1
|
Wu X, Ren Y, Chen S, Cai P, Zhou YJ. Production of L-lactic acid from methanol by engineered yeast Pichia pastoris. BIORESOURCE TECHNOLOGY 2024:131730. [PMID: 39486649 DOI: 10.1016/j.biortech.2024.131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Lactic acid (LA) serves as a widely used platform compound and has received significant attention as a raw material for synthesis of biodegradable polylactic acid. Currently, LA is mainly produced through microbial fermentation, but its high costs undermine its competitive advantage against other materials, necessitating the development of novel production routes. Methanol bioconversion represents an emerging low-carbon circular economy, where LA could become an outstanding representative product. This study successfully established an efficient methanol-based LA synthesis route in Pichia pastoris. Through systematic metabolic engineering strategies, including screening lactate dehydrogenase, modification of cofactor preference, blocking LA consumption pathway, and mitochondrial LA synthesis compartmentalization, 4.2 g/L L-LA was produced in fed-batch fermentation by using methanol as the sole carbon source. Through multi-dimensional and spatial engineering of enzyme, a cell factory was developed for efficient synthesis of L-LA, highlights the significant potential of the low-carbon synthesis route for L-LA via methanol bioconversion.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyao Ren
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shushu Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Life and Health, Dalian University, Dalian 116622, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
dos Santos MR, Durval IJB, de Medeiros ADM, da Silva Júnior CJG, Converti A, Costa AFDS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods 2024; 13:3327. [PMID: 39456389 PMCID: PMC11507476 DOI: 10.3390/foods13203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact.
Collapse
Affiliation(s)
- Maryana Rogéria dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife 52171-900, Brazil;
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Italo José Batista Durval
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Alexandre D’Lamare Maia de Medeiros
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Cláudio José Galdino da Silva Júnior
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Attilio Converti
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, 15, 16145 Genoa, Italy
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Centro de Comunicação e Desing, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n—Nova Caruaru, Caruaru 50670-900, Brazil
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
| |
Collapse
|
3
|
Baimark Y, Srihanam P, Srisuwan Y. Thermal, Morphological, Mechanical, and Biodegradation Properties of Poly(L-lactide)- b-poly(ethylene glycol)- b-poly(L-lactide)/High-Density Polyethylene Blends. Polymers (Basel) 2024; 16:2078. [PMID: 39065395 PMCID: PMC11280494 DOI: 10.3390/polym16142078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Polymer blends of poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) and high-density polyethylene (HDPE) with different blend ratios were prepared by a melt blending method. The thermal, morphological, mechanical, opacity, and biodegradation properties of the PLLA-PEG-PLLA/HDPE blends were investigated and compared to the PLLA/HDPE blends. The blending of HDPE improved the crystallization ability and thermal stability of the PLLA-PEG-PLLA; however, these properties were not improved for the PLLA. The morphology of the blended films showed that the PLLA-PEG-PLLA/HDPE blends had smaller dispersed phases compared to the PLLA/HDPE blends. The PLLA-PEG-PLLA/HDPE blends exhibited higher flexibility, lower opacity, and faster biodegradation and bioerosion in soil than the PLLA/HDPE blends. Therefore, these PLLA-PEG-PLLA/HDPE blends have a good potential for use as flexible and partially biodegradable materials.
Collapse
Affiliation(s)
- Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (P.S.); (Y.S.)
| | | | | |
Collapse
|
4
|
Vanheusden C, Samyn P, Vackier T, Steenackers H, D'Haen J, Peeters R, Buntinx M. Fabrication of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ZnO Nanocomposite Films for Active Packaging Applications: Impact of ZnO Type on Structure-Property Dynamics. Polymers (Basel) 2024; 16:1861. [PMID: 39000717 PMCID: PMC11243840 DOI: 10.3390/polym16131861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.
Collapse
Affiliation(s)
- Chris Vanheusden
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Pieter Samyn
- Department Circular Economy and Renewable Materials, SIRRIS, Gaston Geenslaan 8, 3001 Leuven, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Jan D'Haen
- Analytical & Microscopical Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Roos Peeters
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Mieke Buntinx
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| |
Collapse
|
5
|
Stegenta-Dąbrowska S, Korendał M, Kochanowicz M, Bondos M, Wiercik P, Medyńska-Juraszek A, Zafiu C. The Impact of Abiotic and Biotic Conditions for Degradation Behaviors of Common Biodegradable Products in Stabilized Composts. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2948. [PMID: 38930317 PMCID: PMC11205212 DOI: 10.3390/ma17122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
This work examines the influence of the degradation behaviors of biotic and abiotic conditions on three types of biodegradable products: cups from PLA and from cellulose, and plates from sugarcane. The main objective of this study was to evaluate if biodegradable products can be degraded in composts that were stabilized by backyard composting. Furthermore, the impact of crucial abiotic parameters (temperature and pH) for the degradation behaviors process was investigated. The changes in the biopolymers were analyzed by FTIR spectroscopy. This work confirmed that abiotic and biotic conditions are important for an effective disintegration of the investigated biodegradable products. Under abiotic conditions, the degradation behaviors of PLA were observable under both tested temperature (38 and 59 °C) conditions, but only at the higher temperature was complete disintegration observed after 6 weeks of incubation in mature compost. Moreover, our research shows that some biodegradable products made from cellulose also need additional attention, especially with respect to incorporated additives, as composting could be altered and optimal conditions in composting may not be achieved. This study shows that the disintegration of biodegradable products is a comprehensive process and requires detailed evaluation during composting. The results also showed that biodegradable products can also be degraded post composting and that microplastic pollution from biodegradable polymers in soil may be removed by simple physical treatments.
Collapse
Affiliation(s)
- Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str 37a, 51-630 Wrocław, Poland; (M.K.); (M.K.); (M.B.)
| | - Marek Korendał
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str 37a, 51-630 Wrocław, Poland; (M.K.); (M.K.); (M.B.)
| | - Maks Kochanowicz
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str 37a, 51-630 Wrocław, Poland; (M.K.); (M.K.); (M.B.)
| | - Marcin Bondos
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str 37a, 51-630 Wrocław, Poland; (M.K.); (M.K.); (M.B.)
| | - Paweł Wiercik
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24, 50-363 Wrocław, Poland;
| | - Agnieszka Medyńska-Juraszek
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmentaland Life Sciences, Grunwaldzka Street 53, 50-375 Wrocław, Poland;
| | - Christian Zafiu
- Institute of Waste Management and Circularity, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Wien, Austria;
| |
Collapse
|
6
|
Adetunji AI, Erasmus M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers (Basel) 2024; 16:1322. [PMID: 38794516 PMCID: PMC11124873 DOI: 10.3390/polym16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of conventional plastics has increased tremendously in the last decades due to rapid industrialization, population growth, and advancement in the use of modern technologies. However, overuse of these fossil fuel-based plastics has resulted in serious environmental and health hazards by causing pollution, global warming, etc. Therefore, the use of microalgae as a feedstock is a promising, green, and sustainable approach for the production of biobased plastics. Various biopolymers, such as polyhydroxybutyrate, polyurethane, polylactic acid, cellulose-based polymers, starch-based polymers, and protein-based polymers, can be produced from different strains of microalgae under varying culture conditions. Different techniques, including genetic engineering, metabolic engineering, the use of photobioreactors, response surface methodology, and artificial intelligence, are used to alter and improve microalgae stocks for the commercial synthesis of bioplastics at lower costs. In comparison to conventional plastics, these biobased plastics are biodegradable, biocompatible, recyclable, non-toxic, eco-friendly, and sustainable, with robust mechanical and thermoplastic properties. In addition, the bioplastics are suitable for a plethora of applications in the agriculture, construction, healthcare, electrical and electronics, and packaging industries. Thus, this review focuses on techniques for the production of biopolymers and bioplastics from microalgae. In addition, it discusses innovative and efficient strategies for large-scale bioplastic production while also providing insights into the life cycle assessment, end-of-life, and applications of bioplastics. Furthermore, some challenges affecting industrial scale bioplastics production and recommendations for future research are provided.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9301, South Africa
| | | |
Collapse
|
7
|
Wongphan P, Promhuad K, Srisa A, Laorenza Y, Oushapjalaunchai C, Harnkarnsujarit N. Unveiling the Future of Meat Packaging: Functional Biodegradable Packaging Preserving Meat Quality and Safety. Polymers (Basel) 2024; 16:1232. [PMID: 38732702 PMCID: PMC11085279 DOI: 10.3390/polym16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Meat quality and shelf life are important parameters affecting consumer perception and safety. Several factors contribute to the deterioration and spoilage of meat products, including microbial growth, chemical reactions in the food's constituents, protein denaturation, lipid oxidation, and discoloration. This study reviewed the development of functional packaging biomaterials that interact with food and the environment to improve food's sensory properties and consumer safety. Bioactive packaging incorporates additive compounds such as essential oils, natural extracts, and chemical substances to produce composite polymers and polymer blends. The findings showed that the incorporation of additive compounds enhanced the packaging's functionality and improved the compatibility of the polymer-polymer matrices and that between the polymers and active compounds. Food preservatives are alternative substances for food packaging that prevent food spoilage and preserve quality. The safety of food contact materials, especially the flavor/odor contamination from the packaging to the food and the mass transfer from the food to the packaging, was also assessed. Flavor is a key factor in consumer purchasing decisions and also determines the quality and safety of meat products. Novel functional packaging can be used to preserve the quality and safety of packaged meat products.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Chayut Oushapjalaunchai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Roy S, Ghosh T, Zhang W, Rhim JW. Recent progress in PBAT-based films and food packaging applications: A mini-review. Food Chem 2024; 437:137822. [PMID: 37897823 DOI: 10.1016/j.foodchem.2023.137822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Bioplastics are a promising alternative to non-biodegradable plastics. One of these bioplastics, PBAT (polybutylene adipate co-terephthalate), is a polyester-based bioplastic commonly used to manufacture flexible packaging films. PBAT-based films have high flexibility but relatively low strength compared to other bioplastics. The strength of PBAT films can be improved by blending them with other fillers/polymers. Additionally, the functionality of PBAT films can be enhanced by incorporating bioactive functional fillers. The physical and functional properties of PBAT films produced by adding active ingredients provide functionality and are a good alternative to non-degradable petrochemical-based plastics. The PBAT-based functional films protect food and improve packaged foods' quality and life span. Thus, this review provides recent advances in PBAT-based films and their use in active food packaging applications. After briefly describing the different fabrication methods of PBAT films, various important physical and functional properties and biodegradability are comprehensively discussed. PBAT-based active packaging film in real-time food packaging is also briefly covered. Through this review, more attention is expected to be focused on research on PBAT-based biodegradable active food packaging.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Tabli Ghosh
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028, India
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
El-Sheekh MM, Alwaleed EA, Ibrahim A, Saber H. Preparation and characterization of bioplastic film from the green seaweed Halimeda opuntia. Int J Biol Macromol 2024; 259:129307. [PMID: 38199545 DOI: 10.1016/j.ijbiomac.2024.129307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Protein-rich seaweeds are regarded as having commercial significance due to their numerous industrial applications. The green seaweed Halimeda opuntia was used during this study for the preparation of bioplastic film. A thin bioplastic film with better physical and mechanical properties was produced by optimizing the ratio of polyvinyl alcohol (PVA) to seaweed biomass. The films obtained were characterized by their thickness, tensile strength, elongation at break, Young's modulus, moisture absorption resistance, and solubility. To evaluate the composition and potential for chemical reactions of the films, an FTIR spectroscopy examination was conducted. Whereas TG-DTA and AFM were performed on films with high mechanical properties. The bioplastic film produced when algae percent was tripled in PVA concentration had better physical and mechanical characteristics, and the bioplastic films degraded in the environment within a short time. According to the current study, seaweed might serve as an alternative source for the production of bioplastic, which could help minimize the use of non-biodegradable plastics.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Eman A Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Aml Ibrahim
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hani Saber
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
10
|
Bandzerewicz A, Wierzchowski K, Mierzejewska J, Denis P, Gołofit T, Szymczyk-Ziółkowska P, Pilarek M, Gadomska-Gajadhur A. Biological Activity of Poly(1,3-propanediol citrate) Films and Nonwovens: Mechanical, Thermal, Antimicrobial, and Cytotoxicity Studies. Macromol Rapid Commun 2024; 45:e2300452. [PMID: 37838916 DOI: 10.1002/marc.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Polymers are of great interest for medical and cosmeceutical applications. The current trend is to combine materials of natural and synthetic origin in order to obtain products with appropriate mechanical strength and good biocompatibility, additionally biodegradable and bioresorbable. Citric acid, being an important metabolite, is an interesting substance for the synthesis of materials for biomedical applications. Due to the high functionality of the molecule, it is commonly used in biomaterials chemistry as a crosslinking agent. Among citric acid-based biopolyesters, poly(1,8-octanediol citrate) is the best known. It shows application potential in soft tissue engineering. This work focuses on a much less studied polyester, poly(1,3-propanediol citrate). Porous and non-porous materials based on the synthesized polyesters are prepared and characterized, including mechanical, thermal, and surface properties, morphology, and degradation. The main focus is on assessing the biocompatibility and antimicrobial properties of the materials.
Collapse
Affiliation(s)
- Aleksandra Bandzerewicz
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, Warsaw, 00-645, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B Street, Warsaw, 02-106, Poland
| | - Tomasz Gołofit
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies-Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 5, Wroclaw, 50-371, Poland
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, Warsaw, 00-645, Poland
| | | |
Collapse
|
11
|
Elsaeed S, Zaki E, Diab A, Tarek MA, Omar WAE. New polyvinyl alcohol/gellan gum-based bioplastics with guava and chickpea extracts for food packaging. Sci Rep 2023; 13:22384. [PMID: 38104220 PMCID: PMC10725440 DOI: 10.1038/s41598-023-49756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Plastic is a fossil-based synthetic polymer that has become an essential material in our daily life. Plastic pollution resulting from the accumulation of plastic objects has become problematic for our environment. Bioplastic can be a biodegradable environmentally friendly alternative for the synthetic plastic. In this paper, bioplastics based on polyvinyl alcohol (PVA)/gellan gum (GG) blend have been produced in three different compositions and their chemical structure, mechanical, morphological and thermal properties have been studied. Glycerol has been used as a plasticizer. To add extra features to the PVA/GG bioplastic, Psidium guajava (guava) leaves, GL, and chickpea, CP, extracts have been added to the PVA/GG (30/70) blend. Water and aqueous ethanol have been used in the extraction of GL and CP, respectively. The addition of the plant's extracts enhanced the tensile properties of the PVA/GG bioplastic. Weathering acceleration tests have been carried out to examine the degradation of the prepared bioplastics. Cytotoxicity studies revealed that the prepared bioplastic is safe to be used in food packaging applications. Water and oxygen permeability for the new PVA/GG bioplastic have also been studied. The addition of the plant extracts (GL and CP extracts) increased the oxygen and water permeability to different extents. Bioplastic life cycle assessment (LCA) and CO2 emissions in comparison to fossil-based plastic have been investigated. From all the results, PVA/GG based bioplastic proved to be a degradable, safe and effective alternative for fossil-based plastics in food packaging applications.
Collapse
Affiliation(s)
- Shaimaa Elsaeed
- Egyptian Petroleum Research Institute, Naser City, Cairo, 11727, Egypt.
| | - Elsayed Zaki
- Egyptian Petroleum Research Institute, Naser City, Cairo, 11727, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Menna-Alla Tarek
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Walaa A E Omar
- Faculty of Petroleum and Mining Engineering, Suez University, P.O.Box: 43221, Suez, Egypt.
| |
Collapse
|
12
|
Mubarak Aldawsari H, Kotta S, Asfour HZ, Vattamkandathil S, Abdelkhalek Elfaky M, Ashri LY, Badr-Eldin SM. Development and evaluation of quercetin enriched bentonite-reinforced starch-gelatin based bioplastic with antimicrobial property. Saudi Pharm J 2023; 31:101861. [PMID: 38028210 PMCID: PMC10663916 DOI: 10.1016/j.jsps.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays novel bio-based materials have been widely employed in food and pharmaceutical industry because of their wide acceptability by the consumers rather than the synthetic materials nevertheless, they possess poor mechanical properties. Reinforcement of biopolymers with intercalation of mineral clays can improve their physicochemical properties; so that such biocomposites possess superior barrier and mechanical properties as well as stability and drug loading efficacy. Thus, this research aimed at formulating quercetin loaded bentonite-reinforced starch-gelatin based novel bioplastic with diverse applicability. The methodology of the study included Box Behnken optimization as well as physical, structural, mechanical and antimicrobial properties evaluation of the proposed reinforced bioplastics. Amount of starch, bentonite and glycerin were the independent variables while the tensile strength, swelling index and elongation percentage were studied as dependent variables. The optimized bioplastic film showed excellent physicochemical and morphological characteristics and also for efficient percentage drug content. The antimicrobial activity showed the highest activity against Escherichia coli followed by Pseudomonas aeruginosa and Staphylococcus aureus. Scanning electron microscopy (SEM) revealed the non-homogenous nature of the film. Generally, the results revealed that quercetin loaded bentonite-reinforced starch-gelatin based could be used as ecological friendly active food packaging as well as pharmaceutical application with significant antimicrobial properties.
Collapse
Affiliation(s)
- Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Z. Asfour
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Mahmoud Abdelkhalek Elfaky
- Department of Natural products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lubna Y. Ashri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| |
Collapse
|
13
|
Nguyen NTH, Tran GT, Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. A critical review on the biosynthesis, properties, applications and future outlook of green MnO 2 nanoparticles. ENVIRONMENTAL RESEARCH 2023; 231:116262. [PMID: 37247653 DOI: 10.1016/j.envres.2023.116262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
MnO2 nanoparticles have played a vital role in biomedical, catalysis, electrochemical and energy storage fields, but requiring toxic chemicals in the fabrication intercepts their applications. There is an increasing demand for biosynthesis of MnO2 nanoparticles using green sources such as plant species in accordance with the purposes of environmental mitigation and production cost reduction. Here, we review recent advancements on the use of natural compounds such as polyphenols, reducing sugars, quercetins, etc. Extracted directly from low-cost and available plants for biogenic synthesis of MnO2 nanoparticles. Role of these phytochemicals and formation mechanism of bio-medicated MnO2 nanoparticles are shed light on. MnO2 nanoparticles own small particle size, high crystallinity, diverse morphology, high surface area and stability. Thanks to higher biocompatibility, bio-mediated synthesized MnO2 nanoparticles exhibited better antibacterial, antifungal, and anticancer activity than chemically synthesized ones. In terms of wastewater treatment and energy storage, they also served as efficient adsorbents and catalyst. Moreover, several aspects of limitation and future outlook of bio-mediated MnO2 nanoparticles in the fields are analyzed. It is expected that the present work not only expands systematic understandings of synthesis methods, properties and applications MnO2 nanoparticles but also pave the way for the nanotechnology revolution in combination with green chemistry and sustainable development.
Collapse
Affiliation(s)
- Nhu Thi Huynh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
14
|
Kim SH, Cho JY, Hwang JH, Kim HJ, Oh SJ, Kim HJ, Bhatia SK, Yun J, Lee SH, Yang YH. Revealing the key gene involved in bioplastic degradation from superior bioplastic degrader Bacillus sp. JY35. Int J Biol Macromol 2023:125298. [PMID: 37315675 DOI: 10.1016/j.ijbiomac.2023.125298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
The use of bioplastics, which can alleviate environmental pollution caused by non-degradable bioplastics, has received attention. As there are many types of bioplastics, method that can treat them simultaneously is important. Therefore, Bacillus sp. JY35 which can degrade different types of bioplastics, was screened in previous study. Most types of bioplastics, such as polyhydroxybutyrate (PHB), (P(3HB-co-4HB)), poly(butylene adipate-co-terephthalate) (PBAT), polybutylene succinate (PBS), and polycaprolactone (PCL), can be degraded by esterase family enzymes. To identify the genes that are involved in bioplastic degradation, analysis with whole-genome sequencing was performed. Among the many esterase enzymes, three carboxylesterase and one triacylglycerol lipase were identified and selected based on previous studies. Esterase activity using p-nitrophenyl substrates was measured, and the supernatant of JY35_02679 showed strong emulsion clarification activity compared with others. In addition, when recombinant E. coli was applied to the clear zone test, only the JY35_02679 gene showed activity in the clear zone test with bioplastic containing solid cultures. Further quantitative analysis showed 100 % PCL degradation at 7 days and 45.7 % PBS degradation at 10 days. We identified a gene encoding a bioplastic-degrading enzyme in Bacillus sp. JY35 and successfully expressed the gene in heterologous E. coli, which secreted esterases with broad specificity.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Jeonghee Yun
- Department of Forest Products and Biotechnology, Kookmin University, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju-si, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Mussagy CU, Ribeiro HF, Pereira JFB. Rhodotorula sp. as a cell factory for production of valuable biomolecules. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:133-156. [PMID: 37400173 DOI: 10.1016/bs.aambs.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Rhodotorula sp. are well-known for their ability to biosynthesize a diverse range of valuable biomolecules, including carotenoids, lipids, enzymes, and polysaccharides. Despite the high number of studies conducted using Rhodotorula sp. at the laboratory scale, most of these do not address all processual aspects necessary for scaling up these processes for industrial applications. This chapter explores the potential of Rhodotorula sp. as a cell factory for the production of distinct biomolecules, with a particular emphasis on exploring their use from a biorefinery perspective. Through in-depth discussions of the latest research and insights into non-conventional applications, we aim to provide a comprehensive understanding of Rhodotorula sp.'s ability to produce biofuels, bioplastics, pharmaceuticals, and other valuable biochemicals. This book chapter also examines the fundamentals and challenges associated with the optimizing upstream and downstream processing of Rhodotorula sp-based processes. We believe that through this chapter, readers with different levels of expertise will gain insights into strategies for enhancing the sustainability, efficiency, and effectiveness of producing biomolecules using Rhodotorula sp.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile.
| | - Helena F Ribeiro
- Department of Chemical Engineering, University of Coimbra, CIEPQPF, Coimbra, Portugal
| | - Jorge F B Pereira
- Department of Chemical Engineering, University of Coimbra, CIEPQPF, Coimbra, Portugal
| |
Collapse
|
16
|
Kong U, Mohammad Rawi NF, Tay GS. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers (Basel) 2023; 15:polym15102399. [PMID: 37242974 DOI: 10.3390/polym15102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of bioplastics has been an evolution for plastic industry since conventional plastics have been claimed to cause several environmental issues. Apart from its biodegradability, one of the advantages can be identified of using bioplastic is that they are produced by renewal resources as the raw materials for synthesis. Nevertheless, bioplastics can be classified into two types, which are biodegradable and non-biodegradable, depending on the type of plastic that is produced. Although some of the bioplastics are non-biodegradable, the usage of biomass in synthesising the bioplastics helps in preserving non-renewable resources, which are petrochemical, in producing conventional plastics. However, the mechanical strength of bioplastic still has room for improvement as compared to conventional plastics, which is believed to limit its application. Ideally, bioplastics need to be reinforced for improving their performance and properties to serve their application. Before 21st century, synthetic reinforcement has been used to reinforce conventional plastic to achieve its desire properties to serve its application, such as glass fiber. Owing to several issues, the trend has been diversified to utilise natural resources as reinforcements. There are several industries that have started to use reinforced bioplastic, and this article focuses on the advantages of using reinforced bioplastic in various industries and its limitations. Therefore, this article aims to study the trend of reinforced bioplastic applications and the potential applications of reinforced bioplastics in various industries.
Collapse
Affiliation(s)
- Uwei Kong
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| |
Collapse
|
17
|
Aslam S, Khurram A, Hussain R, Qadir A, Ahmad SR. Sources, distribution, and incipient threats of polymeric microplastic released from food storage plastic materials. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:638. [PMID: 37138178 DOI: 10.1007/s10661-023-11242-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
The present study aimed to find out the source, distribution, quantity, and incipient threats of the microplastics (MPs) released by food-packing plastic materials, plastic bags, bottles, and containers on human health, biodiversity, water bodies, and atmosphere. For this purpose, 152 articles about MPs (0.1 to 5000 µm) and nanoplastics (NP) 1 to 100 nm) were reviewed and interpreted their results in the present articles about microplastics. The highest plastic waste is generated by China (⁓ 59 Mt), the USA (⁓ 38 Mt), Brazil (⁓ 12 Mt), Germany (⁓ 15 Mt), and Pakistan (⁓ 6 Mt). The count of MPs (MPs/kg) in Chinese salt was 718, UK 136, Iran 48, and USA 32, while MPs in bivalves, i.e., in Chinese bivalves was 2.93, UK 2.9, Iran 2.2, and Italy 7.2 in MPs/kg, respectively. The MPs count in Chinese fish was 7.3, Italy's 23, the USA's 13, and UK's 1.25 in MPs/kg, respectively. The MP concentrations in the water bodies, i.e., USA, were 15.2, Italy 7, and UK 4.4 in mg/L, respectively. It was critically reviewed that MPs can enter the human body causing various disorders (neurotoxic, biotoxic, mutagenic, teratogenic, and carcinogenic disorders) because of the presence of various polymers. The present study concluded that MPs were released from processed and stored food containers, either through physical, biological, or chemical means, which harshly affect the surrounding environment and human health. The study recommended that alternatives to plastic containers are glass and bioplastic containers, papers, cotton bags, wooden boxes, and tree leaves need to use to avoid direct consumption of MPs from food.
Collapse
Affiliation(s)
- Sarfa Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Ayesha Khurram
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Rahib Hussain
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Geographic Sciences &, Natural Resources Research, CAS, Beijing, 100101, China.
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
18
|
Zhang J, Han Y, Ben Z, Han T, Yin P. Effect of branched polyethyleneimine and citric acid on the structural, physical and antibacterial properties of corn starch/chitosan films. Int J Biol Macromol 2023; 231:123186. [PMID: 36627034 DOI: 10.1016/j.ijbiomac.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
To improve the antibacterial and physical properties of corn starch/chitosan films effectively, starch/chitosan/polyethyleneimine (PEI) blend films crosslinked by citric acid (labeled SCPC) with different contents (2.5 %, 5.0 %, 7.5 % and 10.0 %) were prepared by the solution casting method. The films were characterized in detail. The results showed that the addition of 3.75 % PEI improved the tensile strength and elongation at break of the starch/chitosan film simultaneously, but the thermal stability decreased. After CA was incorporated, the tensile strength and thermal stability of the films were enhanced significantly. FTIR, XRD, and 1H NMR analyses revealed strong interactions among CA, PEI and starch-chitosan. All films showed smooth and homogenous fragile cross-sections. The water vapor permeability of the film decreased overall after PEI and CA addition. Moisture uptake (MU) accelerated after PEI addition, but the balanced MU was reduced by CA cross-linking. All films showed an inhibitory effect on E. coli and S. aureus, and CA incorporation significantly improved the inhibition ability of the film. The SCPC film with 3.75 % PEI and 5.0 % CA addition has the best comprehensive properties, which endowed its application in the bioactive packaging field.
Collapse
Affiliation(s)
- Jiameng Zhang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yaling Han
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhongjie Ben
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tianjie Han
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Peng Yin
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
19
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
20
|
Arman Alim AA, Baharum A, Mohammad Shirajuddin SS, Anuar FH. Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene-Graft-Maleic Anhydride (PE-g-MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties. Polymers (Basel) 2023; 15:polym15020261. [PMID: 36679142 PMCID: PMC9860711 DOI: 10.3390/polym15020261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
It is of significant concern that the buildup of non-biodegradable plastic waste in the environment may result in long-term issues with the environment, the economy and waste management. In this study, low-density polyethylene (LDPE) was compounded with different contents of poly(butylene succinate) (PBS) at 10-50 wt.%, to evaluate the potential of replacing commercial plastics with a biodegradable renewable polymer, PBS for packaging applications. The morphological, mechanical and thermal properties of the LDPE/PBS blends were examined in relation to the effect of polyethylene-graft-maleic anhydride (PE-g-MA) as a compatibilizer. LDPE/PBS/PE-g-MA blends were fabricated via the melt blending method using an internal mixer and then were compression molded into test samples. The presence of LDPE, PBS and PE-g-MA individually in the matrix for each blend presented physical interaction between the constituents, as shown by Fourier-transform infrared spectroscopy (FTIR). The morphology of LDPE/PBS/PE-g-MA blends showed improved compatibility and homogeneity between the LDPE matrix and PBS phase. Compatibilized LDPE/PBS blends showed an improvement in the tensile strength, with 5 phr of compatibilizer providing the optimal content. The thermal stability of LDPE/PBS blends decreased with higher PBS content and the thermal stability of compatibilized blends was higher in contrast to the uncompatibilized blends. Therefore, our research demonstrated that the partial substitution of LDPE with a biodegradable PBS and the incorporation of the PE-g-MA compatibilizer could develop an innovative blend with improved structural, mechanical and thermal properties.
Collapse
Affiliation(s)
- Aina Aqila Arman Alim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Azizah Baharum
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | | | - Farah Hannan Anuar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
21
|
Latest Trends in Sustainable Polymeric Food Packaging Films. Foods 2022; 12:foods12010168. [PMID: 36613384 PMCID: PMC9818434 DOI: 10.3390/foods12010168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Food packaging is the best way to protect food while it moves along the entire supply chain to the consumer. However, conventional food packaging poses some problems related to food wastage and excessive plastic production. Considering this, the aim of this work was to examine recent findings related to bio-based alternative food packaging films by means of conventional methodologies and additive manufacturing technologies, such as 3D printing (3D-P), with potential to replace conventional petroleum-based food packaging. Based on the findings, progress in the development of bio-based packaging films, biopolymer-based feedstocks for 3D-P, and innovative food packaging materials produced by this technology was identified. However, the lack of studies suggests that 3D-P has not been well-explored in this field. Nonetheless, it is probable that in the future this technology will be more widely employed in the food packaging field, which could lead to a reduction in plastic production as well as safer food consumption.
Collapse
|
22
|
Maryam Adilah Z, Han Lyn F, Nabilah B, Jamilah B, Gun Hean C, Nur Hanani Z. Enhancing the physicochemical and functional properties of gelatin/graphene oxide/cinnamon bark oil nanocomposite packaging films using ferulic acid. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers (Basel) 2022; 14:polym14224968. [PMID: 36433095 PMCID: PMC9699531 DOI: 10.3390/polym14224968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Packaging plays an important role in food quality and safety, especially regarding waste and spoilage reduction. The main drawback is that the packaging industry is among the ones that is highly dependent on plastic usage. New alternatives to conventional plastic packaging such as biopolymers-based type are mandatory. Examples are cellulose films and its derivatives. These are among the most used options in the food packaging due to their unique characteristics, such as biocompatibility, environmental sustainability, low price, mechanical properties, and biodegradability. Emerging concepts such as active and intelligent packaging provides new solutions for an extending shelf-life, and it fights some limitations of cellulose films and improves the properties of the packaging. This article reviews the available cellulose polymers and derivatives that are used as sustainable alternatives for food packaging regarding their properties, characteristics, and functionalization towards active properties enhancement. In this way, several types of films that are prepared with cellulose and their derivatives, incorporating antimicrobial and antioxidant compounds, are herein described, and discussed.
Collapse
|
24
|
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022; 11:3087. [PMID: 36230164 PMCID: PMC9563026 DOI: 10.3390/foods11193087] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Simon Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| | - Ramona Weinrich
- Department of Consumer Behaviour in the Bioeconomy, University of Hohenheim, Wollgrasweg 49, 70599 Stuttgart, Germany
| | - Carsten Herbes
- Institute for International Research on Sustainable Management and Renewable Energy, Nuertingen Geislingen University, Neckarsteige 6-10, 72622 Nuertingen, Germany
| | - Philip B V Scholten
- Bloom Biorenewables, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Department of Food Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Samir Kopacic
- Institute for Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Johanna Lahti
- Sustainable Products and Materials, VTT Technical Research Centre of Finland, Visiokatu 4, 33720 Tampere, Finland
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd 19, 50254 Kaunas, Lithuania
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
25
|
Janowicz M, Rybak K, Ciurzyńska A, Galus S. Effect of interactions of locust bean gum and rosehip juice on the physical properties of gum tragacanth composite films. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Monika Janowicz
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| | - Katarzyna Rybak
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| | - Agnieszka Ciurzyńska
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| | - Sabina Galus
- Warsaw University of Life Sciences (WULS‐SGGW), Department of Food Engineering and Process Management Warsaw Poland
| |
Collapse
|
26
|
Greaseproof, hydrophobic, and biodegradable food packaging bioplastics from C6-fluorinated cellulose esters. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Lima LR, Gutierrez RF, Cruz SA. Challenges in the context of single-use plastics and bioplastics in Brazil: A legislative review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:998-1006. [PMID: 34791939 DOI: 10.1177/0734242x211055548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plastic has been present in our lives for the past century as an essential material for many commodity items. However, the same properties that make plastic convenient are also responsible for the current dramatic environmental pollution. As an alternative, most of the world has been working with technological innovations, and one of its strategies is the use of bioplastics. Despite being considered environmentally beneficial by some people, there are still developments and discussions that need to be made. This article aims to present a legislative review and discusses the difficulty in implementing policies related to the incentive of the bioplastics market, as well as presenting some state and municipal laws, already prohibiting single-use plastics in Brazil. These laws aim to encourage the substitution of these plastics for biodegradable ones. However, it still has gaps and a lack of clarification on how the banning of disposable plastics and their substitution will be beneficial since composting is still an incipient process in the country. It is also the purpose of this article to discuss the challenges in the context of the Circular Economy, as well as the potential solution based on the creation of public policies aimed at improving waste management, in addition to clearer legislation on alternatives to single-use plastics.
Collapse
Affiliation(s)
- Lais R Lima
- Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | - Sandra A Cruz
- Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
28
|
Boukoufi C, Boudier A, Maincent P, Vigneron J, Clarot I. Food-inspired innovations to improve the stability of active pharmaceutical ingredients. Int J Pharm 2022; 623:121881. [PMID: 35680111 DOI: 10.1016/j.ijpharm.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Food-processing and pharmaceutical industries share a lot of stability issues against the same physical, chemical, and microbiological phenomena. They also share some solutions to improve the stability as the use of preservatives and packaging. Ecological concerns lead to the development of tremendous innovations in food. Some of these innovations could also be beneficial in the pharmaceutical domain. The objective of this review is to evaluate the potential application of these findings in the pharmaceutical field and the main limits in terms of toxicity, environmental, economic and regulatory issues. The principal factors influencing the shelf-life were highlighted through the description of the stability studies usually performed in the pharmaceutical industry (according to European guidelines). To counter those factors, different solutions are currently available as preservatives and specific packaging. They were described and debated with an overview of recent food innovations in each field. The limits of the current solutions in the pharmaceutical field and the innovation in the food field have inspired a critical pharmaceutical outlook. The active and intelligent packaging for active pharmaceutical ingredients of the future is imagined.
Collapse
Affiliation(s)
- Célia Boukoufi
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | | | | | - Jean Vigneron
- Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| |
Collapse
|
29
|
Jafarzadeh S, Forough M, Amjadi S, Javan Kouzegaran V, Almasi H, Garavand F, Zargar M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit Rev Food Sci Nutr 2022; 63:9667-9693. [PMID: 35522084 DOI: 10.1080/10408398.2022.2070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumer demands to utilize environmentally friendly packaging have led researchers to develop packaging materials from naturally derived resources. In recent years, plant protein-based films as a replacement for synthetic plastics have attracted the attention of the global food packaging industry due to their biodegradability and unique properties. Biopolymer-based films need a filler to show improved packaging properties. One of the latest strategies introduced to food packaging technology is the production of nanocomposite films which are multiphase materials containing a filler with at least one dimension less than 100 nm. This review provides the recent findings on plant-based protein films as biodegradable materials that can be combined with nanoparticles that are applicable to food packaging. Moreover, it investigates the characterization of nanocomposite plant-based protein films/edible coatings. It also briefly describes the application of plant-based protein nanocomposite films/coating on fruits/vegetables, meat and seafood products, and some other foods. The results indicate that the functional performance, barrier, mechanical, optical, thermal and antimicrobial properties of plant protein-based materials can be extended by incorporating nanomaterials. Recent reports provide a better understanding of how incorporating nanomaterials into plant protein-based biopolymers leads to an increase in the shelf life of food products during storage time.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
30
|
De Paola MG, Andreoli T, Lopresto CG, Calabrò V. Starch/pectin‐biobased films: How initial dispersions could affect their performances. J Appl Polym Sci 2022. [DOI: 10.1002/app.52032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Gabriela De Paola
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.) University of Calabria Rende Italy
| | - Tiziana Andreoli
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.) University of Calabria Rende Italy
| | - Catia Giovanna Lopresto
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.) University of Calabria Rende Italy
| | - Vincenza Calabrò
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.) University of Calabria Rende Italy
| |
Collapse
|
31
|
|
32
|
The Effect of Whey Protein Films with Ginger and Rosemary Essential Oils on Microbiological Quality and Physicochemical Properties of Minced Lamb Meat. SUSTAINABILITY 2022. [DOI: 10.3390/su14063434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Consumers’ constant search for high-quality and safe products, with the least possible preservatives and additives, as well as extended shelf life, has led industries to research and develop alternative forms of food preservation and packaging. The purpose of this research was the study of the effect of natural antimicrobials and, in particular, the essential oils of ginger (Zingiber Officinale Roscoe) and rosemary (Rosmarinus officinalis L.) on strengthening whey protein films’ properties. Whey protein isolate (WPI) films, alone and with incorporated essential oils (WPI + EO) at different concentrations were prepared and then examined for their possible effect on delaying the deterioration of minced lamb meat. Microbiological and physicochemical measurements were carried out to examine the meat’s shelf life. Results showed that films with 1% EO significantly improved the microbiological quality of meat. On day 11, total viable counts, Pseudomonas spp., Br. thermosphacta, lactic acid bacteria, Enterobacteriaceae, and yeasts remained low for films with 1% concentration of essential oil compared with 0.5%. Regarding, physicochemical properties the same pattern was observed for pH while oxidation degree was significantly reduced. Finally, color attributes measurements recorded fluctuations between samples, but overall, no considerable discoloration was observed.
Collapse
|
33
|
Morphology and permeability of bio-based poly(butylene adipate-co-terephthalate) (PBAT), poly(butylene succinate) (PBS) and linear low-density polyethylene (LLDPE) blend films control shelf-life of packaged bread. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108541] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112356] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Banús N, Boada I, Xiberta P, Toldrà P, Bustins N. Deep learning for the quality control of thermoforming food packages. Sci Rep 2021; 11:21887. [PMID: 34750436 PMCID: PMC8576017 DOI: 10.1038/s41598-021-01254-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Quality control is a key process designed to ensure that only products satisfying the defined quality requirements reach the end consumer or the next step in a production line. In the food industry, in the packaging step, there are many products that are still evaluated by human operators. To automate the process and improve efficiency and effectiveness, computer vision and artificial intelligence techniques can be applied. This automation is challenging since specific strategies designed according to the application scenario are required. Focusing on the quality control of the sealing and closure of matrix-shaped thermoforming food packages, the aim of the article is to propose a deep-learning-based solution designed to automatically perform the quality control while satisfying production cadence and ensuring 100% inline inspection of the products. Particularly, the designed computer vision system and the image-based criteria defined to determine when a product has to be accepted or rejected are presented. In addition, the vision control software is described with special emphasis on the different convolutional neural network (CNN) architectures that have been considered (ResNet18, ResNet50, Vgg19 and DenseNet161, non-pre-trained and pre-trained on ImageNet) and on the specifically designed dataset. To test the solution, different experiments are carried out in the laboratory and also in a real scenario, concluding that the proposed CNN-based approach improves the efficiency and security of the quality control process. Optimal results are obtained with the pre-trained DenseNet161, achieving false positive rates that range from 0.03 to 0.30% and false negative rates that range from 0 to 0.07%, with a rejection rate between 0.64 and 5.09% of production, and being able to detect at least 99.93% of the sealing defects that occur in any production. The modular design of our solution as well as the provided description allow it to adapt to similar scenarios and to new deep-learning models to prevent the arrival of faulty products to end consumers by removing them from the automated production line.
Collapse
Affiliation(s)
- Núria Banús
- Graphics and Imaging Laboratory, University of Girona, 17003, Girona, Catalonia, Spain.,Vision Department (R&D), TAVIL Ind. S.A.U., 17854, Girona, Catalonia, Spain
| | - Imma Boada
- Graphics and Imaging Laboratory, University of Girona, 17003, Girona, Catalonia, Spain.
| | - Pau Xiberta
- Graphics and Imaging Laboratory, University of Girona, 17003, Girona, Catalonia, Spain
| | - Pol Toldrà
- Vision Department (R&D), TAVIL Ind. S.A.U., 17854, Girona, Catalonia, Spain
| | - Narcís Bustins
- Vision Department (R&D), TAVIL Ind. S.A.U., 17854, Girona, Catalonia, Spain
| |
Collapse
|
36
|
Kuai L, Liu F, Chiou BS, Avena-Bustillos RJ, McHugh TH, Zhong F. Controlled release of antioxidants from active food packaging: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Lionetto F, Esposito Corcione C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers (Basel) 2021; 13:2337. [PMID: 34301094 PMCID: PMC8309529 DOI: 10.3390/polym13142337] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Collapse
Affiliation(s)
- Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | | |
Collapse
|
38
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
39
|
Laorenza Y, Harnkarnsujarit N. Carvacrol, citral and α-terpineol essential oil incorporated biodegradable films for functional active packaging of Pacific white shrimp. Food Chem 2021; 363:130252. [PMID: 34118755 DOI: 10.1016/j.foodchem.2021.130252] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
Biodegradable poly(butylene adipate terephthalate) and poly(lactic acid) (PBAT/PLA) blend films compounded with carvacrol, citral and α-terpineol essential oils (EOs) were produced for food packaging via blown-film extrusion. PBAT/PLA interacted with citral and α-terpineol via hydrogen bonding and carbonyl groups. Microstructures and barrier properties against water vapor and oxygen were modified depending on types and concentrations (3% and 6%) of EOs. Films containing 6% citral showed outstanding smoothness due to plasticization effects and improved compatibility. Addition of EOs decreased PLA crystallinity, giving increased amorphous phase for oxygen permeation. Films containing EOs inhibited quality deterioration in Pacific white shrimp including microbial growth, lipid oxidation and textural change. Citral and carvacrol effectively stabilized protein conformation in muscle tissues, leading to delayed drip loss and retained adhesion between shrimp cephalothorax and abdomen. All EO compounded films prevented melanosis. Findings indicated high potential of EO compounded films as functional active packaging to preserve seafood qualities.
Collapse
Affiliation(s)
- Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
40
|
Wangprasertkul J, Siriwattanapong R, Harnkarnsujarit N. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107763] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Impact of Optimized Packaging on Food Waste Prevention Potential among Consumers. SUSTAINABILITY 2021. [DOI: 10.3390/su13084209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Food and plastic waste are cited as major environmental challenges. The function of packaging is often overlooked when considering waste; however, food packaging is indispensable for hygienic protection during transport and distribution within the supply chain. An important way to prevent the premature spoilage of a variety of different food product groups is to use specially optimized packaging systems. These are able to provide a high level of protection and actively extend shelf life. However, even if novel packaging systems theoretically have great potential for waste reduction, it remains uncertain whether they will also be accepted at the consumer level and actually contribute to waste reduction within households. Three different methods were used to clarify consumers’ perceptions of optimized packaging and thus the potential impact on waste generation. General perceptions have been identified by means of quantitative research among 1117 consumers. Precise information on waste generation behavior was obtained by means of food diaries. Consumer simulations were used to analyze the extent to which optimized packaging can actually have a positive effect on food waste generation at the household level. It was found that the functionality of the packaging usually ceases with the consumer. Consumers are only marginally aware of the advantages of food product packaging in the household, and do not perceive the direct connection between packaging, freshness, shelf life, and spoilage as food waste. In general, consumers rarely or never use optimized packaging at home correctly. It could be concluded that consumers’ perceptions of optimized packaging in terms of potential food waste prevention are not pronounced. In summary, it can be stated that in contrast to its use in retail and transport, an optimization of packaging to avoid food waste for later use by the consumer only shows an effect in exceptional cases, or can only be achieved through targeted information campaigns. If this should be a focus topic in the future, either on the political or managerial level, this has to be taken into account.
Collapse
|
42
|
Quality Control of Nano-food Packing Material for Grapes (Vitis vinifera) Based on ZnO and Polylactic Acid (PLA) biofilm. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Primožič M, Knez Ž, Leitgeb M. (Bio)nanotechnology in Food Science-Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:292. [PMID: 33499415 PMCID: PMC7911006 DOI: 10.3390/nano11020292] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
Background: Bionanotechnology, as a tool for incorporation of biological molecules into nanoartifacts, is gaining more and more importance in the field of food packaging. It offers an advanced expectation of food packaging that can ensure longer shelf life of products and safer packaging with improved food quality and traceability. Scope and approach: This review recent focuses on advances in food nanopackaging, including bio-based, improved, active, and smart packaging. Special emphasis is placed on bio-based packaging, including biodegradable packaging and biocompatible packaging, which presents an alternative to most commonly used non-degradable polymer materials. Safety and environmental concerns of (bio)nanotechnology implementation in food packaging were also discussed including new EU directives. Conclusions: The use of nanoparticles and nanocomposites in food packaging increases the mechanical strength and properties of the water and oxygen barrier of packaging and may provide other benefits such as antimicrobial activity and light-blocking properties. Concerns about the migration of nanoparticles from packaging to food have been expressed, but migration tests and risk assessment are unclear. Presumed toxicity, lack of additional data from clinical trials and risk assessment studies limit the use of nanomaterials in the food packaging sector. Therefore, an assessment of benefits and risks must be defined.
Collapse
Affiliation(s)
- Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
44
|
Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. Fine-Tuning of Physicochemical Properties and Growth Dynamics of Mycelium-Based Materials. ACS APPLIED BIO MATERIALS 2020; 3:1044-1051. [DOI: 10.1021/acsabm.9b01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Elena Antinori
- Smart Materials, Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
- DIBRIS, University of Genoa, Genoa 16145, Italy
| | - Luca Ceseracciu
- Smart Materials, Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | - Giorgio Mancini
- Smart Materials, Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | | | | |
Collapse
|