1
|
Yang N, Wang Y, Yan Q. Dynamic Gas-Bridged Bond: An Opportunity of Fabricating Dynamic Assembled Materials with Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43093-43101. [PMID: 39116111 DOI: 10.1021/acsami.4c11420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gas molecules, as a family of unique polyatomic building blocks, have long been considered hard to involve in molecular assembly or construct assembled materials due to their structural simplicity yet paucity of defined interacting sites. To solve this non-trivial challenge, a core idea is to break the limit of current ways of bonding gas molecules, endowing them with new modes of interactions that match the basic requirements of molecular assembly. In recent years, a new concept, named the dynamic gas-bridged bond (DGB), has emerged, which allows for gas molecules to constitute a dynamic bridging structure between other building blocks with the aid of frustrated Lewis pairs. This makes it possible to harness gas in a supramolecular or dynamic manner. Herein, this perspective discusses distinct dynamic natures of DGBs and manifests their particular functions in various fields, including the control of molecular/polymeric self-assembly nanostructures, creation of multidimensional assembled materials, and recyclable catalysts. The future research direction and challenges of dynamic gas-bridged chemistry toward gas-programmed self-assembly and gas-constructed adaptive materials are highlighted.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
2
|
Huo M, Zhu R. Statistical Copolymerization-Induced Self-Assembly. ACS Macro Lett 2024; 13:951-958. [PMID: 39023514 DOI: 10.1021/acsmacrolett.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Statistical copolymers have been extensively used in chemical industries and our daily lives, owing to their ease of synthesis and functionalization. However, self-assembly based on statistical copolymers has been haunted by high interfacial energy, poor stability, and low concentration. We proposed the statistical copolymerization-induced self-assembly (stat-PISA) as a general strategy for one-step preparing stable statistical copolymer assemblies with high solids content. The concept was demonstrated through a model dispersion polymerization system comprising a charged hydrophilic monomer and a core-forming monomer, producing spherical micelles via a spinodal decomposition mechanism with an interconnected network intermediate. The stat-PISA was tunable by varying the fraction of charged monomer, the polymer chain length, and the solids content. The statistical copolymer micelles were demonstrated to be a potential Pickering emulsifier with superior stabilizing performances compared to their block copolymer counterparts. The general applicability of stat-PISA was demonstrated by preparing statistical copolymer assemblies with varying surface charges and chemical compositions. Particularly, this strategy is feasible for conventional free radical polymerization, promising for industrial scale-up.
Collapse
Affiliation(s)
- Meng Huo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruixue Zhu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
György C, Wagstaff JS, Hunter SJ, Etim EU, Armes SP. Effect of Added Salt on the RAFT Polymerization of 2-Hydroxyethyl Methacrylate in Aqueous Media. Macromolecules 2024; 57:6816-6827. [PMID: 39071045 PMCID: PMC11271178 DOI: 10.1021/acs.macromol.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
We report the effect of added salt on the reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-hydroxyethyl methacrylate (HEMA) in aqueous media. More specifically, poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC26) was employed as a salt-tolerant water-soluble block for chain extension with HEMA targeting PHEMA DPs from 100 to 800 in the presence of NaCl. Increasing the salt concentration significantly reduces the aqueous solubility of both the HEMA monomer and the growing PHEMA chains. HEMA conversions of more than 99% could be achieved within 6 h at 70 °C regardless of the NaCl concentration when targeting PMPC26-PHEMA800 vesicles at 20% w/w solids. Significantly faster rates of polymerization were observed at higher salt concentration owing to the earlier onset of micellar nucleation. Transmission electron microscopy (TEM) was used to construct a pseudo-phase diagram for this polymerization-induced self-assembly (PISA) formulation. High-quality images required cross-linking of the PHEMA chains with glutaraldehyde prior to salt removal via dialysis. Block copolymer spheres, worms, or vesicles can be accessed at any salt concentration up to 2.5 M NaCl. However, only kinetically trapped spheres could be obtained in the presence of 3 M NaCl because the relatively low HEMA monomer solubility under such conditions leads to an aqueous emulsion polymerization rather than an aqueous dispersion polymerization. In this case, dynamic light scattering studies indicated a gradual increase in z-average diameter from 26 to 86 nm when adjusting the target PHEMA degree of polymerization from 200 to 800. When targeting PMPC26-PHEMA800 vesicles, increasing the salt content up to 2.5 M NaCl leads to a systematic reduction in the z-average diameter from 953 to 92 nm. Similarly, TEM analysis and dispersion viscosity measurements indicated a gradual reduction in worm contour length with increasing salt concentration for PMPC26-PHEMA600 worms. This new PISA formulation clearly illustrates the importance of added salt on aqueous monomer solubility and how this affects (i) the kinetics of polymerization, (ii) the morphology of the corresponding diblock copolymer nano-objects, and (iii) the mode of polymerization in aqueous media.
Collapse
Affiliation(s)
- Csilla György
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Jacob S. Wagstaff
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Saul J. Hunter
- Joseph
Banks Laboratories, School of Chemistry, University of Lincoln, Lincolnshire LN6 7TS, U.K.
| | - Esther U. Etim
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
4
|
Oumerri J, Qayouh H, Arteni AA, Six JL, Lahcini M, Ferji K. One-pot Formulation of Cationic Oligochitosan Coated Nanoparticles via Photo- Polymerization Induced Self-Assembly. Chemphyschem 2024; 25:e202400291. [PMID: 38646967 DOI: 10.1002/cphc.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
During last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature. To achieve this, OCS was first functionalized by a chain transfer agent (CTA) resulting in a macromolecular chain transfer agent (OCS-CTA), which will act as a reactive electrostatic/steric stabilizer. Owing to its UV-sensitivity, OCS-CTA was then used as photo-iniferter to initiate the polymerization of 2-hydroxypropyl methacrylate (HPMA) in aqueous acidic buffer, resulting in OCS-g-PHPMA amphiphilic grafted copolymers which self-assemble into nano-objects. Transmission electron microscopy and light scattering analysis reveal formation of spherical nanostructures.
Collapse
Affiliation(s)
- Jihad Oumerri
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Hicham Qayouh
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Av. de la Terrasse Bâtiment 21, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Six
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| | - Mohammed Lahcini
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660, ISSB-P, 43150, Benguerir, Morocco
| | - Khalid Ferji
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| |
Collapse
|
5
|
Song Z, Chen P, Teng L, Wang W, Zhu W. Copper Nanodrugs with Controlled Morphologies through Aqueous Atom Transfer Radical Polymerization. Biomacromolecules 2024; 25:4545-4556. [PMID: 38902858 DOI: 10.1021/acs.biomac.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper (Cu) nanodrugs can be facilely prepared through atom transfer radical polymerization (ATRP) in an aqueous medium. However, it is difficult to control the morphology of Cu nanodrugs and thereby optimize their anticancer activity. In this work, aqueous ATRP was combined with polymerization-induced self-assembly (PISA) to prepare Cu nanodrugs with various morphologies. We mapped the relationship between polymerization condition and product morphology in which each morphology shows a wide preparation window. Decreasing the reaction temperature and feeding more Cu catalysts can improve the mobility of chains, facilitating the morphology evolution from sphere to other high-order morphologies. The resultant Cu nanodrugs with high monomer conversion and high Cu loading efficiency could be easily taken by cancer cells, showing excellent anticancer efficacy in vitro. This work proposed a potential strategy to prepare Cu nanodrugs with a specific morphology in batches, providing the method to optimize the anticancer efficacy through morphology control.
Collapse
Affiliation(s)
- Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weibin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
6
|
Hurst PJ, Yoon J, Singh R, Abouchaleh MF, Stewart KA, Sumerlin BS, Patterson JP. Hybrid Photoiniferter and Ring-Opening Polymerization Yields One-Pot Anisotropic Nanorods. Macromol Rapid Commun 2024; 45:e2400100. [PMID: 38520318 DOI: 10.1002/marc.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Polymerization-induced self-assembly (PISA) has emerged as a scalable one-pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l-lactide)-b-poly(ethylene glycol) BCP nanoparticles coined ring-opening polymerization (ROP)-induced crystallization-driven self-assembly (ROPI-CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N-dimethyl acrylamide)-b-poly(l)-lactide BCP nanoparticles by ROPI-CDSA, utilizing a two-step, one-pot approach. A dual-functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido-based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI-CDSA BCPs and provides readily accessible nanorods made with biocompatible materials.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Junsik Yoon
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Riya Singh
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | | | - Kevin A Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
7
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
8
|
Zeng H, Liang X, Roberts DA, Gillies ER, Müllner M. Self-Assembly of Rod-Coil Bottlebrush Copolymers into Degradable Nanodiscs with a UV-Triggered Self-Immolation Process. Angew Chem Int Ed Engl 2024; 63:e202318881. [PMID: 38320963 DOI: 10.1002/anie.202318881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Polymer nanodiscs, especially with stimuli-responsive features, represent an unexplored frontier in the nanomaterial landscape. Such 2D nanomaterials are considered highly promising for advanced biomedicine applications. Herein, we designed a rod-coil copolymer architecture based on an amphiphilic, tadpole-like bottlebrush copolymer, which can directly self-assemble into core-shell nanodiscs in an aqueous environment. As the bottlebrush side chains are made of amorphous, UV-responsive poly(ethyl glyoxylate) (PEtG) chains, they can undergo rapid end-to-end self-immolation upon light irradiation. This triggered nanodisc disassembly can be used to boost small molecule release from the nanodisc core, which is further aided by a morphological change from discs to spheres.
Collapse
Affiliation(s)
- Haoxiang Zeng
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, 2006, Sydney, NSW, Australia
| | - Xiaoli Liang
- Department of Chemistry and Department of Chemical and Biochemical Engineering, The University of Western Ontario, N6A 5B7, London, Ontario, Canada
| | - Derrick A Roberts
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, 2006, Sydney, NSW, Australia
| | - Elizabeth R Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering, The University of Western Ontario, N6A 5B7, London, Ontario, Canada
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, 2006, Sydney, NSW, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, 2006, Sydney, NSW, Australia
| |
Collapse
|
9
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Zhou J, Huang Q, Zhang L, Tan J. Exploiting the Monomer-Feeding Mechanism of RAFT Emulsion Polymerization for Polymerization-Induced Self-Assembly of Asymmetric Divinyl Monomers. ACS Macro Lett 2023; 12:1457-1465. [PMID: 37844283 DOI: 10.1021/acsmacrolett.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We exploited the monomer-feeding mechanism of reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization to achieve the successful polymerization-induced self-assembly (PISA) of asymmetric divinyl monomers. Colloidally stable cross-linked block copolymer nanoparticles with various morphologies, such as vesicles, were directly prepared at high solids. Morphologies of the cross-linked block copolymer nanoparticles could be controlled by varying the monomer concentration, degree of polymerization (DP) of the core-forming block, and length of the macro-RAFT agent. X-ray photoelectron spectroscopy (XPS) characterization confirmed the presence of unreacted vinyl groups within the obtained block copolymer nanoparticles, providing a landscape for further functionalization via thiol-ene chemistry. Finally, the obtained block copolymer nanoparticles were employed as additives to tune the mechanical properties of hydrogels. We expect that this study not only offers considerable opportunities for the preparation of well-defined cross-linked block copolymer nanoparticles, but also provides important insights into the controlled polymerization of multivinyl monomers.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
11
|
György C, Armes SP. Recent Advances in Polymerization-Induced Self-Assembly (PISA) Syntheses in Non-Polar Media. Angew Chem Int Ed Engl 2023; 62:e202308372. [PMID: 37409380 PMCID: PMC10952376 DOI: 10.1002/anie.202308372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
It is well-known that polymerization-induced self-assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non-polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non-polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition-fragmentation chain-transfer (RAFT) polymerization in various n-alkanes, poly(α-olefins), mineral oil, low-viscosity silicone oils or supercritical CO2 are discussed in detail. Selected formulations exhibit thermally induced worm-to-sphere or vesicle-to-worm morphological transitions and the rheological properties of various examples of worm gels in non-polar media are summarized. Finally, visible absorption spectroscopy and small-angle X-ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small-angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms.
Collapse
Affiliation(s)
- Csilla György
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| | - Steven P. Armes
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
12
|
Chen Y, Tan J, Shen L. Seeded RAFT Polymerization-Induced Self-assembly: Recent Advances and Future Opportunities. Macromol Rapid Commun 2023; 44:e2300334. [PMID: 37615609 DOI: 10.1002/marc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Over the past decade, polymerization-induced self-assembly (PISA) has fully proved its versatility for scale-up production of block copolymer nanoparticles with tunable sizes and morphologies; yet, there are still some limitations. Recently, seeded PISA approaches combing PISA with heterogeneous seeded polymerizations have been greatly explored and are expected to overcome the limitations of traditional PISA. In this review, recent advances in seeded PISA that have expanded new horizons for PISA are highlighted including i) general considerations for seeded PISA (e.g., kinetics, the preparation of seeds, the selection of monomers), ii) morphological evolution induced by seeded PISA (e.g., from corona-shell-core nanoparticles to vesicles, vesicles-to-toroid, disassembly of vesicles into nanospheres), and iii) various well-defined nanoparticles with hierarchical and sophisticated morphologies (e.g., multicompartment micelles, porous vesicles, framboidal vesicles, AXn -type colloidal molecules). Finally, new insights into seeded PISA and future perspectives are proposed.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
13
|
Guild J, Knox ST, Burholt SB, Hilton E, Terrill NJ, Schroeder SL, Warren NJ. Continuous-Flow Laboratory SAXS for In Situ Determination of the Impact of Hydrophilic Block Length on Spherical Nano-Object Formation during Polymerization-Induced Self-Assembly. Macromolecules 2023; 56:6426-6435. [PMID: 37637307 PMCID: PMC10448749 DOI: 10.1021/acs.macromol.3c00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Indexed: 08/29/2023]
Abstract
In situ small-angle X-ray scattering (SAXS) is a powerful technique for characterizing block-copolymer nano-object formation during polymerization-induced self-assembly. To work effectively in situ, it requires high intensity X-rays which enable the short acquisition times required for real-time measurements. However, routine access to synchrotron X-ray sources is expensive and highly competitive. Flow reactors provide an opportunity to obtain temporal resolution by operating at a consistent flow rate. Here, we equip a flow-reactor with an X-ray transparent flow-cell at the outlet which facilitates the use of a low-flux laboratory SAXS instrument for in situ monitoring. The formation and morphological evolution of spherical block copolymer nano-objects was characterized during reversible addition fragmentation chain transfer polymerization of diacetone acrylamide in the presence of a series of poly(dimethylacrylamide) (PDMAm) macromolecular chain transfer agents with varying degrees of polymerization. SAXS analysis indicated that during the polymerization, highly solvated, loosely defined aggregates form after approximately 100 s, followed by expulsion of solvent to form well-defined spherical particles with PDAAm cores and PDMAm stabilizer chains, which then grow as the polymerization proceeds. Analysis also indicates that the aggregation number (Nagg) increases during the reaction, likely due to collisions between swollen, growing nanoparticles. In situ SAXS conducted on PISA syntheses using different PDMAm DPs indicated a varying conformation of the chains in the particle cores, from collapsed chains for PDMAm47 to extended chains for PDMAm143. At high conversion, the final Nagg decreased as a function of increasing PDMAm DP, indicating increased steric stabilization afforded by the longer chains which is reflected by a decrease in both core diameter (from SAXS) and hydrodynamic diameter (from DLS) for a constant core DP of 400.
Collapse
Affiliation(s)
- Jonathan
D. Guild
- School
of Chemical and Processing Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, U.K.
| | - Stephen T. Knox
- School
of Chemical and Processing Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, U.K.
| | - Sam B. Burholt
- Diamond
House, Harwell Science and Innovation Campus, Diamond Light Source, Didcot OX11 0DE, U.K.
| | - Eleanor.M. Hilton
- School
of Chemical and Processing Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, U.K.
| | - Nicholas J. Terrill
- Diamond
House, Harwell Science and Innovation Campus, Diamond Light Source, Didcot OX11 0DE, U.K.
| | - Sven L.M. Schroeder
- School
of Chemical and Processing Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, U.K.
| | - Nicholas J. Warren
- School
of Chemical and Processing Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, U.K.
| |
Collapse
|
14
|
Stiti A, Cenacchi Pereira AM, Lecommandoux S, Taton D. Group-Transfer Polymerization-Induced Self-Assembly (GTPISA) in Non-polar Media: An Organocatalyzed Route to Block Copolymer Nanoparticles at Room Temperature. Angew Chem Int Ed Engl 2023; 62:e202305945. [PMID: 37403785 DOI: 10.1002/anie.202305945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Polymerization-induced self-assembly (PISA) enables the synthesis at large scale of a wide variety of functional nanoparticles. However, a large number of works are related to controlled radical polymerization (CRP) methods and are generally undertaken at elevated temperatures (>50 °C). Here is the first report on methacrylate-based nanoparticles fabricated by group transfer polymerization-induced self-assembly (GTPISA) in non-polar media (n-heptane). This GTPISA process is achieved at room temperature (RT) using 1-methoxy-1-(trimethylsiloxy)-2-methylprop-1-ene (MTS) and tetrabutylammonium bis-benzoate (TBABB) as initiator and organic catalyst, respectively. Under these conditions, well-defined metal-free and colorless diblock copolymers are produced with efficient crossover from the non-polar stabilizing poly(lauryl methacrylate) (PLMA) block to the non-soluble poly(benzyl methacrylate) (PBzMA) segment. The resulting PLMA-b-PBzMA block copolymers simultaneously self-assemble into nanostructures of various sizes and morphologies. GTPISA in non-polar solvent proceeds rapidly at RT and avoids the use of sulfur or halogenated compounds or metallic catalysts associated with the implementation of CRP methods, thus expanding the potential of PISA formulations for applications in non-polar environments.
Collapse
Affiliation(s)
- Assia Stiti
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
- Centre de Recherche de Solaize, T, otalEnergies OneTech, Chemin du Canal-BP 22, 69360, Solaize, France
| | | | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
| |
Collapse
|
15
|
Zeng Z, Li Z, Li Q, Song G, Huo M. Strong and Tough Nanostructured Hydrogels and Organogels Prepared by Polymerization-Induced Self-Assembly. SMALL METHODS 2023; 7:e2201592. [PMID: 36965093 DOI: 10.1002/smtd.202201592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
In nature, the hierarchical structure of biological tissues endows them with outstanding mechanics and elaborated functions. However, it remains a great challenge to construct biomimetic hydrogels with well-defined nanostructures and good mechanical properties. Herein, polymerization-induced self-assembly (PISA) is for the first time exploited as a general strategy for nanostructured hydrogels and organogels with tailored nanodomains and outstanding mechanical properties. As a proof-of-concept, PISA of BAB triblock copolymer is used to fabricate hydrogels with precisely regulated spherical nanodomains. These nanostructured hydrogels are strong, tough, stretchable, and recoverable, with mechanical properties correlating to their nanostructure. The outstanding mechanical properties are ascribed to the unique network architecture, where the entanglements of the hydrophilic chains act as slip links that transmit the tension to the micellar crosslinkers, while the micellar crosslinkers dissipate the energy via reversible deformation and irreversible detachment of the constituting polymers. The general feasibility of the PISA strategy toward nanostructured gels is confirmed by the successful fabrication of nanostructured hydrogels, alcogels, poly(ethylene glycol) gels, and ionogels with various PISA formulations. This work has provided a general platform for the design and fabrication of biomimetic hydrogels and organogels with tailorable nanostructures and mechanics and will inspire the design of functional nanostructured gels.
Collapse
Affiliation(s)
- Zhong Zeng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ziyun Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Qili Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Meng Huo
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
16
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
17
|
Zhao X, Sun C, Xiong F, Wang T, Li S, Huo F, Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. RESEARCH (WASHINGTON, D.C.) 2023; 6:0113. [PMID: 37223484 PMCID: PMC10202185 DOI: 10.34133/research.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 05/25/2023]
Abstract
Amphiphilic copolymers can self-assemble into nano-objects in aqueous solution. However, the self-assembly process is usually performed in a diluted solution (<1 wt%), which greatly limits scale-up production and further biomedical applications. With recent development of controlled polymerization techniques, polymerization-induced self-assembly (PISA) has emerged as an efficient approach for facile fabrication of nano-sized structures with a high concentration as high as 50 wt%. In this review, after the introduction, various polymerization method-mediated PISAs that include nitroxide-mediated polymerization-mediated PISA (NMP-PISA), reversible addition-fragmentation chain transfer polymerization-mediated PISA (RAFT-PISA), atom transfer radical polymerization-mediated PISA (ATRP-PISA), and ring-opening polymerization-mediated PISA (ROP-PISA) are discussed carefully. Afterward, recent biomedical applications of PISA are illustrated from the following aspects, i.e., bioimaging, disease treatment, biocatalysis, and antimicrobial. In the end, current achievements and future perspectives of PISA are given. It is envisioned that PISA strategy can bring great chance for future design and construction of functional nano-vehicles.
Collapse
|
18
|
Zhong H, Zhao B, Deng J. Synthesis and Application of Fluorescent Polymer Micro- and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300961. [PMID: 36942688 DOI: 10.1002/smll.202300961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent polymer particles have witnessed an increasing interest in recent years, owing to their fascinating physicochemical properties as well as wide-ranging applications. In this review, the state-of-the-art research progress of fluorescent polymer particles in the past five years is summarized. First, the synthesis protocols for fluorescent polymer particles, including emulsion polymerization, precipitation polymerization, dispersion polymerization, suspension polymerization, nanoprecipitation, self-assembly, and post-polymerization modification, are presented in detail. Then, the applications of the resulting beguiling particles in anticounterfeiting, chemical sensing, and biomedicine, are illustrated. Finally, the challenges and opportunities that exist in the field are pointed out. This review aims to offer important guidance and stimulate more research attention to this rapidly developing field.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
Lin D, Li Y, Zhang L, Chen Y, Tan J. Scalable Preparation of Cylindrical Block Copolymer Micelles with a Liquid-Crystalline Perfluorinated Core by Photoinitiated Reversible Addition-Fragmentation Chain Transfer Dispersion Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dongni Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanling Li
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| |
Collapse
|
20
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Li P, Zhou P, Wang J, Wang G. Synthesis, characterization, and property of ionized nano‐objects with defined phase separation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Penghan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Jian Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| |
Collapse
|
22
|
Petrov A, Chertovich AV, Gavrilov AA. Phase Diagrams of Polymerization-Induced Self-Assembly Are Largely Determined by Polymer Recombination. Polymers (Basel) 2022; 14:polym14235331. [PMID: 36501725 PMCID: PMC9736918 DOI: 10.3390/polym14235331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the current work, atom transfer radical polymerization-induced self-assembly (ATRP PISA) phase diagrams were obtained by the means of dissipative particle dynamics simulations. A fast algorithm for determining the equilibrium morphology of block copolymer aggregates was developed. Our goal was to assess how the chemical nature of ATRP affects the self-assembly of diblock copolymers in the course of PISA. We discovered that the chain growth termination via recombination played a key role in determining the ATRP PISA phase diagrams. In particular, ATRP with turned off recombination yielded a PISA phase diagram very similar to that obtained for a simple ideal living polymerization process. However, an increase in the recombination probability led to a significant change of the phase diagram: the transition between cylindrical micelles and vesicles was strongly shifted, and a dependence of the aggregate morphology on the concentration was observed. We speculate that this effect occurred due to the simultaneous action of two factors: the triblock copolymer architecture of the terminated chains and the dispersity of the solvophobic blocks. We showed that these two factors affected the phase diagram weakly if they acted separately; however, their combination, which naturally occurs during ATRP, affected the ATRP PISA phase diagram strongly. We suggest that the recombination reaction is a key factor leading to the complexity of experimental PISA phase diagrams.
Collapse
Affiliation(s)
- Artem Petrov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| | - Alexander V. Chertovich
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | - Alexey A. Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| |
Collapse
|
23
|
Panakkal V, Havlicek D, Pavlova E, Filipová M, Bener S, Jirak D, Sedlacek O. Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)acrylamide in Water. Biomacromolecules 2022; 23:4814-4824. [PMID: 36251480 PMCID: PMC10797588 DOI: 10.1021/acs.biomac.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Indexed: 11/29/2022]
Abstract
19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.
Collapse
Affiliation(s)
- Vyshakh
M. Panakkal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Dominik Havlicek
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, AS CR, Prague 6 162 06, Czech
Republic
| | - Marcela Filipová
- Institute
of Macromolecular Chemistry, AS CR, Prague 6 162 06, Czech
Republic
| | - Semira Bener
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Daniel Jirak
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Ondrej Sedlacek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| |
Collapse
|
24
|
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022; 14:4702. [PMID: 36365696 PMCID: PMC9657626 DOI: 10.3390/polym14214702] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India
| |
Collapse
|
25
|
Häkkinen S, Tanaka J, Garcia Maset R, Hall SCL, Huband S, Rho JY, Song Q, Perrier S. Polymerisation-Induced Self-Assembly of Graft Copolymers. Angew Chem Int Ed Engl 2022; 61:e202210518. [PMID: 36002384 PMCID: PMC9828155 DOI: 10.1002/anie.202210518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
We report the polymerisation-induced self-assembly of poly(lauryl methacrylate)-graft-poly(benzyl methacrylate) copolymers during reversible addition-fragmentation chain transfer (RAFT) grafting from polymerisation in a backbone-selective solvent. Electron microscopy images suggest the phase separation of grafts to result in a network of spherical particles, due to the ability of the branched architecture to freeze chain entanglements and to bridge core domains. Small-angle X-ray scattering data suggest the architecture promotes the formation of multicore micelles, the core morphology of which transitions from spheres to worms, vesicles, and inverted micelles with increasing volume fraction of the grafts. A time-resolved SAXS study is presented to illustrate the formation of the inverted phase during a polymerisation. The grafted architecture gives access to unusual morphologies and provides exciting new handles for controlling the polymer structure and material properties.
Collapse
Affiliation(s)
- Satu Häkkinen
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Joji Tanaka
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Ramón Garcia Maset
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Stephen C. L. Hall
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryDidcotOX11 0QXUK
| | - Steven Huband
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Julia Y. Rho
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Qiao Song
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
26
|
Yang S, Zhang L, Chen Y, Tan J. Combining Green Light-Activated Photoiniferter RAFT Polymerization and RAFT Dispersion Polymerization for Graft Copolymer Assemblies. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuaiqi Yang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
27
|
Li C, Magana JR, Sobotta F, Wang J, Stuart MAC, van Ravensteijn BGP, Voets IK. Switchable Electrostatically Templated Polymerization. Angew Chem Int Ed Engl 2022; 61:e202206780. [PMID: 35766724 PMCID: PMC9796233 DOI: 10.1002/anie.202206780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 01/01/2023]
Abstract
We report a switchable, templated polymerization system where the strength of the templating effect can be modulated by solution pH and/or ionic strength. The responsiveness to these cues is incorporated through a dendritic polyamidoamine-based template of which the charge density depends on pH. The dendrimers act as a template for the polymerization of an oppositely charged monomer, namely sodium styrene sulfonate. We show that the rate of polymerization and maximum achievable monomer conversion are directly related to the charge density of the template, and hence the environmental pH. The polymerization could effectively be switched "ON" and "OFF" on demand, by cycling between acidic and alkaline reaction environments. These findings break ground for a novel concept, namely harnessing co-assembly of a template and growing polymer chains with tunable association strength to create and control coupled polymerization and self-assembly pathways of (charged) macromolecular building blocks.
Collapse
Affiliation(s)
- Chendan Li
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237P. R. China
- Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Jose R. Magana
- Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
- Current address: Grup d'Enginyeria de Materials (GEMAT)Institut Químic de Sarrià (IQS)Universitat Ramon Llull (URL)08022BarcelonaSpain
| | - Fabian Sobotta
- Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237P. R. China
| | - Bas G. P. van Ravensteijn
- Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
- Current address: Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Faculty of ScienceUtrecht UniversityP.O. Box 800823508 TBUtrechtThe Netherlands
| | - Ilja K. Voets
- Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
28
|
Hakkinen S, Tanaka J, Garcia Macet R, Hall S, Huband S, Rho J, Song Q, Perrier S. Polymerisation‐Induced Self‐Assembly of Graft Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Joji Tanaka
- University of Warwick Chemistry UNITED KINGDOM
| | | | | | | | - Julia Rho
- University of Warwick Chemistry UNITED KINGDOM
| | - Qiao Song
- University of Warwick Chemistry UNITED KINGDOM
| | - Sebastien Perrier
- University of Warwick Department of Chemistry Library Road CV4 7AL Coventry UNITED KINGDOM
| |
Collapse
|
29
|
Zhang S, Ma X, Zhu Y, Guo R. Dispersion polymerization of styrene/acrylonitrile in polyether stabilized by macro-RAFT agents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Li C, Magana JR, Sobotta F, Wang J, Stuart MAC, van Ravensteijn BGP, Voets IK. Switchable Electrostatically Templated Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chendan Li
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
- Institute for Complex Molecular Systems Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jose R. Magana
- Institute for Complex Molecular Systems Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Current address: Grup d'Enginyeria de Materials (GEMAT) Institut Químic de Sarrià (IQS) Universitat Ramon Llull (URL) 08022 Barcelona Spain
| | - Fabian Sobotta
- Institute for Complex Molecular Systems Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Bas G. P. van Ravensteijn
- Institute for Complex Molecular Systems Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Current address: Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences (UIPS) Faculty of Science Utrecht University P.O. Box 80082 3508 TB Utrecht The Netherlands
| | - Ilja K. Voets
- Institute for Complex Molecular Systems Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
31
|
Wu J, Zhang L, Chen Y, Tan J. Linear and Star Block Copolymer Nanoparticles Prepared by Heterogeneous RAFT Polymerization Using an ω,ω-Heterodifunctional Macro-RAFT Agent. ACS Macro Lett 2022; 11:910-918. [PMID: 35793539 DOI: 10.1021/acsmacrolett.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, an ω,ω-heterodifunctional macromolecular reversible addition-fragmentation chain transfer (macro-RAFT) agent containing two different RAFT end groups was synthesized and employed to mediate aqueous photoinitiated RAFT dispersion polymerization of a methacrylic monomer. Because of the different RAFT controllability of two RAFT end groups toward methacrylic monomers, the RAFT end group with good controllability dominated the polymerization while the other RAFT end group with poor controllability was unreacted, leading to the formation of linear block copolymers. Because of the unique structure of the linear block copolymers, a diverse set of block copolymer nanoparticles with rich RAFT groups at the interface of the hydrophilic corona/the hydrophobic core were successfully prepared. Finally, μ-A(BC)C miktoarm star block copolymer nanoparticles were prepared by RAFT seeded emulsion polymerization of an acrylic monomer, which enables the further morphological control over polymer nanoparticles. We believe that the utilization of an ω,ω-heterodifunctional macro-RAFT agent in heterogeneous RAFT polymerization will offer considerable opportunities for the rational synthesis of well-defined molecular architectures and polymer nanoparticles.
Collapse
Affiliation(s)
- Jiarui Wu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
32
|
Cai W, Yang S, Zhang L, Chen Y, Zhang L, Tan J. Efficient Synthesis and Self-Assembly of Segmented Hyperbranched Block Copolymers via RAFT-Mediated Dispersion Polymerization Using Segmented Hyperbranched Macro-RAFT Agents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Weibin Cai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuaiqi Yang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Lunqiang Zhang
- Shenzhen Newccess Industrial Co., Ltd., Shenzhen 518038, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
33
|
Luo X, Li Z, Zhang L, Chen Y, Tan J. Mechanistic Investigation of the Position of Reversible Addition–Fragmentation Chain Transfer (RAFT) Groups in Heterogeneous RAFT Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyi Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongchuan Li
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
34
|
Strategies for preparing hybrid nanomaterials via Polymerization-Induced Self-Assembly. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
György C, Neal TJ, Smith T, Growney DJ, Armes SP. Tuning the Glass Transition Temperature of a Core-Forming Block during Polymerization-Induced Self-Assembly: Statistical Copolymerization of Lauryl Methacrylate with Methyl Methacrylate Provides Access to Spheres, Worms, and Vesicles. Macromolecules 2022; 55:4091-4101. [PMID: 35634036 PMCID: PMC9134497 DOI: 10.1021/acs.macromol.2c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Csilla György
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Timothy Smith
- Lubrizol Ltd., Nether Lane, Hazelwood, Derbyshire DE56 4AN, U.K
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
36
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
37
|
Zhou S, Zeng M, Liu Y, Sui X, Yuan J. Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles. Macromol Rapid Commun 2022; 43:e2200010. [PMID: 35393731 DOI: 10.1002/marc.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
With the development of reversible deactivated radical polymerization techniques, polymerization-induced self-assembly (PISA) is emerging as a facile method to prepare block copolymer nanoparticles in situ with high concentrations, providing wide potential applications in different fields, including nanomedicine, coatings, nanomanufacture, and Pickering emulsions. Polymeric emulsifiers synthesized by PISA have many advantages comparing with conventional nanoparticle emulsifiers. The morphologies, size, and amphiphilicity can be readily regulated via the synthetic process, post-modification, and external stimuli. By introducing stimulus responsiveness into PISA nanoparticles, Pickering emulsions stabilized with these nanoparticles can be endowed with "smart" behaviors. The emulsions can be regulated in reversible emulsification and demulsification. In this review, the authors focus on recent progress on Pickering emulsions stabilized by PISA nanoparticles with stimuli-responsiveness. The factors affecting the stability of emulsions during emulsification and demulsification are discussed in details. Furthermore, some viewpoints for preparing stimuli-responsive emulsions and their applications in antibacterial agents, diphase reaction platforms, and multi-emulsions are discussed as well. Finally, the future developments and applications of stimuli-responsive Pickering emulsions stabilized by PISA nanoparticles are highlighted.
Collapse
Affiliation(s)
- Shuo Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yanlin Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
39
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. Polymeric Nanofibers of Various Degrees of Crosslinking as Fillers in Poly(styrene-stat-n-butyl acrylate) Nanocomposites: Overcoming the Trade-Off between Tensile Strength and Stretchability. Macromol Rapid Commun 2022; 43:e2100879. [PMID: 35298868 DOI: 10.1002/marc.202100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
dummy This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
40
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
41
|
Zhang Q, Wang R, Chen Y, Zhang L, Tan J. Block Copolymer Vesicles with Tunable Membrane Thicknesses and Compositions Prepared by Aqueous Seeded Photoinitiated Polymerization-Induced Self-Assembly at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2699-2710. [PMID: 35176211 DOI: 10.1021/acs.langmuir.1c03430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Block copolymer vesicles with diverse functionalities and intrinsic hollow structures have received considerable attention due to their broad applications in biomedical fields, including drug delivery, bioimaging, theranostics, gene therapy, etc. However, efficient preparation of block copolymer vesicles with tunable membrane thicknesses and compositions under mild conditions is still a challenge. Herein, we report an aqueous seeded photoinitiated polymerization-induced self-assembly (photo-PISA) for the precise preparation of block copolymer vesicles at room temperature. By changing the total degree of polymerization (DP) of the hydrophobic block in seeded photo-PISA, one can easily tune the membrane thickness without compromising the morphology of vesicles. Moreover, by adding different comonomers such as hydrophobic monomers, hydrophilic monomers, and cross-linkers into seeded photo-PISA, vesicles with different compositions could be prepared without compromising the morphology and colloidal stability. Polymerization kinetics show that seeded photo-PISA can skip the step of in situ self-assembly with a short homogeneous polymerization stage being observed. To demonstrate potential biological applications, enzymatic nanoreactors were constructed by loading horseradish peroxidase (HRP) inside vesicles via seeded photo-PISA. The enzymatic properties of these nanoreactors could be easily regulated by changing the membrane thickness and hydrophobicity. It is expected that this method can provide a facile platform for the precise preparation of block copolymer vesicles that may find applications in different fields.
Collapse
Affiliation(s)
- Qichao Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Wang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
42
|
Liu D, Yang S, Peng S, Chen Y, Zhang L, Tan J. Simultaneous Synthesis and Self-Assembly of Bottlebrush Block Copolymers at Room Temperature via Photoinitiated RAFT Dispersion Polymerization. Macromol Rapid Commun 2022; 43:e2100921. [PMID: 35212438 DOI: 10.1002/marc.202100921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Indexed: 11/10/2022]
Abstract
Bottlebrush polymers exhibiting unique properties have attracted considerable attention for applications in many research areas. Herein, we report the first simultaneous synthesis and self-assembly of bottlebrush block copolymers at room temperature via photoinitiated polymerization-induced self-assembly (photo-PISA) using multifunctional macromolecular chain transfer agents (macro-CTAs). Compare with linear block copolymers, the bottlebrush block copolymers could promote the formation of higher-order morphologies (e.g. vesicles) when targeting similar degrees of polymerization (DPs). Moreover, a higher polymerization rate was observed in the case of bottlebrush block copolymers. Gel permeation chromatography (GPC) analysis showed that good polymerization control was maintained when synthesizing bottlebrush block copolymers by photo-PISA. Finally, the obtained bottlebrush block copolymer vesicles were used as seeds for further chain extension and multicomponent nanoparticles with a sponge internal structure were formed. We expect this study will not only expand polymer architectures employed in PISA, but also provides a new strategy to synthesize polymer nanoparticles with unique structures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shuaiqi Yang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shaojie Peng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, P. R. China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, P. R. China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, P. R. China
| |
Collapse
|
43
|
Chai X, Zhou P, Xia Q, Shi B, Wang G. Fluorine-containing nano-objects with the same compositions but different segment distributions: synthesis, characterization and comparison. Polym Chem 2022. [DOI: 10.1039/d2py01148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PHOS-b-PPFS nano-objects and PPFS-b-PHOS nano-objects can be prepared by RAFT PISA and MISA processes, respectively. These nano-objects have the same compositions but different segment distributions and distinct hydrophilic/hydrophobic properties.
Collapse
Affiliation(s)
- Xingpeng Chai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qi Xia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
György C, Smith T, Growney DJ, Armes SP. Synthesis and derivatization of epoxy-functional sterically-stabilized diblock copolymer spheres in non-polar media: does the spatial location of the epoxy groups matter? Polym Chem 2022. [DOI: 10.1039/d2py00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxy-functional sterically-stabilized diblock copolymer nanoparticles are prepared via PISA in mineral oil and then derivatized using various reagents and reaction conditions.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Timothy Smith
- Lubrizol Ltd, Nether Lane, Hazelwood, Derbyshire, DE56 4AN, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
45
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. Synthesis of low glass transition temperature worms comprising a poly(styrene- stat-n-butyl acrylate) core segment via polymerization-induced self-assembly in RAFT aqueous emulsion polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01636a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthesis of nanodimensional polymeric worms of low glass transition temperature using aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
46
|
Fan B, Wan J, Zhai J, Teo NKS, Huynh A, Thang SH. Photoluminescent polymer cubosomes prepared by RAFT-mediated polymerization-induced self-assembly. Polym Chem 2022. [DOI: 10.1039/d2py00701k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of photoluminescent polymer assemblies with a wide range of morphologies, including spongosomes and cubosomes, via an efficient RAFT-mediated polymerization-induced self-assembly (RAFT-PISA) process, was demonstrated.
Collapse
Affiliation(s)
- Bo Fan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Monash Node, VIC 3800, Australia
| | - Jing Wan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Andy Huynh
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - San H. Thang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Monash Node, VIC 3800, Australia
| |
Collapse
|
47
|
Kadirkhanov J, Zhong F, Zhang W, Hong C. Preparation of Multi-chambered Vesicles by Polymerization-induced Self-assembly and the Influence of Solvophilic Fragments in the Core-forming Blocks. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Yang CL, Zhong F, Pan CY, Zhang WJ, Hong CY. Influence of Solvent on RAFT-mediated Polymerization of Benzyl Methacrylate (BzMA) and How to Overcome the Thermodynamic/Kinetic Limitation of Morphology Evolution during Polymerization-Induced Self-Assembly. Polym Chem 2022. [DOI: 10.1039/d2py00198e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymerization-induced self-assembly (PISA) has been demonstrated to be a powerful strategy to produce polymeric nano-objects of various morphologies. Dependent on the solubility of monomers, PISA is usually classified into two...
Collapse
|
49
|
Mei G, Zheng Y, Fu Y, Huo M. Polymerization-induced self-assembly of random bottlebrush copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00858k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers have shown unique self-assembly behaviors, providing an access to hierarchical nanoparticles with a precise structure and tailorable function. However, the self-assembly pattern of random bottlebrush copolymers (random BBCPs)...
Collapse
|
50
|
Ishizuka F, Kim HJ, Kuchel RP, Yao Y, Chatani S, Niino H, Zetterlund PB. Nano-dimensional Spheres and Worms as Fillers in Polymer Nanocomposites: Effect of Filler Morphology. Polym Chem 2022. [DOI: 10.1039/d1py01661j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanofillers are prepared via polymerization induced self-assembly (PISA). Nano-dimensional spheres and worms are used to reinforce polymer nanocomposite film to investigate the effect of filler morphology and the effect...
Collapse
|