1
|
Zhao P, Feng L, Jiang W, Wu P, Liu Y, Ren H, Jin X, Zhang L, Mi H, Zhou X. Unveiling the emerging role of curcumin to alleviate ochratoxin A-induced muscle toxicity in grass carp (Ctenopharyngodon idella): in vitro and in vivo studies. J Anim Sci Biotechnol 2024; 15:72. [PMID: 38734645 PMCID: PMC11088780 DOI: 10.1186/s40104-024-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/11/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Ochratoxin A (OTA), a globally abundant and extremely hazardous pollutant, is a significant source of contamination in aquafeeds and is responsible for severe food pollution. The developmental toxicity of OTA and the potential relieving strategy of natural products remain unclear. This study screened the substance curcumin (Cur), which had the best effect in alleviating OTA inhibition of myoblast proliferation, from 96 natural products and investigated its effect and mechanism in reducing OTA myotoxicity in vivo and in vitro. METHODS A total of 720 healthy juvenile grass carp, with an initial average body weight of 11.06 ± 0.05 g, were randomly assigned into 4 groups: the control group (without OTA and Cur), 1.2 mg/kg OTA group, 400 mg/kg Cur group, and 1.2 mg/kg OTA + 400 mg/kg Cur group. Each treatment consisted of 3 replicates (180 fish) for 60 d. RESULTS Firstly, we cultured, purified, and identified myoblasts using the tissue block culture method. Through preliminary screening and re-screening of 96 substances, we examined cell proliferation-related indicators such as cell viability and ultimately found that Cur had the best effect. Secondly, Cur could alleviate OTA-inhibited myoblast differentiation and myofibrillar development-related proteins (MyoG and MYHC) in vivo and in vitro and improve the growth performance of grass carp. Then, Cur could also promote the expression of OTA-inhibited protein synthesis-related proteins (S6K1 and TOR), which was related to the activation of the AKT/TOR signaling pathway. Finally, Cur could downregulate the expression of OTA-enhanced protein degradation-related genes (murf1, foxo3a, and ub), which was related to the inhibition of the FoxO3a signaling pathway. CONCLUSIONS In summary, our data demonstrated the effectiveness of Cur in alleviating OTA myotoxicity in vivo and in vitro. This study confirms the rapidity, feasibility, and effectiveness of establishing a natural product screening method targeting myoblasts to alleviate fungal toxin toxicity.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Bosman AJ, Freitag S, Ross GMS, Sulyok M, Krska R, Ruggeri FS, Salentijn GI. Interconnectable 3D-printed sample processing modules for portable mycotoxin screening of intact wheat. Anal Chim Acta 2024; 1285:342000. [PMID: 38057054 DOI: 10.1016/j.aca.2023.342000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The increasing demand for food and feed products is stretching the capacity of the food value chain to its limits. A key step for ensuring food safety is checking for mycotoxin contamination of wheat. However, this analysis is typically performed by rather complex and expensive chromatographic methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS). These costly methods require extensive sample preparation that is not easily carried out at different points along the food supply chain. To overcome such challenges in sample processing, an inexpensive and portable sample preparation device was needed, that required low skill, for rapid sample-to-result mycotoxin screening. RESULTS We describe 3D-printed and interconnectable modules for simple, integrated and on-site sample preparation, including grinding of wheat kernels, and solvent-based extraction. We characterized these 3D-printed modules for mycotoxin screening and benchmarked them against a laboratory mill using commercial lateral flow device(s) (LFD) and in-house validated LC-MS/MS analysis. Different integrated sieve configurations were compared based on grinding efficiency, and we selected a sieve size of 2 mm allowing grinding of 10 g of wheat within 5 min. Moreover, 10 first time-users were able to operate the grinder module with minimal instructions. Screening for deoxynivalenol (DON) in naturally contaminated samples at the regulatory/legal limit (1.25 mg kg-1) was demonstrated using the developed 3D-printed prototype. The whole process only takes 15 min, from sample preparation to screening result. The results showed a clear correlation (R2 = 0.96) between the LFD and LC-MS/MS. SIGNIFICANCE Our findings demonstrate the potential of 3D-printed sample handling equipment as a valuable extension of existing analytical procedures, facilitating the on-site implementation of rapid methods for the determination of mycotoxins in grains. The presented prototype is inexpensive with material costs of 2.5€, relies on biodegradable 3D printing filament and can be produced with consumer-grade printers, making the prototype readily available. As a future perspective, the modular character of our developed tool kit will allow for adaptation to other hard food commodities beyond the determination of DON in wheat.
Collapse
Affiliation(s)
- Anouk J Bosman
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Stephan Freitag
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Georgina M S Ross
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK
| | - Francesco Simone Ruggeri
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Abd El-Hack ME, Kamal M, Altaie HAA, Youssef IM, Algarni EH, Almohmadi NH, Abukhalil MH, Khafaga AF, Alqhtani AH, Swelum AA. Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon 2023; 234:107309. [PMID: 37802220 DOI: 10.1016/j.toxicon.2023.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
A facultative parasite called Aspergillus flavus contaminates several important food crops before and after harvest. In addition, the pathogen that causes aspergillosis infections in humans and animals is opportunistic. Aflatoxin, a secondary metabolite produced by Aspergillus flavus, is also carcinogenic and mutagenic, endangering human and animal health and affecting global food security. Peppermint essential oils and plant-derived natural products have recently shown promise in combating A. flavus infestations and aflatoxin contamination. This review discusses the antifungal and anti-aflatoxigenic properties of peppermint essential oils. It then discusses how peppermint essential oils affect the growth of A. flavus and the biosynthesis of aflatoxins. Several cause physical, chemical, or biochemical changes to the cell wall, cell membrane, mitochondria, and associated metabolic enzymes and genes. Finally, the prospects for using peppermint essential oils and natural plant-derived chemicals to develop novel antifungal agents and protect foods are highlighted. In addition to reducing the risk of aspergillosis infection, this review highlights the significant potential of plant-derived natural products and peppermint essential oils to protect food and feed from aflatoxin contamination and A. flavus infestation.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Hayman A A Altaie
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-kitab University, Kirkuk 36001, Iraq
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Eman H Algarni
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, 18 Taif 21944, Saudi Arabia
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zuo J, Yan T, Tang X, Zhang Q, Li P. Dual-Modal Immunosensor Made with the Multifunction Nanobody for Fluorescent/Colorimetric Sensitive Detection of Aflatoxin B 1 in Maize. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2771-2780. [PMID: 36598495 DOI: 10.1021/acsami.2c20269] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent years, dual-modal immunosensors based on synthetic nanomaterials have provided accurate and sensitive detection. However, preparation of nanomaterial probes can be time-consuming, laborious, and not limited to producing inactive and low-affinity antibodies. These challenges can be addressed through the multifunction nanobody without conjugation. In this study, a nanobody-enhanced green fluorescent (Nb26-EGFP) was novel produced with a satisfactory affinity and fluorescent properties. Then, a dual-modal fluorescent/colorimetric immunosensor was constructed using the Nb26-EGFP-gold nanoflowers (AuNFs) composite as a probe, to detect the aflatoxin B1 (AFB1). In the maize matrix, the proposed immunosensor showed high sensitivity with a limit of detection (LOD) of 0.0024 ng/mL and a visual LOD of 1 ng/mL, which is 20-fold and 325-fold compared with the Nb26-EGFP-based single-modal immunosensor and original nanobody Nb26-based immunoassay. The performance of the dual-modal assay was validated by a high-performance liquid chromatography method. The recoveries were between 83.19 and 108.85%, with the coefficients of variation below 9.43%, indicating satisfied accuracy and repeatability. Overall, the novel Nb26-EGFP could be used as the detection probe, and the dual-modal immunosensor could be used as a practical detection method for AFB1 in real samples.
Collapse
Affiliation(s)
- Jiasi Zuo
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Tingting Yan
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| |
Collapse
|
5
|
Zhang K, Phillips M. Opinion: Multi-Mycotoxin Reference Materials. Foods 2022; 11:foods11172544. [PMID: 36076730 PMCID: PMC9454929 DOI: 10.3390/foods11172544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of mycotoxins in food and feed using liquid chromatography coupled with mass spectrometry is considered advantageous because the hyphenated technology enables simultaneous determination of multiple mycotoxins. Multi-mycotoxin analysis requires special consideration of quality control parameters to ensure proper evaluation of data quality for all target mycotoxins in method development and routine sample analysis. Mycotoxin matrix reference materials, especially certified reference materials, are stable and homogeneous matrices with certified traceability, concentrations, and uncertainty for mycotoxin(s) of interest. The use of these reference materials for single mycotoxin analysis has been a well-accepted practice and should be extended to multi-mycotoxin analysis. This opinion piece discusses the following essential metrological and operational components to improve data quality: (1) purposes of multi-mycotoxin reference materials; (2) comparison of reference materials, certified reference materials, and in-house quality control materials; (3) advantages of using reference materials for multi-mycotoxin analysis; (4) current trends and challenges of multi-mycotoxin reference materials. Potential applications of reference materials discussed here can improve routine mycotoxin determination and will lead to better accuracy and consistency of results. Quality control processes that incorporate reference materials in the field of mycotoxin analysis ensure successful development and implementation of liquid chromatography mass spectrometry-based multi-mycotoxin methods.
Collapse
Affiliation(s)
- Kai Zhang
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20747, USA
- Correspondence: (K.Z.); (M.P.)
| | - Melissa Phillips
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Correspondence: (K.Z.); (M.P.)
| |
Collapse
|
6
|
Rossetto G, Kiraly P, Castañar L, Morris GA, Nilsson M. Improved Quantification by Nuclear Magnetic Resonance Spectroscopy of the Fatty Acid Ester Composition of Extra Virgin Olive Oils. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:1237-1242. [PMID: 36034339 PMCID: PMC9396653 DOI: 10.1021/acsfoodscitech.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel Rossetto
- Department of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, UK
| | - Peter Kiraly
- Department of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, UK
| | - Laura Castañar
- Department of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, UK
| | - Gareth A. Morris
- Department of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, UK
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, UK
| |
Collapse
|
7
|
Pereira C, Cunha SC, Fernandes JO. Mycotoxins of Concern in Children and Infant Cereal Food at European Level: Incidence and Bioaccessibility. Toxins (Basel) 2022; 14:toxins14070488. [PMID: 35878226 PMCID: PMC9317499 DOI: 10.3390/toxins14070488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cereals are of utmost importance for the nutrition of infants and children, as they provide important nutrients for their growth and development and, in addition, they are easily digestible, being the best choice for the transition from breast milk/infant formula to solid foods. It is well known that children are more susceptible than adults to toxic food contaminants, such as mycotoxins, common contaminants in cereals. Many mycotoxins are already regulated and controlled according to strict quality control standards in Europe and around the world. There are, however, some mycotoxins about which the level of knowledge is lower: the so-called emerging mycotoxins, which are not yet regulated. The current review summarizes the recent information (since 2014) published in the scientific literature on the amounts of mycotoxins in infants’ and children’s cereal-based food in Europe, as well as their behaviour during digestion (bioaccessibility). Additionally, analytical methods used for mycotoxin determination and in vitro methods used to evaluate bioaccessibility are also reported. Some studies demonstrated the co-occurrence of regulated and emerging mycotoxins in cereal products used in children’s food, which highlights the need to adopt guidelines on the simultaneous presence of more than one mycotoxin. Although very little research has been done on the bioaccessibility of mycotoxins in these food products, very interesting results correlating the fiber and lipid contents of such products with a higher or lower bioaccessibility of mycotoxins were reported. LC-MS/MS is the method of choice for the detection and quantification of mycotoxins due to its high sensibility and accuracy. In vitro static digestion models are the preferred ones for bioaccessibility evaluation due to their simplicity and accuracy.
Collapse
|
8
|
Lavrinenko IA, Donskikh AO, Minakov DA, Sirota AA. Analysis and classification of peanuts with fungal diseases based on real-time spectral processing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:990-1000. [PMID: 35044871 DOI: 10.1080/19440049.2021.2017001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The study presents an approach to the analysis and classification of peanuts performed in order to detect kernels with fungi diseases, i.e. kernels prone to contamination with mycotoxigenic Aspergillus flavus (Aspergillus parasiticus). The aim of this study was to evaluate the effectiveness of luminescent spectroscopy with a violet laser (405 nm wavelength) as the excitation source of the fluorescence when applied for real-time detection of mould in peanuts performed by means of multispectral processing based on machine learning methods. We suggest a laboratory unit used to form, register, and process the luminescence spectra of peanuts in visible and near-infrared wavelength ranges in the real-time mode. The study demonstrated that contaminated peanuts have increased luminous intensity and show a redshift in the fluorescence peaks of the contaminated samples as compared to the pure ones. The difference in the fluorescence spectra of pure and contaminated kernels is compatible with the results obtained when traditional UV-light sources are used (365 nm). To classify peanuts by their spectral characteristics, neural network algorithms were used combined with dimensionality reduction methods. The paper presents the probabilities of incorrect recognition of the peanuts' type depending on the number of relevant secondary features determined when reducing the dimensionality of the initial data. When 10 spectral components were used, the error ratios were 0.7% or 0.3% depending on the method of reducing the dimensionality of the initial data.
Collapse
Affiliation(s)
- Igor A Lavrinenko
- Department of Human and Animal Physiology, Voronezh State University, Voronezh, Russia
| | - Artem O Donskikh
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Dmitriy A Minakov
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Alexander A Sirota
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| |
Collapse
|
9
|
Zhang K, Tan S, Xu D. Determination of Mycotoxins in Dried Fruits Using LC-MS/MS-A Sample Homogeneity, Troubleshooting and Confirmation of Identity Study. Foods 2022; 11:foods11060894. [PMID: 35327316 PMCID: PMC8954288 DOI: 10.3390/foods11060894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
To monitor co-exposure to toxic mycotoxins in dried fruits, it is advantageous to simultaneously determine multiple mycotoxins using a single extraction and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. In this study, we applied a stable isotope dilution and LC-MS/MS method to multi-mycotoxin analysis in dried fruits, selecting raisins, plums, figs, and cranberries for matrix extension. Samples were prepared using cryogenic grinding, followed by the fortification of carbon-13 (13C) uniformly labeled internal standards for twelve mycotoxins, and extraction using 50% acetonitrile. Homogeneity of prepared samples, defined as particle size Dv90 < 850 µm for the tested matrices, was characterized using a laser diffraction particle size analyzer, and reached using cryogenic grinding procedures. The majority of recoveries in the four matrices for aflatoxins and ochratoxin A spiked at 1−100 ng/g; fumonisins, T-2 toxin, HT-2 toxin, and zearalenone spiked at 10−1000 ng/g, ranged from 80 to 120% with relative standard deviations (RSDs) of <20%. Deoxynivalenol was not detected at 10 and 100 ng/g in plums, and additional troubleshooting procedures using liquid-liquid extraction (LLE), solid phase extraction (SPE), and elution gradient were evaluated to improve the detectability of the mycotoxin. Furthermore, we confirmed the identity of detected mycotoxins, ochratoxin A and deoxynivalenol, in incurred samples using enhanced product ion scans and spectral library matching.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, HFS-717. 5001 Campus Drive, College Park, MD 20740, USA;
- Correspondence: ; Tel.: +1-240-402-2318
| | - Steven Tan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, HFS-717. 5001 Campus Drive, College Park, MD 20740, USA;
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, 2134 Patapsco Building, 5145 Campus Drive, College Park, MD 20740, USA;
| | - David Xu
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, 2134 Patapsco Building, 5145 Campus Drive, College Park, MD 20740, USA;
| |
Collapse
|
10
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
11
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
12
|
|
13
|
Kumar A, Dhanshetty M, Banerjee K. Development and Validation of a Method for Direct Analysis of Aflatoxins in Animal Feeds by Ultra-High-Performance Liquid Chromatography with Fluorescence Detection. J AOAC Int 2021; 103:940-945. [PMID: 33241328 DOI: 10.1093/jaoacint/qsz037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Aflatoxin (AF) contamination is one of the major regulatory concerns for animal feed. As feed is a complex analytical matrix, validated methods on AFs in feed are scanty. The available methods involve a derivatization step before AF analysis by high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). The aim of this study was thus to develop and validate a simple and rapid method for direct analysis of AFs (AFB1, AFB2, AFG1, AFG2) in a range of animal feed matrices. METHODS Feed samples were extracted with 80% methanol, followed by dilution with water and immmunoaffinity column cleanup. AFs were estimated using an ultra-high performance liquid chromatography (UHPLC) instrument. Use of a large volume flow cell in FLD allowed direct analysis of all AFs with high sensitivity. The method was thoroughly validated in a range of feed matrices. RESULTS This sample preparation workflow minimized co-extractives, along with matrix interferences. In pigeon pea husk feed, the method provided a limit of quantification (LOQ) of 0.5 ng/g for each AF with recoveries of AF- B1, B2, G1, and G2 as 71.5, 75.6, 82.4, and 78.2%, respectively. The precision (relative standard deviation, RSD) was below 5%. A similar method performance was also recorded in other matrices, including wheat bran feed and poultry feed. CONCLUSIONS The optimized method is suitable for regulatory testing because it is simple, robust, cost-effective, and high throughput in nature, with high sensitivity and selectivity. HIGHLIGHTS Our workflow has provided a straightforward method for the analysis of AFs in a wide range of animal feed matrices with high sensitivity, selectivity, throughput, and cost-effectiveness. The method allowed a direct analysis of AFs by UHPLC-FLD without a step of derivatization.
Collapse
Affiliation(s)
- Anup Kumar
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412 307, India
| | - Manisha Dhanshetty
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412 307, India
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412 307, India
| |
Collapse
|
14
|
|
15
|
Alikord M, Mohammadi A, Kamankesh M, Shariatifar N. Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS). Crit Rev Food Sci Nutr 2021; 62:4833-4866. [PMID: 33554631 DOI: 10.1080/10408398.2021.1879003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is an analytical separation and diagnostic technique that is simple and sensitive and a rapid response and low-priced technique for detecting trace levels of chemical compounds in different matrices. Chemical agents and environmental contaminants are successfully detected by IMS and have been recently considered to employ in food safety. In addition, IMS uses stand-alone or coupled analytical diagnostic tools with chromatographic and spectroscopic methods. Scientific publications show that IMS has been applied 21% in the pharmaceutical industry, 9% in environmental studies and 13% in quality control and food safety. Nevertheless, applications of IMS in food safety and quality analysis have not been adequately explored. This review presents the IMS-related analysis and focuses on the application of IMS in food safety and quality. This review presents the important topics including detection of traces of chemicals, rate of food spoilage and freshness, food adulteration and authenticity as well as natural toxins, pesticides, herbicides, fungicides, veterinary, and growth promoter drug residues. Further, persistent organic pollutants (POPs), acrylamide, polycyclic aromatic hydrocarbon (PAH), biogenic amines, nitrosamine, furfural, phenolic compounds, heavy metals, food packaging materials, melamine, and food additives were also examined for the first time. Therefore, it is logical to predict that the application of the IMS technique in food safety, food quality, and contaminant analysis will be impressively increased in the future. HighlightsCurrent status of IMS for residues and contaminant detection in food safety.To assess all the detected contaminants in food safety, for the first time.Identified IMS-related parameters and chemical compounds in food safety control.
Collapse
Affiliation(s)
- Mahsa Alikord
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Halal Research Center of the Islamic Republic of Iran, Tehran, Iran
| |
Collapse
|
16
|
Charoux CMG, Patange A, Lamba S, O'Donnell CP, Tiwari BK, Scannell AGM. Applications of nonthermal plasma technology on safety and quality of dried food ingredients. J Appl Microbiol 2020; 130:325-340. [PMID: 32797725 DOI: 10.1111/jam.14823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
Cold plasma technology is an efficient, environmental-friendly, economic and noninvasive technology; and in recent years these advantages placed this novel technology at the centre of diverse studies for food industry applications. Dried food ingredients including spices, herbs, powders and seeds are an important part of the human diet; and the growing demands of consumers for higher quality and safe food products have led to increased research into alternative decontamination methods. Numerous studies have investigated the effect of nonthermal plasma on dried food ingredients for food safety and quality purposes. This review provides critical review on potential of cold plasma for disinfection of dried food surfaces (spices, herbs and seeds), improvement of functional and rheological properties of dried ingredients (powders, proteins and starches). The review further highlights the benefits of plasma treatment for enhancement of seeds performance and germination yield which could be applied in agricultural sector in near future. Different studies applying plasma technology for control of pathogens and spoilage micro-organisms and modification of food quality and germination of dried food products followed by benefits and current challenges are presented. However, more systemic research needs to be addressed for successful adoption of this technology in food industry.
Collapse
Affiliation(s)
- C M G Charoux
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A Patange
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - S Lamba
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - C P O'Donnell
- UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - B K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Zhang K, Banerjee K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins (Basel) 2020; 12:E539. [PMID: 32825718 PMCID: PMC7551558 DOI: 10.3390/toxins12090539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
As a class of mycotoxins with regulatory and public health significance, aflatoxins (e.g., aflatoxin B1, B2, G1 and G2) have attracted unparalleled attention from government, academia and industry due to their chronic and acute toxicity. Aflatoxins are secondary metabolites of various Aspergillus species, which are ubiquitous in the environment and can grow on a variety of crops whereby accumulation is impacted by climate influences. Consumption of foods and feeds contaminated by aflatoxins are hazardous to human and animal health, hence the detection and quantification of aflatoxins in foods and feeds is a priority from the viewpoint of food safety. Since the first purification and identification of aflatoxins from feeds in the 1960s, there have been continuous efforts to develop sensitive and rapid methods for the determination of aflatoxins. This review aims to provide a comprehensive overview on advances in aflatoxins analysis and highlights the importance of sample pretreatments, homogenization and various cleanup strategies used in the determination of aflatoxins. The use of liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE) and immunoaffinity column clean-up (IAC) and dilute and shoot for enhancing extraction efficiency and clean-up are discussed. Furthermore, the analytical techniques such as gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), capillary electrophoresis (CE) and thin-layer chromatography (TLC) are compared in terms of identification, quantitation and throughput. Lastly, with the emergence of new techniques, the review culminates with prospects of promising technologies for aflatoxin analysis in the foreseeable future.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration/Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune 412307, India;
| |
Collapse
|
18
|
Chiotta ML, Fumero MV, Cendoya E, Palazzini JM, Alaniz-Zanon MS, Ramirez ML, Chulze SN. Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Rev Argent Microbiol 2020; 52:339-347. [PMID: 32718824 DOI: 10.1016/j.ram.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that mainly belong to Aspergillus, Fusarium, Penicillium and Alternaria, which can grow in a variety of crops including cereals, oilseeds and fruits. Consequently, their prevalence in foods and by-products not only affects human and animal health but also causes important losses in both domestic and international markets. This review provides data about toxigenic fungal species and mycotoxin occurrence in different crops commonly grown in Argentina. This information will be relevant to establish adequate management strategies to reduce the impact of mycotoxins on human food and animal feed chains and to implement future legislation on the maximum permitted levels of these fungal metabolites.
Collapse
Affiliation(s)
- María Laura Chiotta
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET.
| | - María Verónica Fumero
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Fellow from CONICET
| | - Eugenia Cendoya
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Fellow from CONICET
| | - Juan Manuel Palazzini
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - María Silvina Alaniz-Zanon
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - María Laura Ramirez
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - Sofía Noemí Chulze
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| |
Collapse
|
19
|
Muhialdin BJ, Saari N, Meor Hussin AS. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020; 25:E2655. [PMID: 32517380 PMCID: PMC7321335 DOI: 10.3390/molecules25112655] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.
Collapse
Affiliation(s)
- Belal J. Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Anis Shobirin Meor Hussin
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Muñoz-Solano B, González-Peñas E. Mycotoxin Determination in Animal Feed: An LC-FLD Method for Simultaneous Quantification of Aflatoxins, Ochratoxins and Zearelanone in This Matrix. Toxins (Basel) 2020; 12:E374. [PMID: 32516887 PMCID: PMC7354491 DOI: 10.3390/toxins12060374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are toxic compounds for humans and animals that are produced by fungi. Mycotoxin contamination in feed is a global safety concern and effective control of these compounds in this matrix is needed. This study proposes a simple, cost-effective analytical method based on liquid chromatography coupled with a fluorescence detector, which is suitable for the routine monitoring of some of the most important mycotoxins in feed: aflatoxins (G2, G1, B2, and B1), zearalenone, and ochratoxins A and B. Mycotoxin extraction, chromatographic separation and quantification are carried out simultaneously for all mycotoxins. The extraction procedure is performed using acetonitrile, water and orthophosphoric acid (80:19:1). Purification of the extract is carried out using an OASIS PRIME HLB solid-phase extraction cartridge followed by a dispersive liquid-liquid microextraction procedure. Aflatoxins G1 and B1 are derivatized post-column (photochemical reactor at 254 nm) to increase their signal. The method has been validated in feed for pigs, cows, sheep, and poultry with very satisfactory results. The detection limits are 2 μg/kg for aflatoxins B1 and G1, 0.64 μg/kg for aflatoxins B2 and G2, 42 μg/kg for zearalenone, and 5 μg/kg for ochratoxins A and B. These values are low enough to allow for monitoring of these mycotoxins in feed. Global recovery values were between 73.6% and 88.0% for all toxins with a relative standard deviation (RSD) % < 7%. This methodology will facilitate laboratory control and analysis of mycotoxins in feed.
Collapse
Affiliation(s)
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
21
|
Jia B, Wang W, Ni X, Chu X, Yoon S, Lawrence K. Detection of mycotoxins and toxigenic fungi in cereal grains using vibrational spectroscopic techniques: a review. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nutrition-rich cereal grains and oil seeds are the major sources of food and feed for human and livestock, respectively. Infected by fungi and contaminated with mycotoxins are serious problems worldwide for cereals and oil seeds before and after harvest. The growth and development activities of fungi consume seed nutrients and destroy seed structures, leading to dramatic declines of crop yield and quality. In addition, the toxic secondary metabolites produced by these fungi pose a well-known threat to both human and animals. The existence of fungi and mycotoxins has been a redoubtable problem worldwide for decades but tends to be a severe food safety issue in developing countries and regions, such as China and Africa. Detection of fungal infection at an early stage and of mycotoxin contaminants, even at a small amount, is of great significance to prevent harmful toxins from entering the food supply chains worldwide. This review focuses on the recent advancements in utilising infrared spectroscopy, Raman spectroscopy, and hyperspectral imaging to detect fungal infections and mycotoxin contaminants in cereals and oil seeds worldwide, with an emphasis on recent progress in China. Brief introduction of principles, and corresponding shortcomings, as well as latest advances of each technique, are also being presented herein.
Collapse
Affiliation(s)
- B. Jia
- Beijing Key Laboratory of Optimized Design for modern Agricultural Equipment, College of Engineering, China Agriculture University, No. 17 Tsinghua East Road, Beijing, 100083, China P.R
| | - W. Wang
- Beijing Key Laboratory of Optimized Design for modern Agricultural Equipment, College of Engineering, China Agriculture University, No. 17 Tsinghua East Road, Beijing, 100083, China P.R
| | - X.Z. Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, 2747 Davis Road, Tifton, GA 31793, USA
| | - X. Chu
- College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China P.R
| | - S.C. Yoon
- Quality and Safety Assessment Research Unit, USDA-ARS, Athens, GA 30605, USA
| | - K.C. Lawrence
- Quality and Safety Assessment Research Unit, USDA-ARS, Athens, GA 30605, USA
| |
Collapse
|
22
|
Zhu W, Li L, Zhou Z, Yang X, Hao N, Guo Y, Wang K. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chem 2020; 319:126544. [PMID: 32151901 DOI: 10.1016/j.foodchem.2020.126544] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/07/2019] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
Abstract
Colorimetric biosensors have been widely applied to mycotoxins testing. However, the colorimetric assay previously reported used a single color to detect one mycotoxin, and there were few reports on the simultaneous detection of multiple mycotoxins. In this work, a colorimetric biosensor for dual mycotoxins detection was developed. A Fe3O4/GO based platform for aflatoxins B1 (AFB1) detection and a Fe3O4@Au based platform for ochratoxin A (OTA) detection were fabricated. The quantification of OTA and AFB1 was respectively achieved by the release of thymolphthalein under alkaline conditions and 3,3',5,5'-tetramethylbenzidine was catalyzed by Au NPs under acidic conditions. Because of different conditions, two sensing methods didn't interfere with each other but could provide a higher detection efficiency. The detection range of AFB1 is 5-250 ng·ml-1 and that of OTA is 0.5-80 ng·ml-1. This biosensor has been successfully applied in real sample detection, which has a broad application prospect in fields of food safety.
Collapse
Affiliation(s)
- Weiran Zhu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Liubo Li
- Department of Interventional Oncology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Zhou Zhou
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaodi Yang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Yingshu Guo
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China.
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
23
|
Nogueira WV, de Oliveira FK, Garcia SDO, Sibaja KVM, Tesser MB, Garda Buffon J. Sources, quantification techniques, associated hazards, and control measures of mycotoxin contamination of aquafeed. Crit Rev Microbiol 2020; 46:26-37. [PMID: 32065532 DOI: 10.1080/1040841x.2020.1716681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the productive intensification of fish farming, the partial or total replacement of fishmeal by ingredients of plant origin became a reality within the feed industry, with the aim of reducing costs. However, this practice increased the impact of mycotoxin contamination. Studies have shown that mycotoxins can induce various disorders in fish, such as cellular and organic alterations, as well as impair functional and morphological development, and, in more severe cases, mortality. Thus, studies have been conducted to evaluate and develop strategies to prevent the formation of mycotoxins, as well as to induce their elimination, inactivation or reduction of their availability in feed.
Collapse
Affiliation(s)
- Wesclen Vilar Nogueira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Francine Kerstner de Oliveira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Sabrina de Oliveira Garcia
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Karen Vanessa Marimón Sibaja
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Marcelo Borges Tesser
- Aquatic Organism Nutrition Laboratory, Institute of Oceanography, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Jaqueline Garda Buffon
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
25
|
Freitas A, Barros S, Brites C, Barbosa J, Silva AS. Validation of a Biochip Chemiluminescent Immunoassay for Multi-Mycotoxins Screening in Maize (Zea mays L.). FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01625-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Silva AS, Brites C, Pouca AV, Barbosa J, Freitas A. UHPLC-ToF-MS method for determination of multi-mycotoxins in maize: Development and validation. Curr Res Food Sci 2019; 1:1-7. [PMID: 32914099 PMCID: PMC7473352 DOI: 10.1016/j.crfs.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC–ToF-MS) method has been developed for determination of nine mycotoxins, namely aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), zearalenone (ZEA), toxin T2 (T2) and fumonisins (FB1 and FB2) in maize. The method included a two-step extraction with acetonitrile 80% (v/v). After optimization, the analytical method was validated. The different concentrations tested take in account the Maximum Levels (ML) for maize (Commission Regulation EC no. 1881/2006) and good results for repeatability (%RSDr ≤ 15.4%), reproducibility (%RSDR ≤ 15.9%) and recovery (77.8–110.4%, except for AFG2 at 2 μg/kg which presented a recovery of 73.4%) were achieved. These met the performance criteria imposed by Commission Regulation (EC) no. 401/2006. The method was applied to twenty-two samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins, but the levels do not exceed those imposed by European legislation. A UHPLC–ToF-MS method was developed for determination of nine mycotoxins in maize. Validation of the method was performed taking in account the EU maximum legal limits for maize. Good results for repeatability, reproducibility and recovery were achieved. The method was applied to 22 samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins.
Collapse
Affiliation(s)
- Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
- Corresponding author. National Institute for Agricultural and Veterinary Research, Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal.
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- GREEN-IT, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Vila Pouca
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Jorge Barbosa
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
27
|
Zhan S, Zheng L, Zhou Y, Wu K, Duan H, Huang X, Xiong Y. A Gold Growth-Based Plasmonic ELISA for the Sensitive Detection of Fumonisin B 1 in Maize. Toxins (Basel) 2019; 11:toxins11060323. [PMID: 31195758 PMCID: PMC6628417 DOI: 10.3390/toxins11060323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, a highly sensitive plasmonic enzyme-linked immunosorbent assay (pELISA) was developed for the naked-eye detection of fumonisin B1 (FB1). Glucose oxidase (GOx) was used as an alternative to horseradish peroxidase as the carrier of the competing antigen. GOx catalyzed the oxidation of glucose to produce hydrogen peroxide, which acted as a reducing agent to reduce Au3+ to Au on the surface of gold seeds (5 nm), This reaction led to a color change in the solution from colorless to purple, which was observable to the naked eye. Various parameters that could influence the detection performance of pELISA were investigated. The developed method exhibited a considerably high sensitivity for FB1 qualitative naked-eye detection, with a visible cut-off limit of 1.25 ng/mL. Moreover, the proposed pELISA showed a good linear range of 0.31–10 ng/mL with a half maximal inhibitory concentration (IC50) of 1.86 ng/mL, which was approximately 13-fold lower than that of a horseradish peroxidase- (HRP)-based conventional ELISA. Meanwhile, the proposed method was highly specific and accurate. In summary, the new pELISA exhibited acceptable accuracy and precision for sensitive naked-eye detection of FB1 in maize samples and can be applied for the detection of other chemical contaminants.
Collapse
Affiliation(s)
- Shengnan Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Lingyan Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Kesheng Wu
- Jiangxi Institute of Veterinary Drug and Feedstuff Control, Nanchang 330096, China.
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
28
|
Yeung AWK, Tzvetkov NT, Jóźwik A, Horbanczuk OK, Polgar T, Pieczynska MD, Sampino S, Nicoletti F, Berindan-Neagoe I, Battino M, Atanasov AG. Food toxicology: quantitative analysis of the research field literature. Int J Food Sci Nutr 2019; 71:13-21. [PMID: 31140340 DOI: 10.1080/09637486.2019.1620184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Total-scale quantitative research literature analysis on the food toxicology scientific field has yet to be conducted. In this work, we identified and analysed food toxicology publications in the existing scientific literature. A literature search was performed with the online Web of Science database. Full records and cited references of the 73,099 identified manuscripts were imported into VOSviewer software for analysis. This research field has been growing steadily since the 1990s. Article to review ratio was 7.4:1. The publications were mainly related to toxicology, environmental sciences, food science and technology, pharmacology/pharmacy and biochemistry/molecular biology. The United States and China are major contributors to food toxicology research, followed by other European and Asian countries. The prolific authors have formed three major clusters within a citation network. Toxic or hazardous chemicals related to food with high citations included aflatoxin, dioxin, fumonisin, malondialdehyde, mycotoxin, ochratoxin, phthalate, and polychlorinated biphenyl.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria.,Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Artur Jóźwik
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Olaf K Horbanczuk
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Timea Polgar
- GLOBE Program Association (GLOBE-PA), Grandville, MI, USA
| | - Magdalena D Pieczynska
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Silvestre Sampino
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Experimental Pathology, "Prof. Dr. Ion Chiricuta", The Oncology Institute, Cluj-Napoca, Romania
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain.,Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,GLOBE Program Association (GLOBE-PA), Grandville, MI, USA.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Wang D, Zhang Z, Zhang Q, Wang Z, Zhang W, Yu L, Li H, Jiang J, Li P. Rapid and sensitive double-label based immunochromatographic assay for zearalenone detection in cereals. Electrophoresis 2019; 39:2125-2130. [PMID: 29808596 DOI: 10.1002/elps.201800055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/05/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
Abstract
A double-label immunochromatographic based assay (DL-ICA) was developed to monitor zearalenone (ZEN) levels in cereals, based on Eu3+ nanoparticles (EuNP). The DL-ICA exhibited excellent sensitivity, reliability and selectivity in real samples. It showed low limits of detection (0.21-0.25 μg/kg) and broad analytical ranges (up to 120 μg/kg). The total analytical time, including sample preparation and DL-ICA execution, was reduced by 15 min compared with HPLC. The recovery rates ranged from 95.0-118.4%, with relative standard deviations (RSD) <11.6%. Inter- and intra-day validations were assessed, recovery rates of 89.3-106.9% and RSD of 2.3-9.7% were obtained, suggesting considerable stability and reliability for the assay. An excellent correlation was observed between DL-ICA and a reference HPLC method (R2 = 0.9899). Compared to current immunoassays, the current DL-ICA is inexpensive, highly sensitive, and rapid. Therefore, DL-ICA constitutes a novel tool for monitoring mycotoxins in food and feed to ensure safety.
Collapse
Affiliation(s)
- Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,National Reference Laboratory for Biotoxin Test, Wuhan, P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
| | - Zhongzheng Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China.,National Reference Laboratory for Biotoxin Test, Wuhan, P. R. China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,National Reference Laboratory for Biotoxin Test, Wuhan, P. R. China
| | - Hui Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Jun Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China.,Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| |
Collapse
|
30
|
Pleadin J, Frece J, Markov K. Mycotoxins in food and feed. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:297-345. [PMID: 31351529 DOI: 10.1016/bs.afnr.2019.02.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Mycotoxins represent secondary fungal metabolites not essential to the normal growth and reproduction of a fungus, but capable of causing biochemical, physiological and pathological changes in many species. Harmful effects of mycotoxins observed in humans and animals include carcinogenicity, teratogenicity, immune toxicity, neurotoxicity, hepatotoxicity, nephrotoxicity, reproductive and developmental toxicity, indigestion and so forth. These substances can be found in a variety of very important agricultural and food products, primarily dependent of product moisture content, and its water activity, relative air humidity, temperature, pH value, composition of the food matrix, the degree of its physical damage, and the presence of mold spores. Given that industrial processing has no significant effect on their reduction and in order to be able to vouch for the absence of mycotoxins, it is necessary to process foodstuffs under standardized and well-controlled conditions and to control each and every loop of the food production and storage chain. Preventative measures capable of reducing the contamination to the minimum must be in place and should be exercised by all means. In case that contamination does happen, methods for mycotoxin reduction or elimination should be implemented in dependence on a number of parameters such as properties of food or feed. Further research is needed in order to identify conditions that facilitate the growth of mycotoxin-producing fungi and develop effective preventative measures that can reduce contamination of food and feed as also to recognize possible synergistic effects of different mycotoxins in organism.
Collapse
Affiliation(s)
- Jelka Pleadin
- Croatian Veterinary Institute, Laboratory for Analytical Chemistry, Zagreb, Croatia.
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
31
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Parent-Massin D, van Egmond H, Altieri A, Colombo P, Horváth Z, Levorato S, Edler L. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J 2018; 16:e05367. [PMID: 32626015 PMCID: PMC7009455 DOI: 10.2903/j.efsa.2018.5367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
4,15‐Diacetoxyscirpenol (DAS) is a mycotoxin primarily produced by Fusarium fungi and occurring predominantly in cereal grains. As requested by the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed the risk of DAS to human and animal health related to its presence in food and feed. Very limited information was available on toxicity and on toxicokinetics in experimental and farm animals. Due to the limitations in the available data set, human acute and chronic health‐based guidance values (HBGV) were established based on data obtained in clinical trials of DAS as an anticancer agent (anguidine) after intravenous administration to cancer patients. The CONTAM Panel considered these data as informative for the hazard characterisation of DAS after oral exposure. The main adverse effects after acute and repeated exposure were emesis, with a no‐observed‐adverse‐effect level (NOAEL) of 32 μg DAS/kg body weight (bw), and haematotoxicity, with a NOAEL of 65 μg DAS/kg bw, respectively. An acute reference dose (ARfD) of 3.2 μg DAS/kg bw and a tolerable daily intake (TDI) of 0.65 μg DAS/kg bw were established. Based on over 15,000 occurrence data, the highest acute and chronic dietary exposures were estimated to be 0.8 and 0.49 μg DAS/kg bw per day, respectively, and were not of health concern for humans. The limited information for poultry, pigs and dogs indicated a low risk for these animals at the estimated DAS exposure levels under current feeding practices, with the possible exception of fattening chicken. Assuming similar or lower sensitivity than for poultry, the risk was considered overall low for other farm and companion animal species for which no toxicity data were available. In consideration of the similarities of several trichothecenes and the likelihood of co‐exposure via food and feed, it could be appropriate to perform a cumulative risk assessment for this group of substances.
Collapse
|
32
|
Pajewska M, Łojko M, Cendrowski K, Sawicki W, Kowalkowski T, Buszewski B, Gadzała-Kopciuch R. The determination of zearalenone and its major metabolites in endometrial cancer tissues. Anal Bioanal Chem 2018; 410:1571-1582. [PMID: 29368148 DOI: 10.1007/s00216-017-0807-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/07/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023]
Abstract
Endometrial cancer is one of the most commonly diagnosed cancers in women. The search for factors that contribute to the development of cancer cells in reproductive organs should involve the detection of xenoestrogens, in particular zearalenone (ZEA) and its metabolites. Xenoestrogens are endocrine disruptors-ZEA and its metabolites are structurally similar to estrogens (macrocyclic lactone ring) and show high affinity for estrogen receptors. This study proposes a new method for the preparation of samples of human tissues with endometrial cancer by the use of the QuEChERS technique. Analytical parameters such as centrifugation temperature, extraction solvent, and adsorbents were modified to obtain satisfactory recovery for ZEA (R = 82.6%, RSD = 2.9%) and one of its metabolites, α-zearalenol (R = 50.1%, RSD = 3.2%). High-performance liquid chromatography (HPLC) with fluorescence detection and tandem mass spectrometry (LC-QTOF-MS) were used for the identification and quantitative determination of the analyzed compounds. The developed procedure was applied for analyses of human tissues with endometrial cancer. The presence of α-zearalenol was detected in 47 out of the 61 examined tissue samples. Graphical Abstract Methodology for isolation and identification of zearalenone and its major metabolites.
Collapse
Affiliation(s)
- Martyna Pajewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Mariusz Łojko
- Clinical Department of Obstetrics, Gynecology and Gynecologic Oncology, Ludwik Rydygier Regional Hospital, Św. Józefa 53-59, 87-100, Toruń, Poland
| | - Krzysztof Cendrowski
- Department and Clinic of Obstetrics, Gynecology and Oncology, II Faculty, Medical University of Warsaw, Kondratowicza 8, 02-242, Warsaw, Poland
| | - Włodzimierz Sawicki
- Department and Clinic of Obstetrics, Gynecology and Oncology, II Faculty, Medical University of Warsaw, Kondratowicza 8, 02-242, Warsaw, Poland
| | - Tomasz Kowalkowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland. .,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| |
Collapse
|
33
|
Pleadin J, Frece J, Lešić T, Zadravec M, Vahčić N, Malenica Staver M, Markov K. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2017; 10:268-274. [PMID: 28635371 DOI: 10.1080/19393210.2017.1345991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the occurrence of deoxynivalenol (DON) and zearalenone (ZEN) in unprocessed cereals and soybean sampled in 2014 and 2015 from different fields located in Croatian regions. A total of 306 samples were analysed for DON and 415 samples for ZEN concentrations using quantitative ELISA methods. In 2014, DON and ZEN were determined in all samples in the mean concentrations of 1,461 ± 2,265 µg/kg and 656 ± 853 µg/kg, respectively, while in 2015 these means were 2,687 ± 2,731 µg/kg and 1,140 ± 1,630 µg/kg, respectively. The cultivation year significantly (p < 0.05) influenced mycotoxin concentrations, whereas the influence of cultivation region was seen with ZEN for all cereals except soybean, and not seen with DON at all. A higher contamination determined during 2015 could be explained by high to extreme humidity evidenced in the period of cereals' growth and harvesting.
Collapse
Affiliation(s)
- Jelka Pleadin
- a Laboratory for Analytical Chemistry , Croatian Veterinary Institute Zagreb , Zagreb , Croatia
| | - Jadranka Frece
- b Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - Tina Lešić
- a Laboratory for Analytical Chemistry , Croatian Veterinary Institute Zagreb , Zagreb , Croatia
| | - Manuela Zadravec
- c Laboratory for Feed Microbiology , Croatian Veterinary Institute Zagreb , Zagreb , Croatia
| | - Nada Vahčić
- b Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | | | - Ksenija Markov
- b Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
34
|
Tima H, Berkics A, Hannig Z, Ittzés A, Kecskésné Nagy E, Mohácsi-Farkas C, Kiskó G. Deoxynivalenol in wheat, maize, wheat flour and pasta: surveys in Hungary in 2008-2015. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2017; 11:37-42. [PMID: 29105597 DOI: 10.1080/19393210.2017.1397061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among Fusarium mycotoxins, deoxynivalenol (DON) is the most common contaminant in case of cereals and cereal-based foods in Hungary. In this study, Hungarian wheat (n = 305), maize (n = 108), wheat flour (n = 179) and pasta (n = 226) samples were analysed (N = 818). The samples were collected during 2008-2015 in Hungary. Applied methods of analysis were enzyme-linked immunosorbent assay and liquid-chromatography coupled with a mass spectrometer. Results were compared and evaluated with Hungarian weather data. Among cereal samples, in 2011, wheat was contaminated with DON (overall average ± standard deviation was 2159 ± 2818 µg kg-1), which was above the maximum limit (ML). In case of wheat flour and pasta, no average values above ML were found during 2008-2015, but higher DON contamination could be observed in 2011 as well (wheat flour: 537 ± 573 µg kg-1; pasta: 511 ± 175 µg kg-1).
Collapse
Affiliation(s)
- Helga Tima
- a Faculty of Food Science, Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - Adrienn Berkics
- b National Food Chain Safety Office, System Management and Supervison Directorate , Budapest , Hungary
| | - Zoltán Hannig
- c National Food Chain Safety Office, Food and Feed Safety Directorate, Feed Investigation National Reference Laboratory , Budapest , Hungary
| | - András Ittzés
- d Faculty of Horticultural Science, Department of Biometrics and Agricultural Informatics , Szent István University , Budapest , Hungary
| | - Eleonóra Kecskésné Nagy
- e Faculty of Horticulture and Rural Development , Pallasz Athéné University , Kecskemét , Hungary
| | - Csilla Mohácsi-Farkas
- a Faculty of Food Science, Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - Gabriella Kiskó
- a Faculty of Food Science, Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| |
Collapse
|
35
|
Park J, Chang H, Hong S, Kim D, Chung S, Lee C. A Decrease of Incidence Cases of Fumonisins in South Korean Feedstuff between 2011 and 2016. Toxins (Basel) 2017; 9:E286. [PMID: 28914788 PMCID: PMC5618219 DOI: 10.3390/toxins9090286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/28/2022] Open
Abstract
Several plant pathogen Fusarium species produce fumonisins (FUMs); which can end up in food and feed and; when ingested; can exhibit harmful effects on humans and livestock. Mycotoxin intoxication by fumonisin B₁ (FB₁) and fumonisin B₂ (FB₂) can cause porcine pulmonary edema; leukoencephalomalacia in equines; esophageal cancer and birth defects by natural contamination. Herein; the occurrence of FB₁ and FB₂ in feedstuff (compound feed and feed ingredients) was investigated between 2011 and 2016 in South Korea. A total of 535 animal feed samples (425 compound feed samples and 110 feed ingredients) produced domestically were sampled four times between 2011 and 2016 (2011; 2012; 2014 and 2016) from feed factories in South Korea. The limit of detection (LOD) for FB₁ and FB₂ was 20 μg/kg and 25 μg/kg; respectively; and the limit of quantitation (LOQ) was 30 μg/kg and 35 μg/kg; respectively. The recovery range (%) was between 86.4% and 108.8%; and the relative standard deviation (RSD) (%) was 4.7-12.1%. Seven (swine feed samples) out of the 425 feed samples exceeded the European Union (EU) and South Korea commission regulations over the six-year test period; and no feed ingredients exceeded the guidelines.
Collapse
Affiliation(s)
- Juhee Park
- Advanced Food Safety Research Group, BrainKorea21 Plus, Department of Food Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong-si 17546, Gyeonggi-do, Korea.
| | - Hansub Chang
- Advanced Food Safety Research Group, BrainKorea21 Plus, Department of Food Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong-si 17546, Gyeonggi-do, Korea.
- National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea.
| | - Seungran Hong
- Advanced Food Safety Research Group, BrainKorea21 Plus, Department of Food Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong-si 17546, Gyeonggi-do, Korea.
| | - Dongho Kim
- National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea.
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea.
| | - Soohyun Chung
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea.
| | - Chan Lee
- Advanced Food Safety Research Group, BrainKorea21 Plus, Department of Food Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong-si 17546, Gyeonggi-do, Korea.
| |
Collapse
|
36
|
Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line. Mycotoxin Res 2017; 33:343-350. [PMID: 28844113 DOI: 10.1007/s12550-017-0291-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
Abstract
In this proof-of-concept study, the efficacy of a medium-pressure UV (MPUV) lamp source to reduce the concentrations of aflatoxin B1, aflatoxin B2, and aflatoxin G1 (AFB1, AFB2, and AFG1) in pure water is investigated. Irradiation experiments were conducted using a collimated beam system operating between 200 to 360 nm. The optical absorbance of the solution and the irradiance of the lamp are considered in calculating the average fluence rate. Based on these factors, the UV dose was quantified as a product of average fluence rate and treatment time. Known concentrations of aflatoxins were spiked in water and irradiated at UV doses ranging from 0, 1.22, 2.44, 3.66, and 4.88 J cm-2. The concentration of aflatoxins was determined by HPLC with fluorescence detection. LC-MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB1, AFB2, and AFG1. It was observed that UV irradiation significantly reduced aflatoxins in pure water (p < 0.05). Irradiation doses of 4.88 J cm-2 reduced concentrations 67.22% for AFG1, 29.77% for AFB2, and 98.25% for AFB1 (p < 0.05). Using this technique, an overall reduction of total aflatoxin content of ≈95% (p < 0.05) was achieved. We hypothesize that the formation of ˙OH radicals initiated by UV light may have caused photolysis of AFB1, AFB2, and AFG1 molecules. In cell culture studies, our results demonstrated that the increase of UV dosage decreased the aflatoxin-induced cytotoxicity in HepG2 cells. Therefore, our research finding suggests that UV irradiation can be used as an effective technique for the reduction of aflatoxins.
Collapse
|
37
|
The Occurrence of Zearalenone in South Korean Feedstuffs between 2009 and 2016. Toxins (Basel) 2017; 9:toxins9070223. [PMID: 28714869 PMCID: PMC5535170 DOI: 10.3390/toxins9070223] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins produced by Fusarium plant pathogen species have harmful effects on humans and livestock by natural contamination in food and feed. Zearalenone, one of the well-known Fusarium mycotoxins, causes hyperestrogenism and toxicosis resulting in reproductive dysfunction in animals. This study investigated the occurrence of zearalenone in feedstuffs (compound feeds, feed ingredients) between 2009 and 2016 in South Korea to obtain information on zearalenone contamination in feeds for management. A total of 653 animal feed samples (494 compound feeds, 159 feed ingredients) produced domestically were sampled five times from 2009 to 2016 (2009, 2010, 2012, 2014, and 2016) from feed factories in South Korea. The levels of zearalenone were analyzed every year by high-performance liquid chromatography (HPLC) after pretreatment with an immunoaffinity column showing limit of detection (LOD) and limit of quantification (LOQ) of 0.1–3 μg/kg and 0.3–8 μg/kg, respectively. Four feed samples out of 494 compound feeds exceeded the EU and South Korea commission regulations over the eight-year test period, and no feed ingredients exceeded the guidelines.
Collapse
|
38
|
Pleadin J, Vasilj V, Kudumija N, Petrović D, Vilušić M, Škrivanko M. Survey of T-2/HT-2 toxins in unprocessed cereals, food and feed coming from Croatia and Bosnia & Herzegovina. Food Chem 2017; 224:153-159. [DOI: 10.1016/j.foodchem.2016.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 08/26/2016] [Accepted: 12/18/2016] [Indexed: 11/25/2022]
|
39
|
Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh JL, Križaj I. Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus "Classic" Decontamination. Toxins (Basel) 2017; 9:toxins9050151. [PMID: 28452957 PMCID: PMC5450699 DOI: 10.3390/toxins9050151] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods.
Collapse
Affiliation(s)
- Nataša Hojnik
- Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Uroš Cvelbar
- Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Gabrijela Tavčar-Kalcher
- University of Ljubljana, Veterinary Faculty, Institute of Food Safety, Feed and Environment, Gerbičeva 60, SI-1000 Ljubljana, Slovenia.
| | - James L Walsh
- University of Liverpool, Department of Electrical, Engineering and Electronics, Brownlow Hill, Liverpool L69 3GJ, UK.
| | - Igor Križaj
- Jožef Stefan Institute, Department of Molecular and Biomedical Sciences, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Emídio ES, Calisto V, de Marchi MRR, Esteves VI. Photochemical transformation of zearalenone in aqueous solutions under simulated solar irradiation: Kinetics and influence of water constituents. CHEMOSPHERE 2017; 169:146-154. [PMID: 27870936 DOI: 10.1016/j.chemosphere.2016.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
The presence of estrogenic mycotoxins, such as zearalenone (ZEN), in surface waters is an emerging environmental issue. Little is known about its phototransformation behavior, which may influence its environmental fate. In this context, the phototransformation of ZEN was investigated in pure water, river water and estuarine water using simulated sunlight irradiation. Kinetic studies revealed that two concomitant processes contribute to the fate of ZEN under solar irradiation: photoisomerization and photodegradation. This phototransformation followed a pseudo-first order kinetics. ZEN degrades quickly in natural waters and slowly in deionized water, with half-lives (t1/2) of 28 ± 4 min (estuarine water), 136 ± 21 min (river water) and 1777 ± 412 min (deionized water). The effects of different water constituents on the phototransformation of ZEN in aqueous solution have been assessed (NaCl, Ca2+, Mg2+, Fe3+, NO3- and oxalate ions, synthetic seawater, Fe(III)-oxalate and Mg(II)-oxalate complexes, humic acids, fulvic acids and XAD-4 fraction). In the presence of synthetic seawater salt (t1/2 = 18 ± 5 min) and Fe(III)-oxalate complexes (t1/2 = 61 ± 9 min), the transformation rate increased considerably in relation to other water constituents tested. The solution pH also had a considerable effect in the kinetics with maximum transformation rates occurring around pH 8.5. These results allow us to conclude that phototransformation by solar radiation can be an important degradation pathway of ZEN in natural waters.
Collapse
Affiliation(s)
- Elissandro S Emídio
- Analytical Chemistry Department, Chemistry Institute, São Paulo State University-UNESP, Araraquara, SP, 14801-970, Brazil
| | - Vânia Calisto
- Department of Chemistry and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mary Rosa R de Marchi
- Analytical Chemistry Department, Chemistry Institute, São Paulo State University-UNESP, Araraquara, SP, 14801-970, Brazil
| | - Valdemar I Esteves
- Department of Chemistry and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
41
|
Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography – MS/MS in various food matrices. Anal Chim Acta 2016; 942:121-138. [DOI: 10.1016/j.aca.2016.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022]
|
42
|
He M, Li Y, Pi F, Ji J, He X, Zhang Y, Sun X. A novel detoxifying agent: Using rice husk carriers to immobilize zearalenone-degrading enzyme from Aspergillus niger FS10. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Hu X, Hu R, Zhang Z, Li P, Zhang Q, Wang M. Development of a multiple immunoaffinity column for simultaneous determination of multiple mycotoxins in feeds using UPLC-MS/MS. Anal Bioanal Chem 2016; 408:6027-6036. [PMID: 27225172 DOI: 10.1007/s00216-016-9626-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/01/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022]
Abstract
A sensitive and specific immunoaffinity column to clean up and isolate multiple mycotoxins was developed along with a rapid one-step sample preparation procedure for ultra-performance liquid chromatography-tandem mass spectrometry analysis. Monoclonal antibodies against aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, zearalenone, ochratoxin A, sterigmatocystin, and T-2 toxin were coupled to microbeads for mycotoxin purification. We optimized a homogenization and extraction procedure as well as column loading and elution conditions to maximize recoveries from complex feed matrices. This method allowed rapid, simple, and simultaneous determination of mycotoxins in feeds with a single chromatographic run. Detection limits for these toxins ranged from 0.006 to 0.12 ng mL(-1), and quantitation limits ranged from 0.06 to 0.75 ng mL(-1). Concentration curves were linear from 0.12 to 40 μg kg(-1) with correlation coefficients of R (2) > 0.99. Intra-assay and inter-assay comparisons indicated excellent repeatability and reproducibility of the multiple immunoaffinity columns. As a proof of principle, 80 feed samples were tested and several contained multiple mycotoxins. This method is sensitive, rapid, and durable enough for multiple mycotoxin determinations that fulfill European Union and Chinese testing criteria.
Collapse
Affiliation(s)
- Xiaofeng Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu Rd, Wuhan, 430072, China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China
| | - Min Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu Rd, Wuhan, 430072, China
| |
Collapse
|
44
|
Tima H, Rácz A, Guld Z, Mohácsi-Farkas C, Kiskó G. Deoxynivalenol, zearalenone and T-2 in grain based swine feed in Hungary. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 9:275-280. [DOI: 10.1080/19393210.2016.1213318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Pleadin J, Frece J, Kudumija N, Petrović D, Vasilj V, Zadravec M, Škrivanko M, Perković I, Markov K. Citrinin in cereals and feedstuffs coming from Croatia and Bosnia & Herzegovina. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 9:268-274. [DOI: 10.1080/19393210.2016.1210242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Tima H, Brückner A, Mohácsi-Farkas C, Kiskó G. Fusarium mycotoxins in cereals harvested from Hungarian fields. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 9:127-31. [PMID: 26892197 DOI: 10.1080/19393210.2016.1151948] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Fusarium mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T-2 frequently contaminate grain crops in Middle and Eastern Europe. In this survey, 116 cereal samples (maize, wheat, barley and oat) were examined for DON, ZEN and T-2 mycotoxins. Samples were collected from different areas in two Hungarian regions (North and South Transdanubia). The method of analysis was indirect competitive ELISA. Maize was the most contaminated grain regarding DON (86%), ZEN (41%) and T-2 (55%) toxins. The average results of the deoxynivalenol and zearalenone tests of maize proved to be significantly higher than those of barley or oat. DON was the most represented Fusarium mycotoxin followed by T-2 and ZEN. The examination of these mycotoxins would be necessary at a larger scale as to re-evaluate permissible levels, so increase of the monitoring programme would be advisable for the future.
Collapse
Affiliation(s)
- Helga Tima
- a Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - Andrea Brückner
- a Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - Csilla Mohácsi-Farkas
- a Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - Gabriella Kiskó
- a Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| |
Collapse
|
47
|
Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Pleadin J, Mihaljević Ž, Barbir T, Vulić A, Kmetič I, Zadravec M, Brumen V, Mitak M. Natural incidence of zearalenone in Croatian pig feed, urine and meat in 2014. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2015; 8:277-83. [PMID: 26367461 DOI: 10.1080/19393210.2015.1089946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the levels of zearalenone (ZEN) in different feed materials and feedstuffs for pigs, as well as in pig urine and pig meat following contaminated feed consumption. In total, 253 feed material and feedstuff samples were collected from Croatian pig farms. The results revealed the presence of ZEN in significant concentrations, the maximal being found in maize (5522 µg/kg), wheat (3366 µg/kg) and pig fattening feed (1949 µg/kg). In farms in which high feed contamination and pig hyperestrogenism were observed, samples of pig urine (n=30) and meat (n=30) were retrieved as well. The mean ZEN concentrations in pig urine and pig meat were 206±20.6 µg/L and 0.62±0.14 µg/kg, respectively. Despite high contamination of feedstuffs responsible for farmed pigs' intoxication, ZEN levels determined in pig meat were shown to be of little significance for human safety.
Collapse
Affiliation(s)
- Jelka Pleadin
- a Laboratory for Analytical Chemistry, Croatian Veterinary Institute , Zagreb , Croatia
| | - Željko Mihaljević
- b Department of Pathology , Croatian Veterinary Institute , Zagreb , Croatia
| | - Tina Barbir
- a Laboratory for Analytical Chemistry, Croatian Veterinary Institute , Zagreb , Croatia
| | - Ana Vulić
- a Laboratory for Analytical Chemistry, Croatian Veterinary Institute , Zagreb , Croatia
| | - Ivana Kmetič
- c Laboratory for Toxicology , Faculty of Food Technology and Biotechnology , Zagreb , Croatia
| | - Manuela Zadravec
- d Laboratory for Feed Microbiology, Croatian Veterinary Institute , Zagreb , Croatia
| | - Vlatka Brumen
- e Work Environment & Managerial Systems Chair, University of Applied Health Sciences , Zagreb , Croatia
| | - Mario Mitak
- d Laboratory for Feed Microbiology, Croatian Veterinary Institute , Zagreb , Croatia
| |
Collapse
|
49
|
Li C, Mi T, Conti GO, Yu Q, Wen K, Shen J, Ferrante M, Wang Z. Development of a screening fluorescence polarization immunoassay for the simultaneous detection of fumonisins B₁ and B₂ in maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4940-4946. [PMID: 25942573 DOI: 10.1021/acs.jafc.5b01845] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper reports the development of a screening fluorescence polarization immunoassay (FPIA) for the simultaneous detection of fumonisins B1 (FB1) and B2 (FB2) in maize. Three FB1 tracers including FB1-fluorescein isothiocyanate isomer I (FB1-FITC), FB1-5-([4,6-dichlorotriazine-2-yl]amino)-fluorescein (FB1-5-DTAF), and FB1-Texas Red-X succinimidyl ester (FB1-TRX) were synthesized and studied to select appropriate tracer-antibody pairs using seven previously produced monoclonal antibodies (mAbs). An FPIA employing the pair of FB1-FITC and mAb 4B9 showing 98.9% cross-reactivity (CR) toward FB2 was used to simultaneously detect FB1 and FB2. Maize flour samples were extracted with methanol/water (2:3, v/v). After optimization, the FPIA revealed a limit of detection (LOD) of 157.4 μg/kg for FB1 and an LOD of 290.6 μg/kg for FB2, respectively. Recoveries were measured for spiked samples of FB1 or FB2 separately, ranging from 84.7 to 93.6%, with a coefficient of variation (CV) of <9.9%. Total time needed for FPIA including sample pretreatment was <30 min. The FPIA was used to screen naturally contaminated maize samples. Results detected by FPIA showed good agreement with that of HPLC-MS/MS with a fit of R(2) = 0.99 for the simultaneous detection of FB1 and FB2. The established method offered a rapid, simple, sensitive, and high-throughput screening tool for the detection of fumonisins in maize.
Collapse
Affiliation(s)
- Chenglong Li
- †College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Tiejun Mi
- †College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Gea Oliveri Conti
- §Department "GF Ingrassia", Hygiene and Public Health, Laboratory of Environmental and Food Hygiene, University of Catania, 87 Avenue S. Sofia, 95123 Catania, Italy
| | - Qing Yu
- †College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- †College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- †College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
- #National Reference Laboratory for Veterinary Drug Residues, 100193 Beijing, People's Republic of China
| | - Margherita Ferrante
- §Department "GF Ingrassia", Hygiene and Public Health, Laboratory of Environmental and Food Hygiene, University of Catania, 87 Avenue S. Sofia, 95123 Catania, Italy
| | - Zhanhui Wang
- †College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
- #National Reference Laboratory for Veterinary Drug Residues, 100193 Beijing, People's Republic of China
| |
Collapse
|
50
|
Determination of estrogenic mycotoxins in environmental water samples by low-toxicity dispersive liquid–liquid microextraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 2015; 1391:1-8. [DOI: 10.1016/j.chroma.2015.02.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
|