1
|
Kil J, Rahman RT, Wang W, Choi S, Nam YS, Li S. Dual functionalized brush copolymers as versatile antifouling coatings. J Mater Chem B 2023; 11:2904-2915. [PMID: 36892061 DOI: 10.1039/d2tb02522a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Polymer coatings containing both fouling-resistant and fouling-release components have been reported to show synergistic antifouling properties. However, it remains unclear how the polymer composition influences the antifouling performance, particularly regarding foulants of different sizes and biological natures. Herein, we prepare dual functionalized brush copolymers containing fouling-resistant poly(ethylene glycol) (PEG) and fouling-release polydimethylsiloxane (PDMS) and examine their antifouling performances against different biofoulants. We utilize poly(pentafluorophenyl acrylate) (PPFPA) as a reactive precursor polymer and graft amine-functionalized PEG and PDMS side chains to create PPFPA-g-PEG-g-PDMS brush copolymers of systematically varying compositions. The copolymer films spin-coated on silicon wafers exhibit surface heterogeneity that can be correlated well with the bulk composition of the copolymer. When the copolymer-coated surfaces are examined against protein (human serum albumin and bovine serum albumin) adsorption and cell (lung cancer cells and microalgae) adhesion, they are found to perform better than the homopolymers. The enhanced antifouling properties are attributed to the copolymers having a PEG-rich top layer and a PEG/PDMS mixed bottom layer that work synergistically to resist biofoulant attachment. Furthermore, the composition of the best-performing copolymer is different for different foulants, with PPFPA-g-PEG39-g-PDMS46 exhibiting the best antifouling properties against proteins and PPFPA-g-PEG54-g-PDMS30 exhibiting the best antifouling properties against cells. We explain this difference by considering the changes in the length scale of the surface heterogeneity in relation to the foulant sizes.
Collapse
Affiliation(s)
- Jihyo Kil
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Wenxuan Wang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Park J, Park E, Choi SQ, Wu J, Park J, Lee H, Kim H, Lee H, Seo M. Biodegradable Block Copolymer-Tannic Acid Glue. JACS AU 2022; 2:1978-1988. [PMID: 36186559 PMCID: PMC9516699 DOI: 10.1021/jacsau.2c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Bioadhesives are becoming an essential and important ingredient in medical science. Despite numerous reports, developing adhesive materials that combine strong adhesion, biocompatibility, and biodegradation remains a challenging task. Here, we present a biocompatible yet biodegradable block copolymer-based waterborne superglue that leads to an application of follicle-free hair transplantation. Our design strategy bridges self-assembled, temperature-sensitive block copolymer nanostructures with tannic acid as a sticky and biodegradable polyphenolic compound. The formulation further uniquely offers step-by-step increases in adhesion strength via heating-cooling cycles. Combining the modular design with the thermal treating process enhances the mechanical properties up to 5 orders of magnitude compared to the homopolymer formulation. This study opens a new direction in bioadhesive formulation strategies utilizing block copolymer nanotechnology for systematic and synergistic control of the material's properties.
Collapse
Affiliation(s)
- Jongmin Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eunsook Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Siyoung Q. Choi
- Department
of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Korea
| | - Jingxian Wu
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jihye Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyeonju Lee
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyungjun Kim
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Haeshin Lee
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
| | - Myungeun Seo
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST
Institute for Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
3
|
Pandey N, Soto-Garcia L, Yaman S, Kuriakose A, Rivera AU, Jones V, Liao J, Zimmern P, Nguyen KT, Hong Y. Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. BIOMATERIALS ADVANCES 2022; 134:112589. [PMID: 35525749 PMCID: PMC9753139 DOI: 10.1016/j.msec.2021.112589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Bioadhesives are intended to facilitate the fast and efficient reconnection of tissues to restore their functionality after surgery or injury. The use of mussel-inspired hydrogel systems containing pendant catechol moieties is promising for tissue attachment under wet conditions. However, the adhesion strength is not yet ideal. One way to overcome these limitations is to add polymeric nanoparticles to create nanocomposites with improved adhesion characteristics. To further enhance adhesiveness, polydopamine nanoparticles with controlled size prepared using an optimized process, were combined with a mussel-inspired hyaluronic acid (HA) hydrogel to form a nanocomposite. The effects of sizes and concentrations of polydopamine nanoparticles on the adhesive profiles of mussel-inspired HA hydrogels were investigated. Results show that the inclusion of polydopamine nanoparticles in nanocomposites increased adhesion strength, as compared to the addition of poly (lactic-co-glycolic acid) (PLGA), and PLGA-(N-hydroxysuccinimide) (PLGA-NHS) nanoparticles. A nanocomposite with demonstrated cytocompatibility and an optimal lap shear strength (47 ± 3 kPa) was achieved by combining polydopamine nanoparticles of 200 nm (12.5% w/v) with a HA hydrogel (40% w/v). This nanocomposite adhesive shows its potential as a tissue glue for biomedical applications.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aneetta Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andres Urias Rivera
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Valinda Jones
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
5
|
Kim J, Lee K, Nam YS. Metal-polyphenol Complexes as Versatile Building Blocks for Functional Biomaterials. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Gharibi R, Agarwal S. Favorable Antibacterial, Antibiofilm, Antiadhesion to Cells, and Biocompatible Polyurethane by Facile Surface Functionalization. ACS APPLIED BIO MATERIALS 2021; 4:4629-4640. [PMID: 35006800 DOI: 10.1021/acsabm.1c00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is of paramount importance to prohibit biofilm formation in a wide range of implant devices, such as thermoplastic polyurethane (PU)-based catheters. It is possible only by means of a multifunctional material that provides fast and effective antibacterial activity, proper biocompatibility, and low bacterial and cell adhesion. In this paper, a facile chemistry approach has been developed to modify biomedical-grade PU with PU species, containing reactive uretdione functional groups for functionalization with the contact-type polyguanidine bactericidal agent and oxidized dextran as an antifouling polymer without sacrificing the thermal and mechanical properties. The resulting PU possesses broad-spectrum contact-active antibacterial activity against Gram-negative and Gram-positive bacteria with fast kinetics. The excellent antifouling capacity was confirmed by low nonspecific protein adsorption and reduced adhesion of fibroblast cells by ≥ 90%. In addition to antiadhesive and antibiofilm properties, high cell viability (>90%) and low hemolysis rate (HR < 1%) verified favorable cytocompatibility. Hence, the strategy followed to functionalize PUs in this paper might be considered to modify PU-based biomedical devices.
Collapse
Affiliation(s)
- Reza Gharibi
- Macoliromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany.,Department of Organic Chemistry and Polymer, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Seema Agarwal
- Macoliromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| |
Collapse
|
7
|
Jeong Y, Kang SM. Catechol‐conjugated Dextran for Marine Antifouling Applications: The Adverse Effects of High Catechol Content. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| | - Sung Min Kang
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| |
Collapse
|
8
|
Gao Q, Feng T, Huang D, Liu P, Lin P, Wu Y, Ye Z, Ji J, Li P, Huang W. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci 2020; 8:278-289. [PMID: 31691698 DOI: 10.1039/c9bm01396b] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Titanium (Ti)-based implants often suffer from detrimental bacterial adhesion and inefficient healing, so it is crucial to design a dual-functional coating that prevents bacterial infection and enhances bioactivity for a successful implant. Herein, we successfully devised a cationic polypeptide (Pep)-functionalized biomimetic nanostructure coating with superior activity, which could not only kill pathogenic bacteria rapidly and inhibit biofilm formation for up to two weeks, but also promote in situ hydroxyapatite (HAp) formation. Specifically, a titania (TiO2) nanospike coating (TNC) was fabricated by alkaline hydrothermal treatment firstly, followed by immobilization of rationally synthesized Pep via robust coordinative interactions, named TNPC. This coating was able to effectively kill (>99.9%) both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria, while being non-toxic to murine MC3T3-E1 osteoblastic cells. Furthermore, the in vivo infection studies denoted that the adherent bacteria numbers on the TNPC implants were significantly reduced by 6 orders of magnitude than those on the pure Ti implants (p < 0.001). Importantly, in the presence of cationic amino groups and residual Ti-OH groups, substantial HAp deposition on the TNPC surface in Kokubo's simulated body fluid (SBF) occurred after 14 days. Altogether, our results support the clinical potential of this biomimetic dual-functional coating as a new approach with desirable antibacterial properties and HAp-forming ability in orthopedic and dental applications.
Collapse
Affiliation(s)
- Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pandey N, Soto-Garcia LF, Liao J, Zimmern P, Nguyen KT, Hong Y. Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomater Sci 2020; 8:1240-1255. [PMID: 31984389 PMCID: PMC7056592 DOI: 10.1039/c9bm01848d] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mussels are well-known for their extraordinary capacity to adhere onto different surfaces in various hydrophillic conditions. Their unique adhesion ability under water or in wet conditions has generated considerable interest towards developing mussel inspired polymeric systems that can mimic the chemical mechanisms used by mussels for their adhesive properties. Catechols like 3,4-dihydroxy phenylalanine (DOPA) and their biochemical interactions have been largely implicated in mussels' strong adhesion to various substrates and have been the centerpoint of research and development efforts towards creating superior tissue adhesives for surgical and tissue engineering applications. In this article, we review bioadhesion and adhesives from an engineering standpoint, specifically the requirements of a good tissue glue, the relevance that DOPA and other catechols have in tissue adhesion, current trends in mussel-inspired bioadhesives, strategies to develop mussel-inspired tissue glues, and perspectives for future development of these materials.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Luis F. Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
10
|
Kim J, Kim KR, Hong Y, Choi S, Yavuz CT, Kim JW, Nam YS. Photochemically Enhanced Selective Adsorption of Gold Ions on Tannin-Coated Porous Polymer Microspheres. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21915-21925. [PMID: 31180208 DOI: 10.1021/acsami.9b05197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal recovery from electronic waste and industrial wastewater has attracted increasing attention to recycle precious metals and inhibit the emission of hazardous heavy metals. However, the selective recovery of precious metals with a large quantity is still very challenging because wastewater contains a variety of different cations while precious metal ions are relatively scarce. Here, we introduce a simple method to selectively increase the adsorption of gold ions using tannin-coated porous polymer microspheres through photochemical reduction. Mesoporous poly(ethylene glycol dimethacrylate- co-acrylonitrile) microspheres with an average pore diameter of 13.8 nm were synthesized and used as an adsorbent matrix. Tannic acid (TA) was deposited onto the internal pores of the polymer matrix by simple immersion in an aqueous milieu. TA coatings increased the maximum number of adsorbed gold ions by 1.3 times because of the well-known metal ion chelation of TA. Under light illumination, the maximum number of adsorbed gold ions dramatically increased by 6.1 times. We examined two distinct mechanisms presumably involved in the enhanced adsorption: the photooxidation of TA and plasmon-induced hot electrons. Moreover, TA-coated microspheres exhibited remarkable selectivity for gold ions among competing metal ions commonly found in waste resources. This work suggests that the photochemically activated TA can serve as an excellent adsorbent for the selective and efficient recovery of gold ions from wastewater.
Collapse
Affiliation(s)
| | | | | | - Sunyoung Choi
- CTK Cosmetics , 255 Pangyo-ro , Seongnam-si , Gyeonggi-do 13486 , Republic of Korea
| | | | | | | |
Collapse
|
11
|
Hong S, Sunwoo JH, Kim JS, Tchah H, Hwang C. Conjugation of carboxymethyl cellulose and dopamine for cell sheet harvesting. Biomater Sci 2019; 7:139-148. [DOI: 10.1039/c8bm00971f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This manuscript focuses on the cell sheet preparation methodology with the conjugation of carboxymethylcellulose (CMC) and dopamine (DA).
Collapse
Affiliation(s)
- Soyoung Hong
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Jeong Hey Sunwoo
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Ji Seon Kim
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Hungwon Tchah
- Department of Convergence Medicine
- University of Ulsan College of Medicine & Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| |
Collapse
|
12
|
Jeong Y, Thuy LT, Ki SH, Ko S, Kim S, Cho WK, Choi JS, Kang SM. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan. Macromol Biosci 2018; 18:e1800137. [DOI: 10.1002/mabi.201800137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - So Hyun Ki
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sangwon Ko
- Transportation Environmental Research Team; Korea Railroad Research Institute; Uiwang 16105 Republic of Korea
| | - Suyeob Kim
- Department of Marine Biomaterials and Aquaculture; Pukyong National University; Busan 48513 Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sung Min Kang
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| |
Collapse
|
13
|
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Son HY, Kim KR, Hong CA, Nam YS. Morphological Evolution of Gold Nanoparticles into Nanodendrites Using Catechol-Grafted Polymer Templates. ACS OMEGA 2018; 3:6683-6691. [PMID: 31458842 PMCID: PMC6644758 DOI: 10.1021/acsomega.8b00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/08/2018] [Indexed: 05/21/2023]
Abstract
Morphology, dimension, size, and surface chemistry of gold nanoparticles are critically important in determining their optical, catalytic, and photothermal properties. Although many techniques have been developed to synthesize various gold nanostructures, complicated and multistep procedures are required to generate three-dimensional, dendritic gold nanostructures. Here, we present a simple method to synthesize highly branched gold nanodendrites through the well-controlled reduction of gold ions complexed with a catechol-grafted polymer. Dextran grafted with catechols guides the morphological evolution as a polymeric ligand to generate dendritic gold structures through the interconnection of the spherical gold nanoparticles. The reduction kinetics, which is critical for morphological changes, is controllable using dimethylacetamide, which can decrease the metal-ligand dissociation and gold ion diffusivity. This study suggests that mussel-inspired polymer chemistry provides a simple one-pot synthetic route to colloidal gold nanodendrites that are potentially applicable to biosensing and catalysis.
Collapse
Affiliation(s)
- Ho Yeon Son
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeong Rak Kim
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol Am Hong
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: . Phone: +82-42-350-3311. Fax: +82-42-350-3310 (C.A.H.)
| | - Yoon Sung Nam
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: (Y.S.N.)
| |
Collapse
|
15
|
Di Corato R, Aloisi A, Rella S, Greneche JM, Pugliese G, Pellegrino T, Malitesta C, Rinaldi R. Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20271-20280. [PMID: 29745638 DOI: 10.1021/acsami.7b18411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the field of nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this study, a one-pot synthesis of magnetic nanoparticles is presented, with an increased control on particle size from 10 to 40 nm. Monitoring of vacuum level is introduced here as a crucial parameter for achieving a fine particle morphology. The magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by high-resolution X-ray photoelectron spectroscopy analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred into water by a nonderivatized dextran coating. Thermogravimetric analysis confirms that polysaccharide molecules replace oleic acid on the surface by stabilizing the particles in the aqueous phase and culture media. Preliminary in vitro test reveals that the dextran-coated nanoparticles are not passively internalized from the cells. As a proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing cellular internalization.
Collapse
Affiliation(s)
| | - Alessandra Aloisi
- CNR Institute for Microelectronics and Microsystems , SP Lecce-Monteroni , I-73100 Lecce , Italy
| | | | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans (IMMM UMR CNRS 6283), Université du Maine , Avenue Olivier Messiaen , 72085 Le Mans Cedex 9 , France
| | | | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | | | - Rosaria Rinaldi
- CNR Institute for Microelectronics and Microsystems , SP Lecce-Monteroni , I-73100 Lecce , Italy
- University of Salento-ISUFI , via Monteroni, University Campus , 73100 Lecce , Italy
| |
Collapse
|
16
|
Au-Duong AN, Lee CK. Facile protein-resistant and anti-biofilm surface coating based on catechol-conjugated poly(N-vinylpyrrolidone). Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4328-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Hadjesfandiari N, Weinhart M, Kizhakkedathu JN, Haag R, Brooks DE. Development of Antifouling and Bactericidal Coatings for Platelet Storage Bags Using Dopamine Chemistry. Adv Healthc Mater 2018; 7. [PMID: 28961393 DOI: 10.1002/adhm.201700839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/10/2022]
Abstract
Platelets have a limited shelf life, due to the risk of bacterial contamination and platelet quality loss. Most platelet storage bags are made of a mixture of polyvinyl chloride with a plasticizer, denoted as pPVC. To improve biocompatibility of pPVC with platelets and to inhibit bacterial biofilm formation, an antifouling polymer coating is developed using mussel-inspired chemistry. A copolymer of N,N-dimethylacrylamide and N-(3-aminopropyl)methacrylamide hydrochloride is synthesized and coupled with catechol groups, named DA51-cat. Under mild aqueous conditions, pPVC is first equilibrated with an anchoring polydopamine layer, followed by a DA51-cat layer. Measurements show this coating decreases fibrinogen adsorption to 5% of the control surfaces. One-step coating with DA51-cat does not coat pPVC efficiently although it is sufficient for coating silicon wafers and gold substrates. The dual layer coating on platelet bags resists bacterial biofilm formation and considerably decreases platelet adhesion. A cationic antimicrobial peptide, E6, is conjugated to DA51-cat then coated on silicon wafers and introduces bactericidal activity to these surfaces. Time-of-flight second ion-mass spectroscopy is successfully applied to characterize these surfaces. pPVC is widely used in medical devices; this method provides an approach to controlling biofouling and bacterial growth on it without elaborate surface modification procedures.
Collapse
Affiliation(s)
- Narges Hadjesfandiari
- Center for Blood Research; University of British Columbia; 2350 Health Sciences Mall Vancouver V6T 1Z3 Canada
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Jayachandran N. Kizhakkedathu
- Center for Blood Research; University of British Columbia; 2350 Health Sciences Mall Vancouver V6T 1Z3 Canada
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver V6T 2B5 Canada
| | - Rainer Haag
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Donald E. Brooks
- Center for Blood Research; University of British Columbia; 2350 Health Sciences Mall Vancouver V6T 1Z3 Canada
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver V6T 2B5 Canada
| |
Collapse
|
18
|
Sousa MP, Mano JF, d’Ischia M, Ruiz-Molina D. Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering. Biomimetics (Basel) 2017; 2:19. [PMID: 30842970 PMCID: PMC6352653 DOI: 10.3390/biomimetics2040019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Mussels are marine organisms that have been mimicked due to their exceptional adhesive properties to all kind of surfaces, including rocks, under wet conditions. The proteins present on the mussel's foot contain 3,4-dihydroxy-l-alanine (DOPA), an amino acid from the catechol family that has been reported by their adhesive character. Therefore, we synthesized a mussel-inspired conjugated polymer, modifying the backbone of hyaluronic acid with dopamine by carbodiimide chemistry. Ultraviolet-visible (UV-vis) spectroscopy and nuclear magnetic resonance (NMR) techniques confirmed the success of this modification. Different techniques have been reported to produce two-dimensional (2D) or three-dimensional (3D) systems capable to support cells and tissue regeneration; among others, multilayer systems allow the construction of hierarchical structures from nano- to macroscales. In this study, the layer-by-layer (LbL) technique was used to produce freestanding multilayer membranes made uniquely of chitosan and dopamine-modified hyaluronic acid (HA-DN). The electrostatic interactions were found to be the main forces involved in the film construction. The surface morphology, chemistry, and mechanical properties of the freestanding membranes were characterized, confirming the enhancement of the adhesive properties in the presence of HA-DN. The MC3T3-E1 cell line was cultured on the surface of the membranes, demonstrating the potential of these freestanding multilayer systems to be used for bone tissue engineering.
Collapse
Affiliation(s)
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | | | | |
Collapse
|
19
|
Jeong Y, Kim KA, Kang SM. Effect of Catechol Content in Catechol-Conjugated Dextrans on Antiplatelet Performance. Polymers (Basel) 2017; 9:polym9080376. [PMID: 30971052 PMCID: PMC6418717 DOI: 10.3390/polym9080376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 11/16/2022] Open
Abstract
The surface coating of solid substrates using dextrans has gained a great deal of attention, because dextran-coated surfaces show excellent anti-fouling property as well as biocompatibility behavior. Much effort has been made to develop efficient methods for grafting dextrans on solid surfaces. This led to the development of catechol-conjugated dextrans (Dex-C) which can adhere to a number of solid surfaces, inspired by the underwater adhesion behavior of marine mussels. The present study is a systematic investigation of the characteristics of surface coatings developed with Dex-C. Various Dex-C with different catechol contents were synthesized and used as a surface coating material. The effect of catechol content on surface coating and antiplatelet performance was investigated.
Collapse
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | - Kwang-A Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| |
Collapse
|
20
|
Hoque J, Haldar J. Direct Synthesis of Dextran-Based Antibacterial Hydrogels for Extended Release of Biocides and Eradication of Topical Biofilms. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15975-15985. [PMID: 28422484 DOI: 10.1021/acsami.7b03208] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cationic small molecular biocides have been developed as promising antibiofilm agents because of their tunability in chemical structures and their ability to disrupt established biofilms. However, the impact of biocides in antibiofilm treatment is largely limited due to the lack of an effective delivery system that can ensure sustained release of biocides at the target site. Herein we report a biocide-encapsulated antibacterial and antibiofilm hydrogel that acts as an efficient delivery vehicle for the biocide and eradicates matured bacterial biofilm. The hydrogels are prepared using dextran methacrylate (Dex-MA), a biocompatible and photopolymerizable polymer, and a nontoxic cationic biocide with two cationic charges, two nonpeptidic amide bonds, and optimized amphiphilicity, which is capable of eradicating established bacterial biofilms. The gels, prepared via direct loading of the biocide and with highly controllable amounts, display 100% activity against both drug-sensitive and drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Importantly, the gels are shown to release the biocide and kill bacteria for an extended period of time (until day 5). When being treated with the established bacterial biofilms, the released biocide from the gel is shown to completely eradicate establishedS. aureus, Escherichia coli, and MRSA biofilms, the most common biofilm forming bacteria that cause severe infections (e.g., skin infections, urinary tract infections, etc.) in humans. Moreover, the gels were shown to annihilate preformed MRSA biofilm with >99.99% bacterial reduction under in vitro and in vivo conditions in a superficial MRSA infection model in mice. Notably, when tested, excellent skin compatibility is observed for these materials in various animal models such as a rat model of acute dermal toxicity, guinea pig model of skin sensitization, and rabbit model of skin irritation. The biocompatible antibacterial and antibiofilm hydrogels developed herein thus might be useful in treating bacterial biofilm associated infections, especially topical infections.
Collapse
Affiliation(s)
- Jiaul Hoque
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur,Bengaluru 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur,Bengaluru 560064, India
| |
Collapse
|
21
|
Kord Forooshani P, Lee BP. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2017; 55:9-33. [PMID: 27917020 PMCID: PMC5132118 DOI: 10.1002/pola.28368] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022]
Abstract
Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 9-33.
Collapse
Affiliation(s)
- Pegah Kord Forooshani
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMichigan49931
| | - Bruce P. Lee
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMichigan49931
| |
Collapse
|
22
|
Biofunctionalization via flow shear stress resistant adhesive polysaccharide, hyaluronic acid-catechol, for enhanced in vitro endothelialization. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ryu JH, Hong S, Lee H. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review. Acta Biomater 2015; 27:101-115. [PMID: 26318801 DOI: 10.1016/j.actbio.2015.08.043] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/02/2015] [Accepted: 08/26/2015] [Indexed: 01/17/2023]
Abstract
The development of adhesive materials, such as cyanoacrylate derivatives, fibrin glues, and gelatin-based adhesives, has been an emerging topic in biomaterial science because of the many uses of these materials, including in wound healing patches, tissue sealants, and hemostatic materials. However, most bio-adhesives exhibit poor adhesion to tissue and related surfaces due to the presence of body fluid. For a decade, studies have aimed at addressing this issue by developing wet-resistant adhesives. Mussels demonstrate robust wet-resistant adhesion despite the ceaseless waves at seashores, and mussel adhesive proteins play a key role in this adhesion. Adhesive proteins located at the distal end (i.e., those that directly contact surfaces) are composed of nearly 60% of amino acids called 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine, which contain side chains of catechol, primary amines, and secondary amines, respectively. Inspired by the abundant catecholamine in mussel adhesive proteins, researchers have developed various types of polymeric mimics, such as polyethylenimine-catechol, chitosan-catechol, and other related catecholic polymers. Among them, chitosan-catechol is a promising adhesive polymer for biomedical applications. The conjugation of catechol onto chitosan dramatically increases its solubility from zero to nearly 60mg/mL (i.e., 6% w/v) in pH 7 aqueous solutions. The enhanced solubility maximizes the ability of catecholamine to behave similar to mussel adhesive proteins. Chitosan-catechol is biocompatible and exhibits excellent hemostatic ability and tissue adhesion, and thus, chitosan-catechol will be widely used in a variety of medical settings in the future. This review focuses on the various aspects of chitosan-catechol, including its (1) preparation methods, (2) physicochemical properties, and (3) current applications.
Collapse
|
24
|
Liu Y, Chang CP, Sun T. Dopamine-assisted deposition of dextran for nonfouling applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3118-3126. [PMID: 24588325 DOI: 10.1021/la500006e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nonfouling surfaces are essential for many biomedical applications, such as diagnostic biosensors and blood- or tissue-contacting implants. In this study, we demonstrate a simple one-step method to introduce dextran onto various substrates based on dopamine polymerization. It has been shown for the first time that dextran molecules could be incorporated into a dopamine polymerization product via mixing dextran with dopamine in a slightly alkaline solution. The codeposited film was characterized by X-ray photoelectron spectroscopy (XPS), the water contact angle, ellipsometry, and atomic force microscopy (AFM). Results reveal that it is possible to control the thickness and surface roughness via the deposition time and deposition repeat cycles. Furthermore, quartz crystal microbalance (QCM) measurements show that the dextran-modified surface inhibits protein adhesion. In addition, cell attachment has been significantly inhibited on dextran-modified surfaces even after exposure to water for as long as 2 months. The described dopamine-assisted dextran modification represents a simple and universal method for nonfouling surface preparation and can be potentially applied to improve the performance of various medical devices and materials.
Collapse
Affiliation(s)
- Yunxiao Liu
- Miniaturized Medical Device Program and ‡Bio-Electronic Program, Institute of Microelectronic, A* STAR (Agency for Science, Technology and Research) , 11 Science Park Road, Science Park II, Singapore 117685
| | | | | |
Collapse
|