1
|
Mejía-Valdez D, Antunes-Ricardo M, Martínez-Ávila M, Guajardo-Flores D. Enhancement of oleanolic acid concentration through acid hydrolysis of saponin-rich extracts from Chenopodium berlandieri. Food Chem 2024; 449:139254. [PMID: 38583403 DOI: 10.1016/j.foodchem.2024.139254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The study investigated Chenopodium berlandieri to analyze its oleanolic acid (OA) content. Response surface methodology with central composite design was used to improve saponin extraction, varying temperature, ethanol, and sample-to-solvent ratio. Best conditions (65 °C, 50% ethanol, 1:10 ratio) yielded 53.45 ± 0.63 mg/g of extract from Huauzontle seeds. Temperature linearly impacted extract yield, while temperature and ethanol influenced total saponin content. Hydrolyzing saponin-rich extracts produced OA-rich extracts. Characterization via HPLC-ELSD and LC-MS identified OA4 as the most concentrated OA saponin (5.54 ± 0.16 mg/g). OA alone reached 2.02 ± 0.12 mg/g. Acid hydrolysis increased OA content by up to 3.27×, highlighting the potential of hydrolyzed Huauzontle extracts as a natural ingredient for various industries due to enhanced OA content.
Collapse
Affiliation(s)
- Daniel Mejía-Valdez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Mariana Martínez-Ávila
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico.
| |
Collapse
|
2
|
Machado F, Gómez-Domínguez I, Hurtado-Ribeira R, Martin D, Coimbra MA, Del Castillo MD, Coreta-Gomes F. In vitro human colonic fermentation of coffee arabinogalactan and melanoidin-rich fractions. Int J Biol Macromol 2024; 275:133740. [PMID: 38986986 DOI: 10.1016/j.ijbiomac.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Coffee beverage is a source of dietary fiber composed by arabinogalactans, which can also be associated to proteins and phenolic compounds, originating melanoidins. Human colonic in vitro fermentations of coffee fractions, one rich in melanoidins (Mel) and the other in its parental polysaccharide arabinogalactans (AG), were performed in order to evaluate the metabolites produced by microbiota, namely short-chain fatty acids (SCFA), phenolic compounds, and bile acids. After 48 h of fermentation, a higher fermentability of the carbohydrate fraction of AG (62 %) than that of Mel (27 %) was observed, resulting in a SCFA content of 63 mM and 22 mM, respectively. Supplementation with AG and Mel fractions decreased the acetate:propionate ratio from 4.7 (in the absence of coffee fractions) to 2.5 and 3.5, respectively, suggesting a potential inhibition of HMG-CoA reductase, a rate-limiting enzyme for cholesterol synthesis. The fermentation of coffee fractions yielded dihydroferulic and dihydrocaffeic acids, known to have antioxidant properties. In the presence of Mel, it was observed a decrease (from 0.25 to 0.16 mg/mL) in the production of secondary bile acids, whose high content is associated to the development of several diseases, such as colorectal cancer, neurodegenerative and cardiovascular.
Collapse
Affiliation(s)
- Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Irene Gómez-Domínguez
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Raul Hurtado-Ribeira
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Diana Martin
- Institute of Food Science Research (CIAL) (CSIC-UAM), Calle Nicolás Cabrera Madrid, Spain
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Bakhtiar Z, Hassandokht M, Naghavi MR, Rezadoost H, Mirjalili MH. Fatty acid and nutrient profiles, diosgenin and trigonelline contents, mineral composition, and antioxidant activity of the seed of some Iranian Trigonella L. species. BMC PLANT BIOLOGY 2024; 24:669. [PMID: 39004716 PMCID: PMC11247732 DOI: 10.1186/s12870-024-05341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Fenugreeks (Trigonella L. spp.), belonging to the legume family (Fabaceae), are well-known multipurpose crops that their materials are currently received much attention in the pharmaceutical and food industries for the production of healthy and functional foods all over the world. Iran is one of the main diversity origins of this valuable plant. Therefore, the aim of the present study was to explore vitamins, minerals, and fatty acids profile, proximate composition, content of diosgenin, trigonelline, phenolic acids, total carotenoids, saponins, phenols, flavonoids, and tannins, mucilage and bitterness value, and antioxidant activity of the seed of thirty populations belonging to the ten different Iranian Trigonella species. RESULTS We accordingly identified notable differences in the nutrient and bioactive compounds of each population. The highest content (mg/100 g DW) of ascorbic acid (18.67 ± 0.85‒22.48 ± 0.60) and α-tocopherol (31.61 ± 0.15‒38.78 ± 0.67) were found in the populations of T. filipes and T. coerulescens, respectively. Maximum content of catechin was found in the populations of T. teheranica (52.67 ± 0.05‒63.50 ± 0.72 mg/l). Linoleic acid (> 39.11% ± 0.61%) and linolenic acid (> 48.78 ± 0.39%) were the main polyunsaturated fatty acids, with the majority in the populations of T. stellata (54.81 ± 1.39‒63.46 ± 1.21%). The populations of T. stellata were also rich in trigonelline (4.95 ± 0.03‒7.66 ± 0.16 mg/g DW) and diosgenin (9.06 ± 0.06‒11.03 ± 0.17 mg/g DW). CONCLUSIONS The obtained data provides baseline information to expand the inventory of wild and cultivated Iranian Trigonella species for further exploitation of rich chemotypes in the new foods and specific applications.
Collapse
Affiliation(s)
- Ziba Bakhtiar
- Department of Horticultural Sciences, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammadreza Hassandokht
- Department of Horticultural Sciences, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute of Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
4
|
Gupta RS, Grover AS, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Pal P, Bagchi D. A randomized double blind placebo controlled trial to assess the safety and efficacy of a patented fenugreek ( Trigonella foenum-graecum) seed extract in Type 2 diabetics. Food Nutr Res 2024; 68:10667. [PMID: 38863744 PMCID: PMC11165257 DOI: 10.29219/fnr.v68.10667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Background Fenugreek plant (Trigonella foenum-graecum) constitutes a traditionally acclaimed herbal remedy for many human ailments including diabetes, obesity, neurodegenerative diseases, and reproductive disorders. It is also used as an effective anti-oxidative, anti-inflammatory, antibacterial, and anti-fungal agent. The seed of the plant is especially enriched in several bioactive molecules including polyphenols, saponins, alkaloids, and flavonoids and has demonstrated potential to act as an antidiabetic phytotherapeutic. A novel patented formulation (Fenfuro®) was developed in our laboratory from the fenugreek seeds which contained >45% furostanolic saponins (HPLC). Objective A placebo-controlled clinical compliance study was designed to assess the effects of complementing Fenfuro® on a randomized group of human volunteers on antidiabetic therapy (Metformin and sulphonylurea) in controlling the glycemic index along with simultaneous safety assessment. Study methodology and trial design In a randomized double-blind, placebo-controlled trial, 42 individuals (21 male and 21 female volunteers) in the treatment group (out of 57 enrolled) and 39 individuals (17 male and 22 female volunteers) in the placebo group (out of 47 enrolled), all on antidiabetic therapy with Metformin/Metformin with sulphonyl urea within the age group of 18-65 years were administered either 1,000 mg (500 mg × 2) (Fenfuro®) capsules or placebo over a period of 12 consecutive weeks. Fasting and postprandial glucose along with glycated hemoglobin were determined as primary outcomes to assess the antidiabetic potential of the formulation. Moreover, in order to evaluate the safety of the formulation, C-peptide and Thyroid Stimulating Hormone (TSH) levels as well as immunohematological parameters were assessed between the treatment and placebo groups at the completion of the study. Results After 12 weeks of administration, both fasting as well as postprandial serum glucose levels decreased by 38 and 44% respectively in the treatment group. Simultaneously, a significant reduction in glycated hemoglobin by about 34.7% was also noted. The formulation did not have any adverse effect on the study subjects as there was no significant change in C- peptide level and TSH level; liver, kidney, and cardiovascular function was also found to be normal as assessed by serum levels of key immunohematological parameters. No adverse events were reported. Conclusion This clinical compliance study re-instated and established the safety and efficacy of Fenfuro® as an effective phytotherapeutic to treat hyperglycemia.
Collapse
Affiliation(s)
- Rajinder Singh Gupta
- Department of Medicine, Gian Sagar Medical College & Hospital, Banur, Patiala, India
| | - Amarjit Singh Grover
- Department of Surgery, Gian Sagar Medical College & Hospital, Banur, Patiala, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P. Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | | | - Partha Pal
- Department of Statistics, Maulana Azad College, Kolkata, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
5
|
Raina S, Hübner E, Samuel E, Nagel G, Fuchs H. DT-13 attenuates inflammation by inhibiting NLRP3-inflammasome related genes in RAW264.7 macrophages. Biochem Biophys Res Commun 2024; 708:149763. [PMID: 38503169 DOI: 10.1016/j.bbrc.2024.149763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H. Bailey - saponin C (also known as DT-13) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison to the well-known saponin ginsenoside Rk1 and anti-inflammatory drug dexamethasone. We proved that DT-13 reduces LPS-induced inflammation by inhibiting nitric oxide (NO) production, interleukin-6 (IL-6) release, cycloxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-α) gene expression, and nuclear factor kappa-B (NFκB) translocation into the nucleus. It also inhibits the inflammasome component NOD-like receptor family pyrin domain containing protein 3 (NLRP3) regulating the inflammasome activation. This was supported by the significant inhibition of caspase-1 and interleukin-1 beta (IL-1β) expression and release. This study demonstrates the anti-inflammatory effect of saponins on LPS-stimulated macrophages. For the first time, an in vitro study shows the attenuating effect of DT-13 on NLRP3-inflammasome activation. In comparison to the existing anti-inflammatory drug, dexamethasone, and triterpenoid saponin Rk1, DT-13 more efficiently inhibits inflammation in the applied cell culture model. Therefore, DT-13 may serve as a lead compound for the development of new more effective anti-inflammatory drugs with minimised side effects.
Collapse
Affiliation(s)
- Shikha Raina
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Emely Hübner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany; Hochschule Bonn-Rhein Sieg, 53359, Rheinbach, Germany; HAN University of Applied Sciences, Groenewoudseweg, 6524, Nijmegen, Netherlands
| | - Esther Samuel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Gregor Nagel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany.
| |
Collapse
|
6
|
Maleki M, Shojaeiyan A, Mokhtassi-Bidgoli A. Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery. BMC PLANT BIOLOGY 2024; 24:161. [PMID: 38429697 PMCID: PMC10908034 DOI: 10.1186/s12870-024-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Drought impairs growth, disturbs photosynthesis, and induces senescence in plants, which results in crop productivity reduction and ultimately jeopardizes human food security. The objective of this study was to determine major parameters associated with drought tolerance and recovery ability of fenugreek (Trigonella foenum-graecum L.), by examining differential biochemical and phenological responses and underlying enzyme activities as well as melatonin roles during drought stress and re-watering for two contrasting landraces. Moreover, the relative expression of three key genes involved in the biosynthesis pathway of diosgenin, including SQS, CAS, and BG, was investigated. RESULTS Depending on the conditions, drought stress enhanced the activity of antioxidant enzymes and the osmoregulating compounds, non-enzymatic antioxidants, hydrogen peroxide content, and lipid peroxidation levels in most cases. Severe drought stress accelerated flowering time in Shushtar landrace (SHR) but had no significant effects on Varamin (VR). Pretreatment with melatonin delayed flowering time in SHR and caused high drought resistance in this landrace. Furthermore, melatonin significantly enhanced drought adaptability in VR by improving plant recovery ability. DISCUSSION Based on our results plants' responses to drought stress and melatonin pretreatment were completely landrace-specific. Drought stress caused an increase in the relative expression of CAS gene and ultimately the accumulation of steroidal saponins in SHR. Melatonin compensated for the decrease in biomass production due to drought stress and finally increased steroidal saponins performance in SHR. Our study showed that melatonin can improve drought stress and recovery in fenugreek, but different factors such as genotype, melatonin concentration, and plant age should be considered.
Collapse
Affiliation(s)
- Masoud Maleki
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolali Shojaeiyan
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Cantero-Bahillo E, Navarro del Hierro J, de las Nieves Siles-Sánchez M, Jaime L, Santoyo S, Martin D. Combination of Fenugreek and Quinoa Husk as Sources of Steroidal and Triterpenoid Saponins: Bioactivity of Their Co-Extracts and Hydrolysates. Foods 2024; 13:562. [PMID: 38397539 PMCID: PMC10888084 DOI: 10.3390/foods13040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Saponins, both steroidal and triterpenoid, exhibit distinct bioactivities. However, they are not commonly found together in natural sources; instead, sources tend to be rich in one type or another and mainly in the form of saponins rather than the sapogenin aglycones. Developing co-extracts containing both saponin or sapogenin types would be a strategy to harness their respective bioactivities, yielding multibioactive extracts. Therefore, this study evaluates the bioactivity (hypolipidemic, antioxidant, and anti-inflammatory activities) of co-extracts from fenugreek seeds (steroidal-rich saponins) and quinoa husk (triterpenoid-rich saponins), co-extracted at varying proportions, alongside their respective sapogenin-rich hydrolysates. Pancreatic lipase inhibition increased with fenugreek content in co-extracts, especially in sapogenin-rich variants. The latter substantially interfered with cholesterol bioaccessibility (90% vs. 15% in sapogenin-rich extracts). Saponin-rich co-extracts exhibited reduced cytokine release with increased fenugreek content, while sapogenin-rich counterparts showed greater reductions with higher quinoa husk content. Limited cellular antioxidant activities were observed in all extracts, with improved post-hydrolysis bioactivity. Therefore, simultaneous co-extraction of steroidal and triterpenoid sources, such as fenugreek and quinoa husk, as well as their subsequent hydrolysis, are innovative strategies for obtaining multibioactive natural extracts.
Collapse
Affiliation(s)
- Emma Cantero-Bahillo
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Joaquín Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
- Sección Departamental de Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María de las Nieves Siles-Sánchez
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Laura Jaime
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Susana Santoyo
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Diana Martin
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
8
|
Mo Y, Yang Y, Zeng J, Ma W, Guan Y, Guo J, Wu X, Liu D, Feng L, Jia X, Yang B. Enhancing the Biopharmacological Characteristics of Asperosaponin VI: Unveiling Dynamic Self-Assembly Phase Transitions in the Gastrointestinal Environment. Int J Nanomedicine 2023; 18:7335-7358. [PMID: 38084126 PMCID: PMC10710790 DOI: 10.2147/ijn.s436372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Asperosaponin VI (ASP VI) as an active ingredient of Dipsacus asperoides, which has a wide range of biological and pharmacological activity. However, its development and application are restricted due to the poor gastrointestinal permeability and oral bioavailability. This investigation aims to reveal the influence of the self-assembled structure by the interaction between ASP VI and endogenous components NaTC and/or DOPC in the gastrointestinal environment on its biopharmaceutical properties, and novelty elucidated the molecular mechanism for the formation of self-assembled nanomicelles. Methods This change in phase state in gastrointestinal fluids is characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). UPLC-Q-TOF-MS was used to analyze the composition of phase components and the exposure of nanomicelles in vivo. Molecular dynamics simulation (MDS) was applied to preliminarily elucidate the self-assembly mechanism of ASP VI in the gastrointestinal environment. Furthermore, theS8 promoting absorption mechanism of nanomicelles were investigated through in vivo pharmacokinetic experiments, parallel artificial membrane permeability assay (PAMPA), quadruple single-pass intestinal perfusion in rats, and Caco-2 cell monolayer model. Results We demonstrated that the ASP VI could spontaneously form dynamic self-assembled structures with sodium taurocholate (NaTC) and dipalmitoyl phosphatidylcholine (DOPC) during gastrointestinal solubilization, which promoted the gastrointestinal absorption and permeability of ASP VI and increased its exposure in vivo, thus improving the biopharmacological characteristics of ASP VI. Moreover, ASP VI-NaTC-DOPC-self-assembled nanostructures (ASP VI-NaTC-DOPC-SAN) manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy, and this study also preliminarily revealed the mechanism of self-assembly formation of ASP VI with endogenous components NaTC and DOPC driven by electrostatic and hydrogen bonding interactions. Conclusion This study provides evidence that the dynamic self-assembled phase transition may play a key role in improving the biopharmacological characteristics of insoluble or low permeability active ingredients during the gastrointestinal dissolution of Chinese medicines.
Collapse
Affiliation(s)
- Yulin Mo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Weikun Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yuxin Guan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingxi Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
9
|
Zou X, Zhang J, Cheng T, Guo Y, Zhang L, Han X, Liu C, Wan Y, Ye X, Cao X, Song C, Zhao G, Xiang D. New strategies to address world food security and elimination of malnutrition: future role of coarse cereals in human health. FRONTIERS IN PLANT SCIENCE 2023; 14:1301445. [PMID: 38107010 PMCID: PMC10722300 DOI: 10.3389/fpls.2023.1301445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
As we face increasing challenges of world food security and malnutrition, coarse cereals are coming into favor as an important supplement to human staple foods due to their high nutritional value. In addition, their functional components, such as flavonoids and polyphenols, make them an important food source for healthy diets. However, we lack a systematic understanding of the importance of coarse cereals for world food security and nutritional goals. This review summarizes the worldwide cultivation and distribution of coarse cereals, indicating that the global area for coarse cereal cultivation is steadily increasing. This paper also focuses on the special adaptive mechanisms of coarse cereals to drought and discusses the strategies to improve coarse cereal crop yields from the perspective of agricultural production systems. The future possibilities, challenges, and opportunities for coarse cereal production are summarized in the face of food security challenges, and new ideas for world coarse cereal production are suggested.
Collapse
Affiliation(s)
- Xin Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yangyang Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiao Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Chao Song
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
Hurtado-Ribeira R, Villanueva-Bermejo D, García-Risco MR, Hernández MD, Sánchez-Muros MJ, Fornari T, Vázquez L, Martin D. Evaluation of the interrelated effects of slaughtering, drying, and defatting methods on the composition and properties of black soldier fly ( Hermetia illucens) larvae fat. Curr Res Food Sci 2023; 7:100633. [PMID: 38034945 PMCID: PMC10681923 DOI: 10.1016/j.crfs.2023.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The interrelated effect of different slaughtering, drying and defatting methods of black soldier fly larvae (BSFL) on the lipid composition and properties of the fat was studied. Blanching and freezing were compared as slaughtering methods, oven or freeze-drying as drying methods, and mechanical pressing or supercritical fluid extraction (SFE) as defatting methods. The different modes of slaughtering, drying, and defatting, along with both binary and ternary interactions caused significant effects on processes yields, lipid composition, moisture content and thermal properties. Thus, considering the defatting degree and the yield in total valued products (defatted meal plus fat), the combination of blanching, freeze-drying plus mechanical pressing was the worst option (51.2% and 87.5%, respectively). In contrast, the other combinations demonstrated better and comparable efficiency, although SFE is preferable for defatting (83.2% and 96.9%, respectively). The content of major fatty acids (lauric, palmitic and myristic acids) was significantly affected by the BSFL treatments, although with unsignificant impact on the total saturated fatty acids content. To preserve the integrity of the fat, the combination of blanching and oven-drying was preferred, as non-thermal methods of slaughtering and drying caused intense lipolysis, releasing free fatty acids (FFA) in the range of 18.6-23.5%. To achieve the lowest moisture content in the fats (≤0.1%), oven-drying with mechanical pressing were desired, regardless of the slaughtering method; while values > 1% were reached for freezing, freeze-drying and SFE. Both differences in FFA and moisture contents caused different thermal behaviors in the samples. Specially, the melting temperature was lower for samples with higher FFA and moisture contents, with a notable difference when freezing, freeze-drying and SFE were combined (14.5 °C vs 30.6 °C, as the mean value for the rest of samples). The different modes of processing did not affect the minor lipid compounds. Therefore, the modes employed for slaughtering, drying, and defatting of BSFL determine, either individually or in combination, the process yields, composition, and properties of the fat.
Collapse
Affiliation(s)
- Raúl Hurtado-Ribeira
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Villanueva-Bermejo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mónica R. García-Risco
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M. Dolores Hernández
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Estación de Acuicultura Marina, Puerto de San Pedro Del Pinatar, 30740, Murcia, Spain
| | | | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Vázquez
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
11
|
Kim RH, Lee SJ, Lee K, Hwang KT, Kim J. Profiling of phenolic acids, flavonoids, terpenoids, and steroid derivatives in coconut ( Cocos nucifera L.) haustorium. Food Sci Biotechnol 2023; 32:1841-1850. [PMID: 37781060 PMCID: PMC10541354 DOI: 10.1007/s10068-023-01300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Coconut haustorium (CH) is formed inside coconut shell during coconut germination. This study aimed to investigate the compositions and contents of CH phytochemicals. Phytochemical compositions and contents in CH were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and spectrophotometrical method. Five phenolic acids and four flavonoids were identified in CH. Ferulic acid and myricetin were the most abundant among phenolic acids and flavonoids identified in CH, respectively. Nepetariaside and 1-methylene-5α-androstan-3α-ol-17-one glucuronide were the most abundant terpenoids and steroid derivatives identified in CH, respectively. To our knowledge, this study screened several classes of phytochemicals in CH for the first. Terpenoids and steroid derivatives were likely to be more major phytochemicals than phenolic acids and flavonoids in CH. The functionality of CH itself and the compounds found in CH might be utilized in functional foods or cosmetics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01300-6.
Collapse
Affiliation(s)
- Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Republic of Korea
| | - Su Jin Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kiuk Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jaecheol Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
12
|
Zhang Y, Hao R, Chen J, Li S, Huang K, Cao H, Farag MA, Battino M, Daglia M, Capanoglu E, Zhang F, Sun Q, Xiao J, Sun Z, Guan X. Health benefits of saponins and its mechanisms: perspectives from absorption, metabolism, and interaction with gut. Crit Rev Food Sci Nutr 2023; 64:9311-9332. [PMID: 37216483 DOI: 10.1080/10408398.2023.2212063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Saponins, consisting of sapogenins as their aglycones and carbohydrate chains, are widely found in plants and some marine organisms. Due to the complexity of the structure of saponins, involving different types of sapogenins and sugar moieties, investigation of their absorption and metabolism is limited, which further hinders the explanation of their bioactivities. Large molecular weight and complex structures limit the direct absorption of saponins rendering their low bioavailability. As such, their major modes of action may be due to interaction with the gastrointestinal environment, such as enzymes and nutrients, and interaction with the gut microbiota. Many studies have reported the interaction between saponins and gut microbiota, that is, the effects of saponins on changing the composition of gut microbiota, and gut microbiota playing an indispensable role in the biotransformation of saponins into sapogenins. However, the metabolic routes of saponins by gut microbiota and their mutual interactions are still sparse. Thus, this review summarizes the chemistry, absorption, and metabolic pathways of saponins, as well as their interactions with gut microbiota and impacts on gut health, to better understand how saponins exert their health-promoting functions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Ruojie Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junda Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Daglia
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Fan Zhang
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Qiqi Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
13
|
Tamargo A, de Llano DG, Cueva C, Del Hierro JN, Martin D, Molinero N, Bartolomé B, Victoria Moreno-Arribas M. Deciphering the interactions between lipids and red wine polyphenols through the gastrointestinal tract. Food Res Int 2023; 165:112524. [PMID: 36869526 DOI: 10.1016/j.foodres.2023.112524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
This paper investigates the mutual interactions between lipids and red wine polyphenols at different stages of the gastrointestinal tract by using the simgi® dynamic simulator. Three food models were tested: a Wine model, a Lipid model (olive oil + cholesterol) and a Wine + Lipid model (red wine + olive oil + cholesterol). With regard to wine polyphenols, results showed that co-digestion with lipids slightly affected the phenolic profile after gastrointestinal digestion. In relation to lipid bioaccessibility, the co-digestion with red wine tended to increase the percentage of bioaccessible monoglycerides, although significant differences were not found (p > 0.05). Furthermore, co-digestion with red wine tended to reduce cholesterol bioaccessibility (from 80 to 49 %), which could be related to the decrease in bile salt content observed in the micellar phase. For free fatty acids, almost no changes were observed. At the colonic level, the co-digestion of red wine and lipids conditioned the composition and metabolism of colonic microbiota. For instance, the growth [log (ufc/mL)] of lactic acid bacteria (6.9 ± 0.2) and bifidobacteria (6.8 ± 0.1) populations were significantly higher for the Wine + Lipid food model respect to the control colonic fermentation (5.2 ± 0.1 and 5.3 ± 0.2, respectively). Besides, the production of total SCFAs was greater for the Wine + Lipid food model. Also, the cytotoxicity of the colonic-digested samples towards human colon adenocarcinoma cells (HCT-116 and HT-29) was found to be significantly lower for the Wine and Wine + Lipid models than for the Lipid model and the control (no food addition). Overall, the results obtained using the simgi® model were consistent with those reported in vivo in the literature. In particular, they suggest that red wine may favourably modulate lipid bioaccessibility - a fact that could explain the hypocholesterolemic effects of red wine and red wine polyphenols observed in humans.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | | - Carolina Cueva
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | | - Diana Martin
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | |
Collapse
|
14
|
Horse Chestnut Saponins-Escins, Isoescins, Transescins, and Desacylescins. Molecules 2023; 28:molecules28052087. [PMID: 36903330 PMCID: PMC10004172 DOI: 10.3390/molecules28052087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Escins constitute an abundant family of saponins (saponosides) and are the most active components in Aesculum hippocastanum (horse chestnut-HC) seeds. They are of great pharmaceutical interest as a short-term treatment for venous insufficiency. Numerous escin congeners (slightly different compositions), as well as numerous regio-and stereo-isomers, are extractable from HC seeds, making quality control trials mandatory, especially since the structure-activity relationship (SAR) of the escin molecules remains poorly described. In the present study, mass spectrometry, microwave activation, and hemolytic activity assays were used to characterize escin extracts (including a complete quantitative description of the escin congeners and isomers), modify the natural saponins (hydrolysis and transesterification) and measure their cytotoxicity (natural vs. modified escins). The aglycone ester groups characterizing the escin isomers were targeted. A complete quantitative analysis, isomer per isomer, of the weight content in the saponin extracts as well as in the seed dry powder is reported for the first time. An impressive 13% in weight of escins in the dry seeds was measured, confirming that the HC escins must be absolutely considered for high-added value applications, provided that their SAR is established. One of the objectives of this study was to contribute to this development by demonstrating that the aglycone ester functions are mandatory for the toxicity of the escin derivative, and that the cytotoxicity also depends on the relative position of the ester functions on the aglycone.
Collapse
|
15
|
Effect of Moisture and Oil Content in the Supercritical CO 2 Defatting of Hermetia illucens Larvae. Foods 2023; 12:foods12030490. [PMID: 36766019 PMCID: PMC9913976 DOI: 10.3390/foods12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The supercritical defatting of H. illucens was scaled up at 450 bar and 60 °C from a 270 cm3 extraction cell to a vessel five times larger. Then, eight different H. illucens larvae batches, with variable content of oil (16.80-29.17% w/w) and moisture (4.45-15.95% w/w) were defatted. The effect of these parameters on yield and oil composition was analyzed. The presence of moisture in the larvae batch, in the range of the values studied, had no negative effect on the oil recovery efficiency, which was mainly determined by the initial content of oil in the larvae samples. Furthermore, no differences were determined in the fatty acid profile of the oils recovered, which were rich in saturated fatty acids, mainly lauric acid (ca. 50% w/w). Minor lipids, such as squalene and phytosterols, were determined in all the oil samples. The moisture content in the oils extracted was in the range of 0.118-1.706% w/w. Therefore, some samples exceeded the limits recommended for volatile matter in edible fats and oils (0.2%, including moisture). Yet, concerning the oil peroxide index, values were much lower than those corresponding to the oil extracted using hexane.
Collapse
|
16
|
Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals (Basel) 2022; 15:ph15101225. [PMID: 36297337 PMCID: PMC9609092 DOI: 10.3390/ph15101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
The lentil (Lens culinaris L.) is one of the most important legumes (family, Fabaceae). It is a natural functional food rich in many bioactive compounds, such as polyphenols, saponins and phytosterols. Several studies have demonstrated that the consumption of lentils is potentially important in reducing the incidence of a number of chronic diseases, due to their bioactive compounds. The most common polyphenols in lentils include phenolic acids, flavan-3-ol, flavonols, anthocyanidins, proanthocyanidins or condensed tannins, and anthocyanins, which play an important role in the prevention of several degenerative diseases in humans, due to their antioxidant activity. Furthermore, lentil polyphenols are reported to have antidiabetic, cardioprotective and anticancer activities. Lentil saponins are triterpene glycosides, mainly soyasaponins I and βg. These saponins have a plasma cholesterol-lowering effect in humans and are important in reducing the risk of many chronic diseases. Moreover, high levels of phytosterols have been reported in lentils, especially in the seed coat, and β-sitosterol, campesterol, and stigmasterol are the most abundant. Beyond their hypocholesterolemic effect, phytosterols in lentils are known for their anti-inflammatory activity. In this review, the current information on the nutritional composition, bioactive compounds including polyphenols, saponins and phytosterols, and their associated health-promoting effects are discussed.
Collapse
|
17
|
Tan M, Zhao Q, Wang X, Zhao B. Study on extraction, isolation and biological activity of saponins from quinoa bran. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University,Dalian 116034
| | - Qingsheng Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Xiaodong Wang
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| | - Bing Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| |
Collapse
|
18
|
Navarro del Hierro J, Cantero-Bahillo E, Fernández-Felipe MT, Martin D. Microwave-Assisted Acid Hydrolysis vs. Conventional Hydrolysis to Produce Sapogenin-Rich Products from Fenugreek Extracts. Foods 2022; 11:foods11131934. [PMID: 35804750 PMCID: PMC9266256 DOI: 10.3390/foods11131934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The acid hydrolysis of saponins is commonly performed by conventional heating to produce sapogenin-rich products of bioactive interest, but alternative hydrolysis methods and their impact on bioactivity have been unexplored. We compared the conventional method with microwave-assisted acid hydrolysis (MAAH) of a commercial saponin-rich extract from a typical saponin source, fenugreek, focusing on the study of temperature (100, 120, 130, 140, 150 °C) and time (10, 20, 30, 40 min) of hydrolysis. The impact of these factors was assayed on both the sapogenin yield and the bioactivity of the hydrolyzed products, specifically their antioxidant and lipase inhibitory activities. The highest sapogenin content (34 g/100 g extract) was achieved by MAAH at 140 °C and 30 min, which was higher than conventional hydrolysis at both reference conditions (100 °C, 60 min, 24.6 g/100 g extract) and comparative conditions (140 °C, 30 min, 17 g/100 g extract) (p < 0.001). Typical steroid artifacts from sapogenins were observed in very small amounts, regardless of the method of hydrolysis. Antioxidant activity of MAAH hydrolyzed extracts (around 80% DPPH inhibition) was barely affected by time and temperature, but pancreatic lipase inhibitory activity was higher (>65%) at lower MAAH temperature (<130 °C) and time (<30 min) of hydrolysis. MAAH is shown as a valid alternative to produce selective sapogenin-rich extracts from fenugreek with minor impact on their bioactivities, and whose magnitude can be modulated by the hydrolysis conditions.
Collapse
Affiliation(s)
- Joaquin Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Emma Cantero-Bahillo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M. Teresa Fernández-Felipe
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-001-7930
| |
Collapse
|
19
|
Alkobeisi F, Varidi MJ, Varidi M, Nooshkam M. Quinoa flour as a skim milk powder replacer in concentrated yogurts: Effect on their physicochemical, technological, and sensory properties. Food Sci Nutr 2022; 10:1113-1125. [PMID: 35432978 PMCID: PMC9007298 DOI: 10.1002/fsn3.2771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
Milk standardization with solids (i.e., nonfat milk solids, MSNF) for yogurt manufacture is traditionally achieved by the addition of skim milk powder (SMP). However, the addition of SMP to milk‐based yogurt increases lactose content and decreases both protein content and gel firmness. Thus, in this work, quinoa flour (QF; 0%, 25%, 50%, 75%, and 100% w/w) was used to replace SMP in concentrated yogurt. The physicochemical, textural, and sensory properties and microstructure of the yogurt were evaluated during cold storage. Generally, protein content, water‐holding capacity, and L* value decreased, while syneresis, textural attributes, and viscosity increased with increasing QF content. The substitution of high levels of QF (>25%, w/w) for SMP led to significantly shorter fermentation times, as compared to the control sample. The scanning electron microscopy observations showed significant changes in the yogurt microstructure as a consequence of QF replacement. Samples with 25% (w/w) substitution of QF and control had the highest scores in overall acceptance. According to the results, QF could be applied as an interesting raw material for concentrating the milk‐based yogurt at substitution level of 25% (w/w).
Collapse
Affiliation(s)
- Fatemeh Alkobeisi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Mehdi Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Majid Nooshkam
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
20
|
de Lima Brito I, Chantelle L, Magnani M, de Magalhães Cordeiro AMT. Nutritional, therapeutic and technological perspectives of Quinoa (
Chenopodium quinoa
Willd.): A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isabelle de Lima Brito
- Department of Management and Agroindustrial Technology, Center of Human, Social and Agrarian Sciences (CCHSA) Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Laís Chantelle
- Department of Chemistry, NPE‐LACOM Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Marciane Magnani
- Department of Food Engineering, Tecnology Center (CT) Federal University of Paraíba João Pessoa Paraíba Brazil
| | | |
Collapse
|
21
|
Chen J, Zhang Y, Guan X, Cao H, Li L, Yu J, Liu H. Characterization of Saponins from Differently Colored Quinoa Cultivars and Their In Vitro Gastrointestinal Digestion and Fermentation Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1810-1818. [PMID: 35119265 DOI: 10.1021/acs.jafc.1c06200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Quinoa contains rich saponins, which are removed during processing and cause ecological waste. We extracted saponins from quinoa (SEQ) in black, white, and red cultivars and compared their composition by spectrophotometric assay and high-performance liquid chromatography analysis combined with acid hydrolysis. The digestion and fermentation properties of SEQ were investigated using an in vitro model. Our results showed that acid hydrolysis released sapogenins, mainly phytolaccagenin (PA), hederagenin (HD), and oleanolic acid from SEQ. Varying from SEQ in red, SEQ in black and white had a similar composition and content of sapogenins. Gastrointestinal digestion did not release sapogenins from SEQ but reduced the antioxidant activity of SEQ. Gut microbiota from human feces released PA and HD from SEQ. Reciprocally, SEQ in black significantly increased the growth of Lactobacillus spp. and Bifidobacterium spp., while reducing the growth of Shigella spp. The present study provides guidance for further investigation about the bioactivities of saponins from quinoa.
Collapse
Affiliation(s)
- Junda Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Lin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jie Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hanlin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
22
|
Microwave-Assisted Desulfation of the Hemolytic Saponins Extracted from Holothuria scabra Viscera. Molecules 2022; 27:molecules27020537. [PMID: 35056852 PMCID: PMC8780253 DOI: 10.3390/molecules27020537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Saponins are plant and marine animal specific metabolites that are commonly considered as molecular vectors for chemical defenses against unicellular and pluricellular organisms. Their toxicity is attributed to their membranolytic properties. Modifying the molecular structures of saponins by quantitative and selective chemical reactions is increasingly considered to tune the biological properties of these molecules (i) to prepare congeners with specific activities for biomedical applications and (ii) to afford experimental data related to their structure-activity relationship. In the present study, we focused on the sulfated saponins contained in the viscera of Holothuria scabra, a sea cucumber present in the Indian Ocean and abundantly consumed on the Asian food market. Using mass spectrometry, we first qualitatively and quantitatively assessed the saponin content within the viscera of H. scabra. We detected 26 sulfated saponins presenting 5 different elemental compositions. Microwave activation under alkaline conditions in aqueous solutions was developed and optimized to quantitatively and specifically induce the desulfation of the natural saponins, by a specific loss of H2SO4. By comparing the hemolytic activities of the natural and desulfated extracts, we clearly identified the sulfate function as highly responsible for the saponin toxicity.
Collapse
|
23
|
Vasquez-Rojas WV, Martín D, Miralles B, Recio I, Fornari T, Cano MP. Composition of Brazil Nut ( Bertholletia excels HBK), Its Beverage and By-Products: A Healthy Food and Potential Source of Ingredients. Foods 2021; 10:foods10123007. [PMID: 34945560 PMCID: PMC8700994 DOI: 10.3390/foods10123007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The consumption of plant-based beverages is a growing trend and, consequently, the search for alternative plant sources, the improvement of beverage quality and the use of their by-products, acquire great interest. Thus, the purpose of this work was to characterize the composition (nutrients, phytochemicals and antioxidant activity) of the Brazil nut (BN), its whole beverage (WBM), water-soluble beverage (BM-S), and its by-products of the beverage production: cake, sediment fraction (BM-D), and fat fraction (BM-F). In this study, advanced methodologies for the analysis of the components were employed to assess HPLC-ESI-QTOF (phenolic compounds), GC (fatty acids), and MALDI-TOF/TOF (proteins and peptides). The production of WBM was based on a hot water extraction process, and the production of BM-S includes an additional centrifugation step. The BN showed an interesting nutritional quality and outstanding content of unsaturated fatty acids. The investigation found the following in the composition of the BN: phenolic compounds (mainly flavan-3-ols as Catechin (and glycosides or derivatives), Epicatechin (and glycosides or derivatives), Quercetin and Myricetin-3-O-rhamnoside, hydroxybenzoic acids as Gallic acid (and derivatives), 4-hydroxybenzoic acid, ellagic acid, Vanillic acid, p-Coumaric acid and Ferulic acid, bioactive minor lipid components (β-Sitosterol, γ-Tocopherol, α-Tocopherol and squalene), and a high level of selenium. In beverages, WBM had a higher lipid content than BM-S, a factor that influenced the energy characteristics and the content of bioactive minor lipid components. The level of phenolic compounds and selenium were outstanding in both beverages. Hydrothermal processing can promote some lipolysis, with an increase in free fatty acids and monoglycerides content. In by-products, the BM-F stood out due to its bioactive minor lipid components, the BM-D showed a highlight in protein and mineral contents, and the cake retained important nutrients and phytochemicals from the BN. In general, the BN and its beverages are healthy foods, and its by-products could be used to obtain healthy ingredients with appreciable biological activities (such as antioxidant activity).
Collapse
Affiliation(s)
- Wilson V. Vasquez-Rojas
- Department of Biotechnology and Microbiology of Foods, Institute of Food Science Research, 28049 Madrid, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, 28049 Madrid, Spain; (D.M.); (T.F.)
| | - Diana Martín
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, 28049 Madrid, Spain; (D.M.); (T.F.)
| | - Beatriz Miralles
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, 28049 Madrid, Spain; (B.M.); (I.R.)
| | - Isidra Recio
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, 28049 Madrid, Spain; (B.M.); (I.R.)
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, 28049 Madrid, Spain; (D.M.); (T.F.)
| | - M. Pilar Cano
- Department of Biotechnology and Microbiology of Foods, Institute of Food Science Research, 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-910017937
| |
Collapse
|
24
|
Effect of Defatting and Extraction Solvent on the Antioxidant and Pancreatic Lipase Inhibitory Activities of Extracts from Hermetia illucens and Tenebrio molitor. INSECTS 2021; 12:insects12090789. [PMID: 34564229 PMCID: PMC8472067 DOI: 10.3390/insects12090789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary The food industry is notably investing more resources on the production of nutritious, healthy, safe and sustainable products derived from edible insects. In this sense, natural extracts (or concentrated forms of compounds from natural sources) are usually food ingredients with added value for human health. This is due to their intrinsic beneficious biological activities; however, bioactive extracts from edible insects have been scarcely explored. Due to that and considering that the bioactivities of extracts might be conditioned by parameters of the technological process, we assessed how different extraction conditions, such as the defatting of the raw insect flours or the extraction solvents employed, affected two bioactivities of the resulting extracts from insects: the blocking of the digestion of fats from the diet by evaluating the inhibition of the responsible enzyme (pancreatic lipase), as well as their antioxidant activity. T. molitor and H. illucens were used, as they are two of the most known edible species for both feed and food. We observed a multibioactivity for all the extracts. Both tested processing factors differentially modulated the bioactivity of extracts from both species. We also analysed the composition of the H. illucens extracts and detected amino acids, lipids, carbohydrates, sterols and organic acids. Abstract The production of specific insect extracts with bioactive properties for human health is an emerging and innovative field for the edible insects industry, but there are unexplored extraction factors that might modulate the bioactivity of the extracts. Ultrasound-assisted extracts from T. molitor and H. illucens were produced. Effects of defatting pre-treatment and extraction solvent were evaluated on extraction yield, antioxidant activity and pancreatic lipase inhibitory effect. Chemical characterisation of defatted extracts from H. illucens was performed by GC-MS-FID. Non-defatted extracts showed higher extraction yields. Defatted extracts had similar extraction yields (around 3%). Defatted extracts had higher antioxidant activity, T. molitor being stronger than H. illucens. Antioxidant activity of T. molitor methanol extract was higher than the rest of solvents. Aqueous ethanol improved the antioxidant activity of H. illucens extracts. All extracts inhibited lipase, but no significant effect of defatting and solvent was observed for T. molitor. A significant higher inhibitory activity was observed for H. illucens, the strongest being defatted 100% and 70% ethanol H. illucens extracts. H. illucens extracts contained free amino acids and disaccharides, together with minor fractions of lipids, sterols and organic acids. These results evidence the potential of extracts obtained from edible insects as antioxidants and inhibitors of the pancreatic lipase, a simultaneous multibioactivity that might be favoured by the defatting pre-treatment of the samples and the solvent of extraction.
Collapse
|
25
|
Vasquez WV, Hernández DM, del Hierro JN, Martin D, Cano MP, Fornari T. Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Melini V, Melini F. Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds. Foods 2021; 10:351. [PMID: 33562277 PMCID: PMC7915320 DOI: 10.3390/foods10020351] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) has recently received increasing interest from both scientists and consumers due to its suitability in gluten-free diets, its sustainability, and its claimed superfood qualities. The aim of this paper is to systematically review up-to-date studies on quinoa functional components and anti-nutritional factors, in order to define a baseline for food scientists approaching the investigation of quinoa phytochemicals and providing evidence for the identification of healthier sustainable foods. State of the art evaluations of phytochemical contents in quinoa seeds were obtained. It emerged that phenolic compounds are the most investigated functional components, and spectrophotometric methods have been mostly applied, despite the fact that they do not provide information about single components. Saponins are the most studied among anti-nutritional factors. Betalains, tannins, and phytoecdysteroids have been poorly explored. Information on factors affecting the phytochemical content at harvesting, such as quinoa ecotypes, crop geographical location and growing conditions, are not always available. A comprehensive characterization, encompassing several classes of functional components and anti-nutritional factors, is mainly available for quinoa varieties from South America. However, defining a standard of quality for quinoa seeds is still challenging and requires a harmonization of the analytical approaches, among others.
Collapse
Affiliation(s)
- Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy;
| | | |
Collapse
|
27
|
Yao ZD, Cao YN, Peng LX, Yan ZY, Zhao G. Coarse Cereals and Legume Grains Exert Beneficial Effects through Their Interaction with Gut Microbiota: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:861-877. [PMID: 33264009 DOI: 10.1021/acs.jafc.0c05691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coarse cereals and legume grains (CCLGs) are rich in specific macro- and functional elements that are considered important dietary components for maintaining human health. Therefore, determining the precise nutritional mechanism involved in exerting the health benefits of CCLGs can help understand dietary nutrition in a better manner. Evidence suggests that gut microbiota play a crucial role in the function of CCLGs via their complicated interplay with CCLGs. First, CCLGs modulate gut microbiota and function. Second, gut microbiota convert CCLGs into compounds that perform different functions. Third, gut microbiota mediate interactions among different CCLG components. Therefore, using gut microbiota to expound the nutritional mechanism of CCLGs is important for future studies. A precise and rapid gut microbiota research model is required to screen and evaluate the quality of CCLGs. The outcomes of such research may promote the rapid discovery, classification, and evaluation of CCLG resources, thereby opening a new opportunity to guide nutrition-based development of CCLG products.
Collapse
Affiliation(s)
- Zhen-Dong Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Zhu-Yun Yan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| |
Collapse
|
28
|
Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, Yin G, Liang P, Feng Y, Zhang F. The Effects of Diosgenin on Hypolipidemia and Its Underlying Mechanism: A Review. Diabetes Metab Syndr Obes 2021; 14:4015-4030. [PMID: 34552341 PMCID: PMC8450287 DOI: 10.2147/dmso.s326054] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism, which is a major cause of coronary heart disease. Although there has been considerable progress in hyperlipidemia treatment, morbidity and risk associated with the condition continue to rise. The first-line treatment for hyperlipidemia, statins, has multiple side effects; therefore, development of safe and effective drugs from natural products to prevent and treat hyperlipidemia is necessary. Diosgenin is primarily derived from fenugreek (Trigonella foenum graecum) seeds, and is also abundant in medicinal herbs such as Dioscorea rhizome, Dioscorea septemloba, and Rhizoma polygonati, is a well-known steroidal sapogenin and the active ingredient in many drugs to treat cardiovascular conditions. There is abundant evidence that diosgenin has potential for application in correcting lipid metabolism disorders. In this review, we evaluated the latest evidence related to diosgenin and hyperlipidemia from clinical and animal studies. Additionally, we elaborate the pharmacological mechanism underlying the activity of diosgenin in treating hyperlipidemia in detail, including its role in inhibition of intestinal absorption of lipids, regulation of cholesterol transport, promotion of cholesterol conversion into bile acid and its excretion, inhibition of endogenous lipid biosynthesis, antioxidation and lipoprotein lipase activity, and regulation of transcription factors related to lipid metabolism. This review provides a deep exploration of the pharmacological mechanisms involved in diosgenin-hyperlipidemia interactions and suggests potential routes for the development of novel drug therapies for hyperlipidemia.
Collapse
Affiliation(s)
- Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiufen Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Chaoqun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Shizhao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Haifei Lu
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
- Correspondence: Fengxia Zhang Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of ChinaTel +8653168616011 Email
| |
Collapse
|
29
|
Navarro Del Hierro J, Casado-Hidalgo G, Reglero G, Martin D. The hydrolysis of saponin-rich extracts from fenugreek and quinoa improves their pancreatic lipase inhibitory activity and hypocholesterolemic effect. Food Chem 2020; 338:128113. [PMID: 33092009 DOI: 10.1016/j.foodchem.2020.128113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023]
Abstract
Saponins are promising compounds for ameliorating hyperlipidemia but scarce information exists about sapogenins, the hydrolyzed forms of saponins. Saponin-rich extracts and their hydrolysates from fenugreek (FE, HFE) and quinoa (QE, HQE), and saponin and sapogenin standards, were assessed on the inhibition of pancreatic lipase and interference on the bioaccessibility of cholesterol by in vitro digestion models. All extracts inhibited pancreatic lipase (IC50 between 1.15 and 0.59 mg/mL), although the hydrolysis enhanced the bioactivity of HQE (p = 0.014). The IC50 value significantly correlated to the saponin content (r = -0.82; p = 0.001). Only the hydrolyzed extracts showed a reduction of bioaccessible cholesterol (p < 0.001) higher than that of phytosterols (35% reduction). Sapogenin standards exhibited no bioactivities, protodioscin and hederacoside C slightly inhibited the lipase (around 10%) and protodioscin reduced the bioaccessible cholesterol (23% reduction, p = 0.035). The hydrolysis process of saponin-rich extracts enhances the bioactivity and allows developing multibioactive products against pancreatic lipase and cholesterol absorption simultaneously.
Collapse
Affiliation(s)
- Joaquín Navarro Del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gema Casado-Hidalgo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Imdea-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
30
|
Zhang H, Xu J, Wang M, Xia X, Dai R, Zhao Y. Steroidal saponins and sapogenins from fenugreek and their inhibitory activity against α-glucosidase. Steroids 2020; 161:108690. [PMID: 32598954 DOI: 10.1016/j.steroids.2020.108690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/02/2023]
Abstract
The seed of Trigonella foenum-graecum L. (fenugreek) has been reported to be rich in saponins, especially the dioscin or diosgenin, which are natural anti-diabetic agents with relatively low toxicity. Thus, the present study was to purify the saponins and sapogenins from fenugreek and to evaluate their α-glucosidase inhibitory activity in vitro. As a result, 33 steroidal saponins and sapogenins were isolated, including six undescribed ones and 27 previously known molecules. Among them, compounds 10, 12, 17, 22 and 29 were five 25R and 25S isomer mixtures of spirostanol saponins or sapogenins. The structures of compound 1-6 were established by 1D and 2D NMR spectroscopic analyses, high-resolution mass spectrometry, and chemical evidence. Compared to the positive control, sapogenins 26, 27, 14 and saponins 18 and 23 considerably inhibited α-glucosidase at IC50 values of 15.16, 8.98, 7.26, 5.49 and 14.01 μM, respectively. These results support the therapeutic potential of fenugreek in the treatment of diabetes with saponins and sapogenins as the active constituents.
Collapse
Affiliation(s)
- Huixing Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Xu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meizhe Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyan Xia
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rongke Dai
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
31
|
Chemical Characterization and Bioaccessibility of Bioactive Compounds from Saponin-Rich Extracts and Their Acid-Hydrolysates Obtained from Fenugreek and Quinoa. Foods 2020; 9:foods9091159. [PMID: 32839396 PMCID: PMC7555840 DOI: 10.3390/foods9091159] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Abstract
Saponin-rich extracts from edible seeds have gained increasing interest and their hydrolysis to sapogenin-rich extracts may be an effective strategy to enhance their potential bioactivity. However, it remains necessary to study the resulting chemical modifications of the extracts after hydrolysis as well as their impact on the subsequent bioaccessibility of bioactive compounds. The chemical composition of non-hydrolyzed and hydrolyzed extracts from fenugreek (FE, HFE) and quinoa (QE, HQE), and the bioaccessibility of saponins, sapogenins and other bioactive compounds after an in vitro gastrointestinal digestion was assessed. In general, FE mainly contained saponins (31%), amino acids (6%) and glycerides (5.9%), followed by carbohydrates (3.4%), fatty acids (FFA) (2.3%), phytosterols (0.8%), tocols (0.1%) and phenolics (0.05%). HFE consisted of FFA (35%), sapogenins (8%) and partial glycerides (7%), and were richer in phytosterols (1.9%) and tocols (0.3%). QE mainly contained glycerides (33%), FFA (19%), carbohydrates (16%) and saponins (7.9%), and to a lesser extent alkylresorcinols (1.8%), phytosterols (1.5%), amino acids (1.1%), tocols (0.5%) and phenolics (0.5%). HQE mainly consisted of FFA (57%), partial glycerides (23%) and sapogenins (5.4%), were richer in phytosterols (2.4%), phenolics (1.2%) and tocols (0.7%) but poorer in alkylresorcinols (1%). After in vitro digestion, saponins from FE and QE were fully bioaccessible, sapogenins from HFE displayed a good bioaccessibility (76%) and the sapogenin from HQE was moderately bioaccesible (38%). Digestion of saponin and sapogenin standards suggested that other components of the extracts were enhancing the bioaccessibility. Other minor bioactive compounds (phytosterols, alkylresorcinols, tocols and some phenolics) also displayed optimal bioaccessibility values (70–100%).
Collapse
|
32
|
Tamargo A, Martin D, Navarro Del Hierro J, Moreno-Arribas MV, Muñoz LA. Intake of soluble fibre from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi®. Food Res Int 2020; 137:109364. [PMID: 33233067 DOI: 10.1016/j.foodres.2020.109364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
The role of soluble fibres on hypoglycemic and hypocholesterolemic effects has been widely documented, but the effect on glucose and cholesterol binding capacity of soluble fibre extracted from chia seed mucilage has not been studied until now. In the present research, dynamic gastrointestinal model simgi® combined with absorption static techniques have been used to explore the effect of chia seed mucilage at 0.75 and 0.95% w/w on the bioaccessibility of glucose, dietary lipids and cholesterol along the gastrointestinal tract. Glucose bioaccessibility was reduced when 0.95% of chia mucilage was present in sugar food models. The total reduction of glucose bioaccessibility reached a maximum of 66.7% while glucose dialysis retardation index presented its maximum of 53.4% at the end of small intestine digestion. The in vitro studies with lipid food models, showed that the presence of both, 0.75 and 0.95% of chia seed mucilage caused substantial reductions on the bioaccessibility of free fatty acids (16.8 and 56.1%), cholesterol (18.2 and 37.2% respectively) and bile salts (4.8 and 64.6%), revealing a clear dependence on fibre concentration. These innovative results highlight the potential functionality of the soluble fibre extracted from chia seeds to improve lipid and glycemic profiles and suggest the dietary health benefits of this new soluble fibre source as an ingredient in functional foods designed to reduce the risk of certain non-communicable diseases.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Diana Martin
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Joaquín Navarro Del Hierro
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Loreto A Muñoz
- Escuela de Ingeniería, Universidad Central de Chile, Av. Santa Isabel 1186, 8330601 Santiago, Chile.
| |
Collapse
|
33
|
Kozłowska M, Cieślak A, Jóźwik A, El-Sherbiny M, Stochmal A, Oleszek W, Kowalczyk M, Filipiak W, Szumacher-Strabel M. The effect of total and individual alfalfa saponins on rumen methane production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1922-1930. [PMID: 31846083 DOI: 10.1002/jsfa.10204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ten varieties of alfalfa (Medicago sativa L.) were evaluated for saponin content. Two of the most promising varieties were chosen so that their effect on rumen fermentation and methane production could be studied. Initially, four Hohenheim gas tests (HGT) were performed to test the effect of increased levels of total saponin extracted from the two alfalfa cultivars (Kometa and Verko) - either as fresh material or ensiled - on the total bacteria, total protozoa, methane emission, and selected methanogenic population. Afterwards, seven particular saponins were extracted from fresh alfalfa of the Kometa variety and tested in 24 h batch fermentation culture experiments. RESULTS The ensiled forms of both the Verko and Kometa alfalfa varieties seem to be good sources of saponin, capable of reducing methane production (P < 0.05) without negatively affecting the basic fermentation parameters. Of the two evaluated varieties, Kometa was the most effective, and the saponins extracted from its roots 3-Glc,28-Glc Ma, medicagenic saponin, and 3-Glu Ma showed the most evident effect (P = 0.0001). The most promising aerial alfalfa saponin in mitigating methane production was soysaponin I K salt (P = 0.0001). Three mixtures of saponins were tested and all were found to mitigate methane production; however, one mixture (MIX 1) did so only to a very small extent. CONCLUSION Saponins have been observed to have differing effects depending on their source; however, the mode of action of saponins depends on their direct or probable indirect effect on the microorganisms involved in methane production. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Martyna Kozłowska
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
- Department of Animal Improvement and Nutrogenomics, Institute of Genetics and Animal Breeding Jastrzębiec, Magdalenka, Poland
| | - Adam Cieślak
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Artur Jóźwik
- Department of Animal Improvement and Nutrogenomics, Institute of Genetics and Animal Breeding Jastrzębiec, Magdalenka, Poland
| | | | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Weronika Filipiak
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
34
|
Che DN, Cho BO, Shin JY, Kang HJ, Kim JS, Choi J, Jang SI. Anti-atopic dermatitis effects of hydrolyzed celery extract in mice. J Food Biochem 2020; 44:e13198. [PMID: 32202321 DOI: 10.1111/jfbc.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
This study investigated the ameliorative effects of acid hydrolyzed celery extract (HCE) and celery extract (CE) in an atopic dermatitis (AD) mice model. The results of the study showed that HCE, more than CE improved AD-like skin lesions caused by fluoro-2,4-dinitrobenzene and house dust mite antigen administration. Further analysis also showed the dominance of HCE than CE in preventing mast cell infiltration in the dermis; inhibiting the IL-31 expression in mice skin and reducing the immunoglobulin-E, IL-4, IL-5, TNF-α, IFN-γ, IL-31, and TSLP in serum of mice. Using in vitro studies in a murine macrophage cell line, we showed that apigetrin, luteolin, and apigenin present in both extracts could be accountable for the observed effects as these three compounds and not apiin prevented the nitric oxide production in the murine macrophage. Based on this study, we suggest that hydrolyzing celery extracts can improve the therapeutic efficacy of celery extracts for management of AD. PRACTICAL APPLICATIONS: Apigenin, apigetrin, and luteolin are known biologically active compounds present in celery. Acid hydrolysis could increase the biologically active compounds in natural products. The research investigated the effects of acid HCE in a mice model of atopic dermatitis. The data obtained from this study sheds light on the use of hydrolysis methods to improve the biological activities of plant extracts used in nutraceutical industries.
Collapse
Affiliation(s)
- Denis Nchang Che
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do, Republic of Korea.,Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Byoung Ok Cho
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do, Republic of Korea.,Research Institute, ATO Q&A Co., Ltd, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jae Young Shin
- Research Institute, ATO Q&A Co., Ltd, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Hyun Ju Kang
- Research Institute, ATO Q&A Co., Ltd, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Ji-Su Kim
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jiwon Choi
- Department of Radiological Sciences, Jeonju University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Seon Il Jang
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do, Republic of Korea.,Research Institute, ATO Q&A Co., Ltd, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
35
|
El Hazzam K, Hafsa J, Sobeh M, Mhada M, Taourirte M, EL Kacimi K, Yasri A. An Insight into Saponins from Quinoa ( Chenopodium quinoa Willd): A Review. Molecules 2020; 25:molecules25051059. [PMID: 32120971 PMCID: PMC7179108 DOI: 10.3390/molecules25051059] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023] Open
Abstract
Saponins are an important group found in Chenopodium quinoa. They represent an obstacle for the use of quinoa as food for humans and animal feeds because of their bitter taste and toxic effects, which necessitates their elimination. Several saponins elimination methods have been examined to leach the saponins from the quinoa seeds; the wet technique remains the most used at both laboratory and industrial levels. Dry methods (heat treatment, extrusion, roasting, or mechanical abrasion) and genetic methods have also been evaluated. The extraction of quinoa saponins can be carried out by several methods; conventional technologies such as maceration and Soxhlet are the most utilized methods. However, recent research has focused on technologies to improve the efficiency of extraction. At least 40 saponin structures from quinoa have been isolated in the past 30 years, the derived molecular entities essentially being phytolaccagenic, oleanolic and serjanic acids, hederagenin, 3β,23,30 trihydroxy olean-12-en-28-oic acid, 3β-hydroxy-27-oxo-olean-12en-28-oic acid, and 3β,23,30 trihydroxy olean-12-en-28-oic acid. These metabolites exhibit a wide range of biological activities, such as molluscicidal, antifungal, anti-inflammatory, hemolytic, and cytotoxic properties.
Collapse
Affiliation(s)
- Khadija El Hazzam
- Laboratory of Natural Resources Valorization, Department of AgroBioSciences, Mohammed VI Polytechnic University Benguerir, Ben Guerir 43150, Morocco; (K.E.H.); (J.H.); (M.S.); (M.M.)
- Laboratory of Bio-Organic and Macromolecular Chemistry, Department Chemical Sciences, Faculty of Science and Technology, Cadi Ayad University, Marrakech 40000, Morocco;
| | - Jawhar Hafsa
- Laboratory of Natural Resources Valorization, Department of AgroBioSciences, Mohammed VI Polytechnic University Benguerir, Ben Guerir 43150, Morocco; (K.E.H.); (J.H.); (M.S.); (M.M.)
| | - Mansour Sobeh
- Laboratory of Natural Resources Valorization, Department of AgroBioSciences, Mohammed VI Polytechnic University Benguerir, Ben Guerir 43150, Morocco; (K.E.H.); (J.H.); (M.S.); (M.M.)
| | - Manal Mhada
- Laboratory of Natural Resources Valorization, Department of AgroBioSciences, Mohammed VI Polytechnic University Benguerir, Ben Guerir 43150, Morocco; (K.E.H.); (J.H.); (M.S.); (M.M.)
| | - Moha Taourirte
- Laboratory of Bio-Organic and Macromolecular Chemistry, Department Chemical Sciences, Faculty of Science and Technology, Cadi Ayad University, Marrakech 40000, Morocco;
| | - Kamal EL Kacimi
- Industrial Executive Operations Division, Gantour Industrial Site, Act 4 Community Gantour, OCP, Youssoufia 46303, Morocco;
| | - Abdelaziz Yasri
- Laboratory of Natural Resources Valorization, Department of AgroBioSciences, Mohammed VI Polytechnic University Benguerir, Ben Guerir 43150, Morocco; (K.E.H.); (J.H.); (M.S.); (M.M.)
- Correspondence:
| |
Collapse
|
36
|
Navarro Del Hierro J, Piazzini V, Reglero G, Martin D, Bergonzi MC. In Vitro Permeability of Saponins and Sapogenins from Seed Extracts by the Parallel Artificial Membrane Permeability Assay: Effect of in Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1297-1305. [PMID: 31934761 DOI: 10.1021/acs.jafc.9b07182] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The permeability of saponins and sapogenins from fenugreek and quinoa extracts, as well as dioscin and diosgenin, was evaluated by the parallel artificial membrane permeability assay (PAMPA). The effect of the digestion process on permeability was determined, with previous development of a gastrointestinal process coupled to PAMPA. Saponins from both seeds displayed a moderate-to-poor permeability (>1 × 10-6 cm/s), although the digestion enhanced their permeability values in the order of 10-5 cm/s (p < 0.001). Sapogenins exhibited a similar permeability to that of saponins, although the digestion enhanced the permeability of sapogenins from quinoa (1.14 ± 0.47 × 10-5 cm/s) but not from fenugreek (2.33 ± 0.99 × 10-6 cm/s). An overall positive impact of coexisting lipids on the permeability was evidenced. PAMPA is shown as a useful, rapid, and easy tool for assessing the permeability of bioactive compounds from complex matrices, with the previous gastrointestinal process being a relevant step.
Collapse
Affiliation(s)
- Joaquin Navarro Del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos , Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) , 28049 Madrid , Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Vieri Piazzini
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , 50019 Florence , Italy
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos , Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) , 28049 Madrid , Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- Imdea-Food Institute , CEI UAM + CSIC , 28049 Madrid , Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos , Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) , 28049 Madrid , Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Maria Camilla Bergonzi
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , 50019 Florence , Italy
| |
Collapse
|
37
|
Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol 2020; 137:111178. [PMID: 32035214 DOI: 10.1016/j.fct.2020.111178] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pseudocereals grains, edible seeds belonging to dicotyledonous plant species, are becoming a current trend in human diets as gluten-free (GF) grains with excellent nutritional and nutraceutical value. Pseudocereals are a good source of starch, fiber, proteins, minerals, vitamins, and phytochemicals such as saponins, polyphenols, phytosterols, phytosteroids, and betalains with potential health benefits. The present review aims to summarize the nutritional quality and phytochemical profile of the three main pseudocereal grains: quinoa, amaranth and buckwheat. In addition, current evidence about their health benefits in animal models and human studies is also provided in detail. Based on the accumulating research supporting the inclusion of pseudocereals grains in the diet of celiac persons, this review discusses the recent advances in their application for the development of new GF products. Future directions for a wider cultivation and commercial exploitation of these crops are also highlighted.
Collapse
|
38
|
Del Hierro JN, Cueva C, Tamargo A, Núñez-Gómez E, Moreno-Arribas MV, Reglero G, Martin D. In Vitro Colonic Fermentation of Saponin-Rich Extracts from Quinoa, Lentil, and Fenugreek. Effect on Sapogenins Yield and Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:106-116. [PMID: 31841325 DOI: 10.1021/acs.jafc.9b05659] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vitro colonic fermentation of saponin-rich extracts from quinoa, lentil, and fenugreek was performed. Production of sapogenins by human fecal microbiota and the impact of extracts on representative intestinal bacterial groups were evaluated. The main sapogenins were found after fermentation (soyasapogenol B for lentil; oleanolic acid, hederagenin, phytolaccagenic acid, and serjanic acid for quinoa; and sarsasapogenin, diosgenin, and neotigogenin acetate for fenugreek). Interindividual differences were observed, but the highest production of sapogenins corresponded to quinoa (90 μg/mL) and fenugreek (70 μg/mL) extracts, being minor for lentil (4 μg/mL). Lentil and quinoa extracts showed a general antimicrobial effect, mainly on lactic acid bacteria and Lactobacillus spp. Significant increases of Bifidobacterium spp. and Lactobacillus spp. were observed for fenugreek in one volunteer. Thus, the transformation of saponin-rich extracts of quinoa, lentil, and fenugreek to sapogenins by human gut microbiota is demonstrated, exhibiting a modulatory effect on the growth of selected intestinal bacteria.
Collapse
Affiliation(s)
- Joaquín Navarro Del Hierro
- Department of Production and Characterization of Novel Foods , Institute of Food Science Research (CIAL) (CSIC-UAM) , 28049 Madrid , Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Carolina Cueva
- Department of Food Biotechnology and Microbiology , Institute of Food Science Research (CIAL), CSIC-UAM , C/Nicolás Cabrera 9 , 28049 Madrid , Spain
| | - Alba Tamargo
- Department of Food Biotechnology and Microbiology , Institute of Food Science Research (CIAL), CSIC-UAM , C/Nicolás Cabrera 9 , 28049 Madrid , Spain
| | - Estefanía Núñez-Gómez
- Department of Production and Characterization of Novel Foods , Institute of Food Science Research (CIAL) (CSIC-UAM) , 28049 Madrid , Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - M Victoria Moreno-Arribas
- Department of Food Biotechnology and Microbiology , Institute of Food Science Research (CIAL), CSIC-UAM , C/Nicolás Cabrera 9 , 28049 Madrid , Spain
| | - Guillermo Reglero
- Department of Production and Characterization of Novel Foods , Institute of Food Science Research (CIAL) (CSIC-UAM) , 28049 Madrid , Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- Imdea-Food Institute , CEI UAM+CSIC , 28049 Madrid , Spain
| | - Diana Martin
- Department of Production and Characterization of Novel Foods , Institute of Food Science Research (CIAL) (CSIC-UAM) , 28049 Madrid , Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
39
|
Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem 2019; 309:125742. [PMID: 31704068 DOI: 10.1016/j.foodchem.2019.125742] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Extracts from the edible insects Acheta domesticus and Tenebrio molitor were obtained by ultrasound-assisted extraction (UAE) and pressurized-liquid extraction (PLE) using ethanol (E) or ethanol:water (E:W). Characterization by GC-MS was performed and total phenolic compounds (TPC), antioxidant activity (DPPH) and pancreatic lipase inhibitory capacity were assayed. Most extracts, mainly ethanolic extracts, predominantly presented lipids as free fatty acids, followed by aminoacids, organic acids, carbohydrates, hydrocarbons and sterols. The UAE-E:W extracts were different, being characterized by organic acids for A. domesticus, or aminoacids for T. molitor. All the extracts exhibited antioxidant activity, which correlated with TPC values, being the E:W extracts the most effective. All the extracts showed inhibitory activity of lipase, although those from T. molitor and extracted by PLE were the most effective. Therefore, bioactive insect extracts can be selectively obtained by advanced methods of extraction, being aqueous ethanol preferred for antioxidant activity and PLE for inhibitory lipase activity.
Collapse
|