1
|
de Almeida CM, Dos Santos NA, Lacerda V, Ma X, Fernández FM, Romão W. Applications of MALDI mass spectrometry in forensic science. Anal Bioanal Chem 2024; 416:5255-5280. [PMID: 39160439 DOI: 10.1007/s00216-024-05470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Forensic chemistry literature has grown exponentially, with many analytical techniques being used to provide valuable information to help solve criminal cases. Among them, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), particularly MALDI MS imaging (MALDI MSI), has shown much potential in forensic applications. Due to its high specificity, MALDI MSI can analyze a wide variety of compounds in complex samples without extensive sample preparation, providing chemical profiles and spatial distributions of given analyte(s). This review introduces MALDI MS(I) to forensic scientists with a focus on its basic principles and the applications of MALDI MS(I) to the analysis of fingerprints, drugs of abuse, and their metabolites in hair, medicine samples, animal tissues, and inks in documents.
Collapse
Affiliation(s)
- Camila M de Almeida
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Nayara A Dos Santos
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
- Instituto Nacional de Ciência E Tecnologia Forense (INCT Forense), Vila Velha, Brazil
| | - Valdemar Lacerda
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wanderson Romão
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil.
- Instituto Nacional de Ciência E Tecnologia Forense (INCT Forense), Vila Velha, Brazil.
- Instituto Federal Do Espírito Santo (IFES), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo, 29106-010, Brazil.
| |
Collapse
|
2
|
Tamura H. Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS. JOURNAL OF PESTICIDE SCIENCE 2024; 49:135-147. [PMID: 39398503 PMCID: PMC11464265 DOI: 10.1584/jpestics.d24-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 10/15/2024]
Abstract
As Sustainable Development Goals (SDGs) and the realities of climate change become widely accepted around the world, the next-generation of integrated pest management will become even more important for establishing a sustainable food production system. To meet the current challenge of food security and climate change, biological control has been developed as one sustainable crop protection technology. However, most registered bacteria are ubiquitous soil-borne bacteria that are closely related to food poisoning and spoilage bacteria. Therefore, this review outlined (1) the mechanism of action of bacterial pesticides, (2) potential concerns about secondary contamination sources associated with past food contamination, and, as a prospective solution, focused on (3) principles and methods of bacterial identification, and (4) the possibility of identifying residual bacteria based on mass spectrometry.
Collapse
|
3
|
López-Cortés XA, Manríquez-Troncoso JM, Hernández-García R, Peralta D. MSDeepAMR: antimicrobial resistance prediction based on deep neural networks and transfer learning. Front Microbiol 2024; 15:1361795. [PMID: 38694798 PMCID: PMC11062410 DOI: 10.3389/fmicb.2024.1361795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a global health problem that requires early and effective treatments to prevent the indiscriminate use of antimicrobial drugs and the outcome of infections. Mass Spectrometry (MS), and more particularly MALDI-TOF, have been widely adopted by routine clinical microbiology laboratories to identify bacterial species and detect AMR. The analysis of AMR with deep learning is still recent, and most models depend on filters and preprocessing techniques manually applied on spectra. Methods This study propose a deep neural network, MSDeepAMR, to learn from raw mass spectra to predict AMR. MSDeepAMR model was implemented for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus under different antibiotic resistance profiles. Additionally, a transfer learning test was performed to study the benefits of adapting the previously trained models to external data. Results MSDeepAMR models showed a good classification performance to detect antibiotic resistance. The AUROC of the model was above 0.83 in most cases studied, improving the results of previous investigations by over 10%. The adapted models improved the AUROC by up to 20% when compared to a model trained only with external data. Discussion This study demonstrate the potential of the MSDeepAMR model to predict antibiotic resistance and their use on external MS data. This allow the extrapolation of the MSDeepAMR model to de used in different laboratories that need to study AMR and do not have the capacity for an extensive sample collection.
Collapse
Affiliation(s)
- Xaviera A. López-Cortés
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile
- Centro de Innovación en Ingeniería Aplicada (CIIA), Universidad Católica del Maule, Talca, Chile
| | | | - Ruber Hernández-García
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Chile
| | - Daniel Peralta
- IDLab, Department of Information Technology, Ghent University-imec, Ghent, Belgium
| |
Collapse
|
4
|
Bhatt A, Pujari S, Mantri S, Kirdat K, Thakkar L, Poojary R, Kuyare S, Patil K, Yadav A. A rare urinary tract infection of multidrug-resistant Chryseobacterium urinae sp. nov. isolated from a diabetic, non-catheterized patient. Arch Microbiol 2024; 206:150. [PMID: 38466448 DOI: 10.1007/s00203-024-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Chryseobacterium demonstrates a diverse environmental presence and a significant pathogenic potential across various ecosystems. This clinical case showcases a rare instance of bacterial infection in a 75-year-old male with untreated diabetes and recurrent urinary tract infections (UTIs). The patient presented symptoms of abdominal pain, burning urination, fever, and an elevated eosinophil count. A subsequent urine culture identified a Chryseobacterium-related bacterium as the causative agent, exhibiting sensitivity to piperacillin/tazobactam, trimethoprim/sulfamethoxazole, and nitrofurantoin, which led to successful treatment using oral nitrofurantoin. Analysis of the 16S rRNA gene sequence of APV-1T revealed a close relationship of 98.2% similarity to Chryseobacterium gambrini strain 5-1St1aT (AM232810). Furthermore, comparative genome analysis, incorporating Average Nucleotide Identity (ANI), Digital DNA-DNA Hybridization (dDDH) values, and comprehensive phylogenetic assessments utilizing 16S rRNA gene sequences, core genes, and amino acid sequences of core proteins, highlighted the unique phylogenetic positioning of APV-1T within the Chryseobacterium genus. Distinct carbon utilization and assimilation patterns, along with major fatty acid content, set APV-1T apart from C. gambrini strain 5-1St1aT. These findings, encompassing phenotypic, genotypic, and chemotaxonomic characteristics, strongly support the proposal of a novel species named Chryseobacterium urinae sp. nov., with APV-1T designated as the type strain (= MCC 50690 = JCM 36476). Despite its successful treatment, the strain displayed resistance to multiple antibiotics. Genomic analysis further unveiled core-conserved genes, strain-specific clusters, and genes associated with antibiotic resistance and virulence. This report underscores the vital importance of elucidating susceptibility patterns of rare pathogens like Chryseobacterium, particularly in immunocompromised individuals. It advocates for further analyses to understand the functional significance of identified genes and their implications in treatment and pathogenesis.
Collapse
Affiliation(s)
- Agrima Bhatt
- Department of Biosciences and Technology, Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, India
| | - Sujata Pujari
- Sujata Clinic, Mulund Colony, Mulund West, Mumbai, 400082, India
| | - Shailesh Mantri
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India
| | - Kiran Kirdat
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India
| | - Lucky Thakkar
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India
| | - Reshma Poojary
- Apoorva Diagnostic and Healthcare, Kandivali (East), Mumbai, 400101, India
| | - Sunil Kuyare
- Apoorva Diagnostic and Healthcare, Kandivali (East), Mumbai, 400101, India
| | - Kritika Patil
- Vedantaa Institute of Medical Sciences, Saswand, Palghar, 401606, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India.
| |
Collapse
|
5
|
Calderaro A, Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024; 12:322. [PMID: 38399726 PMCID: PMC10892259 DOI: 10.3390/microorganisms12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) in the last decade has revealed itself as a valid support in the workflow in the clinical microbiology laboratory for the identification of bacteria and fungi, demonstrating high reliability and effectiveness in this application. Its use has reduced, by 24 h, the time to obtain a microbiological diagnosis compared to conventional biochemical automatic systems. MALDI-TOF MS application to the detection of pathogens directly in clinical samples was proposed but requires a deeper investigation, whereas its application to positive blood cultures for the identification of microorganisms and the detection of antimicrobial resistance are now the most useful applications. Thanks to its rapidity, accuracy, and low price in reagents and consumables, MALDI-TOF MS has also been applied to different fields of clinical microbiology, such as the detection of antibiotic susceptibility/resistance biomarkers, the identification of aminoacidic sequences and the chemical structure of protein terminal groups, and as an emerging method in microbial typing. Some of these applications are waiting for an extensive evaluation before confirming a transfer to the routine. MALDI-TOF MS has not yet been used for the routine identification of parasites; nevertheless, studies have been reported in the last few years on its use in the identification of intestinal protozoa, Plasmodium falciparum, or ectoparasites. Innovative applications of MALDI-TOF MS to viruses' identification were also reported, seeking further studies before adapting this tool to the virus's diagnostic. This mini-review is focused on the MALDI-TOF MS application in the real life of the diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | | |
Collapse
|
6
|
Rossel S, Peters J, Charzinski N, Eichsteller A, Laakmann S, Neumann H, Martínez Arbizu P. A universal tool for marine metazoan species identification: towards best practices in proteomic fingerprinting. Sci Rep 2024; 14:1280. [PMID: 38218969 PMCID: PMC10787734 DOI: 10.1038/s41598-024-51235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Proteomic fingerprinting using MALDI-TOF mass spectrometry is a well-established tool for identifying microorganisms and has shown promising results for identification of animal species, particularly disease vectors and marine organisms. And thus can be a vital tool for biodiversity assessments in ecological studies. However, few studies have tested species identification across different orders and classes. In this study, we collected data from 1246 specimens and 198 species to test species identification in a diverse dataset. We also evaluated different specimen preparation and data processing approaches for machine learning and developed a workflow to optimize classification using random forest. Our results showed high success rates of over 90%, but we also found that the size of the reference library affects classification error. Additionally, we demonstrated the ability of the method to differentiate marine cryptic-species complexes and to distinguish sexes within species.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany.
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, 20146, Hamburg, Germany
| | - Nele Charzinski
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Angelina Eichsteller
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Hermann Neumann
- Institute for Sea Fisheries, Thuenen Institute, 27572, Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
7
|
Uzuriaga M, Leiva J, Guillén-Grima F, Rua M, Yuste JR. Clinical Impact of Rapid Bacterial Microbiological Identification with the MALDI-TOF MS. Antibiotics (Basel) 2023; 12:1660. [PMID: 38136694 PMCID: PMC10740418 DOI: 10.3390/antibiotics12121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Rapid microbiological reports to clinicians are related to improved clinical outcomes. We conducted a 3-year quasi-experimental design, specifically a pretest-posttest single group design in a university medical center, to evaluate the clinical impact of rapid microbiological identification information using MALDI-TOF MS on optimizing antibiotic prescription. A total of 363 consecutive hospitalized patients with bacterial infections were evaluated comparing a historical control group (CG) (n = 183), in which the microbiological information (bacterial identification and antibiotic susceptibility) was reported jointly to the clinician between 18:00 h and 22:00 h of the same day and a prospective intervention group (IG) (n = 180); the bacterial identification information was informed to the clinician as soon as it was available between 12:00 h and 14:00 h and the antibiotic susceptibility between 18:00 h and 22:00 h). We observed, in favor of IG, a statistically significant decrease in the information time (11.44 h CG vs. 4.48 h IG (p < 0.01)) from the detection of bacterial growth in the culture medium to the communication of identification. Consequently, the therapeutic optimization was improved by introducing new antibiotics in the 10-24 h time window (p = 0.05) and conversion to oral route (p = 0.01). Additionally, we observed a non-statistically significant decrease in inpatient mortality (global, p = 0.15; infection-related, p = 0.21) without impact on hospital length of stay. In conclusion, the rapid communication of microbiological identification to clinicians reduced reporting time and was associated with early optimization of antibiotic prescribing without worsening clinical outcomes.
Collapse
Affiliation(s)
- Miriam Uzuriaga
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.)
| | - José Leiva
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.)
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
| | - Francisco Guillén-Grima
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
- Department of Preventive Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, 46980 Madrid, Spain
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain
| | - Marta Rua
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.)
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
| | - José R. Yuste
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
- Service of Infectious Diseases, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Internal Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Hammad MI, Conrads G, Abdelbary MMH. Isolation, identification, and significance of salivary Veillonella spp., Prevotella spp., and Prevotella salivae in patients with inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1278582. [PMID: 38053528 PMCID: PMC10694262 DOI: 10.3389/fcimb.2023.1278582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
The global prevalence of inflammatory bowel disease (IBD) is on the rise, prompting significant attention from researchers worldwide. IBD entails chronic inflammatory disorders of the intestinal tract, characterized by alternating flares and remissions. Through high-throughput sequencing, numerous studies have unveiled a potential microbial signature for IBD patients showing intestinal enrichment of oral-associated bacteria. Simultaneously, the oral microbiome can be perturbed by intestinal inflammation. Our prior investigation, based on 16S rRNA amplicon sequencing, underscored elevated abundance of Veillonella spp. and Prevotella spp. in the salivary microbiomes of IBD patients. Noteworthy, Prevotella salivae emerged as a distinct species significantly associated with IBD. P. salivae is an under-recognized pathogen that was found to play a role in both oral and systemic diseases. In this study, we delve deeper into the salivary microbiomes of both IBD patients and healthy controls. Employing diverse cultivation techniques and real-time quantitative polymerase chain reactions (RT-qPCR), we gauged the prevalence and abundance of Veillonella spp., Prevotella spp., and P. salivae. Our isolation efforts yielded 407 and 168 strains of Veillonella spp., as well as 173 and 90 strains of Prevotella spp., from the saliva samples of IBD patients and healthy controls, respectively. Veillonella-vancomycin agar emerged as the discerning choice for optimal Veillonella spp. cultivation, while Schaedler kanamycin-vancomycin agar proved to be the most suitable medium for cultivating Prevotella spp. strains. Comparing our RT-qPCR findings to the previous 16S rRNA amplicon sequencing data, the results corroborated the higher abundance of Veillonella spp., Prevotella spp., and P. salivae in the saliva of IBD patients compared to healthy controls. However, it's worth noting that in contrast to RT-qPCR, the 16S rRNA amplicon sequencing data revealed greater absolute abundance of all three bacterial groups in both IBD patients and controls.
Collapse
Affiliation(s)
- Moshira I. Hammad
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Mohamed M. H. Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
9
|
Ahmed RM, Enan G, Saed S, Askora A. Hyaluronic acid production by Klebsiella pneumoniae strain H15 (OP354286) under different fermentation conditions. BMC Microbiol 2023; 23:295. [PMID: 37848828 PMCID: PMC10580645 DOI: 10.1186/s12866-023-03035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Hyaluronic acid (HA) has gained significant attention due to its unique physical, chemical, and biological properties, making it widely used in various industries. This study aimed to screen bacterial isolates for HA production, characterize favorable fermentation conditions, and evaluate the inhibitory effect of bacterial HA on cancer cell lines. RESULTS A total of 108 bacterial isolates from diverse sources were screened for HA production using HPLC, turbidimetric, and carbazole determination methods. Among the HA-producing isolates, Klebsiella pneumoniae H15 isolated from an animal feces sample, was superior in HA production. The strain was characterized based on its morphological, cultural, and biochemical characteristics. Molecular identification using 16S rDNA sequencing and phylogenetic analysis confirmed its identity. Fermentation conditions, including pH, temperature, time, and agitation rate, were optimized to maximize HA production. The basal medium, comprising sucrose (7.0%) as carbon source and combined yeast extract with peptone (1.25% each) as nitrogen substrate, favored the highest HA production at pH 8.0, for 30 h, at 30 °C, under shaking at 180 rpm. The average maximized HA concentration reached 1.5 g L-1. Furthermore, bacterial HA exhibited a significant inhibitory effect on three cancer cell lines (MCF-7, HepG-2 and HCT), with the lowest concentration ranging from 0.98-3.91 µg mL-1. CONCLUSIONS K. pneumoniae H15, isolated from animal feces demonstrated promising potential for HA production. The most favorable fermentation conditions led to a high HA production. The inhibitory effect of bacterial HA on cancer cell lines highlights its potential therapeutic applications. These findings contribute to a broader understanding and utilization of HA in various industries and therapeutic applications.
Collapse
Affiliation(s)
- Rania M Ahmed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Safaa Saed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Askora
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
10
|
Hoyle JS, Downard KM. High resolution mass spectrometry of respiratory viruses: beyond MALDI-ToF instruments for next generation viral typing, subtyping, variant and sub-variant identification. Analyst 2023; 148:4263-4273. [PMID: 37587867 DOI: 10.1039/d3an00953j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In the wake of the SARS-CoV2 pandemic, a point has been reached to assess the limitations and strengths of the analytical responses to virus identification and characterisation. Mass spectrometry has played a growing role in this area for over two decades, and this review highlights the benefits of mass spectrometry (MS) over PCR-based methods together with advantages of high mass resolution, high mass accuracy strategies over conventional MALDI-ToF and ESI-MS/MS instrumentation. This review presents the development and application of high resolution mass spectrometry approaches to detect, characterise, type and subtype, and distinguish variants of the influenza and SARS-CoV-2 respiratory viruses. The detection limits for the identification of SARS-CoV2 virus variants in clinical specimens and the future uptake of high resolution instruments in clinical laboratories are discussed. The same high resolution mass data can be used to monitor viral evolution and follow evolutionary trajectories.
Collapse
Affiliation(s)
- Joshua S Hoyle
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia.
| |
Collapse
|
11
|
Jiang R, Rempel DL, Gross ML. MALDI Peptide Mapping for Fast Analysis in Protein Footprinting. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 490:117080. [PMID: 38465269 PMCID: PMC10923600 DOI: 10.1016/j.ijms.2023.117080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although protein footprinting results are commonly obtained by ESI-based LC-MS/MS, a more rapid-turnaround alternative approach is desirable to expand the scope of protein footprinting and facilitate routine analysis such as monitoring protein high order structure in quality control or checking epitope maps. Considering that MALDI is a faster procedure that can be easily adapted for high-throughput analysis, we explore here the feasibility of developing a MALDI-based analysis "portfolio" of bottom-up peptide mass mapping for footprinting. The approach was applied to several model proteins that were submitted to two footprinting strategies, FPOP and GEE labeling, and their performance was evaluated. We found adequate coverage that can be improved with automatic off-line separation and spotting, demonstrating the capability to footprint accurately protein conformational change, showing that MALDI may be useful for selected applications in protein footprinting.
Collapse
Affiliation(s)
- Ruidong Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
12
|
Calabrese V, Schmitz-Afonso I, Riah-Anglet W, Trinsoutrot-Gattin I, Pawlak B, Afonso C. Direct introduction MALDI FTICR MS based on dried droplet deposition applied to non-targeted metabolomics on Pisum Sativum root exudates. Talanta 2023; 253:123901. [PMID: 36088848 DOI: 10.1016/j.talanta.2022.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Non-targeted metabolomic approaches based on direct introduction (DI) through a soft ionization source are nowadays used for large-scale analysis and wide cover-up of metabolites in complex matrices. When coupled with ultra-high-resolution Fourier-Transform ion cyclotron resonance (FTICR MS), DI is generally performed through electrospray (ESI), which, despite the great analytical throughput, can suffer of matrix effects due to residual salts or charge competitors. In alternative, matrix assisted laser desorption ionization (MALDI) coupled with FTICR MS offers relatively high salt tolerance but it is mainly used for imaging of small molecule within biological tissues. In this study, we report a systematic evaluation on the performance of direct introduction ESI and MALDI coupled with FTICR MS applied to the analysis of root exudates (RE), a complex mixture of metabolites released from plant root tips and containing a relatively high salt concentration. Classic dried droplet deposition followed by screening of best matrices and ratio allowed the selection of high ranked conditions for non-targeted metabolomics on RE. Optimization of MALDI parameters led to improved reproducibility and precision. A RE desalted sample was used for comparison on ionization efficiency of the two sources and ion enhancement at high salinity was highlighted in MALDI by spiking desalted solution with inorganic salts. Application of a true lyophilized RE sample exhibited the complementarity of the two sources and the ability of MALDI in the detection of undisclosed metabolites suffering of matrix effects in ESI mode.
Collapse
Affiliation(s)
- Valentina Calabrese
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France
| | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France.
| | - Wassila Riah-Anglet
- UniLaSalle, AGHYLE Research Unit UP 2018.C101, Rouen Team, 76134 Mont-Saint Aignan, SFR Normandie Végétal FED 4277, 76000, Rouen, France
| | - Isabelle Trinsoutrot-Gattin
- UniLaSalle, AGHYLE Research Unit UP 2018.C101, Rouen Team, 76134 Mont-Saint Aignan, SFR Normandie Végétal FED 4277, 76000, Rouen, France
| | - Barbara Pawlak
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, 76000, Rouen, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France
| |
Collapse
|
13
|
Sánchez-Juanes F, Calvo Sánchez N, Belhassen García M, Vieira Lista C, Román RM, Álamo Sanz R, Muro Álvarez A, Muñoz Bellido JL. Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms 2022; 10:2300. [PMID: 36422371 PMCID: PMC9695109 DOI: 10.3390/microorganisms10112300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Arthropod vectors and parasites are identified morphologically or, more recently, by molecular methods. Both methods are time consuming and require expertise and, in the case of molecular methods, specific devices. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification of bacteria has meant a major change in clinical microbiology laboratories because of its simplicity, speed and specificity, and its capacity to identify microorganisms, in some cases, directly from the sample (urine cultures, blood cultures). Recently, MALDI-TOF MS has been shown as useful for the identification of some parasites. On the other hand, the identification of vector arthropods and the control of their populations is essential for the control of diseases transmitted by arthropods, and in this aspect, it is crucial to have fast, simple and reliable methods for their identification. Ticks are blood-sucking arthropods with a worldwide distribution, that behave as efficient vectors of a wide group of human and animal pathogens, including bacteria, protozoa, viruses, and even helminths. They are capable of parasitizing numerous species of mammals, birds and reptiles. They constitute the second group of vectors of human diseases, after mosquitoes. MALDI-TOF MS has been shown as useful for the identification of different tick species, such as Ixodes, Rhipicephalus and Amblyomma. Some studies even suggest the possibility of being able to determine, through MALDI-TOF MS, if the arthropod is a carrier of certain microorganisms. Regarding mosquitoes, the main group of vector arthropods, the possibility of using MALDI-TOF MS for the identification of different species of Aedes and Anopheles has also been demonstrated. In this review, we address the possibilities of this technology for the identification of parasites and arthropod vectors, its characteristics, advantages and possible limitations.
Collapse
Affiliation(s)
- Fernando Sánchez-Juanes
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Noelia Calvo Sánchez
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Moncef Belhassen García
- Department of Medicine-Infectious Diseases, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Carmen Vieira Lista
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Raul Manzano Román
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Rufino Álamo Sanz
- Public Health Information Service, Consejería de Sanidad, Junta de Castilla y León, 47007 Valladolid, Spain
| | - Antonio Muro Álvarez
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Ouarti B, Fonkou DMM, Houhamdi L, Mediannikov O, Parola P. Lice and lice-borne diseases in humans in Africa: a narrative review. Acta Trop 2022; 237:106709. [PMID: 36198330 DOI: 10.1016/j.actatropica.2022.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/18/2023]
Abstract
Lice are host-specific insects. Human lice include Pediculus humanus humanus (body lice) which are known to be vectors of serious human bacterial infectious diseases including epidemic typhus, relapsing fever, trench fever and plague; Pediculus humanus capitis (head lice) that frequently affect children; and Pthirus pubis, commonly known as crab lice. In Africa, human infections transmitted by lice remained poorly known and therefore, underestimated, perhaps due to the lack of diagnostic tools and professional knowledge. In this paper we review current knowledge of the microorganisms identified in human lice in the continent of Africa, in order to alert health professionals to the importance of recognising the risk of lice-related diseases.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | | | - Linda Houhamdi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France; IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
15
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
16
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
17
|
Chen D, Bryden WA, Fenselau C, McLoughlin M, Haddaway CR, Devin AP, Caton ER, Bradrick SS, Miller JM, Tacheny EA, Lemmon MM, Bogan J. MALDI-TOF Mass Spectrometric Detection of SARS-CoV-2 Using Cellulose Sulfate Ester Enrichment and Hot Acid Treatment. J Proteome Res 2022; 21:2055-2062. [PMID: 35787094 PMCID: PMC9305670 DOI: 10.1021/acs.jproteome.2c00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here we report a novel strategy for the rapid detection of SARS-CoV-2 based on an enrichment approach exploiting the affinity between the virus and cellulose sulfate ester functional groups, hot acid hydrolysis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Virus samples were enriched using cellulose sulfate ester microcolumns. Virus peptides were prepared using the hot acid aspartate-selective hydrolysis and characterized by MALDI-TOF MS. Collected spectra were processed with a peptide fingerprint algorithm, and searching parameters were optimized for the detection of SARS-CoV-2. These peptides provide high sequence coverage for nucleocapsid (N protein) and allow confident identification of SARS-CoV-2. Peptide markers contributing to the detection were rigorously identified using bottom-up proteomics. The approach demonstrated in this study holds the potential for developing a rapid assay for COVID-19 diagnosis and detecting virus variants from a variety of sources, such as sewage and nasal swabs.
Collapse
Affiliation(s)
- Dapeng Chen
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry,
University of Maryland, College Park, Maryland 20742,
United States
| | | | | | - Alese P. Devin
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | - Emily R. Caton
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Joy M. Miller
- MRIGlobal, Kansas City,
Missouri 64110, United States
| | | | | | - Joseph Bogan
- MRIGlobal, Gaithersburg,
Maryland 20878, United States
| |
Collapse
|
18
|
Sogawa K, Ishizaki N, Ishige T, Murata S, Taniguchi T, Furuhata K. Evaluation of Serotyping of Environmental and Clinical Isolates of Legionella pneumophila using MALDI-TOF MS. Biocontrol Sci 2022; 27:81-86. [PMID: 35753796 DOI: 10.4265/bio.27.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Legionella pneumophila (L. pneumophila) is responsible for most Legionnaire's disease cases diagnosed worldwide. The species includes 16 serogroups, but most Legionnaire's disease cases (85.7% in Europe, 87.0% in Japan) are caused by L. pneumophila serogroup 1. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify the L. pneumophila serogroup. In this study, we compared three sample preparation methods that are compatible with MALDI-TOF MS: the direct colony transfer method (DCTM), on-target extraction method (OTEM), and in-tube extraction method (ITEM). The aim was to improve the low identification rates for L. pneumophila, and establish and validate a simple, rapid and robust MALDI-TOF MS-based method for routine use in microbiological laboratories for assignment of L. pneumophila isolates to serogroups and identification of reliable peak biomarkers. Using ITEM, 100.0% (29/29) of hot spring water samples and clinical isolates were correctly identified at the species level. Augmented reference spectra correctly identified all 29 strains at the species level and 29 isolates at the serogroup level, displaying sensitivity, specificity and accuracy of 100.0% for serogroup assignment. MALDI-TOF MS is a relatively inexpensive method for assignment of L. pneumophila serogroups that can serve as a first-line tool for rapid prospective typing.
Collapse
Affiliation(s)
- Kazuyuki Sogawa
- Department of Biochemistry, School of Life and Environmental Science, Azabu University
| | - Naoto Ishizaki
- Department of Microbiology, School of Life and Environmental Science, Azabu University
| | - Takayuki Ishige
- Department of Clinical Laboratory, Chiba University Hospital
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital
| | | | - Katsunori Furuhata
- Department of Microbiology, School of Life and Environmental Science, Azabu University
| |
Collapse
|
19
|
Mann C, Downard KM. Analysis of bacterial biotyping datasets with a mass-based phylonumerics approach. Anal Bioanal Chem 2022; 414:3411-3417. [DOI: 10.1007/s00216-022-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/01/2022]
|
20
|
Jia J, Shi W, Dong F, Meng Q, Yuan L, Chen C, Yao K. Identification and molecular epidemiology of routinely determined Streptococcus pneumoniae with negative Quellung reaction results. J Clin Lab Anal 2022; 36:e24293. [PMID: 35170080 PMCID: PMC8993597 DOI: 10.1002/jcla.24293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Some streptococci strains identified as Streptococcus pneumoniae (S. pneumoniae) by routine clinical methods exhibiting negative Quellung reaction results may belong to other species of viridans group streptococci or non‐typeable S. pneumoniae. The purpose of this study was to investigate the identification and molecular characteristics of S. pneumoniae with negative Quellung reaction results. Methods One hundred and five isolates identified as S. pneumoniae using routine microbiological methods with negative Quellung reaction results were included. Multilocus sequence analysis (MLSA) was used as a gold standard in species identification, and the capacity of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS) in identification was evaluated. Capsular genes and sequence types of S. pneumoniae isolates were determined by sequential multiplex PCR and multilocus sequence typing. Antimicrobial susceptibility patterns were determined via broth microdilution with a commercialized 96‐well plate. Results Among the isolates, 81 were identified as S. pneumoniae and 24 were S. pseudopneumoniae by MLSA. MALDI‐TOF MS misidentified six S. pneumoniae isolates as S. pseudopneumoniae and nine S. pseudopneumoniae isolates as S. pneumoniae or S. mitis/S. oralis. Thirty‐one sequence types (STs) were detected for these 81 S. pneumoniae isolates, and the dominant ST was ST‐bj12 (16, 19.8%). The non‐susceptibility rates of S. pseudopneumoniae were comparable to those of NESp strains. Conclusions Some S. pneumoniae isolates identified by routine methods were S. pseudopneumoniae. Most NESp strains have a different genetic background compared with capsulated S. pneumoniae strains. The resistance patterns of S. pseudopneumoniae against common antibiotics were comparable to those of NESp.
Collapse
Affiliation(s)
- Ju Jia
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Wei Shi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Fang Dong
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Qingying Meng
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Lin Yuan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Changhui Chen
- Department of Pediatrics, Youyang County People's Hospital, Chongqing, China
| | - Kaihu Yao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Chemical modification for improving catalytic performance of lipase B from Candida antarctica with hydrophobic proline ionic liquid. Bioprocess Biosyst Eng 2022; 45:749-759. [PMID: 35113231 DOI: 10.1007/s00449-022-02696-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
In this study, a series of proline ionic liquids with different lengths of hydrophobic alkyl on the side chain were used to modify the Candida Antarctic lipase B (CALB). The catalytic activity, thermal stability and tolerance to methanol and DMSO of the modified enzyme were all improved simultaneously. The optimum temperature changed from 55 to 60 ℃. The hydrophobicity and anion type of the modifier have important influence on the catalytic performance of CALB. CALB modified by [ProC12][H2PO4] has a better effect. Under the optimal conditions, its hydrolysis activity was 3.0 times than that of the native enzyme, the catalytic efficiency Kcat/Km improved 2.8 times in aqueous phase, and the tolerance to organic solvent with strong polarity (50% methanol 2 h) was increased by 6.8 times. Fluorescence spectra and circular dichroism (CD) spectroscopy showed that the introduction of ionic liquids changed the microenvironment near the fluorophores of the enzyme protein, the α-helix decreased and β-sheet increased in the secondary structure of the modified enzymes. The root mean square deviation (RMSD), residue root mean square fluctuation (RMSF), radius of gyration (Rg), and solution accessible surface area (SASA) of [ProC2][Br]-CALB, [ProC12][Br]-CALB and native CALB were obtained for comparison by molecular dynamics simulation. The results of dynamics simulation were in good agreement with enzymology experiment. The introduction of ionic liquids can keep CALB in a better active conformation, and proline ionic liquids with long hydrophobic chains can significantly improve the surface hydrophobicity and overall rigidity of CALB. This research offers a new idea for rapid screening of efficient modifiers and provision of enzymes with high stability and activity for industrial application.
Collapse
|
22
|
Fung WWS, Li PKT. Recent advances in novel diagnostic testing for peritoneal dialysis-related peritonitis. Kidney Res Clin Pract 2022; 41:156-164. [PMID: 35172532 PMCID: PMC8995487 DOI: 10.23876/j.krcp.21.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Peritoneal dialysis-related peritonitis remains a significant complication and an important cause of technique failure. Based on current International Society for Peritoneal Dialysis guidelines, diagnosis of peritonitis is made when two of the three following criteria are met: 1) clinical features consistent with peritonitis; 2) dialysis effluent white blood cell count of >100 cells/μL; 3) positive effluent culture. However, early and accurate diagnosis can still be faulty, and emphasis has been placed on improving the timeliness and accuracy of diagnosis to facilitate early effective treatment. There have been advances in the novel diagnostic tests such as point-of-care molecular tests, genetics sequencing, mass spectrometry, and machine learning algorithm with immune fingerprinting. This article will discuss the latest evidence and updates of these tests in the management of peritoneal dialysis-related peritonitis.
Collapse
Affiliation(s)
- Winston Wing-Shing Fung
- Department of Medicine and Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Philip Kam-Tao Li
- Department of Medicine and Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
- Correspondence: Philip Kam-Tao Li, Department of Medicine and Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong. E-mail:
| |
Collapse
|
23
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
24
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
25
|
Gupta V, Chandran S, Deep A, Kumar R, Bisht L. Environmental factors affecting the diversity of psychrophilic microbial community in the high altitude snow-fed lake Hemkund, India. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100126. [PMID: 35909632 PMCID: PMC9325733 DOI: 10.1016/j.crmicr.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Seasonal variation among the physicochemical attributes of Hemkund Lake. Exploration of psychrophilic microbial diversity of high-altitude snow-fed Lake Hemkund. This lake is located at an altitude of 4170 m a.s.l. and is also an important tributary of Lakshman Ganga. Study of important physicochemical factors affecting the microbial diversity at various sampling sites. Importance of phychrophilic microbial diversity to the society.
The current examination incorporates the evaluation of limnological boundaries influencing the microbial diversity and its distribution in the Hemkund Lake, a high altitude aquatic body located at an elevation of 4,170 m a.s.l. in the Himalayan state Uttarakhand of India. Samples of water were collected for three continuous years (2018–2020) in three sampling attempts each year. Four water sampling sites were identified and studied across the lake during two years of the study periods. A total of nineteen physicochemical parameters of lake water were recorded. Few of the parameters were analyzed at the site whereas the leftover parameters were analyzed in the laboratory at the Department. The diversity of microorganisms was determined via morphological, biochemical, MALDI-TOF MS, and molecular approaches (16S and 18S rRNA sequencing). Environmental variables i.e., DO, BOD, total coliform, and TDS showed huge variation at site 2 among all the four water sampling sites. The water temperature of Hemkund Lake was observed from 4.9°C to 6.1°C whereas; dissolved oxygen was recorded from 6.0 to 8.2 mg.l−1. The α-diversity of microorganisms in the Hemkund Lake was found to be nineteen with ten bacterial strains, four actinomycetes strains, and five fungal strains. Janthinobacterium lividum, Pseudomonas tolaasii, Pseudomonas rhodesiae, and Pseudomonas fluorescens are a few important and key species that were found in the lake water. The present study on the diversity of psychrophilic microorganisms in the high altitude Lake Hemkund could be a great reference for further research activities on comparable viewpoints in different parts of the Himalaya. This baseline information can also help the administrative officials to take necessary steps for its conservation and management.
Collapse
Affiliation(s)
- Vidhu Gupta
- Department of Environmental Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal 246174, Uttarakhand, India
| | - Somashekar Chandran
- Department of Forensic Medicine and Toxicology, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India
| | - Akash Deep
- Department of Environmental Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal 246174, Uttarakhand, India
- Corresponding authors.
| | - Rahul Kumar
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences (EMÜ), Fr. R. Kreutzwaldi 1, Tartu 51006, Estonia
- Corresponding authors.
| | - Lalita Bisht
- Department of Environmental Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal 246174, Uttarakhand, India
| |
Collapse
|
26
|
Accelerating strain phenotyping with desorption electrospray ionization-imaging mass spectrometry and untargeted analysis of intact microbial colonies. Proc Natl Acad Sci U S A 2021; 118:2109633118. [PMID: 34857637 DOI: 10.1073/pnas.2109633118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Reading and writing DNA were once the rate-limiting step in synthetic biology workflows. This has been replaced by the search for the optimal target sequences to produce systems with desired properties. Directed evolution and screening mutant libraries are proven technologies for isolating strains with enhanced performance whenever specialized assays are available for rapidly detecting a phenotype of interest. Armed with technologies such as CRISPR-Cas9, these experiments are capable of generating libraries of up to 1010 genetic variants. At a rate of 102 samples per day, standard analytical methods for assessing metabolic phenotypes represent a major bottleneck to modern synthetic biology workflows. To address this issue, we have developed a desorption electrospray ionization-imaging mass spectrometry screening assay that directly samples microorganisms. This technology increases the throughput of metabolic measurements by reducing sample preparation and analyzing organisms in a multiplexed fashion. To further accelerate synthetic biology workflows, we utilized untargeted acquisitions and unsupervised analytics to assess multiple targets for future engineering strategies within a single acquisition. We demonstrate the utility of the developed method using Escherichia coli strains engineered to overproduce free fatty acids. We determined discrete metabolic phenotypes associated with each strain, which include the primary fatty acid product, secondary products, and additional metabolites outside the engineered product pathway. Furthermore, we measured changes in amino acid levels and membrane lipid composition, which affect cell viability. In sum, we present an analytical method to accelerate synthetic biology workflows through rapid, untargeted, and multiplexed metabolomic analyses.
Collapse
|
27
|
Accurate classification of Listeria species by MALDI-TOF mass spectrometry incorporating denoising autoencoder and machine learning. J Microbiol Methods 2021; 192:106378. [PMID: 34818574 DOI: 10.1016/j.mimet.2021.106378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
Abstract
Listeria monocytogenes belongs to the category of facultative anaerobic bacteria, and is the pathogen of listeriosis, potentially lethal disease for humans. There are many similarities between L. monocytogenes and other non-pathogenic Listeria species, which causes great difficulties for their correct identification. The level of L. monocytogenes contamination in food remains high according to statistics from the Food and Drug Administration. This situation leads to food recall and destruction, which has caused huge economic losses to the food industry. Therefore, the identification of Listeria species is very important for clinical treatment and food safety. This work aims to explore an efficient classification algorithm which could easily and reliably distinguish Listeria species. We attempted to classify Listeria species by incorporating denoising autoencoder (DAE) and machine learning algorithms in matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, convolutional neural networks were used to map the high dimensional original mass spectrometry data to low dimensional core features. By analyzing MALDI-TOF MS data via incorporating DAE and support vector machine (SVM), the identification accuracy of Listeria species was 100%. The proposed classification algorithm is fast (range of seconds), easy to handle, and, more importantly, this method also allows for extending the identification scope of bacteria. The DAE model used in our research is an effective tool for the extraction of MALDI-TOF mass spectrometry features. Despite the fact that the MALDI-TOF MS dataset examined in our research had high dimensionality, the DAE + SVM algorithm was still able to exploit the hidden information embedded in the original MALDI-TOF mass spectra. The experimental results in our work demonstrated that MALDI-TOF mass spectrum combined with DAE + SVM could easily and reliably distinguish Listeria species.
Collapse
|
28
|
Topić Popović N, Kazazić SP, Bojanić K, Strunjak-Perović I, Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: A review. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34642960 DOI: 10.1002/mas.21739] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent tool for bacterial identification. It allows high throughput, sensitive and specific applications in clinical diagnostics and environmental research. Currently, there is no optimal standardized protocol for sample preparation and culture conditions to profile bacteria. The performance of MALDI-TOF MS is affected by several variables, such as sample preparation, culture media and culture conditions, incubation time/growth stage, incubation temperature, high salt content, blood in the culture media, and others. This review thus aims to clarify why a uniformed protocol is not plausible, to assess the effects these factors have on MALDI-TOF MS identification score, and discuss possible optimizations for its methodology, in relation to specific bacterial representatives and strain requirements.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Snježana P Kazazić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
29
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
30
|
Manzulli V, Rondinone V, Buchicchio A, Serrecchia L, Cipolletta D, Fasanella A, Parisi A, Difato L, Iatarola M, Aceti A, Poppa E, Tolve F, Pace L, Petruzzi F, Rovere ID, Raele DA, Del Sambro L, Giangrossi L, Galante D. Discrimination of Bacillus cereus Group Members by MALDI-TOF Mass Spectrometry. Microorganisms 2021; 9:microorganisms9061202. [PMID: 34199368 PMCID: PMC8228078 DOI: 10.3390/microorganisms9061202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022] Open
Abstract
Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry (MALDI-TOF MS) technology is currently increasingly used in diagnostic laboratories as a cost effective, rapid and reliable routine technique for the identification and typing of microorganisms. In this study, we used MALDI-TOF MS to analyze a collection of 160 strains belonging to the Bacillus cereus group (57 B. anthracis, 49 B. cereus, 1 B. mycoides, 18 B. wiedmannii, 27 B. thuringiensis, 7 B. toyonensis and 1 B. weihenstephanensis) and to detect specific biomarkers which would allow an unequivocal identification. The Main Spectra Profiles (MSPs) were added to an in-house reference library, expanding the current commercial library which does not include B. toyonensis and B. wiedmannii mass spectra. The obtained mass spectra were statistically compared by Principal Component Analysis (PCA) that revealed seven different clusters. Moreover, for the identification purpose, were generated dedicate algorithms for a rapid and automatic detection of characteristic ion peaks after the mass spectra acquisition. The presence of specific biomarkers can be used to differentiate strains within the B. cereus group and to make a reliable identification of Bacillus anthracis, etiologic agent of anthrax, which is the most pathogenic and feared bacterium of the group. This could offer a critical time advantage for the diagnosis and for the clinical management of human anthrax even in case of bioterror attacks.
Collapse
Affiliation(s)
- Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
- Correspondence: ; Tel.: +39-0881-786330
| | - Alessandro Buchicchio
- Bruker Italia s.r.l., Daltonics Division, Strada Cluentina, 26/R, 62100 Macerata, Italy;
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Dora Cipolletta
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Laura Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Michela Iatarola
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Angela Aceti
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Elena Poppa
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Francesco Tolve
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Lorenzo Pace
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Fiorenza Petruzzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Ines Della Rovere
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Donato Antonio Raele
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Luigi Giangrossi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (L.S.); (D.C.); (A.F.); (A.P.); (L.D.); (M.I.); (A.A.); (E.P.); (F.T.); (L.P.); (F.P.); (I.D.R.); (D.A.R.); (L.D.S.); (L.G.); (D.G.)
| |
Collapse
|
31
|
Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J. Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 2021; 9:862. [PMID: 33923763 PMCID: PMC8073235 DOI: 10.3390/microorganisms9040862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.
Collapse
Affiliation(s)
- Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95125 Catania, Italy
| | - Jaime Cubero
- National Institute for Agricultural and Food Research and Technology (INIA), 28002 Madrid, Spain;
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel;
| | - Claude Bragard
- UCLouvain, Earth & Life Institute, Applied Microbiology, 1348 Louvain-la-Neuve, Belgium;
| | - Edyta Đermić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maria C. Holeva
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Bacteriology, GR-14561 Kifissia, Greece;
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Univ Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France;
| | - Francoise Petter
- European and Mediterranean Plant Protection Organization (EPPO/OEPP), 75011 Paris, France;
| | - Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | - Isabelle Robène
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | | | - Fernando Tavares
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal; or
- FCUP-Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), Univ Montpellier, Cirad, INRAe, Institut Agro, IRD, 34398 Montpellier, France;
| | - Joana Costa
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 300-456 Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
32
|
Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. Future Microbiol 2021; 16:323-340. [PMID: 33733821 DOI: 10.2217/fmb-2020-0145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.
Collapse
Affiliation(s)
- Jacques Sevestre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Z Diarra
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Lionel Almeras
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
33
|
Cuénod A, Foucault F, Pflüger V, Egli A. Factors Associated With MALDI-TOF Mass Spectral Quality of Species Identification in Clinical Routine Diagnostics. Front Cell Infect Microbiol 2021; 11:646648. [PMID: 33796488 PMCID: PMC8007975 DOI: 10.3389/fcimb.2021.646648] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background An accurate and timely identification of bacterial species is critical in clinical diagnostics. Species identification allows a potential first adaptation of empiric antibiotic treatments before the resistance profile is available. Matrix assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS) is a widely used method for bacterial species identification. However, important challenges in species identification remain. These arise from (i) incomplete databases, (ii) close relatedness of species of interest, and (iii) spectral quality, which is currently vaguely defined. Methods We selected 47 clinically relevant bacterial isolates from 39 species, which can be challenging to identify by MALDI-TOF MS. We measured these isolates under various analytical conditions on two MALDI-TOF MS systems. First, we identified spectral features, which were associated with correct species identification in three different databases. Considering these features, we then systematically compared spectra produced with three different sample preparation protocols. In addition, we varied quantities of bacterial colony material applied and bacterial colony age. Results We identified (i) the number of ribosomal marker peaks detected, (ii) the median relative intensity of ribosomal marker peaks, (iii) the sum of the intensity of all detected peaks, (iv) a high measurement precision, and (v) reproducibility of peaks to act as good proxies of spectral quality. We found that using formic acid, measuring bacterial colonies at a young age, and frequently calibrating the MALDI-TOF MS device increase mass spectral quality. We further observed significant differences in spectral quality between different bacterial taxa and optimal measurement conditions vary per taxon. Conclusion We identified and applied quality measures for MALDI-TOF MS and optimized spectral quality in routine settings. Phylogenetic marker peaks can be reproducibly detected and provide an increased resolution and the ability to distinguish between challenging species such as those within the Enterobacter cloacae complex, Burkholderia cepacia complex, or viridans streptococci.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
34
|
SÜrdem S, DoĞan H. Extraction of heavy metal complexes from a biofilm colony for biomonitoring the pollution. Turk J Chem 2021; 44:712-725. [PMID: 33488188 PMCID: PMC7671218 DOI: 10.3906/kim-1912-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022] Open
Abstract
An extraction method was tested for biomonitoring the biofilm samples containing heavy metals. The fractionation of metal complexes was performed via C-18-HPLC-ICP-MS and MALDI-MS, respectively. The extraction power of some reagents was determined for the heavy metal extraction from biofilm samples collected in Erdemli coast in the Mediterranean Sea. The ammonium acetate solution giving the highest extraction results was found as a suitable extraction reagent. The concentration and pH of the ammonium acetate solution were optimized and found as 1 M and 5, respectively. The chromatograms of metal complexes with the C-18-HPLC-ICP-MS system were taken to determine the effect of the pH of the metal complexes. After performing the extraction, metal bounded biomolecules were characterized by MALDI-MS for the fractions in the C18-HPLC system. It was seen that ammonium acetate extraction (1M, pH 5) might be used in biomonitoring studies due to relatively simple procedure, short analysis period, and low cost. The evaluation of the applicability of the method in biomonitoring studies might be supported by further studies with biofilms having similar characteristics.
Collapse
Affiliation(s)
- Sedat SÜrdem
- National Boron Research Institute, Ankara Turkey
| | - HacıMehmet DoĞan
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara Turkey
| |
Collapse
|
35
|
Saadi J, Oueslati S, Bellanger L, Gallais F, Dortet L, Roque-Afonso AM, Junot C, Naas T, Fenaille F, Becher F. Quantitative Assessment of SARS-CoV-2 Virus in Nasopharyngeal Swabs Stored in Transport Medium by a Straightforward LC-MS/MS Assay Targeting Nucleocapsid, Membrane, and Spike Proteins. J Proteome Res 2021; 20:1434-1443. [PMID: 33497234 DOI: 10.1021/acs.jproteome.0c00887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative methods to RT-PCR for SARS-CoV-2 detection are investigated to provide complementary data on viral proteins, increase the number of tests performed, or identify false positive/negative results. Here, we have developed a simple mass spectrometry assay for SARS-CoV-2 in nasopharyngeal swab samples using common laboratory reagents. The method employs high sensitivity and selectivity targeted mass spectrometry detection, monitoring nine constitutive peptides representative of the three main viral proteins and a straightforward pellet digestion protocol for convenient routine applications. Absolute quantification of N, M, and S proteins was achieved by addition of isotope-labeled versions of best peptides. Limit of detection, recovery, precision, and linearity were thoroughly evaluated in four representative viral transport media (VTM) containing distinct total protein content. The protocol was sensitive in all swab media with limit of detection determined at 2 × 103 pfu/mL, corresponding to as low as 30 pfu injected into the LC-MS/MS system. When tested on VTM-stored nasopharyngeal swab samples from positive and control patients, sensitivity was similar to or better than rapid immunoassay dipsticks, revealing a corresponding RT-PCR detection threshold at Ct ∼ 24. The study represents the first thorough evaluation of sensitivity and robustness of targeted mass spectrometry in nasal swabs, constituting a promising SARS-CoV-2 antigen assay for the first-line diagnosis of COVID-19 and compatible with the constraints of clinical settings. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01646.
Collapse
Affiliation(s)
- Justyna Saadi
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| | - Saoussen Oueslati
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Bellanger
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Fabrice Gallais
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Laurent Dortet
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Anne-Marie Roque-Afonso
- Service de Virologie, Hôpital Paul-Brousse, APHP Paris Saclay, and UMR 1193 Physiopathogénèse et Traitement des Maladies du Foie, 94800 Villejuif, France
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| | - Thierry Naas
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| | - François Becher
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif sur Yvette, France
| |
Collapse
|
36
|
Monopoli A, Nacci A, Cataldi TRI, Calvano CD. Synthesis and Matrix Properties of α-Cyano-5-phenyl-2,4-pentadienic Acid (CPPA) for Intact Proteins Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Molecules 2020; 25:molecules25246054. [PMID: 33371472 PMCID: PMC7767571 DOI: 10.3390/molecules25246054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
The effectiveness of a synthesized matrix, α-cyano-5-phenyl-2,4-pentadienic acid (CPPA), for protein analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in complex samples such as foodstuff and bacterial extracts, is demonstrated. Ultraviolet (UV) absorption along with laser desorption/ionization mass spectrometry (LDI-MS) experiments were systematically conducted in positive ion mode under standard Nd:YLF laser excitation with the aim of characterizing the matrix in terms of wavelength absorption and proton affinity. Besides, the results for standard proteins revealed that CPPA significantly enhanced the protein signals, reduced the spot-to-spot variability and increased the spot homogeneity. The CPPA matrix was successful employed to investigate intact microorganisms, milk and seed extracts for protein profiling. Compared to conventional matrices such as sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA) and 4-chloro-α-cyanocinnamic acid (CClCA), CPPA exhibited better signal-to-noise (S/N) ratios and a uniform response for most examined proteins occurring in milk, hazelnut and in intact bacterial cells of E. coli. These findings not only provide a reactive proton transfer MALDI matrix with excellent reproducibility and sensitivity, but also contribute to extending the battery of useful matrices for intact protein analysis.
Collapse
Affiliation(s)
- Antonio Monopoli
- Agenzia delle Dogane e dei Monopoli, Ufficio delle Dogane di Bari, Corso De Tullio, 70122 Bari, Italy;
| | - Angelo Nacci
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy; (A.N.); (T.R.I.C.)
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy; (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., 70126 Bari, Italy
| | - Cosima D. Calvano
- Centro Interdipartimentale di Ricerca S.M.A.R.T., 70126 Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
37
|
Uchida-Fujii E, Niwa H, Kinoshita Y, Nukada T. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for Identification of Bacterial Isolates From Horses. J Equine Vet Sci 2020; 95:103276. [PMID: 33276932 DOI: 10.1016/j.jevs.2020.103276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is used for bacterial identification by analyzing the spectra of isolates and comparing them against a database of reference spectra; it is known for its rapidity and accuracy. Although MALDI-TOF MS is used for identification of bacterial isolates from animals, not all animal pathogens are identified correctly. In this study, we used a commercial MALDI-TOF MS identification system to examine 3724 bacterial isolates from horses and their environments. Isolates that could not be identified with MALDI-TOF MS were identified by 16S rRNA gene sequence taxonomic analysis. MALDI-TOF MS could identify 86.2% of the isolates from horses to the species level, showing that this method could be successfully applied for bacterial identification in horses. However, some species known to be equine pathogenic agents including Taylorella equigenitalis and Rhodococcus equi were difficult to identify with MALDI-TOF MS, which might be the result of an inadequate reference database. Some Prevotella, Staphylococcus, and Streptococcus isolates, which could not be identified with either MALDI-TOF MS or 16S rRNA gene sequencing analysis, formed clusters in the 16S rRNA phylogenic tree, and might be unknown species isolated from horses. Adding the spectra of isolates identified in this study to an in-house database might make MALDI-TOF MS a more useful tool for identifying equine isolates.
Collapse
Affiliation(s)
- Eri Uchida-Fujii
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan.
| | - Hidekazu Niwa
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Yuta Kinoshita
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Toshio Nukada
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| |
Collapse
|
38
|
Zhou S, Feng G, Wang S, Qi G, Wu M, Liu B. Fast and High-Throughput Evaluation of Photodynamic Effect by Monitoring Specific Protein Oxidation with MALDI-TOF Mass Spectrometry. Anal Chem 2020; 92:12176-12184. [PMID: 32786497 DOI: 10.1021/acs.analchem.0c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In antibacterial practices by photodynamic treatment, bacteria are incubated with photosensitizers and then oxidized to death by generating reactive oxygen species (ROS) under light irradiation. Generally, Luria-Bertani (LB) agar colony is a conventional method to evaluate the photodynamic effect. However, this method is time consuming, easily disturbed by pollutants, and limited to the analysis of a pure bacteria sample. Herein, we introduce a novel method of photodynamic effect evaluation through in situ detection of specific protein oxidation by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) with only 1 μL of sample in a fast (less than 1 min per sample) and high-throughput (up to 384 samples per run) way. The oxidation rates of specific proteins stayed highly consistent with bactericidal rates and thus MALDI-TOF MS might be able to replace the LB agar colony to evaluate the photodynamic effect. With the present method, several experimental conditions including different photosensitizer types, dosage controls, and different illumination times were easily screened to optimize photodynamic effect. Photodynamic effects of various bacteria species, cancer cells, and even mixture samples were also evaluated. The results demonstrate the promising application of MALDI-TOF MS in evaluating the photodynamic effect of each component in a mixture sample without any separation or purification, which could not be achieved by the traditional LB agar colony method.
Collapse
Affiliation(s)
- Shiwei Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Shaowei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
39
|
Giraud-Gatineau A, Texier G, Garnotel E, Raoult D, Chaudet H. Insights Into Subspecies Discrimination Potentiality From Bacteria MALDI-TOF Mass Spectra by Using Data Mining and Diversity Studies. Front Microbiol 2020; 11:1931. [PMID: 32903575 PMCID: PMC7438549 DOI: 10.3389/fmicb.2020.01931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Bacterial identification at subspecies level is critical in clinical care and epidemiological investigations due to the different epidemic potentialities of a species. For this purpose, matrix-assisted laser desorption ionization – time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed in place of molecular genotyping, but with some result discrepancies. The aim of this work is to methodically mine the expression diversities of MALDI-TOF bacterial species spectra and their possible latent organization in order to evaluate their subspecies specific expression. Peak expression diversities of MALDI-TOF spectra coming from routine identifications have been analyzed using Hill numbers, rarefaction curves, and peak clustering. Some size effect critical thresholds were estimated using change point analyses. We included 167,528 spectra corresponding to 405 species. Species spectra diversities have a broad size-dependent variability, which may be influenced by the kind of sampling. Peak organization is characterized by the presence of a main cluster made of the most frequently co-occurring peaks and around 20 secondary clusters grouping less frequently co-occurring peaks. The 35 most represented species in our sample are distributed in two groups depending on the focusing of their protein synthesis activity on the main cluster or not. Our results may advocate some analogy with genomics studies of bacteria, with a main species-related cluster of co-occurring peaks and several secondary clusters, which may host peaks able to discriminate bacterial subgroups. This systematic study of the expression diversities of MALDI-TOF spectra shows that latent organization of co-occurring peaks supports subspecies discrimination and may explain why studies on MALDI-TOF-based typing exhibit some result divergences.
Collapse
Affiliation(s)
- Audrey Giraud-Gatineau
- IHU Méditerranée Infection, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France
| | - Gaetan Texier
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France.,Centre d'Epidémiologie et de Santé Publique des Armées (CESPA), Marseille, France
| | - Eric Garnotel
- Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Hervé Chaudet
- IHU Méditerranée Infection, Marseille, France.,Assistance Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
40
|
Bezdekova J, Zemankova K, Hutarova J, Kociova S, Smerkova K, Adam V, Vaculovicova M. Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem 2020; 321:126673. [DOI: 10.1016/j.foodchem.2020.126673] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/13/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
|
41
|
Chen D, Bryden WA, Wood R. Detection of Tuberculosis by The Analysis of Exhaled Breath Particles with High-resolution Mass Spectrometry. Sci Rep 2020; 10:7647. [PMID: 32376992 PMCID: PMC7203136 DOI: 10.1038/s41598-020-64637-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis remains a global health threat killing over 1 million people per year. Current sputum-based diagnostics are specific but lack sensitivity resulting in treatment of many sputum negative cases. In this proof-of-concept study, we used high-resolution mass spectrometry to identify specific lipids in peripheral lung fluid samples of TB patients and controls, captured using a novel non-invasive sampling system. Exhaled respiratory particles were collected in liquid and after concentration and lipid extraction directly infused into a high-resolution mass spectrometer. High-resolution mass spectrometric data collection was conducted in a dual ion mode and chemical compositions were constructed using accurate mass measurement. Over 400 features with high segregating capacity were extracted and optimized using feature selection algorithm and machine learning, from which the accuracy of detection of positive tuberculosis patients was estimated. This current strategy provides sensitivity offered by high-resolution mass spectrometry and can be readily susceptible for developing a novel clinical assay exploring peripheral lung fluid for the detection of active TB cases.
Collapse
Affiliation(s)
- Dapeng Chen
- Zeteo Tech Inc, Sykesville, Maryland, United States of America.
| | - Wayne A Bryden
- Zeteo Tech Inc, Sykesville, Maryland, United States of America
| | - Robin Wood
- Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Heap RE, Segarra-Fas A, Blain AP, Findlay GM, Trost M. Profiling embryonic stem cell differentiation by MALDI TOF mass spectrometry: development of a reproducible and robust sample preparation workflow. Analyst 2020; 144:6371-6381. [PMID: 31566633 DOI: 10.1039/c9an00771g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MALDI TOF mass spectrometry (MS) is widely used to characterise and biotype bacterial samples, but a complementary method for profiling of mammalian cells is still underdeveloped. Current approaches vary dramatically in their sample preparation methods and are not suitable for high-throughput studies. In this work, we present a universal workflow for mammalian cell MALDI TOF MS analysis and apply it to distinguish ground-state naïve and differentiating mouse embryonic stem cells (mESCs), which can be used as a model for drug discovery. We employed a systematic approach testing many parameters to evaluate how efficiently and reproducibly each method extracted unique mass features from four different human cell lines. These data enabled us to develop a unique mammalian cell MALDI TOF workflow involving a freeze-thaw cycle, methanol fixing and a CHCA matrix to generate spectra that robustly phenotype different cell lines and are highly reproducible in peak identification across replicate spectra. We applied our optimised workflow to distinguish naïve and differentiating populations using multivariate analysis and reproducibly identify unique features. We were also able to demonstrate the compatibility of our optimised method for current automated liquid handling technologies. Consequently, our MALDI TOF MS profiling method enables identification of unique features and robust phenotyping of mESC differentiation in under 1 hour from culture to analysis, which is significantly faster and cheaper when compared with conventional methods such as qPCR. This method has the potential to be automated and can in the future be applied to profile other cell types and expanded towards cellular MALDI TOF MS screening assays.
Collapse
Affiliation(s)
- Rachel E Heap
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK.
| | | | | | | | | |
Collapse
|
43
|
Galey MM, Young AN, Petukhova VZ, Wang M, Wang J, Salvi A, Russo A, Burdette JE, Sanchez LM. Detection of Ovarian Cancer Using Samples Sourced from the Vaginal Microenvironment. J Proteome Res 2020; 19:503-510. [PMID: 31738564 DOI: 10.1021/acs.jproteome.9b00694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mass spectrometry (MS) offers high levels of specificity and sensitivity in clinical applications, and we have previously been able to demonstrate that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS is capable of distinguishing two-component cell mixtures at low limits of detection. Ovarian cancer is notoriously difficult to detect due to the lack of diagnostic techniques available to the medical community. By sampling a local microenvironment, such as the vaginal canal and cervix, a MS based method is presented for monitoring disease progression from proximal samples to the diseased tissue. A murine xenograft model of high grade serous ovarian carcinoma (HGSOC) was used for this study, and vaginal lavages were obtained from mice on a weekly basis throughout disease progression and subjected to our MALDI-TOF MS workflow followed by statistical analyses. Proteins in the 4-20 kDa region of the mass spectrum yielded a fingerprint that we could consistently measure over time that correlated with disease progression. These fingerprints were found to be largely stable across all mice, with the protein fingerprint converging toward the end point of the study. MALDI-TOF MS serves as a unique analytical technique for measuring a sampled vaginal microenvironment in a specific and sensitive manner for the detection of HGSOC in a murine model.
Collapse
Affiliation(s)
- Melissa M Galey
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , 833 S Wood Street , Chicago , Illinois 60612 , United States
| | - Alexandria N Young
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , 833 S Wood Street , Chicago , Illinois 60612 , United States
| | - Valentina Z Petukhova
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , 833 S Wood Street , Chicago , Illinois 60612 , United States
| | - Mingxun Wang
- Ometa Laboratories , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - Jian Wang
- Ometa Laboratories , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - Amrita Salvi
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , 833 S Wood Street , Chicago , Illinois 60612 , United States
| | - Angela Russo
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , 833 S Wood Street , Chicago , Illinois 60612 , United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , 833 S Wood Street , Chicago , Illinois 60612 , United States
| | - Laura M Sanchez
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , 833 S Wood Street , Chicago , Illinois 60612 , United States
| |
Collapse
|
44
|
Kostas J, Parker KC. Using Matrix-Assisted Laser Desorption/Ionization Time of Flight Spectra To Elucidate Species Boundaries by Matching to Translated DNA Databases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:73-84. [PMID: 32881510 DOI: 10.1021/jasms.9b00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A method has been established to map a bacterial colony to the ever-expanding database of publicly available bacterial genomes by means of matrix-assisted laser desorption/ionization (MALDI) spectra. To accomplish this, spectra are mapped to the predicted masses of ∼65 families of mostly ribosomal proteins. Each of the ∼40 000 bacterial strains in the database receives scores, together with tables listing identified protein sequences and how the highest ranking strains are related to one another. The approach was first confirmed with 16 distinct species of bacteria from the Vibrionales whose genome had been sequenced. Identifications of a few species of bacteria from environmental samples from compost, lakes, and streams in Massachusetts are also reported. Most of these organisms map to known species in the Gammaproteobacteria and Firmicutes. The clades of bacteria deducible from shared ribosomal protein sequences do not always correspond well to named bacterial species. Instead, the identifications made by this methodology indicate groupings of organisms that can readily be distinguished by MALDI-TOF and indicate which polymorphisms in highly conserved proteins demarcate the groupings. Successful identifications highlight organism interrelationships that can be deduced from the available genomes, sorting together genomes into new proposed clades typically consistent with relationships deduced from DNA sequence analysis. In contrast, if for a high-quality spectrum from a fresh colony, no group of related organisms receives high scores, one might infer that no closely related genome has yet been deposited into the database.
Collapse
Affiliation(s)
- James Kostas
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kenneth C Parker
- Virgin Instruments, 261 Cedar Hill Street, Suite 100, Marlborough, Massachusetts 01752, United States
| |
Collapse
|
45
|
Welker M, van Belkum A. One System for All: Is Mass Spectrometry a Future Alternative for Conventional Antibiotic Susceptibility Testing? Front Microbiol 2019; 10:2711. [PMID: 31849870 PMCID: PMC6901965 DOI: 10.3389/fmicb.2019.02711] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The two main pillars of clinical microbiological diagnostics are the identification of potentially pathogenic microorganisms from patient samples and the testing for antibiotic susceptibility (AST) to allow efficient treatment with active antimicrobial agents. While routine microbial species identification is increasingly performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), routine AST still largely relies on conventional and molecular techniques such as broth microdilution or disk and gradient diffusion tests, PCR and automated variants thereof. However, shortly after the introduction of MALDI-TOF MS based routine identification, first attempts to perform AST on the same instruments were reported. Today, a number of different approaches to perform AST with MALDI-TOF MS and other MS techniques have been proposed, some restricted to particular microbial taxa and resistance mechanisms while others being more generic. Further, while some of the methods are in a stage of proof of principles, others are already commercialized. In this review we discuss the different principal approaches of mass spectrometry based AST and evaluate the advantages and disadvantages compared to conventional and molecular techniques. At present, the possibility that MS will soon become a routine tool for AST seems unlikely – still, the same was true for routine microbial identification a mere 15 years ago.
Collapse
Affiliation(s)
- Martin Welker
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| | - Alex van Belkum
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| |
Collapse
|
46
|
Imai K, Ishibashi N, Kodana M, Tarumoto N, Sakai J, Kawamura T, Takeuchi S, Taji Y, Ebihara Y, Ikebuchi K, Murakami T, Maeda T, Mitsutake K, Maesaki S. Clinical characteristics in blood stream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: a comparative study, Japan, 2014-2017. BMC Infect Dis 2019; 19:946. [PMID: 31703559 PMCID: PMC6842162 DOI: 10.1186/s12879-019-4498-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/23/2019] [Indexed: 01/16/2023] Open
Abstract
Background Klebsiella variicola and K. quasipneumoniae are new species distinguishable from K. pneumoniae but they are often misidentified as K. pneumoniae in clinical settings. Several reports have demonstrated the possibility that the virulence factors and clinical features differ among these three phylogroups. In this study, we aimed to clarify whether there were differences in clinical and bacterial features between the three phylogroups isolated from patients with bloodstream infections (BSIs) in Japan. Methods Isolates from all patients with BSIs caused by K. pneumoniae admitted to two hospitals between 2014 and 2017 (n = 119) were included in the study. Bacterial species were identified via sequence analysis, and their virulence factors and serotypes were analyzed via multiplex PCR results. Clinical data were retrieved from medical records. Results Of the 119 isolates, 21 (17.7%) were identified as K. variicola and 11 (9.2%) as K. quasipneumoniae; K1 serotype was found in 16 (13.4%), and K2 serotype in 13 (10.9%). Significant differences in the prevalence of rmpA, iutA, ybtS, entB and kfu (p < 0.001), and allS genes (p < 0.05) were found between the three phylogroups. However, there were no significant differences in clinical features, including the 30-day mortality rate, between the three organisms, although K. variicola was more frequently detected in patients over 80 years old compared with other Klebsiella species (p < 0.005), and K. quasipneumoniae more frequently occurred in patients with malignancy (p < 0.05). Conclusions Our findings demonstrated the differences in bacterial pathogenicity and clinical features among these three phylogroups. Further epidemiological studies into BSI caused by Klebsiella species are warranted.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Noriomi Ishibashi
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, 1-1397 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masahiro Kodana
- Clinical Laboratory Medicine, Saitama Medical University Hospital, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan. .,Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Toru Kawamura
- Clinical Laboratory Medicine, Saitama Medical University Hospital, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Shinichi Takeuchi
- Clinical Laboratory Medicine, Saitama Medical University Hospital, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoshitada Taji
- Department of Clinical Laboratory Medicine, Saitama Medical University International Medical Center, 1-1397 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yasuhiro Ebihara
- Department of Clinical Laboratory Medicine, Saitama Medical University International Medical Center, 1-1397 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Kenji Ikebuchi
- Clinical Laboratory Medicine, Saitama Medical University Hospital, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Takashi Murakami
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Department of Microbiology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Takuya Maeda
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Department of Microbiology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kotaro Mitsutake
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, 1-1397 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| |
Collapse
|
47
|
Rolim L, Santiago TR, dos Reis Junior FB, de Carvalho Mendes I, do Vale HMM, Hungria M, Silva LP. Identification of soybean Bradyrhizobium strains used in commercial inoculants in Brazil by MALDI-TOF mass spectrometry. Braz J Microbiol 2019; 50:905-914. [PMID: 31236871 PMCID: PMC6863279 DOI: 10.1007/s42770-019-00104-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/08/2019] [Indexed: 11/26/2022] Open
Abstract
Biological nitrogen fixation (BNF) with the soybean crop probably represents the major sustainable technology worldwide, saving billions of dollars in N fertilizers and decreasing water pollution and the emission of greenhouse gases. Accordingly, the identification of strains occupying nodules under field conditions represents a critical step in studies that are aimed at guaranteeing increased BNF contribution. Current methods of identification are mostly based on serology, or on DNA profiles. However, the production of antibodies is restricted to few laboratories, and to obtain DNA profiles of hundreds of isolates is costly and time-consuming. Conversely, the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS technique might represent a golden opportunity for replacing serological and DNA-based methods. However, MALDI-TOF databases of environmental microorganisms are still limited, and, most importantly, there are concerns about the discrimination of protein profiles at the strain level. In this study, we investigated four soybean rhizobial strains carried in commercial inoculants used in over 35 million hectares in Brazil and also in other countries of South America and Africa. A supplementary MALDI-TOF database with the protein profiles of these rhizobial strains was built and allowed the identification of unique profiles statistically supported by multivariate analysis and neural networks. To test this new database, the nodule occupancy by Bradyrhizobium strains in symbiosis with soybean was characterized in a field experiment and the results were compared with serotyping of bacteria by immuno-agglutination. The results obtained by both techniques were highly correlated and confirmed the viability of using the MALDI-TOF MS technique to effectively distinguish bacteria at the strain level.
Collapse
Affiliation(s)
- Lucas Rolim
- Universidade de Brasilia (UnB), Brasília, Distrito Federal 70910-900 Brazil
| | - Thaís Ribeiro Santiago
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, Brasília, Distrito Federal 70770-917 Brazil
| | | | | | | | | | - Luciano Paulino Silva
- Universidade de Brasilia (UnB), Brasília, Distrito Federal 70910-900 Brazil
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, Brasília, Distrito Federal 70770-917 Brazil
| |
Collapse
|
48
|
Velichko NV, Pinevich AV. Classification and Identification Tasks in Microbiology: Mass Spectrometric Methods Coming to the Aid. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Muramatsu Y, Haraya N, Horie K, Uchida L, Kooriyama T, Suzuki A, Horiuchi M. Bergeyella zoohelcum isolated from oral cavities of therapy dogs. Zoonoses Public Health 2019; 66:936-942. [PMID: 31464049 DOI: 10.1111/zph.12644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Bergeyella zoohelcum causes rare but severe human clinical diseases, which mostly arise from animal bites. Notably, Bergeyella infections can also occur in older people after prolonged exposure to dogs or cats without biting. We detected B. zoohelcum in oral cavities of therapy dogs in close contact with older people residing in nursing homes. Twenty-two bacterial isolates were identified as B. zoohelcum by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing. Our results showed that MALDI-TOF MS is an effective tool for rapid identification of rarely isolated, difficult-to-identify microorganisms, such as B. zoohelcum, derived from not only human clinical samples but also animal samples. To our knowledge, this is the first report on detection of B. zoohelcum from therapy dogs. We have provided information on dog-assisted therapy to improve the relationship between humans and animals in ageing societies, particularly for preventive healthcare of older people living in nursing care facilities.
Collapse
Affiliation(s)
- Yasukazu Muramatsu
- Laboratory of Zoonotic Diseases, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Nami Haraya
- Laboratory of Zoonotic Diseases, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kazuki Horie
- Laboratory of Zoonotic Diseases, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Leo Uchida
- Laboratory of Zoonotic Diseases, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Takanori Kooriyama
- Laboratory of Anthrozoology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
50
|
Ulrich S, Gottschalk C, Straubinger RK, Schwaiger K, Dörfelt R. Acceleration of the identification of sepsis-inducing bacteria in cultures of dog and cat blood. J Small Anim Pract 2019; 61:42-45. [PMID: 31313312 DOI: 10.1111/jsap.13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To evaluate matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) combined with the Sepsityper kit (Bruker Daltoniks GmbH, Bremen) for the direct detection of bacterial species from inoculated blood cultures from dogs and cats. MATERIALS AND METHODS Canine and feline blood samples were inoculated with typical sepsis-causing bacteria such as Staphylococcus intermedius, Staphylococcus aureus, Streptococcus canis, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa at two distinct concentrations (each in triplicate), resulting in 72 blood culture bottles incubated at 37°C. Samples were comparatively analysed with MALDI-TOF MS after preparation with the Sepsityper kit and also by standard bacteriology (culturing and biochemical characterisation). RESULTS Bacterial species identified from agar plates and by MALDI-TOF MS from blood culture bottles were identical for all samples. The MALDI Biotyper software (Bruker Daltoniks) correctly identified all bacterial strains from inoculated canine and feline blood with analysis indicating very good precision. CLINICAL SIGNIFICANCE MALDI-TOF MS analysis combined with the Sepsityper kit is a reliable tool for a quick detection of veterinary-relevant bacterial species directly from blood culture bottles. This approach could reduce the time for identification of critical species to only 24 hours.
Collapse
Affiliation(s)
- S Ulrich
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, 80539, Munich, Germany
| | - C Gottschalk
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, 85764, Oberschleissheim, Germany
| | - R K Straubinger
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, 80539, Munich, Germany
| | - K Schwaiger
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, 85764, Oberschleissheim, Germany
| | - R Dörfelt
- Clinic for Small Animal Medicine, Department of Clinical Veterinary Medicine, LMU Munich, Munich, 80539, Germany
| |
Collapse
|