1
|
Sebastiano M, Chastel O, Eens M, Costantini D. Gene expression provides mechanistic insights into a viral disease in seabirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177478. [PMID: 39528216 DOI: 10.1016/j.scitotenv.2024.177478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Wild animals are exposed to a variety of anthropogenic stressors that may result in loss of physiological homeostasis. One main consequence of this stress exposure is the increased vulnerability to pathogens. We addressed the hypothesis that energetic unbalance and alterations of immune effectors are key proximate mechanisms underlying this vulnerability, by quantifying the gene expression of magnificent frigatebird Fregata magnificens chicks affected by a highly lethal viral disease, whose appearance is favoured by food limitation in this species. A comparison between chicks with and without visible clinical signs of the disease using strict threshold of significance (p-value adjusted<0.05 and log2 fold-change above 1 or below -1) revealed 86 upregulated and 9 downregulated genes in sick chicks. The main differentially expressed genes with several fold difference between healthy and sick chicks were linked to biotic and external stimuli, inflammation and antifungal/antibacterial activity, signaling, and hydrolase activity. We further followed the chicks for several weeks, to identify chicks that became sick over the course of the study, to assess how the gene expression profile of chicks may predict the response to the disease. A comparison between chicks that remained always healthy and chicks that showed the appearance of visible clinical signs of the disease revealed 4 upregulated and 8 downregulated genes in chicks that became sick. The main differentially expressed genes with several fold difference between the two phenotypes were linked to cell development and differentiation, metabolism, and immunity. The results of our study suggest that alterations of the energetic machinery and of specific immune effectors (e.g. toll-like receptor, tetraspanins) underlie the impact of a viral disease on a free-living vertebrate. Our study contributes to a more comprehensive understanding of the host-pathogen interaction in wild animals and the physiological pathways involved, and provides insights for effective wildlife disease monitoring and management strategies.
Collapse
Affiliation(s)
- Manrico Sebastiano
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Unité Physiologie Moléculaire et Adaptation, UMR7221-Muséum National d'Histoire Naturelle, CNRS, Paris, France.
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation, UMR7221-Muséum National d'Histoire Naturelle, CNRS, Paris, France; Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| |
Collapse
|
2
|
Saenz V, Byrne AQ, Ohmer MEB, Hammond TT, Brannelly LA, Altman KA, Kosowsky M, Nordheim CL, Rosenblum EB, Richards-Zawacki CL. Landscape-scale drivers of spatial dynamics and genetic diversity in an emerging wildlife pathogen. Oecologia 2024; 207:3. [PMID: 39643763 PMCID: PMC11624241 DOI: 10.1007/s00442-024-05642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Aquatic pathogens often cannot tolerate drying, and thus their spread, and diversity across a landscape may depend on interactions between hydrological conditions and the movement of infected hosts. The aquatic fungus Batrachochytrium dendrobatidis (Bd) is a nearly ubiquitous pathogen of amphibians and particular lineages have been associated with host declines. By coupling amphibian surveys with molecular pathogen detection and genotyping techniques, we characterized the spatial dynamics and genetic diversity of Bd on a landscape containing both permanent and ephemeral ponds. In doing so, we aimed to clarify how pathogen loads and prevalences vary across seasons and among habitat types, and which host species move the pathogen from place to place. At the start of spring breeding, Bd prevalence was lower on amphibians sampled from ephemeral ponds. For the remainder of the amphibian active season, prevalence was similar across both ephemeral and permanent ponds, with variation in prevalence being well-explained by a hump-shaped relationship with host body temperature. The first amphibians to arrive at these ephemeral ponds infected were species that breed in ephemeral ponds and likely emerged infected from terrestrial hibernacula. However, species from permanent ponds, most of which hibernate aquatically, later visited the ephemeral ponds and these animals had a greater prevalence and load of Bd, suggesting that migrants among ponds and pond types also move Bd across the landscape. The Bd we sampled was genetically diverse within ponds but showed little genetic structure among ponds, host species, or seasons. Taken together, our findings suggest that Bd can be diverse even at small scales and moves readily across a landscape with help from a wide variety of hosts.
Collapse
Affiliation(s)
- Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA.
- Department of Biology, The Pennsylvania State University, State College, PA, 16802, USA.
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, University, MS, 38677, USA
| | - Talisin T Hammond
- San Diego Zoo Wildlife Alliance, 15600 San Pasqual Valley Rd., Escondido, CA, 92027, USA
| | - Laura A Brannelly
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia
| | - Karie A Altman
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY, 14778, USA
| | - Miranda Kosowsky
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA
| | - Caitlin L Nordheim
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Mwakibete L, Greening SS, Kalantar K, Ahyong V, Anis E, Miller EA, Needle DB, Oglesbee M, Thomas WK, Sevigny JL, Gordon LM, Nemeth NM, Ogbunugafor CB, Ayala AJ, Faith SA, Neff N, Detweiler AM, Baillargeon T, Tanguay S, Simpson SD, Murphy LA, Ellis JC, Tato CM, Gagne RB. Metagenomics for Pathogen Detection During a Mass Mortality Event in Songbirds. J Wildl Dis 2024; 60:362-374. [PMID: 38345467 DOI: 10.7589/jwd-d-23-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/02/2024] [Indexed: 04/06/2024]
Abstract
Mass mortality events in wildlife can be indications of an emerging infectious disease. During the spring and summer of 2021, hundreds of dead passerines were reported across the eastern US. Birds exhibited a range of clinical signs including swollen conjunctiva, ocular discharge, ataxia, and nystagmus. As part of the diagnostic investigation, high-throughput metagenomic next-generation sequencing was performed across three molecular laboratories on samples from affected birds. Many potentially pathogenic microbes were detected, with bacteria forming the largest proportion; however, no singular agent was consistently identified, with many of the detected microbes also found in unaffected (control) birds and thus considered to be subclinical infections. Congruent results across laboratories have helped drive further investigation into alternative causes, including environmental contaminants and nutritional deficiencies. This work highlights the utility of metagenomic approaches in investigations of emerging diseases and provides a framework for future wildlife mortality events.
Collapse
Affiliation(s)
| | - Sabrina S Greening
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | | | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Eman Anis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
- Department of Pathobiology, PADLS New Bolton Center, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - Erica A Miller
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - David B Needle
- New Hampshire Veterinary Diagnostic Lab, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Michael Oglesbee
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - W Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Joseph L Sevigny
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Lawrence M Gordon
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study and Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Georgia 30602, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Andrea J Ayala
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Seth A Faith
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | | | - Tessa Baillargeon
- New Hampshire Veterinary Diagnostic Lab, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Stacy Tanguay
- New Hampshire Veterinary Diagnostic Lab, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Stephen D Simpson
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Lisa A Murphy
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
- Department of Pathobiology, PADLS New Bolton Center, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - Julie C Ellis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - Cristina M Tato
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Roderick B Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| |
Collapse
|
4
|
Prentice MB, Gilbertson MLJ, Storm DJ, Turner WC, Walsh DP, Pinkerton ME, Kamath PL. Metagenomic sequencing sheds light on microbes putatively associated with pneumonia-related fatalities of white-tailed deer ( Odocoileus virginianus). Microb Genom 2024; 10:001214. [PMID: 38536208 PMCID: PMC10995629 DOI: 10.1099/mgen.0.001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
With emerging infectious disease outbreaks in human, domestic and wild animal populations on the rise, improvements in pathogen characterization and surveillance are paramount for the protection of human and animal health, as well as the conservation of ecologically and economically important wildlife. Genomics offers a range of suitable tools to meet these goals, with metagenomic sequencing facilitating the characterization of whole microbial communities associated with emerging and endemic disease outbreaks. Here, we use metagenomic sequencing in a case-control study to identify microbes in lung tissue associated with newly observed pneumonia-related fatalities in 34 white-tailed deer (Odocoileus virginianus) in Wisconsin, USA. We identified 20 bacterial species that occurred in more than a single individual. Of these, only Clostridium novyi was found to substantially differ (in number of detections) between case and control sample groups; however, this difference was not statistically significant. We also detected several bacterial species associated with pneumonia and/or other diseases in ruminants (Mycoplasma ovipneumoniae, Trueperella pyogenes, Pasteurella multocida, Anaplasma phagocytophilum, Fusobacterium necrophorum); however, these species did not substantially differ between case and control sample groups. On average, we detected a larger number of bacterial species in case samples than controls, supporting the potential role of polymicrobial infections in this system. Importantly, we did not detect DNA of viruses or fungi, suggesting that they are not significantly associated with pneumonia in this system. Together, these results highlight the utility of metagenomic sequencing for identifying disease-associated microbes. This preliminary list of microbes will help inform future research on pneumonia-associated fatalities of white-tailed deer.
Collapse
Affiliation(s)
| | - Marie L. J. Gilbertson
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Wisconsin, USA
| | | | - Wendy C. Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Wisconsin, USA
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Montana, USA
| | - Marie E. Pinkerton
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Maine, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, Maine, USA
| |
Collapse
|
5
|
Hopken MW, Piaggio AJ, Abdo Z, Chipman RB, Mankowski CP, Nelson KM, Hilton MS, Thurber C, Tsuchiya MTN, Maldonado JE, Gilbert AT. Are rabid raccoons ( Procyon lotor) ready for the rapture? Determining the geographic origin of rabies virus-infected raccoons using RADcapture and microhaplotypes. Evol Appl 2023; 16:1937-1955. [PMID: 38143904 PMCID: PMC10739080 DOI: 10.1111/eva.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 12/26/2023] Open
Abstract
North America is recognized for the exceptional richness of rabies virus (RV) wildlife reservoir species. Management of RV is accomplished through vaccination targeting mesocarnivore reservoir populations, such as the raccoon (Procyon lotor) in Eastern North America. Raccoons are a common generalist species, and populations may reach high densities in developed areas, which can result in contact with humans and pets with potential exposures to the raccoon variant of RV throughout the eastern United States. Understanding the spatial movement of RV by raccoon populations is important for monitoring and refining strategies supporting the landscape-level control and local elimination of this lethal zoonosis. We developed a high-throughput genotyping panel for raccoons based on hundreds of microhaplotypes to identify population structure and genetic diversity relevant to rabies management programs. Throughout the eastern United States, we identified hierarchical population genetic structure with clusters that were connected through isolation-by-distance. We also illustrate that this genotyping approach can be used to support real-time management priorities by identifying the geographic origin of a rabid raccoon that was collected in an area of the United States that had been raccoon RV-free for 8 years. The results from this study and the utility of the microhaplotype panel and genotyping method will provide managers with information on raccoon ecology that can be incorporated into future management decisions.
Collapse
Affiliation(s)
- Matthew W. Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Antoinette J. Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Clara P. Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Kathleen M. Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mikaela Samsel Hilton
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Christine Thurber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mirian T. N. Tsuchiya
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| |
Collapse
|
6
|
Xu X, Wang C, Wang P, Chu Y, Guo J, Bo X, Lin A. Bioaerosol dispersion and environmental risk simulation: Method and a case study for a biopharmaceutical plant of Gansu province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160506. [PMID: 36442625 PMCID: PMC9691505 DOI: 10.1016/j.scitotenv.2022.160506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/04/2023]
Abstract
Pathogenic bacteria pose a great threat to global public health from environmental and public health perspectives, especially regarding the impact of the COVID-19 pandemic worldwide. As a result, the increased risk of pathogenic bioaerosol exposure imposes a considerable health burden and raises specific concerns about the layout and location of vaccine manufacturers. This study proposed a grid computing method based on the CALPUFF modelling system and population-based environmental risks to reduce bioaerosol-related potential risks. We previously used the CALPUFF model to quantify the diffusion level, the spatial distribution of emissions, and potential environmental risks of bioaerosol leakage in Gansu province's Zhongmu Lanzhou biopharmaceutical plant from July 24, 2019, to August 20, 2019. By combining it with publicly available test data, the credibility was confirmed. Based on our previous research, the CALPUFF model application combined with the environmental population-based environmental risks in two scenarios: the layout and site selection, was explored by using the leakage accident of Zhongmu Lanzhou biopharmaceutical plant of Gansu province as a case study. Our results showed that the site selection method of scenario 2 coupled with the buffer area was more reasonable than scenario 1, and the final layout site selection point of scenario 2 was grid 157 as the optimal layout point. The simulation results demonstrated agreement with the actual survey. Our findings could assist global bioaerosol manufacturers in developing appropriate layout and site selection strategies to reduce bioaerosol-related potential environmental risks.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengxin Wang
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- 3Clear Technology Co., Ltd, Beijing 100029, China
| | - Yinghao Chu
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jing Guo
- School of Economics and Management, Beihang University, Beijing 100191, China
| | - Xin Bo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
7
|
Cristescu RH, Strickland K, Schultz AJ, Kruuk LEB, de Villiers D, Frère CH. Susceptibility to a sexually transmitted disease in a wild koala population shows heritable genetic variance but no inbreeding depression. Mol Ecol 2022; 31:5455-5467. [PMID: 36043238 PMCID: PMC9826501 DOI: 10.1111/mec.16676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
The koala, one of the most iconic Australian wildlife species, is facing several concomitant threats that are driving population declines. Some threats are well known and have clear methods of prevention (e.g., habitat loss can be reduced with stronger land-clearing control), whereas others are less easily addressed. One of the major current threats to koalas is chlamydial disease, which can have major impacts on individual survival and reproduction rates and can translate into population declines. Effective management strategies for the disease in the wild are currently lacking, and, to date, we know little about the determinants of individual susceptibility to disease. Here, we investigated the genetic basis of variation in susceptibility to chlamydia using one of the most intensively studied wild koala populations. We combined data from veterinary examinations, chlamydia testing, genetic sampling and movement monitoring. Out of our sample of 342 wild koalas, 60 were found to have chlamydia. Using genotype information on 5007 SNPs to investigate the role of genetic variation in determining disease status, we found no evidence of inbreeding depression, but a heritability of 0.11 (95% CI: 0.06-0.23) for the probability that koalas had chlamydia. Heritability of susceptibility to chlamydia could be relevant for future disease management, as it suggests adaptive potential for the population.
Collapse
Affiliation(s)
- Romane H. Cristescu
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Kasha Strickland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Anthony J. Schultz
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia,Icelandic Museum of Natural History (Náttúruminjasafn Íslands)ReykjavikIceland
| | - Loeske E. B. Kruuk
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK,Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - Céline H. Frère
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
8
|
Guinat C, Valenzuela Agüí C, Vaughan TG, Scire J, Pohlmann A, Staubach C, King J, Świętoń E, Dán Á, Černíková L, Ducatez MF, Stadler T. Disentangling the role of poultry farms and wild birds in the spread of highly pathogenic avian influenza virus in Europe. Virus Evol 2022; 8:veac073. [PMID: 36533150 PMCID: PMC9752641 DOI: 10.1093/ve/veac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 08/12/2023] Open
Abstract
In winter 2016-7, Europe was severely hit by an unprecedented epidemic of highly pathogenic avian influenza viruses (HPAIVs), causing a significant impact on animal health, wildlife conservation, and livestock economic sustainability. By applying phylodynamic tools to virus sequences collected during the epidemic, we investigated when the first infections occurred, how many infections were unreported, which factors influenced virus spread, and how many spillover events occurred. HPAIV was likely introduced into poultry farms during the autumn, in line with the timing of wild birds' migration. In Germany, Hungary, and Poland, the epidemic was dominated by farm-to-farm transmission, showing that understanding of how farms are connected would greatly help control efforts. In the Czech Republic, the epidemic was dominated by wild bird-to-farm transmission, implying that more sustainable prevention strategies should be developed to reduce HPAIV exposure from wild birds. Inferred transmission parameters will be useful to parameterize predictive models of HPAIV spread. None of the predictors related to live poultry trade, poultry census, and geographic proximity were identified as supportive predictors of HPAIV spread between farms across borders. These results are crucial to better understand HPAIV transmission dynamics at the domestic-wildlife interface with the view to reduce the impact of future epidemics.
Collapse
Affiliation(s)
- Claire Guinat
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Timothy G Vaughan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Jérémie Scire
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Anne Pohlmann
- Friedrich-Loeffler-Institut, Suedufer 10, Greifswald – Insel Riems 17489, Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Suedufer 10, Greifswald – Insel Riems 17489, Germany
| | - Jacqueline King
- Friedrich-Loeffler-Institut, Suedufer 10, Greifswald – Insel Riems 17489, Germany
| | - Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Ádám Dán
- DaNAm Vet Molbiol, Herman Ottó utca 5, Kőszeg 9730, Hungary
| | - Lenka Černíková
- State Veterinary Institute Prague, Sidlistni 136/24, Prague 165 03, Czech Republic
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 chemin des capelles, Toulouse 31076, France
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Bowen L, Manlove K, Roug A, Waters S, LaHue N, Wolff P. Using transcriptomics to predict and visualize disease status in bighorn sheep ( Ovis canadensis). CONSERVATION PHYSIOLOGY 2022; 10:coac046. [PMID: 35795016 PMCID: PMC9252122 DOI: 10.1093/conphys/coac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Increasing risk of pathogen spillover coupled with overall declines in wildlife population abundance in the Anthropocene make infectious disease a relevant concern for species conservation worldwide. While emerging molecular tools could improve our diagnostic capabilities and give insight into mechanisms underlying wildlife disease risk, they have rarely been applied in practice. Here, employing a previously reported gene transcription panel of common immune markers to track physiological changes, we present a detailed analysis over the course of both acute and chronic infection in one wildlife species where disease plays a critical role in conservation, bighorn sheep (Ovis canadensis). Differential gene transcription patterns distinguished between infection statuses over the course of acute infection and differential correlation (DC) analyses identified clear changes in gene co-transcription patterns over the early stages of infection, with transcription of four genes-TGFb, AHR, IL1b and MX1-continuing to increase even as transcription of other immune-associated genes waned. In a separate analysis, we considered the capacity of the same gene transcription panel to aid in differentiating between chronically infected animals and animals in other disease states outside of acute disease events (an immediate priority for wildlife management in this system). We found that this transcription panel was capable of accurately identifying chronically infected animals in the test dataset, though additional data will be required to determine how far this ability extends. Taken together, our results showcase the successful proof of concept and breadth of potential utilities that gene transcription might provide to wildlife disease management, from direct insight into mechanisms associated with differential disease response to improved diagnostic capacity in the field.
Collapse
Affiliation(s)
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Annette Roug
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Medicine, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Shannon Waters
- U.S. Geological Survey, Western Ecological Research Center, Davis, CA, 95616, USA
| | - Nate LaHue
- Nevada Department of Wildlife, Reno, NV, 89512, USA
| | | |
Collapse
|
10
|
Holland OJ, Toomey M, Ahrens C, Hoffmann AA, Croft LJ, Sherman CDH, Miller AD. Whole genome resequencing reveals signatures of rapid selection in a virus-affected commercial fishery. Mol Ecol 2022; 31:3658-3671. [PMID: 35555938 PMCID: PMC9327721 DOI: 10.1111/mec.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Infectious diseases are recognized as one of the greatest global threats to biodiversity and ecosystem functioning. Consequently, there is a growing urgency to understand the speed at which adaptive phenotypes can evolve and spread in natural populations to inform future management. Here we provide evidence of rapid genomic changes in wild Australian blacklip abalone (Haliotis rubra) following a major population crash associated with an infectious disease. Genome scans on H. rubra were performed using pooled whole genome resequencing data from commercial fishing stocks varying in historical exposure to haliotid herpesvirus-1 (HaHV-1). Approximately 25,000 single nucleotide polymorphism loci associated with virus exposure were identified, many of which mapped to genes known to contribute to HaHV-1 immunity in the New Zealand pāua (Haliotis iris) and herpesvirus response pathways in haliotids and other animal systems. These findings indicate genetic changes across a single generation in H. rubra fishing stocks decimated by HaHV-1, with stock recovery potentially determined by rapid evolutionary changes leading to virus resistance. This is a novel example of apparently rapid adaptation in natural populations of a nonmodel marine organism, highlighting the pace at which selection can potentially act to counter disease in wildlife communities.
Collapse
Affiliation(s)
- Owen J. Holland
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Madeline Toomey
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Collin Ahrens
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical ScienceRoyal Botanic GardenSydneyNew South WalesAustralia
| | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laurence J. Croft
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| | - Adam D. Miller
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
11
|
SURVEILLANCE FOR AN EMERGENT HOOF DISEASE IN ELK (CERVUS ELAPHUS) IN THE US PACIFIC WEST SUPPLEMENTED BY 16S RRNA GENE AMPLICON SEQUENCING. J Wildl Dis 2022; 58:487-499. [PMID: 35417921 DOI: 10.7589/jwd-d-21-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
A novel hoof disease of elk (Cervus elaphus) was described in southwestern Washington, US, in 2008 and was subsequently diagnosed in an adjacent area in northwestern Oregon in 2014. The disease, currently referred to as treponeme-associated hoof disease (TAHD), is characterized by lesions ranging from mild erosions, to severe ulcers with underrunning of the hoof capsule and heel-sole junction, to overgrown and avulsed hoof capsules. Histologically, lesions exhibit epithelial erosion or ulceration, suppurative inflammation, and the presence of argyrophilic spirochetes. We used data collected by the Washington Department of Fish and Wildlife and Oregon Department of Fish and Wildlife from 2008 to 2017 as reference for disease distribution. We then conducted enhanced surveillance in 2018-20 by obtaining 164 submissions from four US Pacific West states. We detected TAHD for the first time in Idaho and northern California, as well as in multiple counties in Washington and Oregon where it had not been previously reported. Given the unexpectedly broad disease distribution, continued surveillance is warranted to determine the full geographic extent of TAHD. From samples of 22 elk, we investigated 16S rRNA gene amplicon sequencing as a technique that could be used to supplement TAHD surveillance. Operational taxonomic units of the family Spirochaetaceae were identified in 10 of 12 histologically diagnosed TAHD-positive cases and two of 10 TAHD-negative cases. Phyla Spirochaetae (P<0.008), Fusobacteria (P<0.006), and Tenericutes (P<0.01) were overrepresented in samples from TAHD-positive feet when compared with TAHD-negative elk. A unique spirochete, PT19, was detected in hooves of 11 elk and from at least one elk in each state. Results support the use of 16S rRNA gene amplicon sequencing as a reliable and informative tool to supplement investigations into distribution and etiology of this presumed polybacterial disease.
Collapse
|
12
|
Fabbri MC, Crovetti A, Tinacci L, Bertelloni F, Armani A, Mazzei M, Fratini F, Bozzi R, Cecchi F. Identification of candidate genes associated with bacterial and viral infections in wild boars hunted in Tuscany (Italy). Sci Rep 2022; 12:8145. [PMID: 35581286 PMCID: PMC9114367 DOI: 10.1038/s41598-022-12353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Wild boar (Sus scrofa L.) is one of the large mammals most spread worldwide, highly adaptable, and its population rapidly increased in many areas in Europe, including Italy, where Tuscany is considered particularly suitable for wild boar. Wild boars are potential hosts for different etiological agents, such as Brucella spp., Leptospira spp. and Pseudorabies virus and they can contribute to maintain and/or to disseminate some bacterial or viral pathogens to humans and domestic animals, above all-in free-range farms. In order to identify hypothetical genomic regions associated with these infection diseases, 96 samples of wild boars hunted in Tuscany during the 2018-2019 and 2019-2020 hunting seasons were considered. Diagnosis was achieved by serological tests and 42 Pseudorabies, 31 Leptospira and 15 Brucella positive animals were identified. All animals were genotyped with Geneseek Genomic Profiler Porcine HD (70 k) and a genome-wide scan was then performed. Significant markers were highlighted for Pseudorabies (two SNPs), Brucella (seven SNPs), and Leptospira (four SNPs) and they were located within, or nearby, 29 annotated genes on chromosome 6, 9, 12, 13, 14 and 18. Eight genes are implicated in viral (SEC14L1, JMJD6, SRSF2, TMPRSS2, MX1, MX2) or bacterial (COL8A1, SPIRE1) infections, seven genes (MFSD11, METTL23, CTTNBP2, BACE2, IMPA2, MPPE1 and GNAL) are involved in mental disorders and one gene (MGAT5B) is related to the Golgi complex. Results presented here provide interesting starting points for future research, validation studies and fine mapping of candidate genes involved in bacterial and viral infections in wild boar.
Collapse
Affiliation(s)
- M C Fabbri
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy.
| | - A Crovetti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| | - L Tinacci
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - F Bertelloni
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - A Armani
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - M Mazzei
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - F Fratini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - R Bozzi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| | - F Cecchi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| |
Collapse
|
13
|
Budischak SA, Halvorsen S, Finseth F. Genomic heterozygosity is associated with parasite abundance, but the effects are not mediated by host condition. Evol Ecol 2022; 37:75-96. [PMID: 36568713 PMCID: PMC9666582 DOI: 10.1007/s10682-022-10175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/17/2022] [Indexed: 12/27/2022]
Abstract
Whether, when, and how genetic diversity buffers individuals and populations against infectious disease risk is a critical and open question for understanding wildlife disease and zoonotic disease risk. Several, but not all, studies have found negative relationships between infection and heterozygosity in wildlife. Since they can host multiple zoonotic infections, we sampled a population of wild deer mice (Peromyscus maniculatus), sequenced their genomes, and examined their fecal samples for coccidia and nematode eggs. We analyzed coccidia infection status, abundance, and coinfection status in relation to per-locus and per-individual measures of heterozygosity, as well as identified SNPs associated with infection status. Since heterozygosity might affect host condition, and condition is known to affect immunity, it was included as a co-variate in the per-individual analyses and as response variable in relation to heterozygosity. Not only did coccidia-infected individuals have lower levels of genome-wide per-locus diversity across all metrics, but we found an inverse relationship between genomic diversity and severity of coccidia infection. We also found weaker evidence that coinfected individuals had lower levels of private allelic variation than all other groups. In the per-individual analyses, relationships between heterozygosity and infection were marginal but followed the same negative trends. Condition was negatively correlated with infection, but was not associated with heterozygosity, suggesting that effects of heterozygosity on infection were not mediated by host condition in this system. Association tests identified multiple loci involved in the inflammatory response, with a particular role for NF-κB signaling, supporting previous work on the genetic basis of coccidia resistance. Taken together, we find that increased genome-wide neutral diversity, the presence of specific genetic variants, and improved condition positively impact infection status. Our results underscore the importance of considering host genomic variation as a buffer against infection, especially in systems that can harbor zoonotic diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10175-8.
Collapse
Affiliation(s)
- Sarah A. Budischak
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, USA
| | | | - Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, USA
| |
Collapse
|
14
|
Bowen L, Waters S, Stott JL, Duncan A, Meyerson R, Woodhouse S. Baseline Gene Expression Levels in Falkland-Malvinas Island Penguins: Towards a New Monitoring Paradigm. Life (Basel) 2022; 12:life12020258. [PMID: 35207543 PMCID: PMC8880734 DOI: 10.3390/life12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
Health diagnostics of wildlife have historically relied on the evaluation of select serum biomarkers and the identification of a contaminant or pathogen burden within specific tissues as an indicator of a level of insult. However, these approaches fail to measure the physiological reaction of the individual to stressors, thus limiting the scope of interpretation. Gene-based health diagnostics provide an opportunity for an alternate, whole-system, or holistic assessment of health, not only in individuals or populations but potentially in ecosystems. Seabirds are among the most threatened marine taxonomic groups in the world, with ~25% of this species currently listed as threatened or considered of special concern; among seabirds, the penguins (Family Spheniscidae) are the most threatened seabird Family. We used gene expression to develop baseline physiological indices for wild penguins in the Falkland-Malvinas Islands, and captive zoo penguins. We identified the almost complete statistical separation of penguin groups (gentoo Detroit Zoo, gentoo Falkland-Malvinas Islands, rockhopper Detroit Zoo, and rockhopper Falkland-Malvinas Islands) based on gene expression profiles. Implementation of long-term longitudinal studies would allow for the assessment of temporal increases or decreases of select transcripts and would facilitate interpretation of the drivers of change.
Collapse
Affiliation(s)
- Lizabeth Bowen
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-574-4353
| | - Shannon Waters
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA 95616, USA;
| | - Jeffrey L. Stott
- Department of Pathology, Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA;
| | - Ann Duncan
- Detroit Zoo, 8450 W. 10 Mile Road, Royal Oak, MI 48067, USA;
| | | | - Sarah Woodhouse
- Henry Doorly Zoo and Aquarium, 3701 S 10th St, Omaha, NE 68107, USA;
| |
Collapse
|
15
|
Ketz AC, Robinson SJ, Johnson CJ, Samuel MD. Pathogen‐mediated selection and management implications for white‐tailed deer exposed to chronic wasting disease. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alison C. Ketz
- Wisconsin Cooperative Research Unit Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| | - Stacie J. Robinson
- NOAA Hawaiian Monk Seal Research Program Pacific Islands Fisheries Science Center Honolulu HI USA
| | - Chad J. Johnson
- Medical Microbiology and Immunology University of Wisconsin Madison WI USA
| | - Michael D. Samuel
- Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| |
Collapse
|
16
|
Combe FJ, Jaster L, Ricketts A, Haukos D, Hope AG. Population genomics of free-ranging Great Plains white-tailed and mule deer reflects a long history of interspecific hybridization. Evol Appl 2022; 15:111-131. [PMID: 35126651 PMCID: PMC8792484 DOI: 10.1111/eva.13330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Hybridization is a natural process at species-range boundaries that may variably promote the speciation process or break down species barriers but minimally will influence management outcomes of distinct populations. White-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) have broad and overlapping distributions in North America and a recognized capacity for interspecific hybridization. In response to contemporary environmental change to any of one or multiple still-unknown factors, mule deer range is contracting westward accompanied by a westward expansion of white-tailed deer, leading to increasing interactions, opportunities for gene flow, and associated conservation implications. To quantify genetic diversity, phylogenomic structure, and dynamics of hybridization in sympatric populations of white-tailed and mule deer, we used mitochondrial cytochrome b data coupled with SNP loci discovered with double-digest restriction site-associated DNA sequencing. We recovered 25,018 SNPs across 92 deer samples from both species, collected from two regions of western Kansas. Eight individuals with unambiguous external morphology representing both species were of hybrid origin (8.7%), and represented the product of multi-generational backcrossing. Mitochondrial data showed both ancient and recent directional discordance with morphological species assignments, reflecting a legacy of mule deer males mating with white-tailed deer females. Mule deer had lower genetic diversity than white-tailed deer, and both mitochondrial and nuclear data suggest contemporary mule deer effective population decline. Landscape genetic analyses show relative isolation between the two study regions for white-tailed deer, but greater connectivity among mule deer, with predominant movement from north to south. Collectively, our results suggest a long history of gene flow between these species in the Great Plains and hint at evolutionary processes that purge incompatible functional genomic elements as a result of hybridization. Surviving hybrids evidently may be reproductive, but with unknown consequences for the future integrity of these species, population trajectories, or relative susceptibility to emerging pathogens.
Collapse
Affiliation(s)
- Fraser J. Combe
- Division of BiologyKansas State UniversityManhattanKansasUSA
| | - Levi Jaster
- Kansas Department of Wildlife and ParksTopekaKansasUSA
| | - Andrew Ricketts
- Department of Horticulture and Natural Sciences, Wildlife and Outdoor Enterprise ManagementKansas State UniversityManhattanKansasUSA
| | - David Haukos
- Division of BiologyU.S. Geological SurveyKansas Cooperative Fish and Wildlife Research UnitKansas State UniversityManhattanKansasUSA
| | - Andrew G. Hope
- Division of BiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
17
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
18
|
Chafin TK, Douglas MR, Martin BT, Zbinden ZD, Middaugh CR, Ballard JR, Gray MC, Don White, Douglas ME. Age structuring and spatial heterogeneity in prion protein gene ( PRNP) polymorphism in white-tailed deer. Prion 2021; 14:238-248. [PMID: 33078661 PMCID: PMC7575228 DOI: 10.1080/19336896.2020.1832947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chronic-wasting disease (CWD) is a prion-derived fatal neurodegenerative disease that has affected wild cervid populations on a global scale. Susceptibility has been linked unambiguously to several amino acid variants within the prion protein gene (PRNP). Quantifying their distribution across landscapes can provide critical information for agencies attempting to adaptively manage CWD. Here we attempt to further define management implications of PRNP polymorphism by quantifying the contemporary geographic distribution (i.e., phylogeography) of PRNP variants in hunter-harvested white-tailed deer (WTD; Odocoileus virginianus, N = 1433) distributed across Arkansas (USA), including a focal spot for CWD since detection of the disease in February 2016. Of these, PRNP variants associated with the well-characterized 96S non-synonymous substitution showed a significant increase in relative frequency among older CWD-positive cohorts. We interpreted this pattern as reflective of a longer life expectancy for 96S genotypes in a CWD-endemic region, suggesting either decreased probabilities of infection or reduced disease progression. Other variants showing statistical signatures of potential increased susceptibility, however, seemingly reflect an artefact of population structure. We also showed marked heterogeneity across the landscape in the prevalence of ‘reduced susceptibility’ genotypes. This may indicate, in turn, that differences in disease susceptibility among WTD in Arkansas are an innate, population-level characteristic that is detectable through phylogeographic analysis.
Collapse
Affiliation(s)
- Tyler K Chafin
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Bradley T Martin
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Christopher R Middaugh
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - Jennifer R Ballard
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - M Cory Gray
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - Don White
- University of Arkansas Agricultural Experiment Station , Monticello, AR, USA
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| |
Collapse
|
19
|
Eskew EA, Fraser D, Vonhof MJ, Pinsky ML, Maslo B. Host gene expression in wildlife disease: making sense of species-level responses. Mol Ecol 2021; 30:6517-6530. [PMID: 34516689 DOI: 10.1111/mec.16172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Emerging infectious diseases are significant threats to wildlife conservation, yet the impacts of pathogen exposure and infection can vary widely among host species. As such, conservation biologists and disease ecologists have increasingly aimed to understand species-specific host susceptibility using molecular methods. In particular, comparative gene expression assays have been used to contrast the transcriptomic responses of disease-resistant and disease-susceptible hosts to pathogen exposure. This work usually assumes that the gene expression responses of disease-resistant species will reveal the activation of molecular pathways contributing to host defence. However, results often show that disease-resistant hosts undergo little gene expression change following pathogen challenge. Here, we discuss the mechanistic implications of these "null" findings and offer methodological suggestions for future molecular studies of wildlife disease. First, we highlight that muted transcriptomic responses with minimal immune system recruitment may indeed be protective for nonsusceptible hosts if they limit immunopathology and promote pathogen tolerance in systems where susceptible hosts suffer from genetic dysregulation. Second, we argue that overly narrow investigation of responses to pathogen exposure may overlook important, constitutively active molecular pathways that underlie species-specific defences. Finally, we outline alternative study designs and approaches that complement interspecific transcriptomic comparisons, including intraspecific gene expression studies and genomic methods to detect signatures of selection. Collectively, these insights will help ecologists extract maximal information from conservation-relevant transcriptomic data sets, leading to a deeper understanding of host defences and, ultimately, the implementation of successful conservation interventions.
Collapse
Affiliation(s)
- Evan A Eskew
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Department of Biology, Pacific Lutheran University, Tacoma, Washington, USA
| | - Devaughn Fraser
- Wildlife Genetics Research Laboratory, California Department of Fish and Wildlife, Sacramento, California, USA
| | - Maarten J Vonhof
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
20
|
Haydett KM, Peper ST, Reinoso Webb C, Tiffin HS, Wilson-Fallon AN, Jones-Hall YL, Webb SL, Presley SM. Prevalence of Neospora caninum Exposure in Wild Pigs ( Sus scrofa) from Oklahoma with Implications of Testing Method on Detection. Animals (Basel) 2021; 11:ani11092487. [PMID: 34573453 PMCID: PMC8465085 DOI: 10.3390/ani11092487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Neospora caninum causes abortion and other reproductive challenges in livestock and leads to large economic losses every year. Wild pigs were evaluated for their potential role in the transmission of N. caninum, the parasite that causes neosporosis in cattle and other animals. Three assays were used to identify past or current exposure to N. caninum in wild pigs and histology was performed to determine if there was a pathology consistent with a N. caninum infection in the tissues that were evaluated. The following assays reported positive results: Kit A—67.8%, Kit B—12.5%, Indirect Fluorescent Antibody Test—84.1%, and Histology—0%. Importantly, the assays used in this study were not congruent with all duplicate samples or between test types and demonstrate the need for a more reliable test to identify N. caninum infections in wild pigs to better assess their potential role in disease transmission. Abstract Neospora caninum is a protozoan parasite, reported as a leading cause of cattle abortions and reproductive failure worldwide, costing the cattle industry approximately $1.3 billion annually. With wild pig (Sus scrofa) populations estimated at over six million in the United States, contact between wild pigs and livestock is inevitable, mainly because of the widespread geographic co-occurrence of the two species. As a known reservoir for numerous fungal, bacterial, viral and parasitic diseases, wild pigs are of particular importance for human and veterinary health relative to the prevention of infectious diseases. The seroprevalence of N. caninum in wild pig populations was previously documented in the United States, raising the question as to their exposure point of prevalence. This research screened 116 individual wild pigs for N. caninum using a variety of available assays. Using two different commercially available ELISA test kits, seroprevalence ranged from 12.5% to 67.8%. The Indirect Fluorescent Antibody Test resulted in our highest percent seroprevalence for these samples, at 84.1%. However, none of our samples showed any presence of N. caninum or associated pathologies via histological evaluation of representative tissues. Importantly, the assays used in this study were not congruent with all duplicate samples or between the test types used. The implications of these non-congruent results demonstrates that currently available testing assays produce variable results, underscoring the need for more reliable testing kits and a standardized methodology when assessing disease prevalence in wildlife, particularly for N. caninum in wild pigs, which impacts prevalence and comparability across studies.
Collapse
Affiliation(s)
- Katelyn M. Haydett
- Vector-Borne Zoonoses Laboratory, Texas Tech University, Lubbock, TX 79416, USA; (K.M.H.); (S.T.P.); (C.R.W.); (H.S.T.); (A.N.W.-F.); (S.M.P.)
| | - Steven T. Peper
- Vector-Borne Zoonoses Laboratory, Texas Tech University, Lubbock, TX 79416, USA; (K.M.H.); (S.T.P.); (C.R.W.); (H.S.T.); (A.N.W.-F.); (S.M.P.)
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092, USA
| | - Cynthia Reinoso Webb
- Vector-Borne Zoonoses Laboratory, Texas Tech University, Lubbock, TX 79416, USA; (K.M.H.); (S.T.P.); (C.R.W.); (H.S.T.); (A.N.W.-F.); (S.M.P.)
| | - Hannah S. Tiffin
- Vector-Borne Zoonoses Laboratory, Texas Tech University, Lubbock, TX 79416, USA; (K.M.H.); (S.T.P.); (C.R.W.); (H.S.T.); (A.N.W.-F.); (S.M.P.)
| | - Alexander N. Wilson-Fallon
- Vector-Borne Zoonoses Laboratory, Texas Tech University, Lubbock, TX 79416, USA; (K.M.H.); (S.T.P.); (C.R.W.); (H.S.T.); (A.N.W.-F.); (S.M.P.)
| | - Yava L. Jones-Hall
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
| | - Stephen L. Webb
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
- Correspondence: ; Tel.: +1-580-224-6443
| | - Steven M. Presley
- Vector-Borne Zoonoses Laboratory, Texas Tech University, Lubbock, TX 79416, USA; (K.M.H.); (S.T.P.); (C.R.W.); (H.S.T.); (A.N.W.-F.); (S.M.P.)
| |
Collapse
|
21
|
Rothstein AP, Byrne AQ, Knapp RA, Briggs CJ, Voyles J, Richards-Zawacki CL, Rosenblum EB. Divergent regional evolutionary histories of a devastating global amphibian pathogen. Proc Biol Sci 2021; 288:20210782. [PMID: 34157877 PMCID: PMC8220259 DOI: 10.1098/rspb.2021.0782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Emerging infectious diseases are a pressing threat to global biological diversity. Increased incidence and severity of novel pathogens underscores the need for methodological advances to understand pathogen emergence and spread. Here, we use genetic epidemiology to test, and challenge, key hypotheses about a devastating zoonotic disease impacting amphibians globally. Using an amplicon-based sequencing method and non-invasive samples we retrospectively explore the history of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in two emblematic amphibian systems: the Sierra Nevada of California and Central Panama. The hypothesis in both regions is the hypervirulent Global Panzootic Lineage of Bd (BdGPL) was recently introduced and spread rapidly in a wave-like pattern. Our data challenge this hypothesis by demonstrating similar epizootic signatures can have radically different underlying evolutionary histories. In Central Panama, our genetic data confirm a recent and rapid pathogen spread. However, BdGPL in the Sierra Nevada has remarkable spatial structuring, high genetic diversity and a relatively older history inferred from time-dated phylogenies. Thus, this deadly pathogen lineage may have a longer history in some regions than assumed, providing insights into its origin and spread. Overall, our results highlight the importance of integrating observed wildlife die-offs with genetic data to more accurately reconstruct pathogen outbreaks.
Collapse
Affiliation(s)
- Andrew P Rothstein
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA.,Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Cheryl J Briggs
- Earth Research Institute, University of California, Santa Barbara, CA, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
22
|
Pérez-González J, Carranza J, Martínez R, Benítez-Medina JM. Host Genetic Diversity and Infectious Diseases. Focus on Wild Boar, Red Deer and Tuberculosis. Animals (Basel) 2021; 11:1630. [PMID: 34072907 PMCID: PMC8229303 DOI: 10.3390/ani11061630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Host genetic diversity tends to limit disease spread in nature and buffers populations against epidemics. Genetic diversity in wildlife is expected to receive increasing attention in contexts related to disease transmission and human health. Ungulates such as wild boar (Sus scrofa) and red deer (Cervus elaphus) are important zoonotic hosts that can be precursors to disease emergence and spread in humans. Tuberculosis is a zoonotic disease with relevant consequences and can present high prevalence in wild boar and red deer populations. Here, we review studies on the genetic diversity of ungulates and determine to what extent these studies consider its importance on the spread of disease. This assessment also focused on wild boar, red deer, and tuberculosis. We found a disconnection between studies treating genetic diversity and those dealing with infectious diseases. Contrarily, genetic diversity studies in ungulates are mainly concerned with conservation. Despite the existing disconnection between studies on genetic diversity and studies on disease emergence and spread, the knowledge gathered in each discipline can be applied to the other. The bidirectional applications are illustrated in wild boar and red deer populations from Spain, where TB is an important threat for wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Córdoba, Spain;
| | - Remigio Martínez
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| | - José Manuel Benítez-Medina
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| |
Collapse
|
23
|
Trujillo AL, Hoffman EA, Becker CG, Savage AE. Spatiotemporal adaptive evolution of an MHC immune gene in a frog-fungus disease system. Heredity (Edinb) 2021; 126:640-655. [PMID: 33510466 PMCID: PMC8115231 DOI: 10.1038/s41437-020-00402-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.
Collapse
Affiliation(s)
- Alexa L. Trujillo
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| | - Eric A. Hoffman
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| | - C. Guilherme Becker
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA
| | - Anna E. Savage
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| |
Collapse
|
24
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
DeCandia AL, Schrom EC, Brandell EE, Stahler DR, vonHoldt BM. Sarcoptic mange severity is associated with reduced genomic variation and evidence of selection in Yellowstone National Park wolves ( Canis lupus). Evol Appl 2021; 14:429-445. [PMID: 33664786 PMCID: PMC7896714 DOI: 10.1111/eva.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023] Open
Abstract
Population genetic theory posits that molecular variation buffers against disease risk. Although this "monoculture effect" is well supported in agricultural settings, its applicability to wildlife populations remains in question. In the present study, we examined the genomics underlying individual-level disease severity and population-level consequences of sarcoptic mange infection in a wild population of canids. Using gray wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal system, we leveraged 25 years of observational data and biobanked blood and tissue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported an inverse relationship between host genomic variation and infection severity. We additionally identified 410 loci significantly associated with mange severity, with annotations related to inflammation, immunity, and skin barrier integrity and disorders. We contextualized results within environmental, demographic, and behavioral variables, and confirmed that genetic variation was predictive of infection severity. At the population level, we reported decreased genome-wide variation since the initial gray wolf reintroduction event and identified evidence of selection acting against alleles associated with mange infection severity. We concluded that genomic variation plays an important role in disease severity in YNP wolves. This role scales from individual to population levels, and includes patterns of genome-wide variation in support of the monoculture effect and specific loci associated with the complex mange phenotype. Results yielded system-specific insights, while also highlighting the relevance of genomic analyses to wildlife disease ecology, evolution, and conservation.
Collapse
Affiliation(s)
| | - Edward C. Schrom
- Ecology & Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | |
Collapse
|
26
|
Chen CC, Chang AM, Chen WJ, Chang PJ, Lai YC, Lee HH. Molecular survey of selected viral pathogens in wild leopard cats (Prionailurus bengalensis) in Taiwan with an emphasis on the spatial and temporal dynamics of carnivore protoparvovirus 1. Arch Virol 2021; 166:427-438. [PMID: 33389172 PMCID: PMC7778563 DOI: 10.1007/s00705-020-04904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/19/2020] [Indexed: 11/27/2022]
Abstract
The leopard cat (Prionailurus bengalensis) was listed as an endangered species under the Wildlife Conservation Act in Taiwan in 2009. However, no study has evaluated the possible direct or indirect effects of pathogens on the Taiwanese leopard cat population. Here, we targeted viral pathogens, including carnivore protoparvovirus 1 (genus Protoparvovirus), feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), coronaviruses (CoVs), and canine distemper virus (CDV), through molecular screening. The spatial and temporal dynamics of the target pathogens were evaluated. Through sequencing and phylogenetic analysis, we clarified the phylogenetic relationship of viral pathogens isolated from leopard cats and domestic carnivores. Samples from 23 live-trapped leopard cats and 29 that were found dead were collected from 2015 to 2019 in Miaoli County in northwestern Taiwan. Protoparvoviruses and CoVs were detected in leopard cats, and their prevalence (95% confidence interval) was 63.5% (50.4%–76.6%) and 8.8% (0%–18.4%), respectively. Most of the protoparvovirus sequences amplified from Taiwanese leopard cats and domestic carnivores were identical. All of the CoV sequences amplified from leopard cats were identified as feline CoV. No spatial or temporal aggregation of protoparvovirus infection in leopard cats was found in the sampling area, indicating a wide distribution of protoparvoviruses in the leopard cat habitat. We consider sympatric domestic carnivores to be the probable primary reservoir for the identified pathogens. We strongly recommend management of protoparvoviruses and feline CoV in the leopard cat habitat, particularly vaccination programs and population control measures for free-roaming dogs and cats.
Collapse
Affiliation(s)
- Chen-Chih Chen
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Ai-Mei Chang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wan-Jhen Chen
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Po-Jen Chang
- Formosan Wild Sound Conservation Science Center, Miaoli, Taiwan
| | - Yu-Ching Lai
- Department of Landscape Architecture and Environmental Design, Huafan University, New Taipei City, Taiwan
| | - Hsu-Hsun Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
27
|
Russell RE, DiRenzo GV, Szymanski JA, Alger KE, Grant EHC. Principles and Mechanisms of Wildlife Population Persistence in the Face of Disease. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Kozakiewicz CP, Ricci L, Patton AH, Stahlke AR, Hendricks SA, Margres MJ, Ruiz-Aravena M, Hamilton DG, Hamede R, McCallum H, Jones ME, Hohenlohe PA, Storfer A. Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (Sarcophilus harrisii) and their transmissible tumour. Mol Ecol 2020; 29:3217-3233. [PMID: 32682353 PMCID: PMC9805799 DOI: 10.1111/mec.15558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad-scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.
Collapse
Affiliation(s)
| | - Lauren Ricci
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Austin H. Patton
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Amanda R. Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Sarah A. Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia,Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,corresponding author: Andrew Storfer, School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
29
|
Poli P, Lenoir J, Plantard O, Ehrmann S, Røed KH, Leinaas HP, Panning M, Guiller A. Strong genetic structure among populations of the tick Ixodes ricinus across its range. Ticks Tick Borne Dis 2020; 11:101509. [PMID: 32993929 DOI: 10.1016/j.ttbdis.2020.101509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/25/2023]
Abstract
Ixodes ricinus is the most common and widely distributed tick species in Europe, responsible for several zoonotic diseases, including Lyme borreliosis. Population genetics of disease vectors is a useful tool for understanding the spread of pathogens and infection risks. Despite the threat to the public health due to the climate-driven distribution changes of I. ricinus, the genetic structure of tick populations, though essential for understanding epidemiology, remains unclear. Previous studies have demonstrated weak to no apparent spatial pattern of genetic differentiation between European populations. Here, we analysed the population genetic structure of 497 individuals from 28 tick populations sampled from 20 countries across Europe, the Middle-East, and northern Africa. We analysed 125 SNPs loci after quality control. We ran Bayesian and multivariate hierarchical clustering analyses to identify and describe clusters of genetically related individuals. Both clustering methods support the identification of three spatially-structured clusters. Individuals from the south and north-western parts of Eurasia form a separated cluster from northern European populations, while central European populations are a mix between the two groups. Our findings have important implications for understanding the dispersal processes that shape the spread of zoonotic diseases under anthropogenic global changes.
Collapse
Affiliation(s)
- Pedro Poli
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France.
| | - Jonathan Lenoir
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France
| | | | - Steffen Ehrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, N-0033, Oslo, Norway
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, Box 1066 Blindern, N-0316 Oslo, Norway
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str, 11 79104, Freiburg, Germany
| | - Annie Guiller
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France.
| |
Collapse
|
30
|
Fitak RR, Antonides JD, Baitchman EJ, Bonaccorso E, Braun J, Kubiski S, Chiu E, Fagre AC, Gagne RB, Lee JS, Malmberg JL, Stenglein MD, Dusek RJ, Forgacs D, Fountain-Jones NM, Gilbertson MLJ, Worsley-Tonks KEL, Funk WC, Trumbo DR, Ghersi BM, Grimaldi W, Heisel SE, Jardine CM, Kamath PL, Karmacharya D, Kozakiewicz CP, Kraberger S, Loisel DA, McDonald C, Miller S, O'Rourke D, Ott-Conn CN, Páez-Vacas M, Peel AJ, Turner WC, VanAcker MC, VandeWoude S, Pecon-Slattery J. The Expectations and Challenges of Wildlife Disease Research in the Era of Genomics: Forecasting with a Horizon Scan-like Exercise. J Hered 2020; 110:261-274. [PMID: 31067326 DOI: 10.1093/jhered/esz001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies. To address this disparity, the inaugural "Genomics of Disease in Wildlife" workshop assembled early to mid-career professionals with expertise across scientific disciplines (e.g., genomics, wildlife biology, veterinary sciences, and conservation management) for training in the application of genomic tools to wildlife disease research. A horizon scanning-like exercise, an activity to identify forthcoming trends and challenges, performed by the workshop participants identified and discussed 5 themes considered to be the most pressing to the application of genomics in wildlife disease research: 1) "Improving communication," 2) "Methodological and analytical advancements," 3) "Translation into practice," 4) "Integrating landscape ecology and genomics," and 5) "Emerging new questions." Wide-ranging solutions from the horizon scan were international in scope, itemized both deficiencies and strengths in wildlife genomic initiatives, promoted the use of genomic technologies to unite wildlife and human disease research, and advocated best practices for optimal use of genomic tools in wildlife disease projects. The results offer a glimpse of the potential revolution in human and wildlife disease research possible through multi-disciplinary collaborations at local, regional, and global scales.
Collapse
Affiliation(s)
| | - Jennifer D Antonides
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN
| | - Eric J Baitchman
- The Zoo New England Division of Animal Health and Conservation, Boston, MA
| | - Elisa Bonaccorso
- The Instituto BIOSFERA and Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, vía Interoceánica y Diego de Robles, Quito, Ecuador
| | - Josephine Braun
- The Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Steven Kubiski
- The Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Elliott Chiu
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Anna C Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Justin S Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Jennifer L Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Mark D Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Robert J Dusek
- The U. S. Geological Survey, National Wildlife Health Center, Madison, WI
| | - David Forgacs
- The Interdisciplinary Graduate Program of Genetics, Texas A&M University, College Station, TX
| | | | - Marie L J Gilbertson
- The Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | | | - W Chris Funk
- The Department of Biology, Colorado State University, Fort Collins, CO
| | - Daryl R Trumbo
- The Department of Biology, Colorado State University, Fort Collins, CO
| | | | | | - Sara E Heisel
- The Odum School of Ecology, University of Georgia, Athens, GA
| | - Claire M Jardine
- The Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, Ontario, Canada
| | - Pauline L Kamath
- The School of Food and Agriculture, University of Maine, Orono, ME
| | | | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ
| | - Dagan A Loisel
- The Department of Biology, Saint Michael's College, Colchester, VT
| | - Cait McDonald
- The Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY (McDonald)
| | - Steven Miller
- The Department of Biology, Drexel University, Philadelphia, PA
| | | | - Caitlin N Ott-Conn
- The Michigan Department of Natural Resources, Wildlife Disease Laboratory, Lansing, MI
| | - Mónica Páez-Vacas
- The Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador
| | - Alison J Peel
- The Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Wendy C Turner
- The Department of Biological Sciences, University at Albany, State University of New York, Albany, NY
| | - Meredith C VanAcker
- The Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Sue VandeWoude
- The College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jill Pecon-Slattery
- The Center for Species Survival, Smithsonian Conservation Biology Institute-National Zoological Park, Front Royal, VA
| |
Collapse
|
31
|
Bowen L, Longshore K, Wolff P, Klinger R, Cox M, Bullock S, Waters S, Miles AK. Gene Transcript Profiling in Desert Bighorn Sheep. WILDLIFE SOC B 2020. [DOI: 10.1002/wsb.1078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lizabeth Bowen
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| | - Kathleen Longshore
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| | - Peregrine Wolff
- Nevada Department of Wildlife 6980 Sierra Center Parkway, Suite 120 Reno NV 89511 USA
| | - Robert Klinger
- U.S. Geological Survey, Western Ecological Research CenterOakhurst CA 93644 USA
| | - Michael Cox
- Nevada Department of Wildlife 6980 Sierra Center Pkwy. Suite 120 Reno NV 89511 USA
| | - Sarah Bullock
- Desert National Wildlife Refuge 16001 Corn Creek Road Las Vegas NV 89124 USA
| | - Shannon Waters
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| | - A. Keith Miles
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| |
Collapse
|
32
|
Quéméré E, Rossi S, Petit E, Marchand P, Merlet J, Game Y, Galan M, Gilot-Fromont E. Genetic epidemiology of the Alpine ibex reservoir of persistent and virulent brucellosis outbreak. Sci Rep 2020; 10:4400. [PMID: 32157133 PMCID: PMC7064506 DOI: 10.1038/s41598-020-61299-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/25/2020] [Indexed: 01/23/2023] Open
Abstract
While it is now broadly accepted that inter-individual variation in the outcomes of host-pathogen interactions is at least partially genetically controlled, host immunogenetic characteristics are rarely investigated in wildlife epidemiological studies. Furthermore, most immunogenetic studies in the wild focused solely on the major histocompatibility complex (MHC) diversity despite it accounts for only a fraction of the genetic variation in pathogen resistance. Here, we investigated immunogenetic diversity of the Alpine ibex (Capra ibex) population of the Bargy massif, reservoir of a virulent outbreak of brucellosis. We analysed the polymorphism and associations with disease resistance of the MHC Class II Drb gene and several non-MHC genes (Toll-like receptor genes, Slc11A1) involved in the innate immune response to Brucella in domestic ungulates. We found a very low neutral genetic diversity and a unique MHC Drb haplotype in this population founded few decades ago from a small number of individuals. By contrast, other immunity-related genes have maintained polymorphism and some showed significant associations with the brucellosis infection status hence suggesting a predominant role of pathogen-mediated selection in their recent evolutionary trajectory. Our results highlight the need to monitor immunogenetic variation in wildlife epidemiological studies and to look beyond the MHC.
Collapse
Affiliation(s)
- Erwan Quéméré
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.
- ESE, Ecology and Ecosystems Health, Agrocampus Ouest, INRAE, 35042 Rennes, France.
| | - Sophie Rossi
- Office Français de la Biodiversité, Unité Sanitaire de la Faune, Gap, France
| | - Elodie Petit
- Office Français de la Biodiversité, Unité Ongulés sauvages, Gières, France
| | - Pascal Marchand
- Office Français de la Biodiversité, Unité Ongulés sauvages, Gières, France
| | - Joël Merlet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France
| | - Yvette Game
- Laboratoire Départemental d'Analyses Vétérinaires de Savoie, Chambéry, France
| | - Maxime Galan
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, VetAgro Sup - Campus vétérinaire de Lyon, Marcy l'Étoile, France
- Université de Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Evolutive (LBBE), Villeurbanne, France
| |
Collapse
|
33
|
Carlsson AM, Curry P, Elkin B, Russell D, Veitch A, Branigan M, Campbell M, Croft B, Cuyler C, Côté SD, Leclerc LM, Tryland M, Nymo IH, Kutz SJ. Multi-pathogen serological survey of migratory caribou herds: A snapshot in time. PLoS One 2019; 14:e0219838. [PMID: 31365561 PMCID: PMC6668789 DOI: 10.1371/journal.pone.0219838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022] Open
Abstract
Pathogens can impact host survival, fecundity, and population dynamics even when no obvious disease is observed. Few baseline data on pathogen prevalence and diversity of caribou are available, which hampers our ability to track changes over time and evaluate impacts on caribou health. Archived blood samples collected from ten migratory caribou herds in Canada and two in Greenland were used to test for exposure to pathogens that have the potential to effect population productivity, are zoonotic or are emerging. Relationships between seroprevalence and individual, population, and other health parameters were also examined. For adult caribou, the highest overall seroprevalence was for alphaherpesvirus (49%, n = 722), pestivirus (49%, n = 572) and Neospora caninum (27%, n = 452). Lower seroprevalence was found for parainfluenza virus type 3 (9%, n = 708), Brucella suis (2%, n = 758), and Toxoplasma gondii (2%, n = 706). No animal tested positive for antibodies against West Nile virus (n = 418) or bovine respiratory syncytial virus (n = 417). This extensive multi-pathogen survey of migratory caribou herds provides evidence that caribou are exposed to pathogens that may have impacts on herd health and revealed potential interactions between pathogens as well as geographical differences in pathogen exposure that could be linked to the bio-geographical history of caribou. Caribou are a keystone species and the socio-economic cornerstone of many indigenous cultures across the North. The results from this study highlight the urgent need for a better understanding of pathogen diversity and the impact of pathogens on caribou health.
Collapse
Affiliation(s)
- A. M. Carlsson
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - P. Curry
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - B. Elkin
- Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Alberta, Canada
| | - D. Russell
- CircumArctic Rangifer Monitoring and Assessment Network, Whitehorse, Yukon, Canada
| | - A. Veitch
- Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Alberta, Canada
| | - M. Branigan
- Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Alberta, Canada
| | - M. Campbell
- Department of Environment, Government of Nunavut, Iqaluit, Nunavut, Canada
| | - B. Croft
- Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Alberta, Canada
| | - C. Cuyler
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - S. D. Côté
- Caribou Ungava, Département de Biologie and Centre d’études nordiques, Université Laval, Québec, Québec, Canada
| | - L-M Leclerc
- Department of Environment, Government of Nunavut, Iqaluit, Nunavut, Canada
| | - M. Tryland
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromso, Norway
| | - I. H. Nymo
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromso, Norway
| | - S. J. Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Canadian Wildlife Health Cooperative, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Numminen E, Vaumourin E, Parratt SR, Poulin L, Laine AL. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol Biol 2019; 19:142. [PMID: 31299905 PMCID: PMC6624897 DOI: 10.1186/s12862-019-1468-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Understanding the mechanisms by which diversity is maintained in pathogen populations is critical for epidemiological predictions. Life-history trade-offs have been proposed as a hypothesis for explaining long-term maintenance of variation in pathogen populations, yet the empirical evidence supporting trade-offs has remained mixed. This is in part due to the challenges of documenting successive pathogen life-history stages in many pathosystems. Moreover, little is understood of the role of natural enemies of pathogens on their life-history evolution. RESULTS We characterize life-history-trait variation and possible trade-offs in fungal pathogen Podosphaera plantaginis infecting the host plant Plantago lanceolata. We measured the timing of both asexual and sexual stages, as well as resistance to a hyperparasite of seven pathogen strains that vary in their prevalence in nature. We find significant variation among the strains in their life-history traits that constitute the infection cycle, but no evidence for trade-offs among pathogen development stages, apart from fast pathogen growth coninciding with fast hyperparasite growth. Also, the seemingly least fit pathogen strain was the most prevalent in the nature. CONCLUSIONS We conclude that in the nature environmental variation, and interactions with the antagonists of pathogens themselves may maintain variation in pathogen populations.
Collapse
Affiliation(s)
- Elina Numminen
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.
| | - Elise Vaumourin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland
| | - Steven R Parratt
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,University of Liverpool, Institute of Integrative Biology, Liverpool, L69 3BX, UK
| | - Lucie Poulin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Université de Nantes, Faculté des Sciences et des Techniques, Laboratoire de Biologie et de Pathologie Végétales (LBPV), EA 1157, SFR 4207 QUASAV, 2, rue de la Houssinière, BP 92 208, F-44322, Nantes Cedex 3, France
| | - Anna-Liisa Laine
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
35
|
Miller WL, Walter WD. Spatial heterogeneity of prion gene polymorphisms in an area recently infected by chronic wasting disease. Prion 2019; 13:65-76. [PMID: 30777498 PMCID: PMC7000142 DOI: 10.1080/19336896.2019.1583042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetic variability in the prion protein (Prnp) gene influences host susceptibility to many pathogenic prion diseases. Understanding the distribution of susceptible Prnp variants and determining factors influencing spatial genetic patterns are important components of many chronic wasting disease mitigation strategies. Here, we describe Prnp variability in white-tailed deer (Odocoileus virginianus) from the Mid-Atlantic region of the United States of America, an area with a recent history of infection and low disease incidence. This population is characterized by lower rates of polymorphism and significantly higher frequencies of the more susceptible 96GG genotype compared to previously surveyed populations. The prevalence of the most susceptible genotypes at disease-associated loci did vary among subregions, indicating that populations have innate differences in genotype-dictated susceptibility.
Collapse
Affiliation(s)
- William L Miller
- a Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology , The Pennsylvania State University , University Park , PA , USA
| | - W David Walter
- b U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
36
|
Price-Carter M, Brauning R, de Lisle GW, Livingstone P, Neill M, Sinclair J, Paterson B, Atkinson G, Knowles G, Crews K, Crispell J, Kao R, Robbe-Austerman S, Stuber T, Parkhill J, Wood J, Harris S, Collins DM. Whole Genome Sequencing for Determining the Source of Mycobacterium bovis Infections in Livestock Herds and Wildlife in New Zealand. Front Vet Sci 2018; 5:272. [PMID: 30425997 PMCID: PMC6218598 DOI: 10.3389/fvets.2018.00272] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/11/2018] [Indexed: 01/18/2023] Open
Abstract
The ability to DNA fingerprint Mycobacterium bovis isolates helped to define the role of wildlife in the persistence of bovine tuberculosis in New Zealand. DNA fingerprinting results currently help to guide wildlife control measures and also aid in tracing the source of infections that result from movement of livestock. During the last 5 years we have developed the ability to distinguish New Zealand (NZ) M. bovis isolates by comparing the sequences of whole genome sequenced (WGS) M. bovis samples. WGS provides much higher resolution than our other established typing methods and greatly improves the definition of the regional localization of NZ M. bovis types. Three outbreak investigations are described and results demonstrate how WGS analysis has led to the confirmation of epidemiological sourcing of infection, to better definition of new sources of infection by ruling out other possible sources, and has revealed probable wildlife infection in an area considered to be free of infected wildlife. The routine use of WGS analyses for sourcing new M. bovis infections will be an important component of the strategy employed to eradicate bovine TB from NZ livestock and wildlife.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Garry Knowles
- Aquaculture Veterinary Services Ltd., Clyde, New Zealand
| | | | - Joseph Crispell
- University College Dublin School of Veterinary Medicine, Dublin, Ireland
| | - Rowland Kao
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Suelee Robbe-Austerman
- Diagnostic Bacteriology Laboratory, National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service, Ames, IA, United States
| | - Tod Stuber
- Diagnostic Bacteriology Laboratory, National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service, Ames, IA, United States
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - James Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Harris
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Desmond M Collins
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|
37
|
MOLECULAR IDENTIFICATION OF AVIAN VIRUSES IN NEOTROPIC CORMORANTS ( PHALACROCORAX BRASILIANUS) IN CHILE. J Wildl Dis 2018; 55:105-112. [PMID: 30216128 DOI: 10.7589/2017-10-256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified two RNA (paramyxovirus and coronavirus) and two DNA (adenovirus and herpesvirus) viruses in a common aquatic bird, the Neotropic Cormorant ( Phalacrocorax brasilianus), and determined their phylogenetic relationships to other global circulating variants. We analyzed 104 cloacal swabs from individuals collected at locations in Central Chile. Sequences were obtained from amplicons using consensus primers targeting conserved genes of the virus families Paramyxoviridae, Coronaviridae, Adenoviridae, and Herpesviridae. A total of 20.2% of the samples was positive for coronavirus, 8.7% for adenovirus, and 3.8% for herpesvirus. No paramyxoviruses were detected. All coronaviruses were identified as viruses of the Gammacoronavirus genus, closely related to the infectious bronchitis virus clade (bootstrap clade support=75%). All adenovirus samples were identified as Aviadenovirus, related to a gull and falcon adenovirus (Bayesian posterior probability=0.86). The herpesviruses identified were related to the infectious laryngotracheitis virus ( Gallid herpesvirus 1) of the genus Iltovirus (bootstrap clade support=99%). We provide information about the diversity of viruses circulating among apparently healthy Neotropic Cormorants.
Collapse
|
38
|
Grear DA, Hall JS, Dusek RJ, Ip HS. Inferring epidemiologic dynamics from viral evolution: 2014-2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America. Evol Appl 2017; 11:547-557. [PMID: 29636805 PMCID: PMC5891053 DOI: 10.1111/eva.12576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low‐pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self‐sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time‐rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.
Collapse
Affiliation(s)
- Daniel A Grear
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Jeffrey S Hall
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Robert J Dusek
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Hon S Ip
- United States Geological Survey National Wildlife Health Center Madison WI USA
| |
Collapse
|
39
|
Vander Haegen WM, Orth GR, Johnston AN, Linders MJ. Endemic diseases affect population dynamics of tree squirrels in contrasting landscapes. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Gene R. Orth
- Washington Department of Fish and Wildlife600 Capitol Way NorthOlympiaWA 98501USA
| | - Aaron N. Johnston
- School of Environmental and Forest SciencesUniversity of WashingtonBox 352100SeattleWA 98195USA
| | - Mary J. Linders
- Washington Department of Fish and Wildlife600 Capitol Way NorthOlympiaWA 98501USA
| |
Collapse
|
40
|
Desalle R, Amato G. Conservation Genetics, Precision Conservation, and De-extinction. Hastings Cent Rep 2017; 47 Suppl 2:S18-S23. [DOI: 10.1002/hast.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Landscape genetics of the Tasmanian devil: implications for spread of an infectious cancer. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0980-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
McKnight DT, Schwarzkopf L, Alford RA, Bower DS, Zenger KR. Effects of emerging infectious diseases on host population genetics: a review. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0974-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|