1
|
Gómez-Llorente H, Pérez-Esteve É, Barat JM, Jiménez MC, González-Bello C, Fernández-Segovia I. Antimicrobial activity of essential oil components against Escherichia coli depends on the food components present in a food matrix. Food Microbiol 2025; 125:104638. [PMID: 39448148 DOI: 10.1016/j.fm.2024.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Despite numerous studies evaluating the antimicrobial activity of essential oil components (EOCs) against different microorganisms, the effect of the composition of the matrix in which they are applied remains unexplored. Hence, the effect of different food components (i.e., proteins, lipids, carbohydrates, acids, ethanol) on vanillin antimicrobial activity was carried out by assessing the growth of E. coli at different incubation times (0, 1, 4, 8 and 24 h). Based on these outcomes, the food components that most adversely affected vanillin antimicrobial activity were subsequently tested with four other EOCs (i.e., carvacrol, eugenol, geraniol, thymol). The effective concentration of antimicrobials after coming into contact with food components was quantified. The results indicated that bovine serum albumin (BSA), sunflower oil and carbohydrates partially or completely inhibited the antimicrobial efficacy of the tested EOCs, and the inhibition rate depended on the specific EOC-food component combination. Geraniol was notably the most efficient with BSA present. Eugenol performed best with sunflower oil. Carvacrol, eugenol, geraniol and thymol were more effective than vanillin with D-lactose present. This study confirmed that loss of EOCs' effective concentration due to an interaction with food constituents is a significant cause of antimicrobial activity inhibition. These findings underscore the importance of considering matrix composition when selecting antimicrobials to combat a particular strain in real food applications.
Collapse
Affiliation(s)
- Héctor Gómez-Llorente
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Édgar Pérez-Esteve
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - José M Barat
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de La Fuente S/n, 15782 Santiago de Compostela, Spain
| | - Isabel Fernández-Segovia
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| |
Collapse
|
2
|
Iqbal Z, Fauzia Farheen Zofair S, Ahmed S, Sharma M, Younus H, Mahmood R. Interaction of plant phenol vanillin with human hemoglobin: A spectroscopic and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124831. [PMID: 39024790 DOI: 10.1016/j.saa.2024.124831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Vanillin is a phenolic aldehyde widely used as a flavouring agent in the food industry. Vanillin has many health benefits and has gained attention in pharmacological industries also, due to its antioxidant properties and non-toxic nature. The interaction of vanillin with human hemoglobin (hHb), an abundant tetrameric heme protein, was investigated by several spectroscopic techniques and molecular modeling methods. UV-visible spectra showed that the binding of vanillin to hHb induces structural changes due to alterations in the micro-environment of hHb. Vanillin quenches the intrinsic fluorescence of hHb by the dynamic mechanism, which was confirmed by both temperature dependent and time resolved fluorescence studies. Vanillin binds spontaneously to hHb at a single site and the binding is stabilized by hydrogen bonds and hydrophobic interactions. The circular dichroism spectra showed that the binding of vanillin altered the secondary structure of hHb due to change in its alpha-helical content. Molecular docking identified the amino acids of hHb involved in binding to vanillin and also that the free energy change of the binding reaction is -5.5 kcal/mol. Thus, our results indicate that vanillin binds spontaneously to hHb at a single site and alters its secondary structure. This will help in understanding the potential use of vanillin and related antioxidants as therapeutic agents in various hematological disorders.
Collapse
Affiliation(s)
- Zarmin Iqbal
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Syeda Fauzia Farheen Zofair
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Monika Sharma
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
3
|
Zhang Y, He YC, Ma C. Efficient synthesis of vanillylamine through bioamination of lignin-derived vanillin by recombinant E. coli containing ω-transaminase from Caulobacter sp. D5 in dimethyl sulfoxide-water. BIORESOURCE TECHNOLOGY 2024; 413:131526. [PMID: 39321936 DOI: 10.1016/j.biortech.2024.131526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lignin is a plentiful and readily accessible renewable resource. Vanillylamine is a crucial raw material used to synthesize pharmaceuticals and high-value furan compounds that can be acquired by aminating lignin-derived vanillin (Van). However, effectually achieving the biocatalytic synthesis of vanillylamine has remained challenging. In this study, a dimethyl sulfoxide (DMSO)-H2O (1:9, vol/vol) bioreaction medium was constructed, and a recombinant E. coli ATA1012 carrying ω-transaminase from Caulobacter sp. D5 was used as the ω-transaminase biocatalyst to acquire the effectual biocatalytic synthesis of vanillylamine. Under optimized bioreaction conditions (37 ℃ and pH 7.5) by supplementary of isopropylamine (IPA) (Van/IPA = 1:5, mol/mol), 80-100 mM Van could be effectually converted by ATA1012 whole cells in DMSO-H2O (1:9, vol/vol) within 12 h, yielding 91.2 %-95.4 % vanillylamine, with >99 % selectivity. An efficient amination process was developed using ATA1012 with superior transaminase catalytic activity and substrate tolerance to effectively convert Van to vanillylamine in a DMSO-H2O medium.
Collapse
Affiliation(s)
- Yizhen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Wu R, Li D, Chen Q, Luo Z, Zhou J, Mao J. Optimization of vanillin biosynthesis in Escherichia coli K12 MG1655 through metabolic engineering. BIORESOURCE TECHNOLOGY 2024; 411:131189. [PMID: 39127360 DOI: 10.1016/j.biortech.2024.131189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Vanillin is an important flavouring agent applied in food, spices, pharmaceutical industries and other fields. Microbial biosynthesis of vanillin is considered a sustainable and economically feasible alternative to traditional chemical synthesis. In this study, Escherichia coli K12 MG1655 was used for the de novo synthesis of VAN by screening highly active carboxylic acid reductases and catechol O-methyltransferases, optimising the protocatechuic acid pathway, and regulating competitive metabolic pathways. Additionally, major alcohol by-products were identified and decreased by deleting three endogenous aldo-keto reductases and three alcohol dehydrogenases. Finally, a highest VAN titer was achieved to 481.2 mg/L in a 5 L fermenter from glucose. This work provides a valuable example of pathway engineering and screens several enzyme variants for the first time in E. coli.
Collapse
Affiliation(s)
- Renga Wu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dong Li
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qihang Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengshan Luo
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
5
|
Liu X, Wang S, Pan M, Tian A, Chen K, Qu W, Zhou W, Zhou Y, Fan L, Zhao C, Qu L, Liu Q, Wang S, Zheng C, Zheng L, Zhong F, Xu L, Ma A. Effect of cooking methods on volatile compounds and texture properties in millet porridge. Food Chem X 2024; 23:101652. [PMID: 39113744 PMCID: PMC11304996 DOI: 10.1016/j.fochx.2024.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
To instruct the production of millet porridge, the effect of cooking methods on flavor and texture of millet porridge was investigated. A total of 91 volatiles were detected and most volatile compounds decreased with cooking time, e.g. alcohols. The esters as major volatiles had a high content in electric rice cooker (IC). Multiple chemometric results indicated that volatiles from different cooking methods were distinguished respectively. Texture analysis indicated that the hardness of millet porridge prepared in IC had a more dominant decrease trend than electromagnetic oven and the electric pressure cooker before 40 min. In conclusion, different cooking methods had a more significant influence on the volatiles than cooking time, while the texture is opposite. The comprehensive sensory score reached its peak in IC-30 min. The comprehensive sensory scores of IC and EC decreased with the prolongation of cooking time. This study helps to improve the sensory attributes of millet porridge.
Collapse
Affiliation(s)
- Xinyang Liu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Shihao Wang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Meifan Pan
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Ailing Tian
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Kaixuan Chen
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Wenwen Qu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
- Shandong Laiyang Health School, 265200, Laiyang, China
| | - Wenkai Zhou
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Yarui Zhou
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lijjiao Fan
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Cong Zhao
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lingyun Qu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Qiangwei Liu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Saihan Wang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Chuanxu Zheng
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System, College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhong
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lirong Xu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| |
Collapse
|
6
|
Li W, Zhao P, Han L, Zhang F, Liu B, Meng X. Antibacterial mechanism of whey protein isolated-citral nanoparticles and stable synergistic antibacterial eugenol encapsulated Pickering emulsion for grapes preservation. Food Chem 2024; 455:139851. [PMID: 38824732 DOI: 10.1016/j.foodchem.2024.139851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
The purpose of this study was to prepare Pickering emulsion with synergistic antibacterial effect using whey protein isolated-citral (WPI-Cit) nanoparticles with eugenol for grape preservation. In this emulsion, eugenol was encapsulated in oil phase. The particle size, ζ-potential, and antibacterial mechanism of the nanoparticles were characterized. The rheological properties, antibacterial effects and preservation effects of WPI-Cit Pickering emulsion were measured. The results showed that the optimal preparation condition was performed at WPI/Cit mass ratio of 1:1, WPI-Cit nanoparticles were found to damage the cell wall and membrane of bacteria and showed more effective inhibition against S. aureus. Pickering emulsion prepared with WPI-Cit nanoparticles exhibited a better antibacterial effect after eugenol was encapsulated in it, which extended the shelf life of grapes when the Pickering emulsion was applied as a coating. It demonstrated that the Pickering emulsion prepared in this study provides a new way to extend the shelf life.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Pengcheng Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Lijun Han
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Fang Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingjie Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Xianghong Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
7
|
Lv B, Zhang X, Wang Y, Wu W, Li D, Hu Z. Discovery of the Chlorinated and Ammoniated Derivatives of Vanillin as Potential Insecticidal Candidates Targeting V-ATPase: Structure-Based Virtual Screening, Synthesis, and Bioassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20872-20881. [PMID: 39259043 DOI: 10.1021/acs.jafc.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Vacuolar-type H+-ATPases (V-ATPases) play a crucial role in the life cycle of agricultural pests and represent a promising target for the development of novel insecticides. In this study, S18, a derivative of vanillin acquired from Specs database using a structure-based virtual screening methodology, was first identified as a V-ATPase inhibitor. It binds to subunit A of the enzyme with a Kd of 1 nM and exhibits insecticidal activity against M. separata. Subsequently, using S18 as the lead compound, a new series of vanillin derivatives were rationally designed and efficiently synthesized. and their biological activities were assessed. Among them, compound 3b-03 showed the strongest insecticidal activity against M. separata by effectively targeting the V-ATPase subunit A with Kd of 0.803 μM. Isothermal titration calorimetric measurements and docking results provided insights into its interaction with subunit A of V-ATPase, which could facilitate future research aimed at the development of novel chemical insecticides.
Collapse
Affiliation(s)
- Bo Lv
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianxia Zhang
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Wang
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenjun Wu
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhaonong Hu
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
8
|
Subramani G, Manian R. Optimizing bio-vanillin synthesis from ferulic acid via Pediococcus acidilactici: A systematic approach to process enhancement and yield maximization. J Biotechnol 2024; 393:49-60. [PMID: 39025369 DOI: 10.1016/j.jbiotec.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, Pediococcus acidilactici PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by Pediococcus acidilactici PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca2+, k+, and Mg2+ and the metal ions that affects the yield of bio-vanillin are Pb+ and Cr+ were identified from the effect of metal ions in the bio-vanillin production.
Collapse
Affiliation(s)
- Gomathi Subramani
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Rameshpathy Manian
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
9
|
Zhao Q, Hu Z, Wang A, Ding Z, Zhao G, Wang X, Li W, Peng Y, Zheng J. Correlation of Vanillin-Induced Cytotoxicity with CYP3A-Mediated Metabolic Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20064-20076. [PMID: 39196852 DOI: 10.1021/acs.jafc.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Vanillin (VAN) is a common flavoring agent that can cause liver damage when ingested in large amounts. Nevertheless, the precise processes responsible for its toxicity remain obscure. The present research aimed to examine the metabolic activation of VAN and establish a potential correlation between its reactive metabolites and its cytotoxicity. In rat liver microsomes incubated with VAN, reduced glutathione/N-acetylcysteine (GSH/NAC), and nicotinamide adenine dinucleotide phosphate (NADPH), two conjugates formed from GSH and one conjugate derived from NAC were identified. We also discovered one GSH conjugate in both the bile obtained from rats and the rat primary hepatocytes that were subjected to VAN exposure. Additionally, the NAC conjugate exerted in the urine of VAN-treated rats was observed. These results indicate that a quinone intermediate was produced from VAN both in vitro and in vivo. Next, we identified CYP3A as the main enzyme that initiated the bioactive pathway of VAN. After the activity of CYP3A was selectively inhibited by ketoconazole (KTZ), the generation of the GSH conjugate declined in hepatocytes exposed to VAN. Furthermore, the vulnerability to VAN-induced toxicity was alleviated by KTZ in hepatocytes. Thus, we propose that the cytotoxicity of VAN may derive from metabolic activation triggered by CYP3A.
Collapse
Affiliation(s)
- Qiang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Aixuan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Xinyue Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| |
Collapse
|
10
|
Ma H, Khazaee Nejad S, Vargas Ramos D, Al-Shami A, Soleimani A, Amirghasemi F, Mohamed MA, Mousavi MPS. Lab-on-a-lollipop (LoL) platform for preventing food-induced toxicity: all-in-one system for saliva sampling and electrochemical detection of vanillin. LAB ON A CHIP 2024; 24:4306-4320. [PMID: 39207360 PMCID: PMC11446580 DOI: 10.1039/d4lc00436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Saliva has emerged as a primary biofluid for non-invasive disease diagnostics. Saliva collection involves using kits where individuals stimulate saliva production via a chewing device like a straw, then deposit the saliva into a designated collection tube. This process may pose discomfort to patients due to the necessity of producing large volumes of saliva and transferring it to the collection vessel. This work has developed a saliva collection and analysis device where the patient operates it like a lollipop, stimulating saliva production. The lollipop-mimic device contains yarn-based microfluidic channels that sample saliva and transfer it to the sensing zone embedded in the stem of the device. We have embedded electrochemical sensors in the lollipop platform to measure vanillin levels in saliva. Vanillin is the most common food flavoring additive and is added to most desserts such as ice cream, cakes, and cookies. Overconsumption of vanillin can cause side effects such as muscle weakness, and damage to the liver, kidneys, stomach, and lungs. We detected vanillin using direct oxidation at a laser-induced graphene (LIG) electrode. We showed a dynamic range of 2.5 μM to 30 μM, covering the physiologically relevant concentration of vanillin in saliva. The lab-on-a-lollipop platform requires only 200 μL of saliva and less than 2 minutes to fill the channels and complete the measurement. This work introduces the first sensor-embedded lollipop-mimic saliva collection and measurement system.
Collapse
Affiliation(s)
- Haozheng Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Daniel Vargas Ramos
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Abdulrahman Al-Shami
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Mona A Mohamed
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| |
Collapse
|
11
|
De Simone M, Alonso-Cotchico L, Lucas MF, Brissos V, Martins LO. Distal mutations enhance efficiency of free and immobilized NOV1 dioxygenase for vanillin synthesis. J Biotechnol 2024; 391:92-98. [PMID: 38880386 DOI: 10.1016/j.jbiotec.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Protein engineering is crucial to improve enzymes' efficiency and robustness for industrial biocatalysis. NOV1 is a bacterial dioxygenase that holds biotechnological potential by catalyzing the one-step oxidation of the lignin-derived isoeugenol into vanillin, a popular flavoring agent used in food, cleaning products, cosmetics and pharmaceuticals. This study aims to enhance NOV1 activity and operational stability through the identification of distal hotspots, located at more than 9 Å from the active site using Zymspot, a tool that predicts advantageous distant mutations, streamlining protein engineering. A total of 41 variants were constructed using site-directed mutagenesis and the six most active enzyme variants were then recombined. Two variants, with two and three mutations, showed nearly a 10-fold increase in activity and up to 40-fold higher operational stability than the wild-type. Furthermore, these variants show 90-100 % immobilization efficiency in metal affinity resins, compared to approximately 60 % for the wild-type. In bioconversions where 50 mM of isoeugenol was added stepwise over 24-h cycles, the 1D2 variant produced approximately 144 mM of vanillin after six reaction cycles, corresponding to around 22 mg, indicating a 35 % molar conversion yield. This output was around 2.5 times higher than that obtained using the wild-type. Our findings highlight the efficacy of distal protein engineering in enhancing enzyme functions like activity, stability, and metal binding selectivity, thereby fulfilling the criteria for industrial biocatalysts. This study provides a novel approach to enzyme optimization that could have significant implications for various biotechnological applications.
Collapse
Affiliation(s)
- Mario De Simone
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | | | | | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal.
| |
Collapse
|
12
|
Manyatsi TS, Lin YH, Jou YT. The isolation and identification of Bacillus velezensis ZN-S10 from vanilla (V. planifolia), and the microbial distribution after the curing process. Sci Rep 2024; 14:16339. [PMID: 39014002 PMCID: PMC11252412 DOI: 10.1038/s41598-024-66753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The market value of vanilla beans (Vanilla planifolia) is constantly increasing due to their natural aroma and flavor properties that improve after a curing process, where bacteria colonization plays a critical role. However, a few publications suggest that bacteria play a role in the curing process. Hence, this study aimed to isolate Bacillus sp. that could be used for fermenting V. planifolia while analyzing their role in the curing process. Bacillus velezensis ZN-S10 identified with 16S rRNA sequencing was isolated from conventionally cured V. planifolia beans. A bacteria culture solution of B. velezensis ZN-S10 (1 mL of 1 × 107 CFU mL-1) was then coated on 1 kg of non-cured vanilla pods that was found to ferment and colonize vanilla. PCA results revealed distinguished bacterial communities of fermented vanilla and the control group, suggesting colonization of vanilla. Phylogenetic analysis showed that ZN-S10 was the dominant Bacillus genus member and narrowly correlated to B. velezensis EM-1 and B. velezensis PMC206-1, with 78% and 73% similarity, respectively. The bacterial taxonomic profiling of cured V. planifolia had a significant relative abundance of Firmicutes, Proteobacteria, Cyanobacteria, Planctomycetes, and Bacteroidetes phyla according to the predominance. Firmicutes accounted for 55% of the total bacterial sequences, suggesting their colonization and effective fermentation roles in curing vanilla.
Collapse
Affiliation(s)
- Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu Shuefu Road 1, 91201, Pingtung, Taiwan
| | - Yu-Hsin Lin
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu Shuefu Road 1, 91201, Pingtung, Taiwan
| | - Ying-Tzy Jou
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu Shuefu Road 1, 91201, Pingtung, Taiwan.
| |
Collapse
|
13
|
Li Z, Sun L, Wang Y, Liu B, Xin F. Construction of a Novel Vanillin-Induced Autoregulating Bidirectional Transport System in a Vanillin-Producing E. coli Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14809-14820. [PMID: 38899780 DOI: 10.1021/acs.jafc.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Vanillin is one of the world's most extensively used flavoring agents with high application value. However, the yield of vanillin biosynthesis remains limited due to the low efficiency of substrate uptake and the inhibitory effect on cell growth caused by vanillin. Here, we screened high-efficiency ferulic acid importer TodX and vanillin exporters PP_0178 and PP_0179 by overexpressing genes encoding candidate transporters in a vanillin-producing engineered Escherichia coli strain VA and further constructed an autoregulatory bidirectional transport system by coexpressing TodX and PP_0178/PP_0179 with a vanillin self-inducible promoter ADH7. Compared with strain VA, strain VA-TodX-PP_0179 can efficiently transport ferulic acid across the cell membrane and convert it to vanillin, which significantly increases the substrate utilization rate efficiency (14.86%) and vanillin titer (51.07%). This study demonstrated that the autoregulatory bidirectional transport system significantly enhances the substrate uptake efficiency while alleviating the vanillin toxicity issue, providing a promising viable route for vanillin biosynthesis.
Collapse
Affiliation(s)
- Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Lina Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Bolin Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
14
|
Zheng R, Chen Q, Yang Q, Gong T, Hu CY, Meng Y. Engineering a Carotenoid Cleavage Oxygenase for Coenzyme-Free Synthesis of Vanillin from Ferulic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12209-12218. [PMID: 38751167 DOI: 10.1021/acs.jafc.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
One-pot biosynthesis of vanillin from ferulic acid without providing energy and cofactors adds significant value to lignin waste streams. However, naturally evolved carotenoid cleavage oxygenase (CCO) with extreme catalytic conditions greatly limited the above pathway for vanillin bioproduction. Herein, CCO from Thermothelomyces thermophilus (TtCCO) was rationally engineered for achieving high catalytic activity under neutral pH conditions and was further utilized for constructing a one-pot synthesis system of vanillin with Bacillus pumilus ferulic acid decarboxylase. TtCCO with the K192N-V310G-A311T-R404N-D407F-N556A mutation (TtCCOM3) was gradually obtained using substrate access channel engineering, catalytic pocket engineering, and pocket charge engineering. Molecular dynamics simulations revealed that reducing the site-blocking effect in the substrate access channel, enhancing affinity for substrates in the catalytic pocket, and eliminating the pocket's alkaline charge contributed to the high catalytic activity of TtCCOM3 under neutral pH conditions. Finally, the one-pot synthesis of vanillin in our study could achieve a maximum rate of up to 6.89 ± 0.3 mM h-1. Therefore, our study paves the way for a one-pot biosynthetic process of transforming renewable lignin-related aromatics into valuable chemicals.
Collapse
Affiliation(s)
- Rong Zheng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Qihang Chen
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Qingbo Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| |
Collapse
|
15
|
Ren Y, Qin Z, Li C, Yuan B, Yang Y, Qu G, Sun Z. Engineering the activity and thermostability of a carboxylic acid reductase in the conversion of vanillic acid to vanillin. J Biotechnol 2024; 386:19-27. [PMID: 38521166 DOI: 10.1016/j.jbiotec.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Vanillin is a valuable natural product that can be used as a fragrance and additive. Recent research in the biosynthesis of vanillin has brought attention to a key enzyme, carboxylic acid reductase (CAR), which catalyzes the reduction of vanillic acid to vanillin. Nevertheless, the biosynthesis of vanillin is hampered by the low activity and stability of CAR. As such, a rational design campaign was conducted on a well-documented carboxylic acid reductase from Segniliparus rugosus (SrCAR), using vanillic acid as the model substrate. After combined active site saturation and iterative site-specific mutagenesis, the best quadruple mutant N292H/K524S/A627L/E1121W (M3) was successfully obtained. In comparison to the wildtype SrCAR, M3 demonstrated a 4.2-fold increase in catalytic efficiency (kcat/Km), and its half-life (t1/2) was enhanced by 3.8 times up to 385.08 minutes at 40 °C. In silico docking and molecular dynamics simulation provided insights into the improved activity and stability. In the subsequent preparative-scale reaction with 100 mM (16.8 g L-1) vanillic acid, the whole cell catalysis utilizing M3 produced 10.15 g·L-1 of vanillin and 1.11 g·L-1 of vanillyl alcohol, respectively. This work demonstrates a dual improvement in the activity and thermal stability of SrCAR, thereby potentially facilitating the application of carboxylic acid reductase in the biosynthesis of vanillin.
Collapse
Affiliation(s)
- Yaoyao Ren
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zongmin Qin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Yang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
16
|
Bai H, Wang S, Wang ZM, Zhu LL, Yan HB, Wang YB, Wang XY, Peng L, Liu JZ. Investigation of bioactive compounds and their correlation with the antioxidant capacity in different functional vinegars. Food Res Int 2024; 184:114262. [PMID: 38609241 DOI: 10.1016/j.foodres.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.
Collapse
Affiliation(s)
- Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xin-Yu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd., Liaocheng, Shandong 252300, China
| |
Collapse
|
17
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
18
|
Almostafa MM, Mohamed ME, Younis NS. Ameliorative effects of vanillin against pentylenetetrazole-induced epilepsy and associated memory loss in mice: The role of Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways. Int Immunopharmacol 2024; 129:111657. [PMID: 38335655 DOI: 10.1016/j.intimp.2024.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Epilepsy is a severe neurological disorder associated with substantial morbidity and mortality. Vanillin (Van) is a natural phenolic aldehyde with beneficial pharmacological properties. This study investigated the neuroprotective effects of Van in epilepsy and elucidated its mechanism of action. METHODS Swiss albino mice were divided into the following five groups: "normal group", 0.9 % saline; "pentylenetetrazole (PTZ) group", intraperitoneal administration of 35 mg/kg PTZ on alternate days up to 42 days; and "PTZ + Van 20", "PTZ + Van 40", and "PTZ + sodium valproate (Val)" groups received PTZ injections in conjunction withVan 20 mg, Van 40 mg/kg, and Val 300 mg/kg, respectively. Behavioural tests and hippocampal histopathological analysis were performed in all groups. The Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways, oxidative stress, neuro-inflammation, and apoptotic markers were analysed. Furthermore, brain acetylcholinesterase (AChE) activity and levels of dopamine (DA), gamma-aminobutyric acid GABA, and serotonin 5-HT were assessed. RESULTS Van prolonged seizure manifestations and improved electroencephalogram (EEG)criteriain conjunction with 100 mg/kg PTZ once daily. Van administration increased Nrf2/HO-1/NQO1 levels, with subsequent attenuation of malondialdehyde (MDA) and nitric oxide (NO) levels with elevated glutathione (GSH) levels and intensified superoxide dismutase (SOD) and catalase activities. Van reduced the gene and protein expression of HMGB1/RAGE/TLR4/NFκB and decreased the levels of inflammatory and apoptotic markers. In addition, Van reduced AChE activity, and elevated glial fibrillary acidic proteins (GFAP) increased neurotransmitter and brain-derived neurotrophic factors (BDNF). CONCLUSION By increasing Nrf2/HO-1/NQO1 levels and downregulating the HMGB1/RAGE/TLR4/ NFκB pathway, Van offered protection in PTZ-kindled mice with subsequent attenuation in lipid peroxidation, upregulation in antioxidant enzyme activities, and reduction in inflammation and apoptosis.
Collapse
Affiliation(s)
- Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
19
|
Li J, Lu X, Zou X, Ye BC. Recent Advances in Microbial Metabolic Engineering for Production of Natural Phenolic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4538-4551. [PMID: 38377566 DOI: 10.1021/acs.jafc.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phenolic acids are important natural bioactive compounds with varied physiological functions. They are extensively used in food, pharmaceutical, cosmetic, and other chemical industries and have attractive market prospects. Compared to plant extraction and chemical synthesis, microbial fermentation for phenolic acid production from renewable carbon sources has significant advantages. This review focuses on the structural information, physiological functions, current applications, and biosynthesis pathways of phenolic acids, especially advances in the development of metabolically engineered microbes for the production of phenolic acids. This review provides useful insights concerning phenolic acid production through metabolic engineering of microbial cell factories.
Collapse
Affiliation(s)
- Jin Li
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiumin Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
20
|
Watanabe T, Kimura Y, Umeno D. MetJ-Based Mutually Interfering SAM-ON/SAM-OFF Biosensors. ACS Synth Biol 2024; 13:624-633. [PMID: 38286030 DOI: 10.1021/acssynbio.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
SAM (S-adenosylmethionine) is an important metabolite that operates as a major donor of methyl groups and is a controller of various physiological processes. Its availability is also believed to be a major bottleneck in the biological production of numerous high-value metabolites. Here, we constructed SAM-sensing systems using MetJ, an SAM-dependent transcriptional regulator, as a core component. SAM is a corepressor of MetJ, which suppresses the MetJ promoter with an increasing cellular concentration of SAM (SAM-OFF sensor). The application of transcriptional interference and evolutionary tuning effectively inverted its response, yielding a SAM-ON sensor (signal increases with increasing SAM concentration). By linking two genes encoding fluorescent protein reporters in such a way that their transcription events interfere with each other's and by placing one of them under the control of MetJ, we could increase the effective signal-to-noise ratio of the SAM sensor while decreasing the batch-to-batch deviation in signal output, likely by canceling out the growth-associated fluctuation in translational resources. By taking the ratio of SAM-ON/SAM-OFF signals and by resetting the default pool size of SAM, we could rapidly identify SAM synthetase (MetK) mutants with increased cellular activity from a random library. The strategy described herein should be widely applicable for identifying activity mutants, which would be otherwise overlooked because of the strong homeostasis of metabolic networks.
Collapse
Affiliation(s)
- Taro Watanabe
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| | - Yuki Kimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
21
|
Ravier A, Chalut P, Belarbi S, Santerre C, Vallet N, Nhouchi Z. Impact of the Post-Harvest Period on the Chemical and Sensorial Properties of planifolia and pompona Vanillas. Molecules 2024; 29:839. [PMID: 38398591 PMCID: PMC10893505 DOI: 10.3390/molecules29040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Vanilla production in Guadeloupe is expanding. The main species grown is Vanilla planifolia, but other species such as Vanilla pompona are also present and required by industries. To upgrade the value of vanilla production on this Caribbean Island, this study was performed to evaluate the aromatic specifies of these vanilla species according to the length of the post-harvest period (2 months and 9 months). For this purpose, Vanilla planifolia and Vanilla pompona were compared through scald and scarification transformation processes, as well as two different refining times (T1 and T2). For chemical characterization, 0.1 g of vanilla bean seeds was used for SMPE/GC-MS measurements, while 0.05 g of vanilla samples was subjected to infusion in milk (0.15%) for sensory evaluation. The latter involved generation of terms of aroma through olfaction and gustation sessions. The chemical results showed a significant difference between the two species, where vanillin was mostly present in Vanilla planifolia, unlike Vanilla pompona, where it was mainly rich in 4-methoxybenzyl alcohol. Interestingly, the second refining time was characterized by the appearance of two major components, 1,3-octadien and acetic acid. For sensory analysis, all the vanillas exhibited a high diversity of aromas including "sweet", "gourmand", "spicy" flavors and so on. The application of factorial correspondence analysis (FAC) as well as the agglomerative hierarchical clustering (AHC) showed differences between the vanilla samples according to both the species and refining time. The combination of these analyses makes it possible to establish a chemical and organoleptic profile of vanillas. Varietal and processing factors both have a major impact on the aroma profile of vanillas.
Collapse
Affiliation(s)
| | | | | | | | | | - Zeineb Nhouchi
- Institut Supérieur International du Parfum, de la Cosmétique et de l’Aromatique Alimentaire (ISIPCA), 34-36 Rue du Parc de Clagny, F-78000 Versailles, France
| |
Collapse
|
22
|
Rusdipoetra RA, Suwito H, Puspaningsih NNT, Haq KU. Theoretical insight of reactive oxygen species scavenging mechanism in lignin waste depolymerization products. RSC Adv 2024; 14:6310-6323. [PMID: 38380240 PMCID: PMC10877321 DOI: 10.1039/d3ra08346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Apart from natural products and synthesis, phenolic compounds can be produced from the depolymerization of lignin, a major waste in biofuel and paper production. This process yields a plethora of aryl propanoid phenolic derivatives with broad biological activities, especially antioxidant properties. Due to its versatility, our study focuses on investigating the antioxidant mechanisms of several phenolic compounds obtained from renewable and abundant resources, namely, syringol (Hs), 4-allylsyringol (HAs), 4-propenylsyringol (HPns), and 4-propylsyringol (HPs). Employing the density functional theory (DFT) approach in conjunction with the QM-ORSA protocol, we aim to explore the reactivity of these compounds in neutralizing hydroperoxyl radicals in physiological and non-polar media. Kinetic and thermodynamic parameter calculations on the antioxidant activity of these compounds were also included in this study. Additionally, our research utilizes the activation strain model (ASM) for the first time to explain the reactivity of the HT and RAF mechanisms in the peroxyl radical scavenging process. It is predicted that HPs has the best rate constant in both media (1.13 × 108 M-1 s-1 and 1.75 × 108 M-1 s-1, respectively). Through ASM analysis, it is observed that the increase in the interaction energy due to the formation of intermolecular hydrogen bonds during the reaction is an important feature for accelerating the hydrogen transfer process. Furthermore, by examining the physicochemical and toxicity parameters, only Hs is not suitable for further investigation as a therapeutic agent because of potential toxicity and mutagenicity. However, overall, all compounds are considered potent HOO˙ scavengers in lipid-rich environments compared to previously studied antioxidants.
Collapse
Affiliation(s)
- Rahmanto Aryabraga Rusdipoetra
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Hery Suwito
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Ni Nyoman Tri Puspaningsih
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Proteomic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Kautsar Ul Haq
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| |
Collapse
|
23
|
Zhu J, Huang T, Chen X, Tian D. Effect of vanillin-conjugated chitosan-stabilized emulsions on dough and bread characteristics. Curr Res Food Sci 2024; 8:100691. [PMID: 38356612 PMCID: PMC10864875 DOI: 10.1016/j.crfs.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, the effect of chitosan-vanillin Schiff base emulsions (CSVAEs) on dough and bread characteristics was investigated. The results revealed that CSVAEs were embedded in the gluten and that the viscoelasticity and mechanical strength of the dough gradually increased with increasing CSVAEs concentration, α-helical and β-fold content, and elastic structure in the dough increased with the same patterns. The basic properties of bread were measured, and it was found that low concentrations of CSVAEs were effective in improving the quality of bread and slowing the staling rate. As the storage time increased, CSVAEs had less effect on the rate of moisture loss, hardness and springiness of the bread and more effect on the inhibition of the acidity of the bread. The addition of CSVAEs slowed the increase in bacteria and molds and extended the shelf life of the bread.
Collapse
Affiliation(s)
- Jianfei Zhu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067, China
| | - Tingting Huang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaomei Chen
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Dongling Tian
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| |
Collapse
|
24
|
D’Arrigo P, Rossato LAM, Strini A, Serra S. From Waste to Value: Recent Insights into Producing Vanillin from Lignin. Molecules 2024; 29:442. [PMID: 38257355 PMCID: PMC10818928 DOI: 10.3390/molecules29020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Vanillin, one of the most widely used and appreciated flavoring agents worldwide, is the main constituent of vanilla bean extract, obtained from the seed pods of various members belonging to the Orchidaceae family. Due to the great demand in the food confectionery industry, as well as in the perfume industry, medicine, and more, the majority of vanillin used today is produced synthetically, and only less than one percent of the world's vanilla flavoring market comes directly from the traditional natural sources. The increasing global demand for vanillin requires alternative and overall sustainable new production methods, and the recovery from biobased polymers, like lignin, is an environmentally friendly alternative to chemical synthesis. The present review provides firstly an overview of the different types of vanillin, followed by a description of the main differences between natural and synthetic vanillin, their preparation, the market of interest, and the authentication issues and the related analytical techniques. Then, the review explores the real potentialities of lignin for vanillin production, presenting firstly the well-assessed classical methods and moving towards the most recent promising approaches through chemical, biotechnological and photocatalytic methodologies, together with the challenges and the principal issues associated with each technique.
Collapse
Affiliation(s)
- Paola D’Arrigo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milan, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, 20131 Milan, Italy;
| | - Letizia A. M. Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alberto Strini
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), via Lombardia 49, 20098 San Giuliano Milanese, Italy;
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, 20131 Milan, Italy;
| |
Collapse
|
25
|
Mo Q, Yuan J. Minimal aromatic aldehyde reduction (MARE) yeast platform for engineering vanillin production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:4. [PMID: 38184607 PMCID: PMC10771647 DOI: 10.1186/s13068-023-02454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Vanillin represents one of the most widely used flavoring agents in the world. However, microbial synthesis of vanillin is hindered by the host native metabolism that could rapidly degrade vanillin to the byproducts. RESULTS Here, we report that the industrial workhorse Saccharomyces cerevisiae was engineered by systematic deletion of oxidoreductases to improve the vanillin accumulation. Subsequently, we harnessed the minimal aromatic aldehyde reduction (MARE) yeast platform for de novo synthesis of vanillin from glucose. We investigated multiple coenzyme-A free pathways to improve vanillin production in yeast. The vanillin productivity in yeast was enhanced by multidimensional engineering to optimize the supply of cofactors (NADPH and S-adenosylmethionine) together with metabolic reconfiguration of yeast central metabolism. The final yeast strain with overall 24 genetic modifications produced 365.55 ± 7.42 mg l-1 vanillin in shake-flasks, which represents the best reported vanillin titer from glucose in yeast. CONCLUSIONS The success of vanillin overproduction in budding yeast showcases the great potential of synthetic biology for the creation of suitable biocatalysts to meet the requirement in industry. Our work lays a foundation for the future implementation of microbial production of aromatic aldehydes in budding yeast.
Collapse
Affiliation(s)
- Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China.
| |
Collapse
|
26
|
Xu L, Liaqat F, Sun J, Khazi MI, Xie R, Zhu D. Advances in the vanillin synthesis and biotransformation: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2024; 189:113905. [DOI: 10.1016/j.rser.2023.113905] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
27
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
28
|
Tong W, Wang S, Yang Y, Huang Z, Li Y, Huang D, Luo H, Zhao L. Insights into the Dynamic Succession of Microbial Community and Related Factors of Vanillin Content Change Based by High-Throughput Sequencing and Daqu Quality Drivers. Foods 2023; 12:4312. [PMID: 38231778 DOI: 10.3390/foods12234312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Daqu is an important saccharifying starter in the fermentation of Nongxiangxing Baijiu in China. Vanillin is a health and flavor factor in Baijiu. However, only a few research studies on the vanillin content of Daqu are currently not systematic. In order to investigate the metabolic mechanism of vanillin in the fermentation process of Daqu, we analyzed the changes in microorganisms, influencing factors, and enzymes related to vanillin in Daqu. This research found that there were differences between bacterial and fungal genera in each sample, and the abundance of bacteria was greater than that of fungi. Among the microbial genera, Klebsiella, Escherichia, Acinetobacter, Saccharopolyspora, Aerococcus, and Puccinia were positively correlated with vanillin. Meanwhile, we also found that moisture and reducing sugar were the main physicochemical factors affecting the formation of vanillin. The functional annotation results indicate that carbohydrate metabolism and energy metabolism were important microbial metabolic pathways that impacted vanillin production in solid-state fermentation. The feruloyl-CoA hydratase/lyase (EC 4.1.2.61) and acylamidase (EC 3.5.1.4) were positively correlated with vanillin content (p ≤ 0.05) and promote the increase in vanillin content. These findings contribute to furthering our understanding of the functional microorganisms, physicochemical factors, and enzymes related to the change in vanillin content during the fermentation of Daqu and can help to further explore the flavor substances in Baijiu fermentation in the future.
Collapse
Affiliation(s)
- Wenhua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Shuqin Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Zhijiu Huang
- Sichuan Luzhou Laojiao Co., Ltd., Luzhou 646000, China
- Zuiqingfeng Distillery Co., Ltd., Luzhou 646000, China
| | - Yiyun Li
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Dan Huang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Huibo Luo
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Liming Zhao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200000, China
| |
Collapse
|
29
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
30
|
Liaqat F, Xu L, Khazi MI, Ali S, Rahman MU, Zhu D. Extraction, purification, and applications of vanillin: A review of recent advances and challenges. INDUSTRIAL CROPS AND PRODUCTS 2023; 204:117372. [DOI: 10.1016/j.indcrop.2023.117372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
31
|
De Saegher T, Vercammen J, Atanasova B, Van Geem KM, De Clercq J, Verberckmoes A, Lauwaert J. Efficient mapping of lignin depolymerization product pools and quantification of specific monomers through rapid GPC-HPLC-UV/VIS analysis. Anal Chim Acta 2023; 1278:341738. [PMID: 37709433 DOI: 10.1016/j.aca.2023.341738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Growing research on lignin depolymerization to functionalized bio-aromatics has necessitated dedicated analysis techniques. However, immense variability in molecular weight and functional groups of the depolymerization products impedes fast analysis of a large number of samples while remaining in-depth enough for catalyst screening or reaction condition optimization. While GPC-HPLC-UV/VIS has been a promising technique, up until now, the information it provides is largely qualitative. By enabling quantification of key monomeric products and through further reduction of overall analysis time, this study aims to increase the potential of GPC-HPLC-UV/VIS for fast and in-depth characterization of lignin depolymerization product pools. RESULTS Analysis of selected samples, isolated from GPC-HPLC-UV/VIS analyses of lignin depolymerization product pools, with gas chromatography (GC) equipped with an Orbitrap high-resolution accurate mass spectrometer (Orbitrap-HR/AM-MS) is successful in identifying the main low monomeric products. Moreover, these identifications are further substantiated through GPC-HPLC-UV/VIS analysis of standards. Furthermore, straight forward quantification of these products directly within GPC-HPLC-UV/VIS is successfully developed with limits of detection ≤0.05 mmol/L, which is at least on par with more complex analysis techniques. Additionally, several different reversed phase columns are assessed to reduce 2nd dimension (2D) time and, hence, overall analysis time while maintaining the possibility for quantification. A reduction in overall analysis time of about 30% as compared to the state-of-the-art is achieved by using a YMC Triart BIO C4 column as 2D. SIGNIFICANCE Through the enhancements introduced in this study, GPC-HPLC-UV/VIS emerges as a unique technique for the analysis of lignin depolymerization product pools, which is capable of fast yet sufficiently in-depth analysis of a large volume of samples. This capability is indispensable for catalyst screening and fine-tuning reaction conditions.
Collapse
Affiliation(s)
- Tibo De Saegher
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials Textiles and Chemical Engineering (MaTCh), Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Joeri Vercammen
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials Textiles and Chemical Engineering (MaTCh), Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium; Interscience Expert Center (IS-X), Avenue J.E. Lenoir 2, 1384, Louvain-la-Neuve, Belgium
| | - Boyana Atanasova
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials Textiles and Chemical Engineering (MaTCh), Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials Textiles and Chemical Engineering (MaTCh), Ghent University, Technologiepark 125, 9052, Ghent, Belgium
| | - Jeriffa De Clercq
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials Textiles and Chemical Engineering (MaTCh), Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - An Verberckmoes
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials Textiles and Chemical Engineering (MaTCh), Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Jeroen Lauwaert
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials Textiles and Chemical Engineering (MaTCh), Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Liu Y, Sun L, Huo YX, Guo S. Strategies for improving the production of bio-based vanillin. Microb Cell Fact 2023; 22:147. [PMID: 37543600 PMCID: PMC10403864 DOI: 10.1186/s12934-023-02144-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023] Open
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most popular flavors with wide applications in food, fragrance, and pharmaceutical industries. However, the high cost and limited yield of plant extraction failed to meet the vast market demand of natural vanillin. Vanillin biotechnology has emerged as a sustainable and cost-effective alternative to supply vanillin. In this review, we explored recent advances in vanillin biosynthesis and highlighted the potential of vanillin biotechnology. In particular, we addressed key challenges in using microorganisms and provided promising approaches for improving vanillin production with a special focus on chassis development, pathway construction and process optimization. Future directions of vanillin biosynthesis using inexpensive precursors are also thoroughly discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Institute of Technology (Tangshan) Translational Research Center, Hebei, 063611, China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology (Tangshan) Translational Research Center, Hebei, 063611, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
33
|
Paul V, Agarwal A, Dutt Tripathi A, Sirohi R. Valorization of lignin for the production of vanillin by Bacillus aryabhattai NCIM 5503. BIORESOURCE TECHNOLOGY 2023:129420. [PMID: 37399953 DOI: 10.1016/j.biortech.2023.129420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Coconut coir waste is a rich lignocellulosic biomass. The coconut coir waste generated from temples is resistant to natural degradation, and its accumulation causes environmental pollution. Ferulic acid, a vanillin precursor, was extracted from the coconut coir waste by hydro-distillation extraction. The extracted ferulic acid was used for vanillin synthesis by Bacillus aryabhattai NCIM 5503 under submerged fermentation. In the present study, the Taguchi DOE (design of experiment) software was used to optimize the fermentation process, which resulted in a 1.3 fold increase in vanillin yield (640.96±0.02 mg/L), as compared to the unoptimized yield of 495.96±0.01 mg/L. The optimized media for enhanced vanillin production comprised; fructose 0.75 % (w/v), beef extract 1 % (w/v), pH 9, temperature 30℃, agitation speed 100 rpm, trace metal solution 1 % (v/v), and ferulic acid 2 % (v/v). The results show that the commercial production of vanillin can be envisioned using coconut coir waste.
Collapse
Affiliation(s)
- Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 22105, UP, India
| | - Aparna Agarwal
- Department of Food Technology, Lady Irwin College, Delhi University, New Delhi, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 22105, UP, India.
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand
| |
Collapse
|
34
|
Oliveira JPS, Gomes S, Ladeira KC, Cameron LC, Macedo AF, Koblitz MGB. Recovery of flavor compounds from vanilla bagasse by hydrolysis and their identification through UPLC-MSE. Food Res Int 2023; 168:112739. [PMID: 37120198 DOI: 10.1016/j.foodres.2023.112739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Vanilla is a globally treasured commodity, and the consequences of its unstable value affect social, environmental, economic, and academic ambits. The extensive range of aroma molecules found in cured vanilla beans is crucial to the complexity of this natural condiment and knowledge about their recovery is of the essence. Many strategies aim on reproducing the chemical intricacies of vanilla flavor, such as biotransformation and de novo biosynthesis. Few studies, however, aim at the exhaustion of the cured pods, of which the bagasse, after the traditional ethanolic extraction, might still bear a highly valued flavor composition. An untargeted liquid chromatography coupled with mass spectrometry (LC-MSE) approach was applied to elucidate if sequential alkaline-acidic hydrolysis was effective in extracting flavor related molecules and chemical classes from the hydro-ethanolic fraction. Important vanilla flavor related compounds present in the hydro-ethanolic fraction were further extracted from the residue through alkaline hydrolysis, such as vanillin, vanillic acid, 3-methoxybenzaldehyde, 4-vinylphenol, heptanoic acid, and protocatechuic acid. Acid hydrolysis was effective on further extracting features from classes such as phenols, prenol lipids, and organooxygen compounds, though representative molecules remain unknown. Finally, sequential alkaline-acidic hydrolysis rendered natural vanilla's ethanolic extraction residues as an interesting supplier of its own products, which could be used as a food additive, and many other applications.
Collapse
|
35
|
Freitas CS, Santiago SS, Lage DP, Antinarelli LMR, Oliveira FM, Vale DL, Martins VT, Magalhaes LND, Bandeira RS, Ramos FF, Pereira IAG, de Jesus MM, Ludolf F, Tavares GSV, Costa AV, Ferreira RS, Coimbra ES, Teixeira RR, Coelho EAF. In vitro evaluation of antileishmanial activity, mode of action and cellular response induced by vanillin synthetic derivatives against Leishmania species able to cause cutaneous and visceral leishmaniasis. Exp Parasitol 2023:108555. [PMID: 37247802 DOI: 10.1016/j.exppara.2023.108555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
The treatment against leishmaniasis presents problems, mainly due to their toxicity of the drugs, high cost and/or by the emergence of parasite resistant strains. In this context, new therapeutics should be searched. In this study, two novel synthetic derivatives from vanillin: [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] or 3s and [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde] or 3t, were evaluated regarding their antileishmanial activity against distinct parasite species able to cause cutaneous and visceral leishmaniasis. Results showed that compounds 3s and 3t were effective against Leishmania infantum, L. amazonensis and L. braziliensis promastigote and amastigote-like forms, showing selectivity index (SI) of 25.1, 18.2 and 22.9, respectively, when 3s was used against promastigotes, and of 45.2, 7.5 and 15.0, respectively, against amastigote-like stage. Using the compound 3t, SI values were 45.2, 53.0 and 80.0, respectively, against promastigotes, and of 35.9, 46.0 and 58.4, respectively, against amastigote-like forms. Amphotericin B (AmpB) showed SI values of 5.0, 7.5 and 15.0, respectively, against promastigotes, and of 3.8, 5.0 and 7.5, respectively, against amastigote-like stage. The treatment of infected macrophages and inhibition of the infection upon pre-incubation with the molecules showed that they were effective in reducing the infection degree and inhibiting the infection in pre-incubated parasites, respectively, as compared to data obtained using AmpB. The mechanism of action of 3s and 3t was evaluated in L. infantum, revealing that both 3s and 3t altered the parasite mitochondrial membrane potential leading to reactive oxygen species production, increase in lipid corps and changes in the cell cycle, causing the parasite' death. A preliminary assay using the cell culture supernatant from treated and infected macrophages showed that 3s and 3t induced higher IL-12 and lower IL-10 values; suggesting the development of an in vitro Th1-type response in the treated cells. In this context, data indicated that 3s and 3t could be considered therapeutic agents to be tested in future studies against leishmaniasis.
Collapse
Affiliation(s)
- Camila S Freitas
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Samira S Santiago
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs S/N, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M R Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Fabrício M Oliveira
- Instituto Federal de Educação de Minas Gerais, Rua Afonso Sardinha 90, Bairro Pioneiros, 36420-000, Ouro Branco, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Lícia N D Magalhaes
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo M de Jesus
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal Do Espírito Santo, Alto Universitário, S/n Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs S/N, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
36
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
37
|
Martínková L, Grulich M, Pátek M, Křístková B, Winkler M. Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review. Biomolecules 2023; 13:biom13050717. [PMID: 37238587 DOI: 10.3390/biom13050717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of "technical lignins". The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and resistance of lignins. Progress toward mild work-up of lignins has been discussed in numerous reviews. The next step in the valorization of lignin is the conversion of lignin-based monomers, which are limited in number, into a wider range of bulk and fine chemicals. These reactions may need chemicals, catalysts, solvents, or energy from fossil resources. This is counterintuitive to green, sustainable chemistry. Therefore, in this review, we focus on biocatalyzed reactions of lignin monomers, e.g., vanillin, vanillic acid, syringaldehyde, guaiacols, (iso)eugenol, ferulic acid, p-coumaric acid, and alkylphenols. For each monomer, its production from lignin or lignocellulose is summarized, and, mainly, its biotransformations that provide useful chemicals are discussed. The technological maturity of these processes is characterized based on, e.g., scale, volumetric productivities, or isolated yields. The biocatalyzed reactions are compared with their chemically catalyzed counterparts if the latter are available.
Collapse
Affiliation(s)
- Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, 8010 Graz, Austria
| |
Collapse
|
38
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
39
|
Mostafa HS, Hashem MM. Lactic acid bacteria as a tool for biovanillin production: A review. Biotechnol Bioeng 2023; 120:903-916. [PMID: 36601666 DOI: 10.1002/bit.28328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Vanilla is the most commonly used natural flavoring agent in industries like food, flavoring, medicine, and fragrance. Vanillin can be obtained naturally, chemically, or through a biotechnological process. However, the yield from vanilla pods is low and does not meet market demand, and the use of vanillin produced by chemical synthesis is restricted in the food and pharmaceutical industries. As a result, the biotechnological process is the most efficient and cost-effective method for producing vanillin with consumer-demanding properties while also supporting industrial applications. Toxin-free biovanillin production, based on renewable sources such as industrial wastes or by-products, is a promising approach. In addition, only natural-labeled vanillin is approved for use in the food industry. Accordingly, this review focuses on biovanillin production from lactic acid bacteria (LAB), which is generally recognized as safe (GRAS), and the cost-cutting efforts that are utilized to improve the efficiency of biotransformation of inexpensive and readily available sources. LABs can utilize agro-wastes rich in ferulic acid to produce ferulic acid, which is then employed in vanillin production via fermentation, and various efforts have been applied to enhance the vanillin titer. However, different designs, such as response surface methods, using immobilized cells or pure enzymes for the spontaneous release of vanillin, are strongly advised.
Collapse
Affiliation(s)
- Heba S Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Marwa M Hashem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
40
|
Gazolla PAR, de Aguiar AR, Costa MCA, Oliveira OV, Costa AV, da Silva CM, do Nascimento CJ, Junker J, Ferreira RS, de Oliveira FM, Vaz BG, do Carmo PHF, Santos DA, Ferreira MMC, Teixeira RR. Synthesis of vanillin derivatives with 1,2,3-triazole fragments and evaluation of their fungicide and fungistatic activities. Arch Pharm (Weinheim) 2023:e202200653. [PMID: 36922908 DOI: 10.1002/ardp.202200653] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Vanillin is the main component of natural vanilla extract and is responsible for its flavoring properties. Besides its well-known applications as an additive in food and cosmetics, it has also been reported that vanillin can inhibit fungi of clinical interest, such as Candida spp., Cryptococcus spp., Aspergillus spp., as well as dermatophytes. Thus, the present work approaches the synthesis of a series of vanillin derivatives with 1,2,3-triazole fragments and the evaluation of their antifungal activities against Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, Cryptococcus gattii, Trichophyton rubrum, and Trichophyton interdigitale strains. Twenty-two vanillin derivatives were obtained, with yields in the range of 60%-91%, from copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between two terminal alkynes prepared from vanillin and different benzyl azides. In general, the evaluated compounds showed moderate activity against the microorganisms tested, with minimum inhibitory concentration (MIC) values ranging from 32 to >512 µg mL-1 . Except for compound 3b against the C. gattii R265 strain, all vanillin derivatives showed fungicidal activity for the yeasts tested. The predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the compounds indicated favorable profiles for drug development. In addition, a four-dimensional structure-activity relationship (4D-SAR) analysis was carried out and provided useful insights concerning the structures of the compounds and their biological profile. Finally, molecular docking calculations showed that all compounds bind favorably at the lanosterol 14α-demethylase enzyme active site with binding energies ranging from -9.1 to -12.2 kcal/mol.
Collapse
Affiliation(s)
- Poliana A R Gazolla
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alex R de Aguiar
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria C A Costa
- Laboratório de Quimiometria Teórica e Aplicada (LQTA), Universidade Estadual de Campinas - Unicamp, São Paulo, Campinas, Brazil
| | - Osmair V Oliveira
- Instituto Federal de São Paulo - Campus Catanduva, São Paulo, Catanduva, Brazil
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Cleiton M da Silva
- Departmento de Química, ICEx, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Claudia J do Nascimento
- Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jochen Junker
- Fundação Oswaldo Cruz/CDTS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Campus Pampulha, Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício M de Oliveira
- Instituto Federal de Minas Gerais (IFMG), Campus Ouro Branco, Ouro Branco, Minas Gerais, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - Paulo H F do Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Márcia M C Ferreira
- Laboratório de Quimiometria Teórica e Aplicada (LQTA), Universidade Estadual de Campinas - Unicamp, São Paulo, Campinas, Brazil
| | - Róbson R Teixeira
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
41
|
Hofmann E, Degot P, Touraud D, König B, Kunz W. Novel green production of natural-like vanilla extract from curcuminoids. Food Chem 2023; 417:135944. [PMID: 36934704 DOI: 10.1016/j.foodchem.2023.135944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
The demand for natural vanilla extract, and vanillin in particular, by far exceeds the current production, as both the cultivation of vanilla beans and the extraction of vanillin are laborious. For this purpose, most vanillin used today is produced synthetically, contrary to the general trend toward bio-based products. The present study deals with the synthesis of nature-based vanillin, starting with the more accessible rhizomes of the plant Curcuma longa. Besides vanillin, vanillic acid and p-hydroxybenzaldehyde are synthesized that way, which are also found in the natural vanilla bean. The extraction of the curcuminoids and, finally, their conversion to the flavors are performed using visible light and food-grade chemicals only. A binary mixture of ethanol and triacetin, as well as a surfactant-free microemulsion consisting of water, ethanol, and triacetin, are investigated in this context. The results exceed the literature values for Soxhlet extraction of vanilla beans by a factor > 7.
Collapse
Affiliation(s)
- Evamaria Hofmann
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Pierre Degot
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
42
|
Niu H, Wu G, Wang X, Ding H, Hu Y. Synthesis of a vanillin-derived bisDOPO co-curing agent rendering epoxy thermosets simultaneously improved flame retardancy, mechanical strength and transparency. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
43
|
Production of various phenolic aldehyde compounds using the 4CL-FCHL biosynthesis platform. Int J Biol Macromol 2023; 226:608-617. [PMID: 36521700 DOI: 10.1016/j.ijbiomac.2022.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Vanillin (3-methoxy-4-hydroxybenzaldehyde) is one of the most important flavoring substances used in the cosmetic and food industries. Feruloyl-CoA hydratase/lyase (FCHL) is an enzyme that catalyzes the production of vanillin from feruloyl-CoA. In this study, we report kinetic parameters and biochemical properties of FCHL from Sphingomonas paucimobilis SYK-6 (SpFCHL). Also, the crystal structures of an apo-form of SpFCHL and two complexed forms with acetyl-CoA and vanillin/CoA was present. Comparing the apo structure to its complexed forms of SpFCHL, a gate loop with an "open and closed" role was observed at the entrance of the substrate-binding site. With vanillin and CoA complexed to SpFCHL, we captured a conformational change in the feruloyl moiety-binding pocket that repositions the catalytic SpFCHLE146 and other key residues. This binding pocket does not tightly fit the vanillin structure, suggesting substrate promiscuity of this enzyme. This observation is in good agreement with assay results for phenylpropanoid-CoAs and indicates important physicochemical properties of the substrate for the hydratase/lyase reaction mechanism. In addition, we showed that various phenolic aldehydes could be produced using the 4CL-FCHL biosynthesis platform.
Collapse
|
44
|
Incorporating Graphene Nanoplatelets and Carbon Nanotubes in Biobased Poly(ethylene 2,5-furandicarboxylate): Fillers' Effect on the Matrix's Structure and Lifetime. Polymers (Basel) 2023; 15:polym15020401. [PMID: 36679281 PMCID: PMC9863989 DOI: 10.3390/polym15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.
Collapse
|
45
|
Liao W, Elaissari A, Dumas E, Gharsallaoui A. Effect of trans-cinnamaldehyde or citral on sodium caseinate: Interfacial rheology and fluorescence quenching properties. Food Chem 2023; 400:134044. [DOI: 10.1016/j.foodchem.2022.134044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
46
|
Zhang L, Yu H, Chen H, Huang Y, Bakunina I, de Sousa DP, Sun M, Zhang J. Application of molecular imprinting polymers in separation of active compounds from plants. Fitoterapia 2023; 164:105383. [PMID: 36481366 DOI: 10.1016/j.fitote.2022.105383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Molecular imprinting technique is becoming an appealing and prominent strategy to synthesize materials for target recognition and rapid separation. In recent years, it has been applied in separation of active compounds from various plants and has achieved satisfying results. This review aims to make a brief introduction of molecular imprinting polymers and their efficient application in the separation of various active components from plants, including flavonoids, organic acids, alkaloids, phenylpropanoids, anthraquinones, phenolics, terpenes, steroids, and diketones, which will provide some clues to help stimulating research into this fascinating and useful area.
Collapse
Affiliation(s)
- Luxuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Pharmacy 2019, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinghong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, 58051-970, João Pessoa, Paraíba, Brazil.
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
47
|
Alhadyan SK, Sivaraman V, Onyenwoke RU. E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chem Res Toxicol 2022; 35:2194-2209. [PMID: 36480683 DOI: 10.1021/acs.chemrestox.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chemosensory experiences evoked by flavors encompass a number of unique sensations that include olfactory stimuli (smell), gustatory stimuli (taste, i.e., salty, sweet, sour, bitter, and umami (also known as "savoriness")), and chemesthesis (touch). As such, the responses evoked by flavors are complex and, as briefly stated above, involve multiple perceptive mechanisms. The practice of adding flavorings to tobacco products dates back to the 17th century but is likely much older. More recently, the electronic cigarette or "e-cigarette" and its accompanying flavored e-liquids emerged on to the global market. These new products contain no combustible tobacco but often contain large concentrations (reported from 0 to more than 50 mg/mL) of nicotine as well as numerous flavorings and/or flavor chemicals. At present, there are more than 400 e-cigarette brands available along with potentially >15,000 different/unique flavored products. However, surprisingly little is known about the flavors/flavor chemicals added to these products, which can account for >1% by weight of some e-liquids, and their resultant chemosensory experiences, and the US FDA has done relatively little, until recently, to regulate these products. This article will discuss e-cigarette flavors and flavor chemicals, their elicited responses, and their sensory effects in some detail.
Collapse
Affiliation(s)
- Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Rob U Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States.,Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
48
|
Lam SY, Lau HL, Kwok CK. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application. BIOSENSORS 2022; 12:1142. [PMID: 36551109 PMCID: PMC9776347 DOI: 10.3390/bios12121142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Small-molecule contaminants, such as antibiotics, pesticides, and plasticizers, have emerged as one of the substances most detrimental to human health and the environment. Therefore, it is crucial to develop low-cost, user-friendly, and portable biosensors capable of rapidly detecting these contaminants. Antibodies have traditionally been used as biorecognition elements. However, aptamers have recently been applied as biorecognition elements in aptamer-based biosensors, also known as aptasensors. The systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro technique used to generate aptamers that bind their targets with high affinity and specificity. Over the past decade, a modified SELEX method known as Capture-SELEX has been widely used to generate DNA or RNA aptamers that bind small molecules. In this review, we summarize the recent strategies used for Capture-SELEX, describe the methods commonly used for detecting and characterizing small-molecule-aptamer interactions, and discuss the development of aptamer-based biosensors for various applications. We also discuss the challenges of the Capture-SELEX platform and biosensor development and the possibilities for their future application.
Collapse
Affiliation(s)
- Sin Yu Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hill Lam Lau
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Kit Kwok
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
49
|
De novo biosynthesis of vanillin in engineered Saccharomyces cerevisiae. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Li F, Zhao Y, Xue L, Ma F, Dai SY, Xie S. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol 2022; 40:1469-1487. [PMID: 36307230 DOI: 10.1016/j.tibtech.2022.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiquan Zhao
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Xue
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College station, TX 77843, USA.
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|