1
|
Alsmael MA, Al-Khafaji AM. Evaluation of High-Performance Polyether Ether Ketone Polymer Treated with Piranha Solution and Epigallocatechin-3-Gallate Coating. BIOMED RESEARCH INTERNATIONAL 2024; 2024:1741539. [PMID: 38628498 PMCID: PMC11019569 DOI: 10.1155/2024/1741539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Background Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.
Collapse
Affiliation(s)
- Mohammed A. Alsmael
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
2
|
Goh M, Min K, Kim YH, Tae G. Chemically heparinized PEEK via a green method to immobilize bone morphogenetic protein-2 (BMP-2) for enhanced osteogenic activity. RSC Adv 2024; 14:1866-1874. [PMID: 38192324 PMCID: PMC10772708 DOI: 10.1039/d3ra07660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/25/2023] [Indexed: 01/10/2024] Open
Abstract
Osseointegration remains one of the major challenges in the success of bone-related implants. Recently, polyetheretherketone (PEEK) has emerged as an alternative material in orthopedic and dental applications due to its bone-mimicking mechanical properties. However, its bioinertness resulting in poor osseointegration has limited its potential application. So, the surface modification of PEEK with bone morphogenetic protein-2 (BMP-2) can be a potential approach for improving osseointegration. In this study, we proposed the chemical modification of heparin onto PEEK through an environmentally benign method to exploit the BMP-2 binding affinity of heparin. The heparin was successfully functionalized on the PEEK surface via a combination of ozone and UV treatment without using organic solvents or chemicals. Furthermore, BMP-2 was efficiently immobilized on PEEK and exhibited a sustained release of BMP-2 compared to the pristine PEEK with enhancement of bioactivity in terms of proliferation as well as osteogenic differentiation of MG-63. The significant synergistic effect of BMP-2 and heparin grafting on osteogenic differentiation of MG-63 was observed. Overall, we demonstrated a relatively safe method where no harsh chemical reagent or organic solvent was involved in the process of heparin grafting onto PEEK. The BMP-2 loaded, heparin-grafted PEEK could serve as a potential platform for osseointegration improvement of PEEK-based bone implants.
Collapse
Affiliation(s)
- MeeiChyn Goh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Young Ha Kim
- Korea Institute of Science and Technology Hwarang-ro 14-gil 5, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| |
Collapse
|
3
|
Besirske P, Menichetti A, Montalti M, García-Ruiz JM, Winterhalder M, Boneberg J, Cölfen H. Localized Crystallization of Calcium Phosphates by Light-Induced Processes. Chemistry 2023; 29:e202302327. [PMID: 37665635 DOI: 10.1002/chem.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Medical treatment options for bones and teeth can be significantly enhanced by taking control over the crystallization of biomaterials like hydroxyapatite in the healing process. Light-induced techniques are particularly interesting for this approach as they offer tremendous accuracy in spatial resolution. However, in the field of calcium phosphates, light-induced crystallization has not been investigated so far. Here, proof of principle is established to successfully induce carbonate-hydroxyapatite precipitation by light irradiation. Phosphoric acid is released by a photolabile molecule exclusively after irradiation, combining with calcium ions to form a calcium phosphate in the crystallization medium. 4-Nitrophenylphosphate (4NPP) is established as the photolabile molecule and the system is optimized and fully characterized. A calcium phosphate is crystallized exclusively by irradiation in aqueous solution and identified as carbonate apatite. Control over the localization and stabilization of the carbonate apatite is achieved by a pulsed laser, triggering precipitation in calcium and 4NPP-containing gel matrices. The results of this communication open up a wide range of new opportunities, both in the field of chemistry for more sophisticated reaction control in localized crystallization processes and in the field of medicine for enhanced treatment of calcium phosphate containing biomaterials.
Collapse
Affiliation(s)
- Patricia Besirske
- Physical Chemistry, University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Arianna Menichetti
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marco Montalti
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos Instituto, Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. De las Palmeras 4, 18151, Armilla, Granada, Spain
| | - Martin Winterhalder
- Physical Chemistry, University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Johannes Boneberg
- Mesoscopic Systems, Department of Physics, University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| |
Collapse
|
4
|
Fernández-Penas R, Verdugo-Escamilla C, Triunfo C, Gärtner S, D'Urso A, Oltolina F, Follenzi A, Maoloni G, Cölfen H, Falini G, Gómez-Morales J. A sustainable one-pot method to transform seashell waste calcium carbonate to osteoinductive hydroxyapatite micro-nanoparticles. J Mater Chem B 2023; 11:7766-7777. [PMID: 37476854 DOI: 10.1039/d3tb00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
We have developed a straightforward, one-pot, low-temperature hydrothermal method to transform oyster shell waste particles (bCCP) from the species Crassostrea gigas (Mg-calcite, 5 wt% Mg) into hydroxyapatite (HA) micro/nanoparticles. The influence of the P reagents (H3PO4, KH2PO4, and K2HPO4), P/bCCP molar ratios (0.24, 0.6, and 0.96), digestion temperatures (25-200 °C), and digestion times (1 week-2 months) on the transformation process was thoroughly investigated. At 1 week, the minimum temperature to yield the full transformation significantly reduced from 160 °C to 120 °C when using K2HPO4 instead of KH2PO4 at a P/bCCP ratio of 0.6, and even to 80 °C at a P/bCCP ratio of 0.96. The transformation took place via a dissolution-reprecipitation mechanism driven by the favorable balance between HA precipitation and bCCP dissolution, due to the lower solubility product of HA than that of calcite at any of the tested temperatures. Both the bCCP and the derived HA particles were cytocompatible for MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells, and additionally, they promoted the osteogenic differentiation of m17.ASC, especially the HA particles. Because of their physicochemical features and biological compatibility, both particles could be useful osteoinductive platforms for translational applications in bone tissue engineering.
Collapse
Affiliation(s)
- Raquel Fernández-Penas
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras, no 4, 18100 Armilla, Spain.
| | | | - Carla Triunfo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Italy
| | - Stefanie Gärtner
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, D-78457 Konstanz, Germany
| | - Annarita D'Urso
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, A. Avogadro" Via Solaroli, 17, 28100 Novara, Italy
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, A. Avogadro" Via Solaroli, 17, 28100 Novara, Italy
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, A. Avogadro" Via Solaroli, 17, 28100 Novara, Italy
| | - Gabriele Maoloni
- Plant Ascoli Piceno, Finproject S.p.A., 3100 Ascoli Piceno, Italy
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, D-78457 Konstanz, Germany
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras, no 4, 18100 Armilla, Spain.
| |
Collapse
|
5
|
Nishio F, Morita K, Doi K, Kato M, Abekura H, Yamaoka H, Kakimoto N, Tsuga K. Radiopaque properties of polyetheretherketone crown at laboratory study. J Oral Biosci 2023; 65:253-258. [PMID: 37230464 DOI: 10.1016/j.job.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVES There have been no reports on the radiopaque properties of new polyetheretherketone (PEEK) crowns for locating crowns during accidental ingestion or aspiration and detection of secondary caries, which is essential information for clinical application. This study aimed to investigate whether the radiopaque properties of PEEK crowns could be used to identify the site of accidental ingestion or aspiration and detect secondary caries. METHODS Four types of crowns were fabricated: three non-metal crowns (PEEK, hybrid resin, and zirconia) and one full metal cast crown (gold-silver-palladium alloy). Initially, the images for these crowns were compared using intraoral radiography, chest radiography, cone-beam computed tomography (CBCT), and multi-detector computed tomography (MDCT); computed tomography (CT) values were calculated. Subsequently, the images for the crowns placed on the secondary caries model with two artificial cavities were compared using intraoral radiography. RESULTS The PEEK crowns displayed the lowest radiopaque properties on radiography and very few artifacts were observed on CBCT and MDCT. On the other hand, the CT values of the PEEK crowns were a little lower than those of the hybrid resin crowns and considerably lower than the zirconia and full metal cast crowns. The cavity could be detected in the PEEK crown-placed secondary caries model through intraoral radiography. CONCLUSIONS This simulated study of radiopaque properties with four types of crowns suggested that a radiographic imaging system can be used to identify the site of accidental ingestion and aspiration of PEEK crowns and to detect secondary caries of the abutment tooth within a PEEK crown.
Collapse
Affiliation(s)
- Fumiko Nishio
- Department of Fixed Prosthetic Dentistry, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Morita
- Department of Advanced Prosthodontics, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kazuya Doi
- Department of Advanced Prosthodontics, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masamichi Kato
- Department of Advanced Prosthodontics, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Abekura
- Department of Advanced Prosthodontics, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidehisa Yamaoka
- Section of Imaging Diagnosis, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Naoya Kakimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Khallaf RM, Emam AN, Mostafa AA, Nassif MS, Hussein TS. Strength and bioactivity of PEEK composites containing multiwalled carbon nanotubes and bioactive glass. J Mech Behav Biomed Mater 2023; 144:105964. [PMID: 37336042 DOI: 10.1016/j.jmbbm.2023.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Polyetheretherketone (PEEK) polymer is a widely accepted implantable biomaterial in the biomedical field. However, PEEK has a low elastic modulus (E-modulus) as well as a bio-inert nature which is not conductive to rapid bone cell attachment, hence, producing delayed or weak bone-implant integration. Multiwalled carbon nanotubes (MWCNTs) represent one of the strongest known materials that could be added to a polymer to improve its mechanical properties. Bioactive glasses (BGs) can form hydroxyapatite deposits on their surfaces and form a tight bond with the bone, thus, their incorporation into the PEEK matrix may improve its bioactivity. METHODS Eight groups were formulated according to the type and percentage of modification of PEEK by MWCNTs and BGs. Group 1: Pure PEEK (P), Group 2: P + 3% MWCNTs (PC3), Group 3: P + 5% MWCNTs (PC5), Group 4: P + 5% BGs (PG5), Group 5: P + 10% BGs (PG10), Group 6: P + 3% MWCNTs + 5% BGs (PC3G5), Group 7: P + 3% MWCNTs + 10% BGs (PC3G10), and Group 8: P + 5% MWCNTs + 5% BGs (PC5G5). Characterization of the vacuum-pressed PEEK and PEEK composite specimens was done using FE-SEM, EDS, FT-IR and TF-XRD. Three-point load test was done to obtain the flexural strength (F.S) and the E-modulus of the specimens. Wettability was determined by measuring the contact angle with distilled water. In-vitro bioactivity was determined after immersion of specimens in simulated body fluid (SBF). Moreover, the effect of the specimens on osteoblastic cell viability was evaluated. RESULTS Three-point load test results have shown an improvement in both F.S. and E-modulus for groups PC5, PC3G5 and PC5G5. The lowest contact angle was obtained for group PC5G5 followed by the PC3G10 group. All specimens containing BGs showed the formation of hydroxyapatite-like deposits after their immersion in SBF, as well as an improvement in osteoblastic cell viability compared to PEEK. CONCLUSION PC3G10, PC3G5 and PG10, groups are promising for the fabrication of patient-specific implants that can be used in low-stress-bearing areas.
Collapse
Affiliation(s)
- Reem Magdy Khallaf
- Ain-Shams University, Department of Dental Biomaterials, 11566, Cairo, Egypt.
| | - Ahmed N Emam
- Refractories, Ceramics & Building Materials, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC), 12622, Dokki, Cairo, Egypt; Nanomedicine & Tissue Engineering Research Lab., MRCE, National Research Centre (NRC), 12622, Dokki, Cairo, Egypt
| | - Amany A Mostafa
- Refractories, Ceramics & Building Materials, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC), 12622, Dokki, Cairo, Egypt; Nanomedicine & Tissue Engineering Research Lab., MRCE, National Research Centre (NRC), 12622, Dokki, Cairo, Egypt.
| | | | - Tarek Salah Hussein
- Ain-Shams University, Department of Dental Biomaterials, 11566, Cairo, Egypt
| |
Collapse
|
7
|
Feng Y, Wu D, Knaus J, Keßler S, Ni B, Chen Z, Avaro J, Xiong R, Cölfen H, Wang Z. A Bioinspired Gelatin-Amorphous Calcium Phosphate Coating on Titanium Implant for Bone Regeneration. Adv Healthc Mater 2023; 12:e2203411. [PMID: 36944062 PMCID: PMC11468875 DOI: 10.1002/adhm.202203411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Biocompatible and bio-active coatings can enhance and accelerate osseointegration via chemical binding onto substrates. Amorphous calcium phosphate (ACP) has been shown as a precursor to achieve mineralization in vertebrates and invertebrates under the control of biological macromolecules. This work presents a simple bioinspired Gelatin-CaPO4 (Gel-CaP) composite coating on titanium surfaces to improve osseointegration. The covalently bound Gel-CaP composite is characterized as an ACP-Gel compound via SEM, FT-IR, XRD, and HR-TEM. The amorphous compound coating exhibits a nanometer range thickness and improved elastic modulus, good wettability, and nanometric roughness. The amount of grafted carboxyl groups and theoretical thickness of the coatings are also investigated. More importantly, MC3T3 cells, an osteoblast cell line, show excellent cell proliferation and adhesion on the Gel-CaP coating. The level of osteogenic genes is considerably upregulated on Ti with Gel-CaP coatings compared to uncoated Ti, demonstrating that Gel-CaP coatings possess a unique osteogenic ability. To conclude, this work offers a new perspective on functional, bioactive titanium coatings, and Gel-CaP composites can be a low-cost and promising candidate in bone regeneration.
Collapse
Affiliation(s)
- Yanhuizhi Feng
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Di Wu
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
| | - Jennifer Knaus
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Sascha Keßler
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bing Ni
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - ZongKun Chen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Johnathan Avaro
- EMPAMaterial and Science TechnologyLerchenfeldstrasse 59014St. GallenSwitzerland
| | - Rui Xiong
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Helmut Cölfen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Zuolin Wang
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
| |
Collapse
|
8
|
Chen S, Liu D, Fu L, Ni B, Chen Z, Knaus J, Sturm EV, Wang B, Haugen HJ, Yan H, Cölfen H, Li B. Formation of Amorphous Iron-Calcium Phosphate with High Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301422. [PMID: 37232047 DOI: 10.1002/adma.202301422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Amorphous iron-calcium phosphate (Fe-ACP) plays a vital role in the mechanical properties of teeth of some rodents, which are very hard, but its formation process and synthetic route remain unknown. Here, the synthesis and characterization of an iron-bearing amorphous calcium phosphate in the presence of ammonium iron citrate (AIC) are reported. The iron is distributed homogeneously on the nanometer scale in the resulting particles. The prepared Fe-ACP particles can be highly stable in aqueous media, including water, simulated body fluid, and acetate buffer solution (pH 4). In vitro study demonstrates that these particles have good biocompatibility and osteogenic properties. Subsequently, Spark Plasma Sintering (SPS) is utilized to consolidate the initial Fe-ACP powders. The results show that the hardness of the ceramics increases with the increase of iron content, but an excess of iron leads to a rapid decline in hardness. Calcium iron phosphate ceramics with a hardness of 4 GPa can be achieved, which is higher than that of human enamel. Furthermore, the ceramics composed of iron-calcium phosphates show enhanced acid resistance. This study provides a novel route to prepare Fe-ACP, and presents the potential role of Fe-ACP in biomineralization and as starting material to fabricate acid-resistant high-performance bioceramics.
Collapse
Affiliation(s)
- Song Chen
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Le Fu
- School of Materials Science and Engineering, Central South University, Changsha, 410017, P. R. China
| | - Bing Ni
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Zongkun Chen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jennifer Knaus
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Elena V Sturm
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Section Crystallography, Department of Geo- and Environmental Sciences, Ludwigs-Maximilians-University Munich, Theresienstr. 41, 80333, Munich, Germany
| | - Bohan Wang
- School of Materials Science and Engineering, Central South University, Changsha, 410017, P. R. China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, Oslo, 0376, Norway
| | - Hongji Yan
- Department of Medical Cell Biology, Uppsala University, Uppsala, 752 36, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215006, P.R.China
- Department of Orthopaedic Surgery, The Affiliated Haian Hospital of Nantong University, Haian,Nantong, Jiangsu, 226600, P.R.China
| |
Collapse
|
9
|
Chen T, Jinno Y, Atsuta I, Tsuchiya A, Stocchero M, Bressan E, Ayukawa Y. Current surface modification strategies to improve the binding efficiency of emerging biomaterial polyetheretherketone (PEEK) with bone and soft tissue: A literature review. J Prosthodont Res 2023; 67:337-347. [PMID: 36372438 DOI: 10.2186/jpr.jpr_d_22_00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE The aim of this study was to review the literature on current surface modification strategies used to improve the binding efficiency of an emerging biological material, polyetheretherketone (PEEK), with bone and soft tissues. STUDY SELECTION This review was based on articles retrieved from PubMed, Google Scholar, Web of Science, and ScienceDirect databases. The main keywords used during the search were "polyetheretherketone (PEEK)," "implant," "surface modification," "biomaterials," "bone," "osseointegration," and "soft tissue." RESULTS The suitability of PEEK surface modification strategies has been critically analyzed and summarized here. Many cell and in vivo experiments in small animals have shown that the use of advanced modification technologies with appropriate surface modification strategies can effectively improve the surface inertness of PEEK, thereby improving its binding efficiency with bone and soft tissues. CONCLUSIONS Surface modifications of PEEK have revealed new possibilities for implant treatment; however, most results are based on in vitro or short-term in vivo evaluations in small animals. To achieve a broad application of PEEK in the field of oral implantology, more in vivo experiments and long-term clinical evaluations are needed to investigate the effects of various surface modifications on the tissue integration ability of PEEK to develop an ideal implant material.
Collapse
Affiliation(s)
- Tianjie Chen
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yohei Jinno
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michele Stocchero
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Eriberto Bressan
- Department of Neurosciences, Section of Dentistry, University of Padova, Padova, Italy
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Zol SM, Alauddin MS, Said Z, Mohd Ghazali MI, Hao-Ern L, Mohd Farid DA, Zahari NAH, Al-Khadim AHA, Abdul Aziz AH. Description of Poly(aryl-ether-ketone) Materials (PAEKs), Polyetheretherketone (PEEK) and Polyetherketoneketone (PEKK) for Application as a Dental Material: A Materials Science Review. Polymers (Basel) 2023; 15:polym15092170. [PMID: 37177316 PMCID: PMC10180673 DOI: 10.3390/polym15092170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Poly(aryl-ether-ketone) materials (PAEKs), a class of high-performance polymers comprised of polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), have attracted interest in standard dental procedures due to their inherent characteristics in terms of mechanical and biological properties. Polyetheretherketone (PEEK) is a restorative dental material widely used for prosthetic frameworks due to its superior physical, mechanical, aesthetic, and handling features. Meanwhile, polyetherketoneketone (PEKK) is a semi-crystalline thermoplastic embraced in the additive manufacturing market. In the present review study, a new way to fabricate high-performance polymers, particularly PEEK and PEKK, is demonstrated using additive manufacturing digital dental technology, or 3-dimensional (3D) printing. The focus in this literature review will encompass an investigation of the chemical, mechanical, and biological properties of HPPs, particularly PEEK and PEKK, along with their application particularly in dentistry. High-performance polymers have gained popularity in denture prosthesis in advance dentistry due to their flexibility in terms of manufacturing and the growing interest in utilizing additive manufacturing in denture fabrication. Further, this review also explores the literature regarding the properties of high-performance polymers (HPP) compared to previous reported polymers in terms of the dental material along with the current advancement of the digital designing and manufacturing.
Collapse
Affiliation(s)
- Syazwani Mohamad Zol
- Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Muhammad Syafiq Alauddin
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Zulfahmi Said
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Mohd Ifwat Mohd Ghazali
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Lee Hao-Ern
- Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | | | | | - Aws Hashim Ali Al-Khadim
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Azrul Hafiz Abdul Aziz
- Department of Paediatrics Dentistry and Orthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| |
Collapse
|
11
|
Wang X, Ma N, Feng L, Shen M, Zhou Y, Zhang X, Huang R, Zhou L, Ji S, Lou Y, Zhu Z. Fabrication of bFGF/polydopamine-loaded PEEK implants for improving soft tissue integration by upregulating Wnt/β-catenin signaling. Heliyon 2023; 9:e14800. [PMID: 37012909 PMCID: PMC10066536 DOI: 10.1016/j.heliyon.2023.e14800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
The difficulties associated with polyetheretherketone (PEEK) implants and soft tissue integration for craniomaxillofacial bone repair have led to a series of complications that limit the clinical benefits. In this study, 3D printed multi-stage microporous PEEK implants coated with bFGF via polydopamine were fabricated to enhance PEEK implant-soft tissue integration. Multistage microporous PEEK scaffolds prepared by sulfonation of concentrated sulfuric acid were coated with polydopamine, and then used as templates for electrophoretic deposition of bFGF bioactive factors. Achieving polydopamine and bFGF sustained release, the composite PEEK scaffolds possessed good mechanical properties, hydrophilicity, protein adhesion properties. The in vitro results indicated that bFGF/polydopamine-loaded PEEK exhibited good biocompatibility to rabbit embryonic fibroblasts (REF) by promoting cell proliferation, adhesion, and migration. Ribonucleic acid sequencing (RNA-seq) revealed that bFGF/polydopamine-loaded PEEK implants significantly upregulated the expression of genes and proteins associated with soft tissue integration and activated Wnt/β-catenin signaling in biological processes, but related expression of genes and proteins was significantly downregulated when the Wnt/β-catenin signaling was inhibited. Furthermore, in vivo bFGF/polydopamine-loaded PEEK implants exhibited excellent performance in improving the growth and adhesion of the surrounding soft tissue. In summary, bFGF/polydopamine-loaded PEEK implants possess soft tissue integration properties by activating the Wnt/β-catenin signaling, which have a potential translational clinical application in the future.
Collapse
|
12
|
Wang J, Yu W, Shi R, Yang S, Zhang J, Han X, Zhou Z, Gao W, Li Y, Zhao J. Osseointegration behavior of carbon fiber reinforced polyetheretherketone composites modified with amino groups: An in vivo study. J Biomed Mater Res B Appl Biomater 2023; 111:505-512. [PMID: 36191250 DOI: 10.1002/jbm.b.35167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023]
Abstract
Polyetheretherketone (PEEK) has become increasingly popular in dentistry and orthopedics due to its excellent chemical stability, reliable biosafety, and low elastic modulus. However, PEEK's biomechanical strength and bioactivity are limited and need to be increased as an implant material. The previous study in vitro has shown that the amino-functionalized carbon fiber reinforced PEEK (A-30%-CPEEK) possessed enhanced mechanical property and bioactivity. This study aims to evaluate the effect of amino groups modification on the osseointegration behavior of carbon fiber reinforced PEEK (30%-CPEEK) in rabbits. Herein, 30%-CPEEK and A-30%-CPEEK implant discs were implanted in rabbit skulls for 5 weeks, with pure titanium implants serving as a control. The bone-forming ability and osseointegration in vivo were systematically investigated by micro-computed tomography analysis, scanning electron microscope observation, and histological evaluation. Our results showed that all detection parameters were significantly different between the A-30%-CPEEK and 30%-CPEEK groups, favoring those in the A-30%-CPEEK, whose appraisal parameters were equal to or better than pure titanium. Therefore, this study supported the importance of amino groups in facilitating the new bone formation and bone-implant integration, suggesting that A-30%-CPEEK with enhanced osseointegration will be a promising material for dental or orthopedic implants.
Collapse
Affiliation(s)
- Junyan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ruining Shi
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
13
|
Xin H, Shi Q, Ning X, Chen Y, Jia X, Zhang Z, Zhu S, Li Y, Liu F, Kong L. Biomimetic Mineralized Fiber Bundle-Inspired Scaffolding Surface on Polyetheretherketone Implants Promotes Osseointegration. Macromol Biosci 2023; 23:e2200436. [PMID: 36617598 DOI: 10.1002/mabi.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/11/2022] [Indexed: 01/10/2023]
Abstract
The stress shielding effect caused by traditional metal implants is circumvented by using polyetheretherketone (PEEK), due to its excellent mechanical properties; however, the biologically inert nature of PEEK limits its application. Endowing PEEK with biological activity to promote osseointegration would increase its applicability for bone replacement implants. A biomimetic study is performed, inspired by mineralized collagen fiber bundles that contact bone marrow mesenchymal stem cells (BMMSCs) on the native trabecular bone surface. The PEEK surface (P) is first sulfonated with sulfuric acid to form a porous network structure (sP). The surface is then encapsulated with amorphous hydroxyapatite (HA) by magnetron sputtering to form a biomimetic scaffold that resembles mineralized collagen fiber bundles (sPHA). Amorphous HA simulates the composition of osteogenic regions in vivo and exhibits strong biological activity. In vitro results show that more favorable cell adhesion and osteogenic differentiation can be attained with the novelsurface of sPHA than with SP. The results of in vivo experiments show that sPHA exhibits osteoinductive and osteoconductive activity and facilitates bone formation and osseointegration. Therefore, the surface modification strategy can significantly improve the biological activity of PEEK, facilitate effective osseointegration, and inspire further bionic modification of other inert polymers similar to PEEK.
Collapse
Affiliation(s)
- He Xin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianwen Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yicheng Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuelian Jia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Zhouyang Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Simin Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Yunpeng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
14
|
Song X, Shi D, Li W, Qin H, Han X. Fabrication and properties of interweaved poly(ether ether ketone) composite scaffolds. Sci Rep 2022; 12:22193. [PMID: 36564487 PMCID: PMC9789044 DOI: 10.1038/s41598-022-26736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This paper interweaved scaffolds with poly(ether ether ketone) (PEEK) and poly(lactic acid)/Walnut shell/hydroxypatite (PLA/WS/HA) composites by using fused filament fabrication technology, although there was a huge difference in thermal property term between PLA and PEEK. In order to keep mechanical properties of PEEK scaffold and remedy the stress loss produced by pores, PLA/WS/HA composites were used to fill the pores with gradient form outside-in (0.4-0.8 mm, 0.6-1.0 mm, 0.8-1.2 mm and 1.6-2.0 mm). The thermal stability, tensile and compression properties, tensile fracture surface morphology, cytotoxicity and in vivo experiment were investigated. The results showed: the scaffolds were intact without any flashes and surface destruction, and kept a well thermal stability. Compared with the PEEK porous scaffolds, the tensile fracture stress and strain, compression yield stress and strain of interweaved scaffolds were dramatically enhanced by 24.1%, 438%, 359.1% and 921.2%, respectively, and they climbed to the climax at 8 wt% of WS. In vivo experiment showed that the degradation of PLA/WS/HA composites synchronized with the adhesion, proliferation and ingrowth of bone cells, keeping the stable biomechanical properties of interweaved scaffolds. Those experiments showed that interweaved PEEK-PLA/WS/HA scaffolds had the potential to be used as bone implant in tissue engineering.
Collapse
Affiliation(s)
- Xiaohui Song
- School of Electromechanical Engineering, Guilin University of Aerospace Technology, Guilin, 541004, China.
| | - Dengwen Shi
- Byd Precicion Manufacture Corporation Limited, Shenzhen, 518000, China
| | - Wenqiang Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huadong Qin
- School of Electromechanical Engineering, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Xingguo Han
- School of Electromechanical Engineering, Guilin University of Aerospace Technology, Guilin, 541004, China
| |
Collapse
|
15
|
Saravi B, Flohr A, Patzelt SB, Spies BC, Hazard D, Kohal RJ. Fatigue and Fracture Resistance Testing of Polyether Ether Ketone (PEEK) Implant Abutments in an Ex Vivo Chewing Simulator Model. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196927. [PMID: 36234281 PMCID: PMC9573129 DOI: 10.3390/ma15196927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 05/26/2023]
Abstract
Polyether ether ketone (PEEK) has been introduced into implant dentistry as a viable alternative to current implant abutment materials. However, data on its physico-mechanical properties are still scarce. The present study sought to shed light on this topic utilizing an ex vivo chewing simulator model. A total of 48 titanium two-piece implants were allocated into three groups (n = 16 per group): (1) implants with PEEK abutments and an internal butt-joint connection (PBJ), (2) implants with PEEK abutments and an internal conical implant-abutment connection (PC), and (3) implants with zirconia abutments and an internal butt-joint connection (ZA). All abutments were restored with a non-precious metal alloy crown mimicking the upper right central incisor. A dynamic chewing simulation of half (n = 8) of the specimens per group was performed with 5 × 106 cycles and a load of 49 N at a frequency of 1.7 Hz with thermocycling between 5 and 55 °C. The other eight specimens served as unloaded controls. Surface roughness, implant-abutment connection microgaps (IACMs), and the titanium base-abutment interface microgaps (TAIMs) in the loaded groups were evaluated. Finally, a quasi-static loading test was performed in a universal testing machine with all samples to evaluate fracture resistance. Overall, 23 samples survived the artificial chewing process. One abutment screw fracture was observed in the PC group. The ZA group showed higher surface roughness values than PEEK abutments. Furthermore, ZA revealed lower TAIM values compared to PEEK abutments. Similarly, ZA was associated with lower IACM values compared to PBJ. Fracture loads/bending moments were 1018 N/704 N cm for PBJ, 966 N/676 N cm for PC, and 738 N/508 N cm for ZA, with no significant differences compared to the unloaded references. Artificial loading did not significantly affect fracture resistance of the examined materials. PEEK abutments were associated with better load-bearing properties than zirconia abutments, although they showed higher microgap values. PEEK abutments could, therefore, be feasible alternatives to zirconia abutments based on the present ex vivo findings resembling 20 years of clinical service.
Collapse
Affiliation(s)
- Babak Saravi
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, University of Freiburg, Medical Center—University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Anselm Flohr
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center—University of Freiburg, Center for Dental Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Sebastian B. Patzelt
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center—University of Freiburg, Center for Dental Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
- Private Dental Clinic, Am Dorfplatz 3, 78658 Zimmern ob Rottweil, Germany
| | - Benedikt C. Spies
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center—University of Freiburg, Center for Dental Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Derek Hazard
- Institute of Medical Biometry and Medical Statistics, Faculty of Medicine, Medical Center—University of Freiburg, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Ralf J. Kohal
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center—University of Freiburg, Center for Dental Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| |
Collapse
|
16
|
Javaid S, Dey M, Matzke C, Gupta S. Synthesis and characterization of engineered
PEEK
‐based composites for enhanced tribological and mechanical performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sabah Javaid
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Maharshi Dey
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Caleb Matzke
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Surojit Gupta
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| |
Collapse
|
17
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
18
|
Yahya Öz, Yilmaz B, Evis Z. A Review on Nanocomposites with Graphene Based Fillers in Poly(ether ether ketone). POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Taymour N, Fahmy AE, Gepreel MAH, Kandil S, El-Fattah AA. Improved Mechanical Properties and Bioactivity of Silicate Based Bioceramics Reinforced Poly(ether-ether-ketone) Nanocomposites for Prosthetic Dental Implantology. Polymers (Basel) 2022; 14:polym14081632. [PMID: 35458382 PMCID: PMC9026494 DOI: 10.3390/polym14081632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Polyether-ether-ketone (PEEK) biomaterial has been increasingly employed for orthopedic, trauma, spinal, and dental implants due to its biocompatibility and in vivo stability. However, a lack of bioactivity and binding ability to natural bone tissue has significantly limited PEEK for many challenging dental implant applications. In this work, nanocomposites based on PEEK reinforced with bioactive silicate-based bioceramics (forsterite or bioglass) as nanofillers were prepared using high energy ball milling followed by melt blending and compression molding. The influence of nanofillers type and content (10, 20 and 30 wt.%) on the crystalline structure, morphology, surface roughness, hydrophilicity, microhardness, elastic compression modulus, and flexural strength of the nanocomposites was investigated. The scanning electron microscopy images of the nanocomposites with low nanofillers content showed a homogenous surface with uniform dispersion within the PEEK matrix with no agglomerates. All nanocomposites showed an increased surface roughness compared to pristine PEEK. It was found that the incorporation of 20 wt.% forsterite was the most effective in the nanocomposite formulation compared with bioglass-based nanocomposites; it has significantly improved the elastic modulus, flexural strength, and microhardness. In vitro bioactivity evaluation, which used biomimetic simulated body fluid indicated the ability of PEEK nanocomposites loaded with forsterite or bioglass nanofillers to precipitate calcium and phosphate bone minerals on its surface. These nanocomposites are expected to be used in long-term load-bearing implant applications and could be recommended as a promising alternative to titanium and zirconia when used as a dental implant material.
Collapse
Affiliation(s)
- Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Amal E. Fahmy
- Department of Dental Materials, Faculty of Dentistry, Alexandria University, Azarita, Alexandria 21526, Egypt;
| | - Mohamed Abdel Hady Gepreel
- Department of Materials Science and Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt;
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria 21526, Egypt;
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria 21526, Egypt;
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
- Correspondence: or
| |
Collapse
|
20
|
Qin S, Lu Z, Gan K, Qiao C, Li B, Chen T, Gao Y, Jiang L, Liu H. Construction of a
BMP
‐2 gene delivery system for polyetheretherketone bone implant material and its effect on bone formation in vitro. J Biomed Mater Res B Appl Biomater 2022; 110:2075-2088. [PMID: 35398972 DOI: 10.1002/jbm.b.35062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Qin
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Zhengkuan Lu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Kang Gan
- Department of Stomatology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Chunyan Qiao
- Department of Oral Pathology, Hospital of Stomatology Jilin University Changchun China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University Changchun China
| | - Tianjie Chen
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Yunbo Gao
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Lingling Jiang
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Hong Liu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| |
Collapse
|
21
|
Li M, Bai J, Tao H, Hao L, Yin W, Ren X, Gao A, Li N, Wang M, Fang S, Xu Y, Chen L, Yang H, Wang H, Pan G, Geng D. Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioact Mater 2022; 8:309-324. [PMID: 34541403 PMCID: PMC8427090 DOI: 10.1016/j.bioactmat.2021.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Polyetheretherketone (PEEK) has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance. However, its biological inertness, poor osteoinduction, and weak antibacterial activity make the clinical applications in a dilemma. Inspired by the mussel adhesion mechanism, here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins (Mfps)-mimic peptide with clickable azido terminal. The peptide enables mussel-like adhesion on PEEK biomaterial surfaces, leaving azido groups for the further steps of biofunctionalizations. In this study, antimicrobial peptide (AMP) and osteogenic growth peptide (OGP) were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair. Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios, an optimal PEEK surface was finally obtained in this research, which could long-term inhibit bacterial growth, stabilize bone homeostasis and facilitate interfacial bone regeneration. In a word, this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants, in particular, achieving rational integration of multiple biofunctions to match clinical requirements.
Collapse
Affiliation(s)
- Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Li Hao
- Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoxue Ren
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ning Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Shiyuan Fang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Liang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
22
|
Prosthetic Materials Used for Implant-Supported Restorations and Their Biochemical Oral Interactions: A Narrative Review. MATERIALS 2022; 15:ma15031016. [PMID: 35160962 PMCID: PMC8839238 DOI: 10.3390/ma15031016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to outline relevant elements regarding the biochemical interactions between prosthetic materials used for obtaining implant-supported restorations and the oral environment. Implant-supported prostheses have seen unprecedented development in recent years, benefiting from the emergence of both new prosthetic materials (with increased biocompatibility and very good mechanical behavior), and computerized manufacturing technologies, which offer predictability, accuracy, and reproducibility. On the other hand, the quality of conventional materials for obtaining implant-supported prostheses is acknowledged, as they have already proven their clinical performance. The properties of PMMA (poly (methyl methacrylate))-which is a representative interim material frequently used in prosthodontics-and of PEEK (polyether ether ketone)-a biomaterial which is placed on the border between interim and final prosthetic use-are highlighted in order to illustrate the complex way these materials interact with the oral environment. In regard to definitive prosthetic materials used for obtaining implant-supported prostheses, emphasis is placed on zirconia-based ceramics. Zirconia exhibits several distinctive advantages (excellent aesthetics, good mechanical behavior, biocompatibility), through which its clinical applicability has become increasingly wide. Zirconia's interaction with the oral environment (fibroblasts, osteoblasts, dental pulp cells, macrophages) is presented in a relevant synthesis, thus revealing its good biocompatibility.
Collapse
|
23
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Kumar A. Self Assemblies of Poly(ether ether ketone) Block Copolymers for Biomedical Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202102238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Avneesh Kumar
- International Center for Materials Science JNCASR, Jakkur Bangalore 560064
- Center for Environmentally Friendly Materials 27-1 Muroran Institute of Technology Muroran Hokkaido 050-8585 Japan
| |
Collapse
|
25
|
Peng TY, Shih YH, Hsia SM, Wang TH, Li PJ, Lin DJ, Sun KT, Chiu KC, Shieh TM. In Vitro Assessment of the Cell Metabolic Activity, Cytotoxicity, Cell Attachment, and Inflammatory Reaction of Human Oral Fibroblasts on Polyetheretherketone (PEEK) Implant-Abutment. Polymers (Basel) 2021; 13:polym13172995. [PMID: 34503035 PMCID: PMC8433877 DOI: 10.3390/polym13172995] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this research is to compare the cytotoxicity of polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) with conventional dental implant–abutment materials, namely titanium alloy (Ti-6Al-4V) and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), to evaluate the cell metabolic activity, cytotoxicity, and inflammation potential of human oral fibroblasts (HOF) on these materials. Disk-shaped specimens were designed and prepared via a dental computer-aided manufacturing technology system. Surface topography, roughness, and free energy were investigated by atomic force microscope and contact angle analyzer; cell metabolic activity and cytotoxicity by MTT assay; and morphological changes by scanning electron microscopy (SEM). The effect of pro-inflammatory gene expression was evaluated by RT-qPCR. The obtained data were analyzed with one-way analysis of variance and post-hoc Tukey’s honest significant difference tests. PEEK and PEKK exhibited higher submicron surface roughness (0.04 μm) and hydrophobicity (>80°) than the control. Although the cell activity of PEEK was lower than that of Ti-6Al-4V and Y-TZP for the first 24 h (p < 0.05), after 48 h there was no difference (p > 0.05). According to the cell cytotoxicity and the pro-inflammatory cytokine gene expression assays, there was no difference between the materials (p > 0.05). SEM observations indicated that HOF adhered poorly to PEKK but properly to Ti-6Al-4V, Y-TZP, and PEEK. PEEK and PEKK show comparable epithelial biological responses to Ti-6Al-4V and Y-TZP as implant–abutment materials. Between the two polymeric materials, the PEEK surface, where the HOF showed better cell metabolic activity and cytotoxicity, was a more promising implant–abutment material.
Collapse
Affiliation(s)
- Tzu-Yu Peng
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (P.-J.L.); (D.-J.L.); (K.-T.S.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Po-Jung Li
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (P.-J.L.); (D.-J.L.); (K.-T.S.)
| | - Dan-Jae Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (P.-J.L.); (D.-J.L.); (K.-T.S.)
| | - Kuo-Ting Sun
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (P.-J.L.); (D.-J.L.); (K.-T.S.)
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; or
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (P.-J.L.); (D.-J.L.); (K.-T.S.)
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 2316)
| |
Collapse
|
26
|
Causey GC, Picha GJ, Price J, Pelletier MH, Wang T, Walsh WR. The effect of a novel pillar surface morphology and material composition demonstrates uniform osseointegration. J Mech Behav Biomed Mater 2021; 123:104775. [PMID: 34419888 DOI: 10.1016/j.jmbbm.2021.104775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Long-term survival of orthopedic implants requires a strong and compliant interface between the implant and surrounding bone. This paper further explores the in-vivo response to a novel, macro-scale osseointegration surface morphology. In this study, we examine the effects of material composition on osseointegration in relation to the controlled surface geometry. The pillared surface is constructed of discontinuous surface geometry which creates an open space for unencumbered bone migration. In creating an open, macro-scale morphology we have demonstrated a bone migration and integration that is less dependent on the underlying implant material and is substantially driven thru surface geometry. In this in-vivo study an established ovine model was used to examine the effects of implant material composition on bone ingrowth and mechanical performance. Cortical and cancellous sites in the tibia and distal femur were examined at 6 and 12 weeks with μCT, histology, histomorphometry, and mechanical performance. Implant materials tested included PEEK (Evonik, VISTAKEEP®), PEEK HA (Invibio, PEEK-OPTIMA HA Enhanced), Titanium coated PEEK, Titanium (Ti-6Al-4V, Grade 5), and Ultra-High Molecular Weight Polyethylene (UHMWPE). Extensive bone ingrowth was noted in all implant materials at 12 weeks with maturation of the bone within the pillar structure from 6 weeks to 12 weeks. Histology demonstrated little fibrous deposition at the implant interface with no adverse cellular reactions. Histomorphometric review of cortical sites revealed greater than 60% bone ingrowth at 6 weeks increasing to nearly 80% by the 12 week timepoint. Cancellous sites yielded a mean of 30% ingrowth at 6 weeks increasing to 35% by 12 weeks. Pushout testing of cortical site samples demonstrated increase in pushout force between the 6 and 12 week timepoints. Increases were significant in all but the UHMWPE samples. Stiffness likewise increased in all samples between the two times. These results demonstrated the effectiveness of the pillar morphology with full integrating from the surrounding bony tissue regardless of the material.
Collapse
Affiliation(s)
| | | | - Jamey Price
- Applied Medical Technology, Brecksville, OH, USA
| | | | - Tian Wang
- The University of New South Wales, Australia
| | | |
Collapse
|
27
|
Wang Y, Ahmed A, Azam A, Bing D, Shan Z, Zhang Z, Tariq MK, Sultana J, Mushtaq RT, Mehboob A, Xiaohu C, Rehman M. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing. JOURNAL OF MANUFACTURING SYSTEMS 2021; 60:709-733. [PMID: 35068653 PMCID: PMC8759146 DOI: 10.1016/j.jmsy.2021.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 05/09/2023]
Abstract
Sustainable and cleaner manufacturing systems have found broad applications in industrial processes, especially aerospace, automotive and power generation. Conventional manufacturing methods are highly unsustainable regarding carbon emissions, energy consumption, material wastage, costly shipment and complex supply management. Besides, during global COVID-19 pandemic, advanced fabrication and management strategies were extremely required to fulfill the shortfall of basic and medical emergency supplies. Three-dimensional printing (3DP) reduces global energy consumption and CO2 emissions related to industrial manufacturing. Various renewable energy harvesting mechanisms utilizing solar, wind, tidal and human potential have been fabricated through additive manufacturing. 3D printing aided the manufacturing companies in combating the deficiencies of medical healthcare devices for patients and professionals globally. In this regard, 3D printed medical face shields, respiratory masks, personal protective equipment, PLA-based recyclable air filtration masks, additively manufactured ideal tissue models and new information technology (IT) based rapid manufacturing are some significant contributions of 3DP. Furthermore, a bibliometric study of 3D printing research was conducted in CiteSpace. The most influential keywords and latest research frontiers were found and the 3DP knowledge was categorized into 10 diverse research themes. The potential challenges incurred by AM industry during the pandemic were categorized in terms of design, safety, manufacturing, certification and legal issues. Significantly, this study highlights the versatile role of 3DP in battle against COVID-19 pandemic and provides up-to-date research frontiers, leading the readers to focus on the current hurdles encountered by AM industry, henceforth conduct further investigations to enhance 3DP technology.
Collapse
Affiliation(s)
- Yanen Wang
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ammar Ahmed
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ali Azam
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Du Bing
- Center of Stomatology, The Second People's Hospital of Foshan, Foshan, 528000, PR China
| | - Zhang Shan
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Zutao Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Muhammad Kashif Tariq
- Department of Mechanical Engineering, University of Engineering & Technology, Lahore, 54890, Pakistan
| | - Jakiya Sultana
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ray Tahir Mushtaq
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Asad Mehboob
- Department of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Chen Xiaohu
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Mudassar Rehman
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| |
Collapse
|
28
|
Xie D, Xu C, Ye C, Mei S, Wang L, Zhu Q, Chen Q, Zhao Q, Xu Z, Wei J, Yang L. Fabrication of Submicro-Nano Structures on Polyetheretherketone Surface by Femtosecond Laser for Exciting Cellular Responses of MC3T3-E1 Cells/Gingival Epithelial Cells. Int J Nanomedicine 2021; 16:3201-3216. [PMID: 34007174 PMCID: PMC8121686 DOI: 10.2147/ijn.s303411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose Polyetheretherketone (PEEK) exhibits high mechanical strengths and outstanding biocompatibility but biological inertness that does not excite the cell responses and stimulate bone formation. The objective of this study was to construct submicro-nano structures on PEEK by femtosecond laser (FSL) for exciting the responses of MC3T3-E1 cells and gingival epithelial (GE) cells, which induce regeneration of bone/gingival tissues for long-term stability of dental implants. Materials and Methods In this study, submicro-nano structures were created on PEEK surface by FSL with power of 80 mW (80FPK) and 160 mW (160FPK). Results Compared with PEEK, both 80FPK and 160FPK with submicro-nano structures exhibited elevated surface performances (hydrophilicity, surface energy, roughness and protein absorption). Furthermore, in comparison with 80FPK, 160FPK further enhanced the surface performances. In addition, compared with PEEK, both 80FPK and 160FPK significantly excited not only the responses (adhesion, proliferation, alkaline phosphatase [ALP] activity and osteogenic gene expression) of MC3T3-E1 cells but also responses (adhesion as well as proliferation) of GE cells of human in vitro. Moreover, in comparison with 80FPK, 160FPK further enhanced the responses of MC3T3-E1 cells/GE cells. Conclusion FSL created submicro-nano structures on PEEK with elevated surface performances, which played crucial roles in exciting the responses of MC3T3-E1 cells/GE cells. Consequently, 160FPK with elevated surface performances and outstanding cytocompatibility would have enormous potential as an implant for dental replacement.
Collapse
Affiliation(s)
- Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.,Department of Orthopaedics, PLA Navy No.905 Hospital, Shanghai, 200052, People's Republic of China
| | - Chenhui Xu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Cheng Ye
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qing Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
29
|
Review on Development and Dental Applications of Polyetheretherketone-Based Biomaterials and Restorations. MATERIALS 2021; 14:ma14020408. [PMID: 33467576 PMCID: PMC7830426 DOI: 10.3390/ma14020408] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Polyetheretherketone (PEEK) is an important high-performance thermoplastic. Its excellent strength, stiffness, toughness, fatigue resistance, biocompatibility, chemical stability and radiolucency have made PEEK attractive in dental and orthopedic applications. However, PEEK has an inherently hydrophobic and chemically inert surface, which has restricted its widespread use in clinical applications, especially in bonding with dental resin composites. Cutting edge research on novel methods to improve PEEK applications in dentistry, including oral implant, prosthodontics and orthodontics, is reviewed in this article. In addition, this article also discusses innovative surface modifications of PEEK, which are a focus area of active investigations. Furthermore, this article also discusses the necessary future studies and clinical trials for the use of PEEK in the human oral environment to investigate its feasibility and long-term performance.
Collapse
|
30
|
Schaffarczyk D, Knaus J, Peeters G, Scholl D, Schwitalla A, Koslowski C, Cölfen H. Polyetheretherketone
implant surface functionalization technologies and the need for a transparent quality evaluation system. POLYM INT 2020. [DOI: 10.1002/pi.6162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dietmar Schaffarczyk
- Product Conformity and Certification QS Quality Services Ltd Santa Venera Malta
- Biochemical Material Research, Quality Assurance and Regulatory Affairs stimOS GmbH Byk‐Gulden‐Straße 2 Konstanz 78467 Germany
| | - Jennifer Knaus
- Biochemical Material Research, Quality Assurance and Regulatory Affairs stimOS GmbH Byk‐Gulden‐Straße 2 Konstanz 78467 Germany
| | - Gunther Peeters
- Biochemical Material Research, Quality Assurance and Regulatory Affairs stimOS GmbH Byk‐Gulden‐Straße 2 Konstanz 78467 Germany
| | - Dieter Scholl
- Product Conformity and Certification QS Quality Services Ltd Santa Venera Malta
| | - Andreas Schwitalla
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders: Dental Materials and Biomaterial Research Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Geriatric Dentistry and Craniomandibular Disorders Berlin Germany
| | | | - Helmut Cölfen
- Physical Chemistry University of Konstanz Universitätsstraße 10 Konstanz 78457 Germany
| |
Collapse
|
31
|
Watanabe M, Maeda H, Hashimoto Y, Kimura T, Kishida A. Protein adsorption and cell adhesion behavior of engineering plastics plasticized by supercritical carbon dioxide. Dent Mater J 2020; 39:1033-1038. [PMID: 32713894 DOI: 10.4012/dmj.2019-410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to evaluate the biological properties of engineering plastics (PC, PSU, PAR) processed using supercritical carbon dioxide (scCO2). Conventional mold process was used to prepare disk-shaped samples that were then plasticized by scCO2 at temperatures lower than the glass transition temperature (Tg) of the polymers. Surface roughness, contact angle, and amount of adsorbed protein on the surface were increased after treatment. The surface roughness of PC was significantly changed by scCO2 treatment. Cell adhesion and proliferation changed according to the differences in surface roughness. Initially, the cell adhesion decreased in all scCO2-treated polymers. At 3 day, the cell proliferation on scCO2-treated PC was lower than that on non-treated PC, while that on treated and non-treated PSU and PAR samples remained unaltered. These results suggest that when supercritical treatment is performed under conditions that affect the surface properties of the material, we should consider that cell adhesion and proliferation may change.
Collapse
Affiliation(s)
- Masaki Watanabe
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hanako Maeda
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Yoshihide Hashimoto
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Akio Kishida
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
32
|
Mehdizadeh Omrani M, Kumar H, Mohamed MGA, Golovin K, S Milani A, Hadjizadeh A, Kim K. Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. J Biomed Mater Res B Appl Biomater 2020; 109:622-629. [PMID: 32945089 DOI: 10.1002/jbm.b.34726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023]
Abstract
Polyether ether ketone (PEEK) has shown great promise for implant and biomedical applications because of its excellent chemical, mechanical, and biocompatible properties. However, PEEK is bioinert, which causes weak cell adhesion and limits its use for biomedical applications such as bone implants. Therefore, the activation of the PEEK's surface for cell attachment is desirable. In this study, oxygen plasma and gelatin were used to modify PEEK's surface and the effects of surface roughness, wettability, and cell adhesion to the surface were studied. Surface roughness was measured using a laser scanning confocal microscope, and wettability was measured using the sessile drop method. There was no significant difference in the roughness of the three samples. The gelatin-coated surface showed higher wettability than the plasma-modified or control samples. The cell attachment and proliferation rate were assessed by scanning electron microscopy and the XTT assay, respectively. The XTT assay results indicated that a greater number of cells grew on the gelatin-coated PEEK surface than on the control or plasma-treated surfaces. These results confirmed that the plasma and gelatin treatments enhanced the biocompatibility of the PEEK samples. The increase in biocompatibility could make PEEK a better material candidate for treating bone related injuries and defects.
Collapse
Affiliation(s)
- Maryam Mehdizadeh Omrani
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada.,Department of Biomedical Engineering, Amirkabir University, Tehran, Iran
| | - Hitendra Kumar
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada.,Department of Mechanical and Manufacturing Engineering, Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Mohamed G A Mohamed
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kevin Golovin
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University, Tehran, Iran
| | - Keekyoung Kim
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada.,Department of Mechanical and Manufacturing Engineering, Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Zeller B, Stöckli S, Zaugg LK, Astasov‐Frauenhoffer M, Hauser‐Gerspach I, Waltimo T, Zitzmann NU. Biofilm formation on metal alloys, zirconia and polyetherketoneketone as implant materials in vivo. Clin Oral Implants Res 2020; 31:1078-1086. [DOI: 10.1111/clr.13654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Barbara Zeller
- Department of Reconstructive Dentistry University Center for Dental Medicine University of Basel Basel Switzerland
| | - Simone Stöckli
- Department of Oral Health and Medicine University Center for Dental Medicine University of Basel Basel Switzerland
| | - Lucia K. Zaugg
- Department of Reconstructive Dentistry University Center for Dental Medicine University of Basel Basel Switzerland
| | | | - Irmgard Hauser‐Gerspach
- Department Research University Center for Dental Medicine University of Basel Basel Switzerland
| | - Tuomas Waltimo
- Department of Oral Health and Medicine University Center for Dental Medicine University of Basel Basel Switzerland
| | - Nicola U. Zitzmann
- Department of Reconstructive Dentistry University Center for Dental Medicine University of Basel Basel Switzerland
| |
Collapse
|