zechariah Effah
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Department of Plant Genetic Diversity, Council for Scientific and Industrial Research (CSIR)-Plant Genetic Resources Research Institute, Bunso, Ghana
| | - Lingling Li
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Aixia Xu
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Linlin Wang
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Changliang Du
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Emmanuel Duku Boamah
- Department of Plant Genetic Diversity, Council for Scientific and Industrial Research (CSIR)-Plant Genetic Resources Research Institute, Bunso, Ghana
| | - Samuel Adingo
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Min Zeng
- Department of Crop Science, State Key Laboratory of Arid Land Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Branlard G, d'Orlando A, Tahir A, Schmutz M, Rhazi L, Faye A, Aussenac T. The conformation of glutenin polymers in wheat grain: some genetic and environmental factors associated with this important characteristic. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2653-2666. [PMID: 36629279 DOI: 10.1093/jxb/erad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 06/06/2023]
Abstract
In a previous study we used asymmetric-flow field-flow fractionation to determine the polymer mass (Mw), gyration radius (Rw) and the polydispersity index of glutenin polymers (GPs) in wheat (Triticum aestivum). Here, using the same multi-location trials (4 years, 11 locations, and 192 cultivars), we report the factors that are associated with the conformation (Conf) of the polymers, which is the slope of Log(Rw) versus a function of Log(Mw). We found that Conf varied between 0.285 and 0.740, it had low broad-sense heritability (H2=16.8), and it was significantly influenced by the temperature occurring over the last month of grain filling. Higher temperatures were found to increase Rw and the compactness and sphericity of GPs. Alleles for both high- and low-molecular-weight glutenin subunits had a significant influence on the Conf value. Assuming a Gaussian distribution for Mw, the number of polymers present in wheat grains was computed for different kernel weights and protein concentrations, and it was found to exceed 1012 GPs per grain. Using atomic force microscopy and cryo-TEM, images of GPs were obtained for the first time. Under higher average temperature, GPs became larger and more spherical and consequently less prone to rapid hydrolysis. We propose some orientations that could be aimed at potentially reducing the impact of numerous GPs on people suffering from non-celiac gluten sensitivity.
Collapse
Affiliation(s)
- Gérard Branlard
- The French National Research Institute for Agriculture, Food and the Environment (INRAE), UCA UMR1095 GDEC, 5 Chemin de Beaulieu, 63100 Clermont-Ferrand, France
| | - Angelina d'Orlando
- The French National Research Institute for Agriculture, Food and the Environment (INRAE), Unité BIA-Plateforme BIBS, 3 Impasse Yvette Cauchois, 44 316 Nantes, France
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron, 23 rue du Loess, B.P. 84047, 67034 Strasbourg Cedex, France
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Annie Faye
- The French National Research Institute for Agriculture, Food and the Environment (INRAE), UCA UMR1095 GDEC, 5 Chemin de Beaulieu, 63100 Clermont-Ferrand, France
| | - Thierry Aussenac
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| |
Collapse
|
8
|
Insights into the effects of extractable phenolic compounds and Maillard reaction products on the antioxidant activity of roasted wheat flours with different maturities. Food Chem X 2022; 17:100548. [PMID: 36845526 PMCID: PMC9943760 DOI: 10.1016/j.fochx.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Experiments were performed to determine the effect of roasting whole wheat flours at 80 °C, 100 °C and 120 °C for 30 min on four forms of phenolics, Maillard reaction products (MRPs), and the DPPH scavenging activity (DSA) at 15, 30 and 45 days after flowering (15-DAF, 30-DAF, and 45-DAF). Roasting increased the phenolic content and antioxidant activity of the wheat flours, which were the dominant contributions to the formation of Maillard reaction products. The highest total phenolic content (TPC) and total phenolic DSA (TDSA) were determined in the DAF-15 flours at 120 °C/30 min. The DAF-15 flours exhibited the highest browning index and fluorescence of free intermediate compounds and advanced MRPs, suggesting that a substantial quantity of MRPs were formed. Four forms of phenolic compounds were detected with significantly different DSAs in the roasted wheat flours. The insoluble-bound phenolic compounds exhibited the highest DSA, followed by the glycosylated phenolic compounds.
Collapse
|
9
|
Putri SP, Ikram MMM, Sato A, Dahlan HA, Rahmawati D, Ohto Y, Fukusaki E. Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology. J Biosci Bioeng 2022; 133:425-435. [DOI: 10.1016/j.jbiosc.2022.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/23/2022]
|
10
|
Păucean A, Mureșan V, Maria-Man S, Chiș MS, Mureșan AE, Șerban LR, Pop A, Muste S. Metabolomics as a Tool to Elucidate the Sensory, Nutritional and Safety Quality of Wheat Bread-A Review. Int J Mol Sci 2021; 22:ijms22168945. [PMID: 34445648 PMCID: PMC8396194 DOI: 10.3390/ijms22168945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers’ purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers’ demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.
Collapse
|
11
|
Kim H, Kim OW, Ahn JH, Kim BM, Oh J, Kim HJ. Metabolomic Analysis of Germinated Brown Rice at Different Germination Stages. Foods 2020; 9:E1130. [PMID: 32824423 PMCID: PMC7491196 DOI: 10.3390/foods9081130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Brown rice (BR) is unpolished rice containing many bioactive compounds in addition to the basic nutrients of the rice grain. Herein, BR was germinated for up to 48 h to prepare germinated brown rice (GBR). The physiological and chemical changes in the GBR during germination were analyzed. GBR samples germinated for 48 h were in the radicle-emergence stage, but root formation was not observed. The change in the GBR metabolite profile during germination was analyzed to determine the effect of germination on the chemical profiles of the GBR samples. Twenty-five metabolites including acidic compounds, amino acids, sugars, lipid metabolites, and secondary metabolites were identified as the components that contributed to the variations in the GBR groups germinated for different time periods. Among the metabolites, the carbohydrates associated with energy production and lipid metabolites changed significantly. Based on the identified metabolites, a metabolomic pathway was proposed. Carbohydrate metabolism, citric acid cycle, and lipid metabolism were the main processes that were affected during germination. Although further studies on the relationship between the metabolite profile and nutritional quality of the GBR are needed, these results are useful for understanding the effect of germination on the physiological and chemical changes in BR.
Collapse
Affiliation(s)
- Hoon Kim
- Korea Food Research Institute, Research Group of Consumer Safety, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea; (H.K.); (O.-W.K.); (J.-H.A.)
| | - Oui-Woung Kim
- Korea Food Research Institute, Research Group of Consumer Safety, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea; (H.K.); (O.-W.K.); (J.-H.A.)
| | - Jae-Hwan Ahn
- Korea Food Research Institute, Research Group of Consumer Safety, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea; (H.K.); (O.-W.K.); (J.-H.A.)
| | - Bo-Min Kim
- EZmass.Co. Ltd., 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea; (B.-M.K.); (J.O.)
| | - Juhong Oh
- EZmass.Co. Ltd., 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea; (B.-M.K.); (J.O.)
| | - Hyun-Jin Kim
- EZmass.Co. Ltd., 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea; (B.-M.K.); (J.O.)
- Division of Applied Life Sciences (BK21 plus), Department of Food Science and Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea
| |
Collapse
|
12
|
Rico CM, Wagner D, Abolade O, Lottes B, Coates K. Metabolomics of wheat grains generationally-exposed to cerium oxide nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136487. [PMID: 31931226 DOI: 10.1016/j.scitotenv.2019.136487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
This study investigated changes in metabolite compositions over three generation exposure of wheat (Triticum aestivum) to cerium oxide nanoparticles (CeO2-NPs) in low or high nitrogen soil. The goal was to determine if CeO2-NPs affects grains/seeds quality across generational exposure. Seeds from plants exposed for two generations to 0 or 500 mg CeO2-NPs per kg soil treatment were cultivated for third year in low or high nitrogen soil amended with 0 or 500 mg CeO2-NPs per kg soil. Metabolomics identified 180 metabolites. Multivariate analysis showed that continuous generational exposure to CeO2-NPs altered 18 and 11 metabolites in low N and high N grains, respectively. Interestingly, DNA/RNA metabolites such as thymidine, uracil, guanosine, deoxyguanosine, adenosine monophosphate were affected; a finding that has not been observed on DNA/RNA metabolites of plants exposed to nanoparticles. Nicotianamine, a metabolite playing crucial role in Fe storage in grains, decreased by 33% in grains continuously exposed for three generations to CeO2-NPs at high N soil. Notably, these grains also exhibited a concomitant decrease of 13-16% in Fe concentration. Together these changes suggest alterations in grain quality or implications in ecosystem processes (i.e., productivity, nutrient cycling, ecosystem stability) of progeny plants generationally-exposed to CeO2-NPs.
Collapse
Affiliation(s)
- Cyren M Rico
- Missouri State University, Department of Chemistry, 901 S National Ave., Springfield, MO 65897, USA.
| | - Dane Wagner
- Missouri State University, Department of Chemistry, 901 S National Ave., Springfield, MO 65897, USA
| | - Oluwasegun Abolade
- Missouri State University, Department of Chemistry, 901 S National Ave., Springfield, MO 65897, USA
| | - Brett Lottes
- Missouri State University, Department of Chemistry, 901 S National Ave., Springfield, MO 65897, USA
| | - Kameron Coates
- Missouri State University, Department of Chemistry, 901 S National Ave., Springfield, MO 65897, USA
| |
Collapse
|
13
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|
14
|
Llorente C, Jimenez R, Brotman Y, Fernie AR, Sreenivasulu N. Rice Grain Quality Benchmarking Through Profiling of Volatiles and Metabolites in Grains Using Gas Chromatography Mass Spectrometry. Methods Mol Biol 2019; 1892:187-199. [PMID: 30397807 DOI: 10.1007/978-1-4939-8914-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gas chromatograph coupled with mass spectrometer is widely used to profile volatiles and metabolites from the homogenized rice flour obtained from mature grains. Rice grains consist of central endosperm which stores majorly starch and, in addition, accumulate various storage proteins as storage reserves. The outer nutritious aleurone layer stores lipids, sugar alcohols, volatiles, antioxidants, vitamins, and various micronutrients. Once paddy sample is dehulled, milled, and ground cryogenically, the brown rice flour is subjected to extraction of primary metabolites and volatiles using an appropriate extraction method. In metabolite profiling of the liquid extract obtained from the rice sample, mixture is initially subjected to methoxyamination then silylation before being subjected to untargeted metabolite profiling. Peaks obtained are processed for noise reduction and specific signal selection. Volatile compounds are initially extracted using a solid phase adsorbent prior to analysis. All these compounds, metabolites, and volatiles are detected in the mass selective detector by fragmentation at 70 eV ionization energy and the resultant mass spectrum compared with a built-in library of compounds. Data mined from the gas chromatography mass spectrometry analysis are then subjected to post-processing statistical analysis.
Collapse
Affiliation(s)
- Cindy Llorente
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Rosario Jimenez
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Yariv Brotman
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Nese Sreenivasulu
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
15
|
Tang H, Song Y, Guo J, Wang J, Zhang L, Niu N, Ma S, Zhang G, Zhao H. Physiological and metabolome changes during anther development in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:18-32. [PMID: 30172190 DOI: 10.1016/j.plaphy.2018.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 05/01/2023]
Abstract
This study used cytology, cytochemistry, and non-targeted metabolomics to investigate the distribution characteristic of polysaccharides, lipids, and all the metabolites present during five wheat (Triticum aestivum L.) anther developmental stages to provide insights into wheat anther development. Anthers were collected from the tetrad through trinucleate stages, and 1.5% (w/v) acetocarmine and 4',6-diamidino-2-phenylindole staining were used to confirm the developmental stage and visualize the nuclei, respectively. Polysaccharides and lipids were detected by staining with periodic acid-Schiff and Sudan Black B, respectively. The integrated optical density of the tapetum and microspores were calculated using IPP6.0 software. Furthermore, the metabolites were identified by gas chromatograph system coupled with a Pegasus HT time-of-flight mass spectrometer (GC-TOF-MS). The results indicated that the interior and exterior surface cells of anthers are orderly. Pollen was rich in numerous nutrient substances (e.g., lipids, insoluble carbohydrates, and others), and formed a normal sperm cell that contained three nuclei, i.e., one vegetative nuclei and two reproductive nuclei in the mature pollen. Semi-thin sectioning indicated that the tapetum cells degraded progressively from the tetrad to late uninucleate stage and disappeared from the bi-to trinucleate stages. Moreover, nutrient substances (lipids and insoluble carbohydrates) accumulated, were synthesized in the pollen, and gradually increased from the tetrad to trinucleate stages. Finally, the metabolomics results identified that 146 metabolites were present throughout the wheat anther developmental stages. Principal component analysis, hierarchical cluster analysis, and metabolite-metabolite correlation revealed distinct dynamic changes in metabolites. The metabolism of organic acids, amino acids, sugars, fatty acids, amines, polyols, and nucleotides were interrelated and involved in the tricarboxylic acid (TCA) cycle and glycolysis. Furthermore, their interactions were revealed using an integrated metabolic map, which indicated that the TCA cycle and glycolysis were very active during anther development to provide the required energy for anther and pollen development. Our study provides valuable insights into the mechanisms of substance metabolism in wheat anthers and can be used for possible application by metabolic engineers for the improvement of cell characteristics or creating new compounds and molecular breeders in improving pollen fertility or creating the ideal male sterile line, to improve wheat yield per unit area to address global food security.
Collapse
Affiliation(s)
- Huali Tang
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China
| | - Yulong Song
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China.
| | - Jialin Guo
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China
| | - Lili Zhang
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China
| | - Na Niu
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China
| | - Shoucai Ma
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Center, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, 712100, Shaanxi, PR China.
| | - Huiyan Zhao
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
16
|
Barros Santos MC, Ribeiro da Silva Lima L, Ramos Nascimento F, Pimenta do Nascimento T, Cameron LC, Simões Larraz Ferreira M. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Res Int 2018; 124:118-128. [PMID: 31466630 DOI: 10.1016/j.foodres.2018.08.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The phenolic-profiling of seven different wheat (Triticum aestivum) genotypes was investigated for the first time during different stages of grain development (milky, softy, physiological maturity and mature). Free and bound phenolic compounds were extracted separately and analyzed by UPLC-QTOF-MSE. Total phenolic content significantly decreased, up to 50% depending on the genotype, towards the maturation of grain. The highest content (free and bound) was observed in the most immature grains, while the lowest level was found in mature grains (408.0 and 165.0 GAE mg/100 g, respectively). Globally, 237 phenolic compounds were identified, divided into 5 classes: flavonoids (85), phenolic acids (77), other polyphenols (51), lignans (16) and stilbenes (8). UPLC-MS results showed a progressively decrease of the number of phenolic identification (ID) all along grain development, milky (213), softy (192), physiological maturity (169) and mature (144). The proportion bound to free phenolic progressively increased, reaching the maximum at physiological maturity, indicating a possible enzymatic reactions and complexation during grain growth. Ferulic acid, diphyllin, 4-hydroxybenzoic acid, ferulic acid isomer, apigenin 7-O-apiosyl-glucoside isomer and myricetin isomer were the most abundant compounds. Chemometric tools showed a clear separation between immature and mature grain for all genotypes. Phenolic profile varied significantly among genotypes, this result can help the selection of varieties towards a higher retention of bioactive compounds. Noteworthy, immature wheat grains can be considered a rich source of phenolic compounds and as an attractive ingredient to incorporate to functional foods.
Collapse
Affiliation(s)
- Millena Cristina Barros Santos
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil
| | - Luciana Ribeiro da Silva Lima
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil; Department of Food Science, Nutrition School, UNIRIO, Brazil
| | - Fabiana Ramos Nascimento
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil
| | - Talita Pimenta do Nascimento
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil
| | - Luiz Claudio Cameron
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Brazil.
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil; Department of Food Science, Nutrition School, UNIRIO, Brazil; Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Brazil.
| |
Collapse
|
17
|
Wang WQ, Wang Y, Zhang Q, Møller IM, Song SQ. Changes in the mitochondrial proteome of developing maize seed embryos. PHYSIOLOGIA PLANTARUM 2018; 163:552-572. [PMID: 29575040 DOI: 10.1111/ppl.12725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 05/19/2023]
Abstract
Mitochondria are required for seed development, but little information is available about their function and role during this process. We isolated the mitochondria from developing maize (Zea mays L. cv. Nongda 108) embryos and investigated the mitochondrial membrane integrity and respiration as well as the mitochondrial proteome using two proteomic methods, the two-dimensional gel electrophoresis (2-DE) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH). Mitochondrial membrane integrity and respiration were maintained at a high level up to 21 days after pollination (DAP) and decreased thereafter, while total mitochondrial number, cytochrome c oxidase activity and respiration per embryo exhibited a bell-shaped change with peaks at 35-45 DAP. A total of 286 mitochondrial proteins changed in abundance during embryo development. During early stages of seed development (up to 21 DAP), proteins involved in energy production, basic metabolism, protein import and folding as well as removal of reactive oxygen species dominated, while during mid or late stages (35-70 DAP), some stress- and detoxification-related proteins increased in abundance. Our study, for the first time, depicted a relatively comprehensive map of energy production by mitochondria during embryo development. The results revealed that mitochondria were very active during the early stages of maize embryo development, while at the late stages of development, the mitochondria became more quiescent, but well-protected, presumably to ensure that the embryo passes through maturation, drying and long-term storage. These results advance our understanding of seed development at the organelle level.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yue Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Qi Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Ian M Møller
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
18
|
Zhang L, Dong Y, Wang Q, Du C, Xiong W, Li X, Zhu S, Li Y. iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize. Int J Mol Sci 2017; 18:E1840. [PMID: 28837076 PMCID: PMC5618489 DOI: 10.3390/ijms18091840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023] Open
Abstract
Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize.
Collapse
Affiliation(s)
- Long Zhang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yongbin Dong
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Qilei Wang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Chunguang Du
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Wenwei Xiong
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Xinyu Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Sailan Zhu
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yuling Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| |
Collapse
|
19
|
Gayral M, Elmorjani K, Dalgalarrondo M, Balzergue SM, Pateyron S, Morel MH, Brunet S, Linossier L, Delluc C, Bakan B, Marion D. Responses to Hypoxia and Endoplasmic Reticulum Stress Discriminate the Development of Vitreous and Floury Endosperms of Conventional Maize ( Zea mays) Inbred Lines. FRONTIERS IN PLANT SCIENCE 2017; 8:557. [PMID: 28450877 PMCID: PMC5390489 DOI: 10.3389/fpls.2017.00557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 05/17/2023]
Abstract
Major nutritional and agronomical issues relating to maize (Zea mays) grains depend on the vitreousness/hardness of its endosperm. To identify the corresponding molecular and cellular mechanisms, most studies have been conducted on opaque/floury mutants, and recently on Quality Protein Maize, a reversion of an opaque2 mutation by modifier genes. These mutant lines are far from conventional maize crops. Therefore, a dent and a flint inbred line were chosen for analysis of the transcriptome, amino acid, and sugar metabolites of developing central and peripheral endosperm that is, the forthcoming floury and vitreous regions of mature seeds, respectively. The results suggested that the formation of endosperm vitreousness is clearly associated with significant differences in the responses of the endosperm to hypoxia and endoplasmic reticulum stress. This occurs through a coordinated regulation of energy metabolism and storage protein (i.e., zein) biosynthesis during the grain-filling period. Indeed, genes involved in the glycolysis and tricarboxylic acid cycle are up-regulated in the periphery, while genes involved in alanine, sorbitol, and fermentative metabolisms are up-regulated in the endosperm center. This spatial metabolic regulation allows the production of ATP needed for the significant zein synthesis that occurs at the endosperm periphery; this finding agrees with the zein-decreasing gradient previously observed from the sub-aleurone layer to the endosperm center. The massive synthesis of proteins transiting through endoplasmic reticulum elicits the unfolded protein responses, as indicated by the splicing of bZip60 transcription factor. This splicing is relatively higher at the center of the endosperm than at its periphery. The biological responses associated with this developmental stress, which control the starch/protein balance, leading ultimately to the formation of the vitreous and floury regions of mature endosperm, are discussed.
Collapse
Affiliation(s)
- Mathieu Gayral
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Khalil Elmorjani
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Michèle Dalgalarrondo
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Sandrine M. Balzergue
- POPS (transcriptOmic Platform of iPS2) Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- Institute of Plant Sciences Paris-Saclay, Paris Diderot, Sorbonne Paris-CitéOrsay, France
| | - Stéphanie Pateyron
- POPS (transcriptOmic Platform of iPS2) Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- Institute of Plant Sciences Paris-Saclay, Paris Diderot, Sorbonne Paris-CitéOrsay, France
| | - Marie-Hélène Morel
- Agropolymer Engineering and Emerging Technologies, Institut National de la Recherche AgronomiqueMontpellier, France
| | | | | | | | - Bénédicte Bakan
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Didier Marion
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
- *Correspondence: Didier Marion
| |
Collapse
|
20
|
Bhalla PL, Sharma A, Singh MB. Enabling Molecular Technologies for Trait Improvement in Wheat. Methods Mol Biol 2017; 1679:3-24. [PMID: 28913791 DOI: 10.1007/978-1-4939-7337-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wheat is the major staple food crop and a source of calories for humans worldwide. A steady increase in the wheat production is essential to meet the demands of an ever-increasing global population and to achieve food security. The large size and structurally intricate genome of polyploid wheat had hindered the genomic analysis. However, with the advent of new genomic technologies such as next generation sequencing has led to genome drafts for bread wheat and its progenitors and has paved the way to design new strategies for crop improvement. Here we provide an overview of the advancements made in wheat genomics together with the available "omics approaches" and bioinformatics resources developed for wheat research. Advances in genomic, transcriptomic, and metabolomic technologies are highlighted as options to circumvent existing bottlenecks in the phenotypic and genomic selection and gene transfer. The contemporary reverse genetics approaches, including the novel genome editing techniques to inform targeted manipulation of a single/multiple genes and strategies for generating marker-free transgenic wheat plants, emphasize potential to revolutionize wheat improvement shortly.
Collapse
Affiliation(s)
- Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Akanksha Sharma
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|