1
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
2
|
Vega-Abellaneda S, Dopazo C, Yañez F, Soler Z, Xie Z, Canalda-Baltrons A, Pons-Tarín M, Bilbao I, Manichanh C. Microbiome composition recovery after liver transplantation correlates with initial liver disease severity and antibiotics treatment. Am J Transplant 2024; 24:1623-1633. [PMID: 38556088 DOI: 10.1016/j.ajt.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Liver transplantation (LT) is crucial for end-stage liver disease, but it is linked to infection risks. Pathobionts, microorganisms potentially harmful under specific conditions, can cause complications posttransplant. Monitoring such pathogens in fecal samples can be challenging and therefore remains underexplored post-LT. This study aimed to analyze the gut microbiome before and after LT, tracking pathobionts and correlating clinical data. The study involved 17 liver transplant recipients, 17 healthy relatives (spouses), and 13 donors. Gut samples collected pretranplantation and posttransplantation underwent bacterial and fungal profiling through DNA sequencing. Quantitative polymerase chain reaction was used to assess microbial load. Statistical analyses included alpha and beta diversity measures, differential abundance analysis, and correlation tests between microbiome and clinical parameters. Microbiome analysis revealed dynamic changes in diversity posttransplant. Notably, high-severity patients showed persistent and greater dysbiosis during the first months post-LT compared with low-severity patients, partly due to an antibiotic treatment pre-LT. The analysis identified a higher proportion of pathogens such as Escherichia coli/Shigella flexneri in high-severity cases posttransplant. Furthermore, butyrate producers including Roseburia intestinalis, Anaerostipes hadrus, and Eubacterium coprostanoligenes were positively correlated with levels of albumin. This study offers valuable insights into post-LT microbiome changes, shedding light on the need for tailored prophylactic treatment post-LT.
Collapse
Affiliation(s)
- Sara Vega-Abellaneda
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Dopazo
- Department of HPB Surgery and Transplants, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autónoma de Barcelona, Barcelona, Spain; CIBER of Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisca Yañez
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Zaida Soler
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Aleix Canalda-Baltrons
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marc Pons-Tarín
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Itxarone Bilbao
- Department of HPB Surgery and Transplants, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autónoma de Barcelona, Barcelona, Spain; CIBER of Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBER of Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
4
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic Human Gut Microbiome and Immune Shifts During an Immersive Psychosocial Therapeutic Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600881. [PMID: 38979211 PMCID: PMC11230355 DOI: 10.1101/2024.06.26.600881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Depression is a leading cause of disability worldwide yet its underlying factors, particularly microbial associations, are poorly understood. Methods We examined the longitudinal interplay between the microbiome and immune system in the context of depression during an immersive psychosocial intervention. 142 multi-omics samples were collected from 52 well-characterized participants before, during, and three months after a nine-day inquiry-based stress reduction program. Results We found that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. Conclusions Our findings reveal a protective link between the Prevotella-dominant microbiome and depression, associated with a less inflammatory environment and moderated symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, highlight potential avenues for microbiome-targeted therapies in depression management.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- These authors contributed equally to the work
| | - Ariel B. Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
- These authors contributed equally to the work
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S. Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| |
Collapse
|
5
|
Assimakopoulos SF, Bhagani S, Aggeletopoulou I, Tsounis EP, Tsochatzis EA. The role of gut barrier dysfunction in postoperative complications in liver transplantation: pathophysiological and therapeutic considerations. Infection 2024; 52:723-736. [PMID: 38324146 PMCID: PMC11143052 DOI: 10.1007/s15010-024-02182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Gut barrier dysfunction is a pivotal pathophysiological alteration in cirrhosis and end-stage liver disease, which is further aggravated during and after the operational procedures for liver transplantation (LT). In this review, we analyze the multifactorial disruption of all major levels of defense of the gut barrier (biological, mechanical, and immunological) and correlate with clinical implications. METHODS A narrative review of the literature was performed using PubMed, PubMed Central and Google from inception until November 29th, 2023. RESULTS Systemic translocation of indigenous bacteria through this dysfunctional barrier contributes to the early post-LT infectious complications, while endotoxin translocation, through activation of the systemic inflammatory response, is implicated in non-infectious complications including renal dysfunction and graft rejection. Bacterial infections are the main cause of early in-hospital mortality of LT patients and unraveling the pathophysiology of gut barrier failure is of outmost importance. CONCLUSION A pathophysiology-based approach to prophylactic or therapeutic interventions may lead to enhancement of gut barrier function eliminating its detrimental consequences and leading to better outcomes for LT patients.
Collapse
Affiliation(s)
- Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504, Patras, Greece.
| | - Sanjay Bhagani
- Department of Infectious Diseases/HIV Medicine, Royal Free Hospital, London, UK
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| |
Collapse
|
6
|
Wang Q, Tang X, Qiao W, Sun L, Shi H, Chen D, Xu B, Liu Y, Zhao J, Huang C, Jin R. Machine learning-based characterization of the gut microbiome associated with the progression of primary biliary cholangitis to cirrhosis. Microbes Infect 2024:105368. [PMID: 38797428 DOI: 10.1016/j.micinf.2024.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is associated closely with the gut microbiota. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to cirrhosis. METHOD This study focuses on utilizing the 16S rRNA gene sequencing method to screen for differences in gut microbiota in PBC patients who progress to cirrhosis. Then, we divided the data into training and verification sets and used seven different machine learning (ML) models to validate them respectively, calculating and comparing the accuracy, F1 score, precision, and recall, and screening the dominant intestinal flora affecting PBC cirrhosis. RESULT PBC cirrhosis patients showed decreased diversity and richness of gut microbiota. Additionally, there are alterations in the composition of gut microbiota in PBC cirrhosis patients. The abundance of Faecalibacterium and Gemmiger bacteria significantly decreases, while the abundance of Veillonella and Streptococcus significantly increases. Furthermore, machine learning methods identify Streptococcus and Gemmiger as the predominant gut microbiota in PBC patients with cirrhosis, serving as non-invasive biomarkers (AUC = 0.902). CONCLUSION Our study revealed that PBC cirrhosis patients gut microbiota composition and function have significantly changed. Streptococcus and Gemmiger may become a non-invasive biomarker for predicting the progression of PBC progress to cirrhosis.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
| | - Xiaomeng Tang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
| | - Wenying Qiao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Changping Laboratory, Beijing, PR China
| | - Lina Sun
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Han Shi
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Yanmin Liu
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Juan Zhao
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China.
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Changping Laboratory, Beijing, PR China.
| |
Collapse
|
7
|
D’Amico F, Rinaldi M, Pascale R, Fabbrini M, Morelli MC, Siniscalchi A, Laici C, Coladonato S, Ravaioli M, Cescon M, Ambretti S, Viale P, Brigidi P, Turroni S, Giannella M. Gut microbiome dynamics and Enterobacterales infection in liver transplant recipients: A prospective observational study. JHEP Rep 2024; 6:101039. [PMID: 38524669 PMCID: PMC10960129 DOI: 10.1016/j.jhepr.2024.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background & Aims The aim of this study was to investigate gut microbiome (GM) dynamics in relation to carbapenem-resistant Enterobacterales (CRE) colonization, CRE infection, and non-CRE infection development within 2 months after liver transplant (LT). Methods A single-center, prospective study was performed in patients undergoing LT from November 2018 to January 2020. The GM was profiled through 16S rRNA amplicon sequencing of a rectal swab taken on the day of transplantation, and fecal samples were collected weekly until 1 month after LT. A subset of samples was subjected to shotgun metagenomics, including resistome dynamics. The primary endpoint was to explore changes in the GM in the following groups: (1) CRE carriers developing CRE infection (CRE_I); (2) CRE carriers not developing infection (CRE_UI); (3) non-CRE carriers developing microbial infection (INF); and (4) non-CRE carriers not developing infection (NEG). Results Overall, 97 patients were enrolled, and 91 provided fecal samples. Of these, five, nine, 22, and 55 patients were classified as CRE_I, CRE_UI, INF, and NEG, respectively. CRE_I patients showed an immediate and sustained post-LT decrease in alpha diversity, with depletion of the GM structure and gradual over-representation of Klebsiella and Enterococcus. The proportions of Klebsiella were significantly higher in CRE_I patients than in NEG patients even before LT, serving as an early marker of subsequent CRE infection. CRE_UI patients had a more stable and diverse GM, whose compositional dynamics tended to overlap with those of NEG patients. Conclusions GM profiling before LT could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis. Impact and implications Little is known about the temporal dynamics of gut microbiome (GM) in liver transplant recipients associated with carbapenem-resistant Enterobacterales (CRE) colonization and infection. The GM structure and functionality of patients colonized with CRE and developing infection appeared to be distinct compared with CRE carriers without infection or patients with other microbial infection or no infection and CRE colonization. Higher proportions of antimicrobial-resistant pathogens and poor representation of bacteria and metabolic pathways capable of promoting overall host health were observed in CRE carriers who developed infection, even before liver transplant. Therefore, pretransplant GM profiling could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis.
Collapse
Affiliation(s)
- Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Matteo Rinaldi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Renato Pascale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Antonio Siniscalchi
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristiana Laici
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simona Coladonato
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Simone Ambretti
- Microbiology Operative Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola, Bologna, Italy
| |
Collapse
|
8
|
Yuan M, Wang Y, Tian X, Zheng W, Zuo H, Zhang X, Song H. Ferrostatin-1 improves prognosis and regulates gut microbiota of steatotic liver transplantation recipients in rats. Future Microbiol 2024; 19:413-429. [PMID: 38305222 DOI: 10.2217/fmb-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024] Open
Abstract
Aims: To investigate the effects of Ferrostatin-1 (Fer-1) on improving the prognosis of liver transplant recipients with steatotic liver grafts and regulating gut microbiota in rats. Methods: We obtained steatotic liver grafts and established a liver transplantation model. Recipients were divided into sham, liver transplantation and Fer-1 treatment groups, which were assessed 1 and 7 days after surgery (n = 6). Results & conclusion: Fer-1 promotes recovery of the histological structure and function of steatotic liver grafts and the intestinal tract, and improves inflammatory responses of recipients following liver transplantation. Fer-1 reduces gut microbiota pathogenicity, and lowers iron absorption and improves fat metabolism of recipients, thereby protecting steatotic liver grafts.
Collapse
Affiliation(s)
- Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, PR China
- NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, PR China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xinru Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, PR China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin, PR China
| |
Collapse
|
9
|
Toshida K, Itoh S, Kosai‐Fujimoto Y, Ishikawa T, Nakayama Y, Tsutsui Y, Iseda N, Izumi T, Bekki Y, Yoshiya S, Toshima T, Nakamuta M, Yoshizumi T. Association of gut microbiota with portal vein pressure in patients with liver cirrhosis undergoing living donor liver transplantation. JGH Open 2023; 7:982-989. [PMID: 38162858 PMCID: PMC10757484 DOI: 10.1002/jgh3.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Background and Aim Many recent studies have shown a relationship between various systemic diseases and the gut microbiota (GM), with the gut-liver axis receiving particular attention. In contrast, no report has comprehensively shown the effects of GM on the pathophysiology of patients undergoing living donor liver transplantation (LDLT). Method We enrolled 16 recipients who underwent LDLT for liver cirrhosis, and 17 donors constituted the reference group. We examined the differences in GM between recipients and donors. We also examined the relationships between GM, short-chain fatty acids, and portal vein pressure (PVP) in recipients. Results There was no significant difference in alpha-diversity between the recipients and donors, but there was variation in beta-diversity among the recipients. The abundance of the phylum Bacteroidetes was significantly higher in recipients than in donors (P = 0.016), and it was positively correlated with PVP (r = 0.511, P = 0.043). Propionic acid, which is a component of short-chain fatty acids, was positively correlated with PVP (r = 0.544, P = 0.0295), the phylum Bacteroidetes (r = 0.677, P = 0.004), and total bilirubin concentration (r = 0.501, P = 0.048). Propionic acid was negatively correlated with serum albumin concentration (r = -0.482, P = 0.043). Conclusion Our findings suggest relationships between fecal Bacteroidetes levels, propionic acid concentrations, and PVP in patients with liver cirrhosis undergoing LDLT.
Collapse
Affiliation(s)
- Katsuya Toshida
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yukiko Kosai‐Fujimoto
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takuma Ishikawa
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yuki Nakayama
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yuriko Tsutsui
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Norifumi Iseda
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takuma Izumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Nakamuta
- Department of Gastroenterology, Kyushu Medical CenterNational Hospital OrganizationFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
10
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023; 15:2291164. [PMID: 38055306 PMCID: PMC10730214 DOI: 10.1080/19490976.2023.2291164] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Bifidobacterium is a widely distributed commensal bacterial genus that displays beneficial pro-homeostatic and anti-inflammatory immunomodulatory properties. Depletion or absence of Bifidobacterium in humans and model organisms is associated with autoimmune responses and impaired immune homeostasis. At the cellular level, Bifidobacterium upregulates suppressive regulatory T cells, maintains intestinal barrier function, modulates dendritic cell and macrophage activity, and dampens intestinal Th2 and Th17 programs. While there has been a large volume of literature characterizing the probiotic properties of various Bifidobacterial species, the likely multifactorial mechanisms underlying these effects remain elusive, in particular, its immune tolerogenic effect. However, recent work has shed light on Bifidobacterium surface structural polysaccharide and protein elements, as well as its metabolic products, as commensal mediators of immune homeostasis. This review aims to discuss several mechanisms Bifidobacterium utilizes for immune modulation as well as their indirect impact on the regulation of gut microbiome structure and function, from structural molecules to produced metabolites. These mechanisms are pertinent to an increasingly networked understanding of immune tolerance and homeostasis in health and disease.
Collapse
Affiliation(s)
- Samuel J Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Serper M, Chafale A, Burdzy A, Kim M, Asrani SK, Yoshino Benavente J, Gershon R, Reese PP, Schaubel DE, Boike JR, Blanco MC, Wolf MS. Cognitive function, self-management, and outcomes among liver transplant recipients: LivCog, a multicenter, prospective study. Hepatol Commun 2023; 7:e0259. [PMID: 37916863 PMCID: PMC10545399 DOI: 10.1097/hc9.0000000000000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 11/03/2023] Open
Abstract
Liver transplantation is a life-saving option for decompensated cirrhosis. Liver transplant recipients require advanced self-management skills, intact cognitive skills, and care partner support to improve long-term outcomes. Gaps remain in understanding post-liver transplant cognitive and health trajectories, and patient factors such as self-management skills, care partner support, and sleep. Our aims are to (1) assess pre-liver transplant to post-liver transplant cognitive trajectories and identify risk factors for persistent cognitive impairment; (2) evaluate associations between cognitive function and self-management skills, health behaviors, functional health status, and post-transplant outcomes; and (3) investigate potential mediators and moderators of associations between cognitive function and post-liver transplant outcomes. LivCog is a longitudinal, prospective observational study that will enroll 450 adult liver transplant recipients and their caregivers/care partners. The duration of the study is 5 years with 24 additional months of patient follow-up. Data will be collected from participants at 1, 3, 12, and 24 months post-transplant. Limited pre-liver transplant data will also be collected from waitlisted candidates. Data collection methods include interviews, surveys, cognitive assessments, and actigraphy/sleep diary measures. Patient measurements include sociodemographic characteristics, pretransplant health status, cognitive function, physical function, perioperative measures, medical history, transplant history, self-management skills, patient-reported outcomes, health behaviors, and clinical outcomes. Caregiver measures assess sociodemographic variables, health literacy, health care navigation skills, self-efficacy, care partner preparedness, nature and intensity of care, care partner burden, and community participation. By elucidating various health trajectories from pre-liver transplant to 2 years post-liver transplant, LivCog will be able to better characterize recipients at higher risk of cognitive impairment and compromised self-management. Findings will inform interventions targeting health behaviors, self-management, and caregiver supports to optimize outcomes.
Collapse
Affiliation(s)
- Marina Serper
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adwait Chafale
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex Burdzy
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Minjee Kim
- Department of Neurology, Division of Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Surgery, Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sumeet K. Asrani
- Department of Medicine, Baylor University Medical Center, Baylor Scott and White, Dallas, Texas, USA
| | - Julia Yoshino Benavente
- Department of Medicine, Division of General Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard Gershon
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peter P. Reese
- Department of Medicine, Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas E. Schaubel
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Justin R. Boike
- Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maria C. Blanco
- Clinical Research Computing Unit (CRCU), The Center for Clinical Epidemiology and Biostatistics (CCEB), Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael S. Wolf
- Department of Medicine, Division of General Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Jia S, Li X, Du Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front Cell Infect Microbiol 2023; 13:1209381. [PMID: 37520442 PMCID: PMC10373507 DOI: 10.3389/fcimb.2023.1209381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. P. gingivalis expresses a variety of virulence factors that disrupt innate and adaptive immunity, allowing P. gingivalis to survive and multiply in the host and destroy periodontal tissue. In addition to periodontal disease, P.gingivalis is also associated with systemic diseases, of which insulin resistance is an important pathological basis. P. gingivalis causes a systemic inflammatory response, disrupts insulin signaling pathways, induces pancreatic β-cell hypofunction and reduced numbers, and causes decreased insulin sensitivity leading to insulin resistance (IR). In this paper, we systematically review the studies on the mechanism of insulin resistance induced by P. gingivalis, discuss the association between P. gingivalis and systemic diseases based on insulin resistance, and finally propose relevant therapeutic approaches. Overall, through a systematic review of the mechanisms related to systemic diseases caused by P. gingivalis through insulin resistance, we hope to provide new insights for future basic research and clinical interventions for related systemic diseases.
Collapse
Affiliation(s)
- Shuxian Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Abenavoli L, Scarlata GGM, Paravati MR, Boccuto L, Luzza F, Scarpellini E. Gut Microbiota and Liver Transplantation: Immune Mechanisms behind the Rejection. Biomedicines 2023; 11:1792. [PMID: 37509432 PMCID: PMC10376769 DOI: 10.3390/biomedicines11071792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Liver transplantation (LT) is the treatment of choice for patients with cirrhosis, decompensated disease, acute liver failure, and hepatocellular carcinoma (HCC). In 3-25% of cases, an alarming problem is acute and chronic cellular rejection after LT, and this event can lead to the need for new transplantation or the death of the patient. On the other hand, gut microbiota is involved in several mechanisms sustaining the model of the "gut-liver axis". These include modulation of the immune response, which is altered in case of gut dysbiosis, possibly resulting in acute graft rejection. Some studies have evaluated the composition of the gut microbiota in cirrhotic patients before and after LT, but few of them have assessed its impact on liver rejection. This review underlines the changes in gut microbiota composition before and after liver transplantation, hypothesizing possible immune mechanisms linking dysbiosis to transplantation rejection. Evaluation of changes in the gut microbiota composition in these patients is therefore essential in order to monitor the success of LT and eventually adopt appropriate preventive measures.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | | | | | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Francesco Luzza
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (TARGID.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Bao Z, Wei R, Zheng X, Zhang T, Bi Y, Shen S, Zou P, Zhang J, Yan H, Li MD, Yang Z, Gao H. Landscapes of gut microbiome and bile acid signatures and their interaction in HBV-associated acute-on-chronic liver failure. Front Microbiol 2023; 14:1185993. [PMID: 37275140 PMCID: PMC10233926 DOI: 10.3389/fmicb.2023.1185993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Submassive hepatic necrosis (SMHN, defined as necrosis of 15-90% of the entire liver on explant) is a likely characteristic pathological feature of ACLF in patients with hepatitis B cirrhosis. We aimed to comprehensively explore microbiome and bile acids patterns across enterhepatic circulation and build well-performing machine learning models to predict SMHN status. Methods Based on the presence or absence of SMHN, 17 patients with HBV-related end-stage liver disease who received liver transplantation were eligible for inclusion. Serum, portal venous blood, and stool samples were collected for comparing differences of BA spectra and gut microbiome and their interactions. We adopted the random forest algorithm with recursive feature elimination (RF-RFE) to predict SMHN status. Results By comparing total BA spectrum between SMHN (-) and SMHN (+) patients, significant changes were detected only in fecal (P = 0.015). Compared with the SMHN (+) group, the SMHN (-) group showed that UDCA, 7-KLCA, 3-DHCA, 7-KDCA, ISOLCA and α-MCA in feces, r-MCA, 7-KLCA and 7-KDCA in serum, γ-MCA and 7-KLCA in portal vein were enriched, and TUDCA in feces was depleted. PCoA analysis showed significantly distinct overall microbial composition in two groups (P = 0.026). Co-abundance analysis showed that bacterial species formed strong and broad relationships with BAs. Among them, Parabacteroides distasonis had the highest node degree. We further identified a combinatorial marker panel with a high AUC of 0.92. Discussion Our study demonstrated the changes and interactions of intestinal microbiome and BAs during enterohepatic circulation in ACLF patients with SMHN. In addition, we identified a combinatorial marker panel as non-invasive biomarkers to distinguish the SMHN status with high AUC.
Collapse
Affiliation(s)
- Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runan Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Zheng
- Department of Infectious Diseases, ShuLan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Ting Zhang
- Department of Infectious Diseases, ShuLan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yunjiao Bi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sijia Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Zou
- Department of Infectious Diseases, ShuLan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Junjie Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huadong Yan
- Department of Infectious Diseases, ShuLan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hainv Gao
- Department of Infectious Diseases, ShuLan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
15
|
Jing W, Bi C, Fang Z, Qian C, Chen J, Yu J, Tian G, Ye M, Liu Z. Neuropsychiatric sequelae after liver transplantation and their possible mechanism via the microbiota-gut-liver-brain axis. Biomed Pharmacother 2023; 163:114855. [PMID: 37163780 DOI: 10.1016/j.biopha.2023.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Patients after liver transplantation are often impacted by mental and even neuropsychiatric disorders, including depression, sleep disorders, anxiety, and post-traumatic stress disorder. Neuropsychiatric sequelae have an adverse impact on rehabilitation and can even incapacitate people, reducing their quality of life. Despite screening tools and effective treatments, neuropsychiatric sequelae after liver transplantation (NSALT) have not been fully diagnosed and treated. Current research suggests that NSALT may be partly related to intestinal microbial variation, but the detailed mechanism remains unclear. In this review, we describe the clinical and diagnostic features, prevalence, prediction, clinical course and outcome, management, and treatment of NSALT; we also summarize their mechanisms through the microbiota-gut-liver-brain axis. Finally, we propose to improve NSALT on the basis of adjusting the gastrointestinal flora, immune inflammation or vagus nerve (VN), providing a novel strategy for clinical prevention and treatment.
Collapse
Affiliation(s)
- Wenhao Jing
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Zhou Fang
- Department of General Practice, Lizhu Branch, Shaoxing Second Hospital, Shaoxing 312000, Zhejiang, China
| | - Chao Qian
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jiaqi Chen
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Jingru Yu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Guoqiang Tian
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
16
|
Siddiqui OM, Baskaran AB, Lin KA, Najam N, Shah T, Beestrum ML, Thuluvath A, Bonakdarpour B, Kim M, Dietch Z, Wolf M, Ladner DP. Cognitive Impairment in Liver Transplant Recipients With a History of Cirrhosis: A Systematic Review. Transplant Direct 2023; 9:e1479. [PMID: 37096151 PMCID: PMC10121435 DOI: 10.1097/txd.0000000000001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 04/26/2023] Open
Abstract
Cognitive impairment is common among patients with cirrhosis and may persist post-transplantation. This systematic review seeks to (1) describe the prevalence of cognitive impairment in liver transplant (LT) recipients with a history of cirrhosis, (2) describe risk factors for this population, and (3) describe associations between post-transplant cognitive impairment and quality outcome measures. Methods Studies in PubMed, Embase, Scopus, PsychINFO, and the Cochrane Database of Controlled Trials were included through May 2022. Inclusion criteria included (1) population - LT recipient, age ≥18 y, (2) exposure - history of cirrhosis before transplant, and (3) outcome - cognitive impairment after transplant (per validated cognitive testing). Exclusion criteria included (1) wrong study type, (2) abstract-only publication, (3) full-text unavailable, (4) wrong population, (5) wrong exposure, and (6) wrong outcome. The risk of bias was assessed using the Newcastle-Ottawa Scale and the Appraisal tool for Cross-Sectional Studies. The Grading of Recommendations, Assessment, Development, and Evaluations system was used to assess evidence certainty. Data from individual tests were categorized into six cognitive domains: attention, executive function, working memory, long-term memory, visuospatial, and language. Results Twenty-four studies were included covering 847 patients. Follow-up ranged from 1 mo to 1.8 y after LT. Studies had a median of 30 (interquartile range 21.5-50.5) patients. The prevalence of cognitive impairment after LT ranged from 0% to 36%. Forty-three unique cognitive tests were used, the most common being the Psychometric Hepatic Encephalopathy Score. The most frequently assessed cognitive domains were attention (10 studies) and executive function (10 studies). Conclusions The prevalence of cognitive impairment after LT varied across studies depending on cognitive tests utilized and follow-up duration. Attention and executive function were most impacted. Generalizability is limited due to small sample size and heterogeneous methodology. Further studies are needed to examine differences in the prevalence of post-LT cognitive impairment by etiology, risk factors, and ideal cognitive measures.
Collapse
Affiliation(s)
- Osama M. Siddiqui
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Archit B. Baskaran
- Department of Neurology, University of Chicago Medical Center, University of Chicago, Chicago, IL
| | - Katherine A. Lin
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Naela Najam
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tahir Shah
- Department of Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Molly L. Beestrum
- Galter Health Sciences Library, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Avesh Thuluvath
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern Medicine, Chicago, IL
| | - Borna Bonakdarpour
- Division of Behavioral Neurology, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Minjee Kim
- Division of Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Zachary Dietch
- Division of Transplant, Department of Surgery, Northwestern Medicine, Chicago, IL
| | - Michael Wolf
- Division of General Internal Medicine & Geriatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniela P. Ladner
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
- Division of Transplant, Department of Surgery, Northwestern Medicine, Chicago, IL
| |
Collapse
|
17
|
Yao S, Yagi S, Hirata M, Miyachi Y, Ogawa E, Uozumi R, Sugimoto T, Asahara T, Uemoto S, Hatano E. Chronological changes in the gut microbiota and intestinal environment in recipients and donors of living donor liver transplantation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2023; 30:439-452. [PMID: 36178211 DOI: 10.1002/jhbp.1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 04/28/2023]
Abstract
BACKGROUND/PURPOSE This prospective study aimed to investigate the dynamic changes in the gut microbiota (GM) and associated intestinal environment, which were assessed by measuring fecal organic acid (OA) concentrations, during the early period after liver transplantation (LT). To understand the fundamental characteristics of the human GM, data obtained from living donors were also analyzed. METHODS Fixed-point observation was performed in 23 recipients and 21 donors for up to 2 weeks after LT. The GM and OA concentrations were investigated using ribosomal RNA-targeted reverse-transcription quantitative polymerase chain reaction and high-performance liquid chromatography, respectively. RESULTS Before LT, the recipients exhibited remarkable dysbiosis and OA depletion, which were proportional to the model for end-stage liver disease score. Correlations between the abundances of some specific strains and OA concentrations were observed. After LT, while donor lobectomy caused only slight, transient and reversible changes in the GM and OA concentrations, recipients exhibited delayed recovery in these factors. However, no clear evidence of causality was observed between the GM or OA concentrations and LT outcomes. CONCLUSIONS The GM and intestinal environment in LT recipients exhibited characteristics that were clearly different from those in donors. LT did not normalize but rather disrupted the GM during the early post-LT period, but its negative clinical impact could be minimized with perioperative management.
Collapse
Affiliation(s)
- Siyuan Yao
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Yagi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University, Ishikawa, Japan
| | - Masaaki Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Miyachi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eri Ogawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuji Uozumi
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Sugimoto
- Yakult Central Institute, Yakult Honsha Co. Ltd., Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute, Yakult Honsha Co. Ltd., Tokyo, Japan
| | | | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Research Progress of Fecal Microbiota Transplantation in Liver Diseases. J Clin Med 2023; 12:jcm12041683. [PMID: 36836218 PMCID: PMC9960958 DOI: 10.3390/jcm12041683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence suggested that gut microbiota is associated with liver diseases through the gut-liver axis. The imbalance of gut microbiota could be correlated with the occurrence, development, and prognosis of a series of liver diseases, including alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, cirrhosis, primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC). Fecal microbiota transplantation (FMT) seems to be a method to normalize the patient's gut microbiota. This method has been traced back to the 4th century. In recent decade, FMT has been highly regarded in several clinical trials. As a novel approach to reconstruct the intestinal microecological balance, FMT has been used to treat the chronic liver diseases. Therefore, in this review, the role of FMT in the treatment of liver diseases was summarized. In addition, the relationship between gut and liver was explored through the gut-liver axis, and the definition, objectives, advantages, and procedures of FMT were described. Finally, the clinical value of FMT therapy in liver transplant (LT) recipients was briefly discussed.
Collapse
|
19
|
Li SL, Zheng SQ, Tang YZ, Liu HM, Mao Q. Progress in understanding of relationship between duodenal mucosal microecology and hepatitis B virus related acute-on-chronic liver failure. Shijie Huaren Xiaohua Zazhi 2022; 30:1074-1078. [DOI: 10.11569/wcjd.v30.i24.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
According to statistics, the rate of hepatitis B virus (HBV) infection is still high in China, and the mortality of acute-on-chronic liver failure (ACLF) is also high. In recent years, studies on the fecal flora of patients with HBV related ACLF have found that intestinal microecology affects the occurrence, development, and prognosis of HBV related ACLF. However, fecal flora cannot completely replace the whole intestinal microecology, and duodenal mucosal microecology may be a new research direction. This review discusses the influence of duodenal mucosal flora on the clinical outcome of HBV-ACLF with regard to mechanism, physiology, and anatomical characteristics.
Collapse
Affiliation(s)
- Shi-Lian Li
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing Key Laboratory of Infectious Disease Research, Chongqing 400038, China
| | - Shao-Qin Zheng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing Key Laboratory of Infectious Disease Research, Chongqing 400038, China
| | - Ying-Zi Tang
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing Key Laboratory of Infectious Disease Research, Chongqing 400038, China
| | - Hui-Min Liu
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing Key Laboratory of Infectious Disease Research, Chongqing 400038, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing Key Laboratory of Infectious Disease Research, Chongqing 400038, China
| |
Collapse
|
20
|
Gomez-Simmonds A, Annavajhala MK, Nunez MP, Macesic N, Park H, Uhlemann AC. Intestinal Dysbiosis and Risk of Posttransplant Clostridioides difficile Infection in a Longitudinal Cohort of Liver Transplant Recipients. mSphere 2022; 7:e0036122. [PMID: 36135360 PMCID: PMC9599498 DOI: 10.1128/msphere.00361-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Clostridioides difficile infection (CDI) has a higher incidence in solid organ transplant recipients than other hospitalized patients and can lead to poor outcomes. Perturbations to the intestinal microbiome are common in patients undergoing liver transplant (LT); however, the impacts of microbial diversity and composition on risk of CDI in this patient population is incompletely understood. Here, we assessed patients in an established, longitudinal LT cohort for development of CDI within 1 year of transplant. Clinical data were compared for patients with and without CDI using univariable models. 16S rRNA sequencing of fecal samples was performed at multiple pre- and posttransplant time points to compare microbiome α- and β-diversity and enrichment of specific taxa in patients with and without CDI. Of 197 patients who underwent LT, 18 (9.1%) developed CDI within 1 year. Pre-LT Child-Pugh class C liver disease, postoperative biliary leak, and use of broad-spectrum antibiotics were significantly associated with CDI. Patients who developed CDI had significantly lower α-diversity than patients without CDI overall and in samples collected at months 1, 3, and 6. Microbial composition (β-diversity) differed between patients with and without CDI and across sampling time points, particularly later in their posttransplant course. We also identified 15 (8%) patients with toxigenic C. difficile colonization who did not develop CDI and may have had additional protective factors. In summary, clinical and microbiome factors are likely to converge to impart CDI risk. Along with enhanced preventive measures, there may be a role for microbiome modulation to restore microbial diversity in high-risk LT patients. IMPORTANCE Liver transplant (LT) recipients have high rates of Clostridioides difficile infection (CDI), which has been associated with poor outcomes, including graft-related complications and mortality, in prior studies. Susceptibility to CDI is known to increase following perturbations in intestinal commensal bacteria that enable germination of C. difficile spores and bacterial overgrowth. In LT patients, changes in the intestinal microbiome resulting from advanced liver disease, surgery, and other clinical factors is common and most pronounced during the early posttransplant period. However, the relationship between microbiome changes and CDI risk after LT remains unclear. In this study, we investigated clinical and microbiome factors associated with development of CDI within the first year after LT. The importance of this work is to identify patients with high-risk features that should receive enhanced preventive measures and may benefit from the study of novel strategies to reconstitute the intestinal microbiome after LT.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Medini K. Annavajhala
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Maria Patricia Nunez
- Department of Microbiology & Immunology, Columbia University, New York, New York, USA
| | - Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
21
|
Wozniak H, Beckmann TS, Fröhlich L, Soccorsi T, Le Terrier C, de Watteville A, Schrenzel J, Heidegger CP. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care 2022; 26:250. [PMID: 35982499 PMCID: PMC9386657 DOI: 10.1186/s13054-022-04127-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communication with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely dysbiosis, with a severe reduction in "health-promoting" commensal intestinal bacteria (such as Firmicutes or Bacteroidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important effects, including changes in gut integrity and in the production of metabolites such as short-chain fatty acids and trimethylamine N-oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, highlighting the concept of the gut-organ axis. Thus, dysbiosis will affect other organs and could have an impact on the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The precise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging research area that offers exciting opportunities for disease prevention, management and therapy, particularly in critical care where multi-organ failure is often the focus. This narrative review provides an overview of the normal composition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care setting, and highlights the concept of the gut-organ axis.
Collapse
Affiliation(s)
- Hannah Wozniak
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Tal Sarah Beckmann
- Division of Anesthesiology, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorin Fröhlich
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Tania Soccorsi
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aude de Watteville
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudia-Paula Heidegger
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Lee SK, Jhun J, Lee SY, Choi S, Choi SS, Park MS, Lee SY, Cho KH, Lee AR, Ahn J, Choi HJ, You YK, Sung PS, Jang JW, Bae SH, Yoon SK, Cho ML, Choi JY. A decrease in functional microbiomes represented as Faecalibacterium affects immune homeostasis in long-term stable liver transplant patients. Gut Microbes 2022; 14:2102885. [PMID: 35951731 PMCID: PMC9377238 DOI: 10.1080/19490976.2022.2102885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of gastroenterology and hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Yoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sukjung Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | | | - Seon-Young Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - A Ram Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoung You
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- Division of gastroenterology and hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,CONTACT Mi-La Cho Rheumatism Research Center, Catholic Institutes of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul137-040, Korea
| | - Jong Young Choi
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Jong Young Choi Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, #222 Banpo-Daero, Seocho-gu, Seoul06591, Republic of Korea
| |
Collapse
|
23
|
Bloom PP, Donlan J, Torres Soto M, Daidone M, Hohmann E, Chung RT. Fecal microbiota transplant improves cognition in hepatic encephalopathy and its effect varies by donor and recipient. Hepatol Commun 2022; 6:2079-2089. [PMID: 35384391 PMCID: PMC9315114 DOI: 10.1002/hep4.1950] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023] Open
Abstract
Early data suggest fecal microbiota transplant (FMT) may treat hepatic encephalopathy (HE). Optimal FMT donor and recipient characteristics are unknown. We assessed the safety and efficacy of FMT in patients with prior overt HE, comparing five FMT donors. We performed an open-label study of FMT capsules, administered 5 times over 3 weeks. Primary outcomes were change in psychometric HE score (PHES) and serious adverse events (SAEs). Serial stool samples underwent shallow shotgun metagenomic sequencing. Ten patients completed FMT administration and 6-month follow-up. Model for End-Stage Liver Disease (MELD) score did not change after FMT (14 versus 14, p = 0.51). Thirteen minor adverse events and three serious adverse events (two unrelated to FMT) were reported. One SAE was extended-spectrum beta-lactamase Escherichia coli bacteremia. The PHES improved after three doses of FMT (+2.1, p < 0.05), after five doses of FMT (+2.9, p = 0.007), and 4 weeks after the fifth dose of FMT (+3.1, p = 0.02). Mean change in the PHES ranged from -1 to +6 by donor. Two taxa were identified by random forest analysis and confirmed by linear regression to predict the PHES- Bifidobacterium adolescentis (adjusted R2 = 0.27) and B. angulatum (adjusted R2 = 0.25)-both short-chain fatty acid (SCFA) producers. Patients who responded to FMT had higher levels of Bifidobacterium as well as other known beneficial taxa at baseline and throughout the study. The FMT donor with poorest cognitive outcomes in recipients had the lowest fecal SCFA levels. Conclusion: FMT capsules improved cognition in HE, with an effect varying by donor and recipient factors (NCT03420482).
Collapse
Affiliation(s)
- Patricia P. Bloom
- Division of GastroenterologyUniversity of MichiganAnn ArborMichiganUSA
| | - John Donlan
- Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Michael Daidone
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elizabeth Hohmann
- Division of Infectious DiseaseMassachusetts General HospitalBostonMassachusettsUSA
| | - Raymond T. Chung
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
24
|
Clostridioides difficile Infection in Patients after Organ Transplantation—A Narrative Overview. J Clin Med 2022; 11:jcm11154365. [PMID: 35955980 PMCID: PMC9368854 DOI: 10.3390/jcm11154365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Clostridioides difficile infection (CDI) is one of the most common causes of antibiotic-associated diarrhea. The pathogenesis of this infection participates in the unstable colonization of the intestines with the physiological microbiota. Solid-organ-transplant (SOT) patients and patients after hematopoietic stem cell transplantation are more prone to CDI compared to the general population. The main CDI risk factors in these patients are immunosuppressive therapy and frequent antibiotic use leading to dysbiosis. The current review article provides information about the risk factors, incidence and course of CDI in patients after liver, kidney, heart and lung transplantation and hematopoietic stem cell transplantation.
Collapse
|
25
|
Su R, Wei X, Wei Q, Lu D, Lin Z, Wang S, Shao C, Xu X. Extrahepatic organs in the development of non-alcoholic fatty liver disease in liver transplant patients. Hepatobiliary Surg Nutr 2022; 11:400-411. [PMID: 35693397 PMCID: PMC9186206 DOI: 10.21037/hbsn-20-568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 08/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in patients who undergo liver transplantation (LT). Whereas there is huge data on NAFLD, little is known about NAFLD in LT. In this review, we aim to explore extrahepatic organs and their potential mechanisms in the development of NAFLD in LT patients and discuss current limitations in preclinical and clinical scenarios with suggestions for future study. METHODS The following keywords, such as NAFLD, NASH, liver transplant, therapy, pathogenesis and biomarkers, were set for literature retrieval. The articles which were published articles in English till 25th June 2020 in PubMed database were included, and there is no limit for the study design type. KEY CONTENT AND FINDINGS Following LT, there are significant shifts in the microbiota and farnesoid X receptor may be a potential therapeutic target for NAFLD in LT settings. The roles of probiotics and diet on NALFD remain inconclusive in LT background. Nevertheless, the adipokines and cytokines disorder and local insulin resistance of adipose tissue may contribute to NAFLD process. Bariatric surgeries are promising in controlling de novo and recurrent NAFLD with significant reduction in abdominal adipose tissue, despite the optimal timing is inconclusive in LT cases. Furthermore, circumstantial evidence indicates that miRNA-33a may function as a mediator bridging sarcopenia and NAFLD of post-LT. β-Hydroxy-β-Methyl-Butyrate treatment could improve muscle status in graft recipients and shows protective potential for NAFLD in LT settings. CONCLUSIONS Gut, adipose tissue and muscle are intricately intertwined in promoting NAFLD in LT cases. Further animal studies are needed to deepen our understanding of mechanisms in multi-organ crosstalk. High quality clinical trials are warrant for making guidelines and developing management strategies on NAFLD after LT.
Collapse
Affiliation(s)
- Renyi Su
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Zuyuan Lin
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shuo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shu Lan Hospital, Shu Lan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Chuxiao Shao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
26
|
Manzoor R, Ahmed W, Afify N, Memon M, Yasin M, Memon H, Rustom M, Al Akeel M, Alhajri N. Trust Your Gut: The Association of Gut Microbiota and Liver Disease. Microorganisms 2022; 10:1045. [PMID: 35630487 PMCID: PMC9146349 DOI: 10.3390/microorganisms10051045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota composition is important for nutrient metabolism, mucosal barrier function, immunomodulation, and defense against pathogens. Alterations in the gut microbiome can disturb the gut ecosystem. These changes may lead to the loss of beneficial bacteria or an increase in potentially pathogenic bacteria. Furthermore, these have been shown to contribute to the pathophysiology of gastrointestinal and extra-intestinal diseases. Pathologies of the liver, such as non-alcoholic liver disease, alcoholic liver disease, cirrhosis, hepatocellular carcinoma, autoimmune hepatitis, viral hepatitis, and primary sclerosing cholangitis have all been linked to changes in the gut microbiome composition. There is substantial evidence that links gut dysbiosis to the progression and complications of these pathologies. This review article aimed to describe the changes seen in the gut microbiome in liver diseases and the association between gut dysbiosis and liver disease, and finally, explore treatment options that may improve gut dysbiosis in patients with liver disease.
Collapse
Affiliation(s)
- Ridda Manzoor
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Weshah Ahmed
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Nariman Afify
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mashal Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Maryam Yasin
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohammad Rustom
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohannad Al Akeel
- Division of Family Medicine, Department of Health, Abu Dhabi P.O. Box 5674, United Arab Emirates;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 11001, United Arab Emirates
| |
Collapse
|
27
|
Hartmann P. Editorial: The Microbiome in Hepatobiliary and Intestinal Disease. Front Physiol 2022; 13:893074. [PMID: 35492588 PMCID: PMC9044070 DOI: 10.3389/fphys.2022.893074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, United States
- *Correspondence: Phillipp Hartmann,
| |
Collapse
|
28
|
Liu J, Yang D, Wang X, Asare PT, Zhang Q, Na L, Shao L. Gut Microbiota Targeted Approach in the Management of Chronic Liver Diseases. Front Cell Infect Microbiol 2022; 12:774335. [PMID: 35444959 PMCID: PMC9014089 DOI: 10.3389/fcimb.2022.774335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is directly connected to the intestines through the portal vein, which enables the gut microbiota and gut-derived products to influence liver health. There is accumulating evidence of decreased gut flora diversity and alcohol sensitivity in patients with various chronic liver diseases, including non-alcoholic/alcoholic liver disease, chronic hepatitis virus infection, primary sclerosing cholangitis and liver cirrhosis. Increased intestinal mucosal permeability and decline in barrier function were also found in these patients. Followed by bacteria translocation and endotoxin uptake, these will lead to systemic inflammation. Specific microbiota and microbiota-derived metabolites are altered in various chronic liver diseases studies, but the complex interaction between the gut microbiota and liver is missing. This review article discussed the bidirectional relationship between the gut and the liver, and explained the mechanisms of how the gut microbiota ecosystem alteration affects the pathogenesis of chronic liver diseases. We presented gut-microbiota targeted interventions that could be the new promising method to manage chronic liver diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dakai Yang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaojing Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Paul Tetteh Asare
- Human and Animal Health Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Qingwen Zhang
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lixin Na
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lei Shao
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Lei Shao,
| |
Collapse
|
29
|
Tranah TH, Kronsten VT, Shawcross DL. Implications and Management of Cirrhosis-Associated Immune Dysfunction Before and After Liver Transplantation. Liver Transpl 2022; 28:700-716. [PMID: 34738724 DOI: 10.1002/lt.26353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Cirrhosis-associated immune dysfunction (CAID) describes a panacea of innate and adaptive deficits that result from the sequelae of cirrhotic portal hypertension that is similar in its manifestations regardless of etiology of chronic liver injury. CAID is associated with synchronous observations of dysregulated priming of innate immune effector cells that demonstrate a proinflammatory phenotype but are functionally impaired and unable to adequately prevent invading pathogens. CAID is mainly driven by gut-barrier dysfunction and is associated with deficits of microbial compartmentalization and homeostasis that lead to tonic activation, systemic inflammation, and exhaustion of innate-immune cells. CAID leads to a high frequency of bacterial and fungal infections in patients with cirrhosis that are often associated with acute decompensation of chronic liver disease and acute-on-chronic liver failure and carry a high mortality rate. Understanding the deficits of mucosal and systemic immunity in the context of chronic liver disease is essential to improving care for patients with cirrhosis, preventing precipitants of acute decompensation of cirrhosis, and improving morbidity and survival. In this review, we summarize the detailed dynamic immunological perturbations associated with advanced chronic liver disease and highlight the importance of recognizing immune dysregulation as a sequela of cirrhosis. Furthermore, we address the role of screening, prevention, and early treatment of infections in cirrhosis in improving patient outcomes in transplant and nontransplant settings.
Collapse
Affiliation(s)
- Thomas H Tranah
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Victoria T Kronsten
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| |
Collapse
|
30
|
Albuquerque-Souza E, Sahingur SE. Periodontitis, chronic liver diseases, and the emerging oral-gut-liver axis. Periodontol 2000 2022; 89:125-141. [PMID: 35244954 PMCID: PMC9314012 DOI: 10.1111/prd.12427] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver carries out a wide range of functions ranging from the control of metabolites, nutrient storage, and detoxification to immunosurveillance. While inflammation is essential for the tissue remodeling and maintenance of homeostasis and normal liver physiology, constant exposure to dietary and microbial products creates a niche for potentially prolonged immune activation and unresolved inflammation in susceptible host. Failure to restrain inflammation can lead to development of chronic liver diseases characterized by fibrosis, cirrhosis and eventually liver failure. The liver maintains close interactions with numerous organs which can influence its metabolism and physiology. It is also known that oral cavity microenvironment can influence the physiological conditions of other organs and emerging evidence implicates that this could be true for the liver as well. Presence of chronic inflammation and dysbiotic microbiota is a common feature leading to clinical pathology both in periodontitis and chronic liver diseases (CLDs). In fact, known CLDs appear to have some relationship with periodontitis, which impacts the onset or progression of these conditions in a bidirectional crosstalk. In this review, we explore the emerging association between oral‐gut‐liver axis focusing on periodontitis and common CLDs including nonalcoholic fatty liver disease, chronic viral hepatitis, liver cirrhosis, and hepatocellular cancer. We highlight the immune pathways and oral microbiome interactions which can link oral cavity and liver health and offer perspectives for future research.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sinem E Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Hansen MKG, Kjærgaard K, Eriksen LL, Grønkjær LL, Mikkelsen ACD, Sandahl TD, Vilstrup H, Thomsen KL, Lauridsen MME. Psychometric methods for diagnosing and monitoring minimal hepatic encephalopathy -current validation level and practical use. Metab Brain Dis 2022; 37:589-605. [PMID: 35102491 DOI: 10.1007/s11011-022-00913-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is cerebral dysfunction caused by liver failure and inflicts 30-40% of patients with liver cirrhosis during their disease course. Clinically manifest HE is often preceded by minimal HE (MHE) - a clinically undetectable cognitive disturbance closely associated with loss of quality of life. Accordingly, detecting and treating MHE improve the patients' daily functioning and prevent HE-related hospital admissions. The scope of this review article is to create an overview of the validation level and usage of psychometric tests used to detect MHE: Portosystemic hepatic encephalopathy test, continuous reaction time test, Stroop EncephalApp, animal naming test, critical flicker frequency test, and inhibitory control test. Our work is aimed at the clinician or scientist who is about to decide on which psychometric test would fit best in their clinic, cohort, or study. First, we outline psychometric test validation obstacles and requirements. Then, we systematically approach the literature on each test and select well-conducted studies to answer the following questions:• Which percentage of patients with cirrhosis does the test deem as having MHE?• Is the test able to predict clinically manifest HE?• Is there a well-known test-retest variation and inter-observer variation?• Is the test able to detect a treatment response?• Is the test result affected by age, educational level, gender, or comorbidities?
Collapse
Affiliation(s)
- Mads Kingo Guldberg Hansen
- Department of Gastroenterology and Hepatology, University Hospital South Denmark, Finsensgade 35, 6700, Esbjerg, Denmark.
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Lotte Lindgreen Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Lea Ladegaard Grønkjær
- Department of Gastroenterology and Hepatology, University Hospital South Denmark, Finsensgade 35, 6700, Esbjerg, Denmark
| | - Anne Catrine Daugaard Mikkelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Thomas Damgaard Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Mette Munk Enok Lauridsen
- Department of Gastroenterology and Hepatology, University Hospital South Denmark, Finsensgade 35, 6700, Esbjerg, Denmark
| |
Collapse
|
32
|
Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022; 10:microorganisms10020312. [PMID: 35208765 PMCID: PMC8877314 DOI: 10.3390/microorganisms10020312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Although gut dysbiosis can hasten disease progression in end-stage liver disease and contribute to disease severity, morbidity and mortality, its impact during and after transplant needs further study. RECENT FINDINGS Changes in the microbiome are associated with hepatic decompensation. Immune homeostasis is further disrupted during transplant and with immunosuppressants required after transplant. There is increasing evidence of the role of microbiota in peri and posttransplant complications. SUMMARY Although transplant is highly successful with acceptable survival rates, infections, rejection, disease recurrence and death remain important complications. Prognostication and interventions involving the gut microbiome could be beneficial.
Collapse
Affiliation(s)
- Nikki Duong
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
34
|
Acharya C, Bajaj JS. Hepatic Encephalopathy and Liver Transplantation: The Past, Present, and Future Toward Equitable Access. Liver Transpl 2021; 27:1830-1843. [PMID: 34018659 DOI: 10.1002/lt.26099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Cirrhosis is a debilitating chronic disease with high morbidity and mortality, with the only real cure being liver transplantation (LT). Currently, we allocate organs for transplantation based on the Model for End-Stage Liver Disease-Sodium (MELD-Na) score that does not account for hepatic encephalopathy (HE). HE affects patients, families, and the health care system because of high rates of recurrence and major readmission burden. Moreover, HE casts a long shadow even after LT. Accounting for HE and incorporating it into the current allocation system has many proponents, but the framework to do this is currently lacking because of differences in consensus or in operationalization parameters. We review the latest evidence of the burden of HE, management of HE before and after LT, and evaluate pros and cons of several methods of diagnosing HE objectively to ensure early and equitable access to LT in this underserved population.
Collapse
Affiliation(s)
- Chathur Acharya
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| |
Collapse
|
35
|
Sivaraj S, Copeland JK, Malik A, Pasini E, Angeli M, Azhie A, Husain S, Kumar D, Allard J, Guttman DS, Humar A, Bhat M. Characterization and predictive functional profiles on metagenomic 16S rRNA data of liver transplant recipients: A longitudinal study. Clin Transplant 2021; 36:e14534. [PMID: 34781411 DOI: 10.1111/ctr.14534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Long-term survival after Liver Transplantation (LT) is often compromised by infectious and metabolic complications. We aimed to delineate alterations in intestinal microbiome (IM) over time that could contribute to medical complications compromising long-term survival following LT. Fecal samples from LT recipients were collected at 3 months (3 M) and 6 months (6 M) post-LT. The bacterial DNA was extracted using E.Z.N.A. Stool DNA Kit and 16S rRNA gene sequencing at V4 hypervariable region was performed. DADA2 and Phyloseq was implemented to analyze the taxonomic composition. Differentially abundant taxa were identified by metagenomeSeq and LEfSe. Piphillin, an Inferred functional metagenomic analysis tool was used to study the bacterial functional content. For comparison, healthy samples were extracted from NCBI and analyzed similarly. The taxonomic & functional profiles of LT recipients were validated with metagenomic sequencing data from animals exposed to immunosuppressants using Venny. Our findings provide a new perspective on longitudinal increase in specific IM communities post-LT along with an increase in bacterial genes associated with metabolic and infectious disease.
Collapse
Affiliation(s)
- Saranya Sivaraj
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Anshu Malik
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Elisa Pasini
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Marc Angeli
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Amirhossein Azhie
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Shahid Husain
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine University of Toronto, Toronto, Canada
| | - Deepali Kumar
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine University of Toronto, Toronto, Canada
| | - Johane Allard
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, Ontario, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Atul Humar
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine University of Toronto, Toronto, Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, Ontario, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Kim SE, Park JW, Kim HS, Jang MK, Suk KT, Kim DJ. The Role of Gut Dysbiosis in Acute-on-Chronic Liver Failure. Int J Mol Sci 2021; 22:ijms222111680. [PMID: 34769109 PMCID: PMC8584227 DOI: 10.3390/ijms222111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an important syndrome of liver failure that has a high risk of short-term mortality in patients with chronic liver disease. The development of ACLF is associated with proinflammatory precipitating events, such as infection, alcoholic hepatitis, and intense systemic inflammation. Recently, the role of the gut microbiome has increasingly emerged in human health and disease. Additionally, the gut microbiome might have a major role in the development of liver disease. In this review, we examine evidence to support the role of gut dysbiosis in cirrhosis and ACLF. Additionally, we explore the mechanism by which the gut microbiome contributes to the development of ACLF, with a focus on alcohol-induced liver disease.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ji Won Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Hyung Su Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82–33–240–5646
| |
Collapse
|
37
|
Winichakoon P, Chaiwarith R, Chattipakorn N, Chattipakorn SC. Impact of gut microbiota on kidney transplantation. Transplant Rev (Orlando) 2021; 36:100668. [PMID: 34688985 DOI: 10.1016/j.trre.2021.100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Kidney transplantation is recognized as one of the most effective treatments for patients who suffer from end-stage renal disease. The major potential outcomes following kidney transplantation include engraftment, rejection, and associated complications. The outcomes are dependent on a variety of factors in those who underwent renal grafts or kidney transplant recipients. Those factors include the administration of immunosuppressive drugs and prophylactic antimicrobial agents to recipients. Recent studies have shown that gut microbiota play an important role in the outcome of subjects with kidney transplantation. An imbalance of the components/diversity of gut microbiota, known as gut dysbiosis, has been shown to have a big impact on the immune system of the host and the modification of host inflammatory cytokines. Although gut dysbiosis is affected by variation in diet and medication, a substantial amount of evidence showing a link between alteration in human gut microbiota and outcomes of kidney transplantation has recently been reported. Therefore, the objective of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data pertaining to the impact of gut microbiota on kidney transplantation. Any controversial findings are compiled to enable a clear overview of the role of gut microbiota and the outcome of kidney transplantation.
Collapse
Affiliation(s)
- Poramed Winichakoon
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Romanee Chaiwarith
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
38
|
The Interplay between Gut Microbiota and the Immune System in Liver Transplant Recipients and Its Role in Infections. Infect Immun 2021; 89:e0037621. [PMID: 34460287 DOI: 10.1128/iai.00376-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation (LT) is a life-saving strategy for patients with end-stage liver disease, hepatocellular carcinoma, and acute liver failure. LT success can be hampered by several short-term and long-term complications. Among them, bacterial infections, especially those due to multidrug-resistant germs, are particularly frequent, with a prevalence between 19 and 33% in the first 100 days after transplantation. In the last decades, a number of studies have highlighted how the gut microbiota (GM) is involved in several essential functions to ensure intestinal homeostasis, becoming one of the most important virtual metabolic organs. The GM works through different axes with other organs, and the gut-liver axis is among the most relevant and investigated ones. Any alteration or disruption of the GM is defined as dysbiosis. Peculiar phenotypes of GM dysbiosis have been associated with several liver conditions and complications, such as chronic hepatitis, fatty liver disease, cirrhosis, and hepatocellular carcinoma. Moreover, there is growing evidence of the crucial role of the GM in shaping the immune response, both locally and systemically, against pathogens. This paves the way to the manipulation of the GM as a therapeutic instrument to modulate infectious risk and outcome. In this minireview, we provide an overview of the current understanding of the interplay between the gut microbiota and the immune system in liver transplant recipients and the role of the former in infections.
Collapse
|
39
|
Gupta M, Krishan P, Kaur A, Arora S, Trehanpati N, Singh TG, Bedi O. Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD. Inflamm Res 2021; 70:765-776. [PMID: 34212214 DOI: 10.1007/s00011-021-01480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted disease allied with various metabolic disorders, obesity and dysbiosis. Gut microbiota plays an influential role in the pathogenesis of NAFLD and other metabolic disorders. However, recent scientific upsurge emphasizes on the utility of beneficial gut microbiota and bacteriotherapy in the management of NAFLD. Fecal microbiota transplantation (FMT) is the contemporary therapeutic approach with state-of-the-art methods for the treatment of NAFLD. Other potential therapies include probiotics and prebiotics supplements which are based on alteration of gut microbes to treat NAFLD. In this review, our major focus is on the pathological association of gut microbiota with progression of NAFLD, historical aspects and recent advances in FMT with possible intervention to combat NAFLD and its associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Manisha Gupta
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India.
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| |
Collapse
|
40
|
Trebicka J, Macnaughtan J, Schnabl B, Shawcross DL, Bajaj JS. The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol 2021; 75 Suppl 1:S67-S81. [PMID: 34039493 PMCID: PMC8973011 DOI: 10.1016/j.jhep.2020.11.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cirrhosis - the common end-stage of chronic liver disease - is associated with a cascade of events, of which intestinal bacterial overgrowth and dysbiosis are central. Bacterial toxins entering the portal or systemic circulation can directly cause hepatocyte death, while dysbiosis also affects gut barrier function and increases bacterial translocation, leading to infections, systemic inflammation and vasodilation, which contribute to acute decompensation and organ failure. Acute decompensation and its severe forms, pre-acute-on-chronic liver failure (ACLF) and ACLF, are characterised by sudden organ dysfunction (and failure) and high short-term mortality. Patients with pre-ACLF and ACLF present with high-grade systemic inflammation, usually precipitated by proven bacterial infection and/or severe alcoholic hepatitis. However, no precipitant is identified in 30% of these patients, in whom bacterial translocation from the gut microbiota is assumed to be responsible for systemic inflammation and decompensation. Different microbiota profiles may influence the rate of decompensation and thereby outcome in these patients. Thus, targeting the microbiota is a promising strategy for the prevention and treatment of acute decompensation, pre-ACLF and ACLF. Approaches include the use of antibiotics such as rifaximin, faecal microbial transplantation and enterosorbents (e.g. Yaq-001), which bind microbial factors without exerting a direct effect on bacterial growth kinetics. This review focuses on the role of microbiota in decompensation and strategies targeting microbiota to prevent acute decompensation.
Collapse
Affiliation(s)
- Jonel Trebicka
- Translational Hepatology, Internal Medicine I, Goethe University Frankfurt, Germany; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| | - Jane Macnaughtan
- Institute for Liver and Digestive Health, Royal Free Campus, University College London, United Kingdom
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Debbie L Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Denmark Hill Campus, London, United Kingdom
| | - Jasmohan S Bajaj
- Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA, USA
| |
Collapse
|
41
|
Song W, Sun LY, Zhu ZJ, Wei L, Qu W, Zeng ZG, Yang YS. Characteristics of Gut Microbiota in Children With Biliary Atresia After Liver Transplantation. Front Physiol 2021; 12:704313. [PMID: 34262484 PMCID: PMC8273867 DOI: 10.3389/fphys.2021.704313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Biliary atresia (BA) is an idiopathic neonatal cholestasis and is the most common indication in pediatric liver transplantation (LT). Previous studies have suggested that the gut microbiota (GM) in BA is disordered. However, the effect of LT on gut dysbiosis in patients with BA has not yet been elucidated. Methods Patients with BA (n = 16) and healthy controls (n = 10) were recruited. In the early life of children with BA, Kasai surgery is a typical procedure for restoring bile flow. According to whether BA patients had previously undergone Kasai surgery, we divided the post-LT patients into the with-Kasai group (n = 8) and non-Kasai group (n = 8). Fecal samples were collected in both the BA and the control group; among BA patients, samples were obtained again 6 months after LT. A total of 40 fecal samples were collected, of which 16 were pre-LT, 14 were post-LT (8 were with-Kasai, 6 were non-Kasai), and 10 were from the control group. Metagenomic sequencing was performed to evaluate the GM. Results The Kruskal-Wallis test showed a statistically significant difference in the number of genes between the pre-LT and the control group, the pre-LT and the post-LT group (P < 0.05), but no statistical difference between the post-LT and the control group. Principal coordinate analysis also showed that the microbiome structure was similar between the post-LT and control group (P > 0.05). Analysis of the GM composition showed a significant decrease in Serratia, Enterobacter, Morganella, Skunalikevirus, and Phifllikevirus while short chain fatty acid (SCFA)-producing bacteria such as Roseburia, Blautia, Clostridium, Akkermansia, and Ruminococcus were increased after LT (linear discriminant analysis > 2, P < 0.05). However, they still did not reach the normal control level. Concerning functional profiles, lipopolysaccharide metabolism, multidrug resistance, polyamine biosynthesis, GABA biosynthesis, and EHEC/EPEC pathogenicity signature were more enriched in the post-LT group compared with the control group. Prior Kasai surgery had a specific influence on the postoperative GM. Conclusion LT partly improved the GM in patients with BA, which provided new insight into understanding the role of LT in BA.
Collapse
Affiliation(s)
- Wei Song
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,Department of Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
42
|
Qin T, Fu J, Verkade HJ. The role of the gut microbiome in graft fibrosis after pediatric liver transplantation. Hum Genet 2021; 140:709-724. [PMID: 32920649 PMCID: PMC8052232 DOI: 10.1007/s00439-020-02221-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Liver transplantation (LT) is a life-saving option for children with end-stage liver disease. However, about 50% of patients develop graft fibrosis in 1 year after LT, with normal liver function. Graft fibrosis may progress to cirrhosis, resulting in graft dysfunction and ultimately the need for re-transplantation. Previous studies have identified various risk factors for the post-LT fibrogenesis, however, to date, neither of the factors seems to fully explain the cause of graft fibrosis. Recently, evidence has accumulated on the important role of the gut microbiome in outcomes after solid organ transplantation. As an altered microbiome is present in pediatric patients with end-stage liver diseases, we hypothesize that the persisting alterations in microbial composition or function contribute to the development of graft fibrosis, for example by bacteria translocation due to increased intestinal permeability, imbalanced bile acids metabolism, and/or decreased production of short-chain fatty acids (SCFAs). Subsequently, an immune response can be activated in the graft, together with the stimulation of fibrogenesis. Here we review current knowledge about the potential mechanisms by which alterations in microbial composition or function may lead to graft fibrosis in pediatric LT and we provide prospective views on the efficacy of gut microbiome manipulation as a therapeutic target to alleviate the graft fibrosis and to improve long-term survival after LT.
Collapse
Affiliation(s)
- Tian Qin
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Jingyuan Fu
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Henkjan J Verkade
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
43
|
Yao X, Yu H, Fan G, Xiang H, Long L, Xu H, Wu Z, Chen M, Xi W, Gao Z, Liu C, Gong W, Yang A, Sun K, Yu R, Liang J, Xie B, Sun S. Impact of the Gut Microbiome on the Progression of Hepatitis B Virus Related Acute-on-Chronic Liver Failure. Front Cell Infect Microbiol 2021; 11:573923. [PMID: 33889550 PMCID: PMC8056260 DOI: 10.3389/fcimb.2021.573923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
The relationship between the progression of hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) and the gut microbiota is poorly understood, and an HBV-ACLF-related microbiome has yet to be identified. In this study alterations in the fecal microbiome of 91 patients with HBV-ACLF (109 stool samples), including a cohort of nine patients at different stages of HBV-ACLF, were determined by high-throughput 16S rDNA sequencing. The operational taxonomic units and Shannon indexes indicated that the diversity and abundance of the gut microbiome significantly decreased with the progression of HBV-ACLF (p <0.05). The relative abundance of the Bacteroidetes phylum in the microbiome was significantly reduced, whereas the abundance of potentially pathogenic bacteria, such as Veilonella, Streptococcus, Enterococcus, and Klebsiella, was highly enriched in the HBV-ACLF group compared with the healthy control group. The abundance of Bacteroidetes was negatively correlated with the level of serum alpha fetoprotein, and the abundance of Veilonella was positively correlated with serum total bilirubin (TBIL). Furthermore, the abundance of Coprococcus was significantly negatively correlated with the level of serum TBIL and the international normalized ratio and positively correlated with prothrombin time activity. Our findings suggest that the gut microbiota plays an important role in the development of HBV-ACLF.
Collapse
Affiliation(s)
- Xuebing Yao
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haiping Yu
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoyin Fan
- Department of Infectious Diseases, Nanchang Centers for Disease Control and Prevention, Nanchang, China
| | - Haihong Xiang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Long
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huili Xu
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiguo Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingfa Chen
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenna Xi
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cuiyun Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenlan Gong
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Aoyu Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ke Sun
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongyan Yu
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junrong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baogang Xie
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, China
| | - Shuilin Sun
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Okumura T, Horiba K, Kamei H, Takeuchi S, Suzuki T, Torii Y, Kawada JI, Takahashi Y, Ogura Y, Ogi T, Ito Y. Temporal dynamics of the plasma microbiome in recipients at early post-liver transplantation: a retrospective study. BMC Microbiol 2021; 21:104. [PMID: 33823791 PMCID: PMC8025517 DOI: 10.1186/s12866-021-02154-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background Immunosuppression during liver transplantation (LT) enables the prevention and treatment of organ rejection but poses a risk for severe infectious diseases. Immune modulation and antimicrobials affect the plasma microbiome. Thus, determining the impact of immunosuppression on the microbiome may be important to understand immunocompetence, elucidate the source of infection, and predict the risk of infection in LT recipients. We characterized the plasma microbiome of LT recipients at early post-LT and assessed the association between the microbiome and clinical events. Results In this study, 51 patients who received LT at Nagoya University Hospital from 2016 to 2018 were enrolled. Plasma samples were retrospectively collected at the following time points: 1) within a week after LT; 2) 4 ± 1 weeks after LT; 3) 8 ± 1 weeks after LT; and 4) within 2 days after a positive blood culture. A total of 111 plasma samples were analyzed using shotgun next-generation sequencing (NGS) with the PATHDET pipeline. Relative abundance of Anelloviridae, Nocardiaceae, Microbacteriaceae, and Enterobacteriaceae significantly changed during the postoperative period. Microbiome diversity was higher within a week after LT than that at 8 weeks after LT. Antimicrobials were significantly associated with the microbiome of LT recipients. In addition, the proportion of Enterobacteriaceae was significantly increased and the plasma microbiome diversity was significantly lower in patients with acute cellular rejection (ACR) than non-ACR patients. Sequencing reads of bacteria isolated from blood cultures were predominantly identified by NGS in 8 of 16 samples, and human herpesvirus 6 was detected as a causative pathogen in one recipient with severe clinical condition. Conclusions The metagenomic NGS technique has great potential in revealing the plasma microbiome and is useful as a comprehensive diagnostic procedure in clinical settings. Temporal dynamics of specific microorganisms may be used as indirect markers for the determination of immunocompetence and ACR in LT recipients. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02154-w.
Collapse
Affiliation(s)
- Toshihiko Okumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideya Kamei
- Department of Transplantation Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Suguru Takeuchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Ogura
- Department of Transplantation Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
45
|
López-Franco Ó, Morin JP, Cortés-Sol A, Molina-Jiménez T, Del Moral DI, Flores-Muñoz M, Roldán-Roldán G, Juárez-Portilla C, Zepeda RC. Cognitive Impairment After Resolution of Hepatic Encephalopathy: A Systematic Review and Meta-Analysis. Front Neurosci 2021; 15:579263. [PMID: 33790729 PMCID: PMC8006450 DOI: 10.3389/fnins.2021.579263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Hepatic encephalopathy (HE) is one of the most disabling metabolic diseases. It consists of a complication of liver disease through the action of neurotoxins, such as excessive production of ammonia from liver, resulting in impaired brain function. Its prevalence and incidence are not well known, although it has been established that up to 40% of cirrhotic patients may develop HE. Patients with HE episodes display a wide range of neurological disturbances, from subclinical alterations to coma. Recent evidence suggests that the resolution of hepatic encephalopathy does not fully restore cognitive functioning in cirrhotic patients. Therefore, the aim of this review was to evaluate the evidence supporting the presence of lingering cognitive deficits in patients with a history of HE compared to patients without HE history and how liver transplant affects such outcome in these patients. We performed two distinct meta-analysis of continuous outcomes. In both cases the results were pooled using random-effects models. Our results indicate that cirrhotic patients with a history of HE show clear cognitive deficits compared to control cirrhotic patients (Std. Mean Difference (in SDs) = −0.72 [CI 95%: −0.94, −0.50]) and that these differences are not fully restored after liver transplant (Std. Mean Difference (in SDs) = −0.48 [CI 95%: −0.77, −0.19]).
Collapse
Affiliation(s)
- Óscar López-Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Jean-Pascal Morin
- Laboratorio de Neurobiología de la Conducta, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | | | - Tania Molina-Jiménez
- Instituto Interdisciplinario de Investigaciones de la Universidad de Xalapa, Xalapa, Mexico
| | - Diana I Del Moral
- Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Mónica Flores-Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología de la Conducta, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Claudia Juárez-Portilla
- Laboratorio de Biomedicina Integral y Salud, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Rossana C Zepeda
- Laboratorio de Biomedicina Integral y Salud, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
46
|
Recommendations and guidance on nutritional supplementation in the liver transplant setting. Transplantation 2021; 105:2528-2537. [PMID: 33724244 DOI: 10.1097/tp.0000000000003736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malnutrition is a frequent complication in patients with cirrhosis and liver transplant (LT) candidates. It is highly related to sarcopenia, and their implications in morbidity and mortality go beyond the waiting list period throughout the post-LT. However, there are no specific interventions defined by guidelines, regarding the kind or the timing of the nutritional intervention to improve LT outcomes. Results from studies developed in the LT setting and evaluating their impact on the LT candidates or recipients are discussed in this review, and new research lines are presented.
Collapse
|
47
|
Trebicka J, Bork P, Krag A, Arumugam M. Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure. Nat Rev Gastroenterol Hepatol 2021; 18:167-180. [PMID: 33257833 DOI: 10.1038/s41575-020-00376-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The human gut microbiome has emerged as a major player in human health and disease. The liver, as the first organ to encounter microbial products that cross the gut epithelial barrier, is affected by the gut microbiome in many ways. Thus, the gut microbiome might play a major part in the development of liver diseases. The common end stage of liver disease is decompensated cirrhosis and the further development towards acute-on-chronic liver failure (ACLF). These conditions have high short-term mortality. There is evidence that translocation of components of the gut microbiota, facilitated by different pathogenic mechanisms such as increased gut epithelial permeability and portal hypertension, is an important driver of decompensation by induction of systemic inflammation, and thereby also ACLF. Elucidating the role of the gut microbiome in the aetiology of decompensated cirrhosis and ACLF deserves further investigation and improvement; and might be the basis for development of diagnostic and therapeutic strategies. In this Review, we focus on the possible pathogenic, diagnostic and therapeutic role of the gut microbiome in decompensation of cirrhosis and progression to ACLF.
Collapse
Affiliation(s)
- Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany. .,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain. .,Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark. .,Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Manimozhiyan Arumugam
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Acharya C, Bajaj JS. Chronic Liver Diseases and the Microbiome-Translating Our Knowledge of Gut Microbiota to Management of Chronic Liver Disease. Gastroenterology 2021; 160:556-572. [PMID: 33253686 PMCID: PMC9026577 DOI: 10.1053/j.gastro.2020.10.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Chronic liver disease is reaching epidemic proportions with the increasing prevalence of obesity, nonalcoholic liver disease, and alcohol overuse worldwide. Most patients are not candidates for liver transplantation even if they have end-stage liver disease. There is growing evidence of a gut microbial basis for many liver diseases, therefore, better diagnostic, prognostic, and therapeutic approaches based on knowledge of gut microbiota are needed. We review the questions that need to be answered to successfully translate our knowledge of the intestinal microbiome and the changes associated with liver disease into practice.
Collapse
|
49
|
Sattler A, Thiel LG, Ruhm AH, Bergmann Y, Dornieden T, Choi M, Halleck F, Friedersdorff F, Eurich D, Kotsch K. Mucosal associated invariant T cells are differentially impaired in tolerant and immunosuppressed liver transplant recipients. Am J Transplant 2021; 21:87-102. [PMID: 32515136 DOI: 10.1111/ajt.16122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 01/25/2023]
Abstract
Mucosal associated invariant T (MAIT-) cells represent a semi-invariant T cell population responsive to microbial vitamin B metabolite and innate cytokine stimulation, executing border tissue protection and particularly contributing to human liver immunity. The impact of immunosuppressants on MAIT cell biology alone and in context with solid organ transplantation has not been thoroughly examined. Here, we demonstrate that in vitro cytokine activation of peripheral MAIT cells from healthy individuals was impaired by glucocorticoids, whereas antigen-specific stimulation was additionally sensitive to calcineurin inhibitors. In liver transplant (LTx) recipients, significant depletion of peripheral MAIT cells was observed that was largely independent of the type and dosage of immunosuppression, equally applied to tolerant patients, and was reproducible in kidney transplant recipients. However, MAIT cells from tolerant LTx patients exhibited a markedly diminished ex vivo activation signature, associated with individual regain of functional competence toward antigenic and cytokine stimulation. Still, MAIT cells from tolerant and treated liver recipients exhibited high levels of PD1, accompanied by functional impairment particularly toward bacterial stimulation that also affected polyfunctionality. Our data suggest interlinked effects of primary liver pathology and immunosuppressive treatment on overall MAIT cell fitness after transplantation and propose their monitoring in context with tolerance induction protocols.
Collapse
Affiliation(s)
- Arne Sattler
- Department for General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lion G Thiel
- Department for General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Annkathrin H Ruhm
- Department for General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Yasmin Bergmann
- Department for General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Theresa Dornieden
- Department for General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Mira Choi
- Department for Nephrology and Internal Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Fabian Halleck
- Department for Nephrology and Internal Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Frank Friedersdorff
- Department for Urology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Dennis Eurich
- Department for Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katja Kotsch
- Department for General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
50
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:E44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|